Project acronym ANTHROPOID
Project Great ape organoids to reconstruct uniquely human development
Researcher (PI) Jarrett CAMP
Host Institution (HI) INSTITUT FUR MOLEKULARE UND KLINISCHE OPHTHALMOLOGIE BASEL
Call Details Starting Grant (StG), LS2, ERC-2018-STG
Summary Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Summary
Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym AXPLAST
Project Deep brain imaging of cellular mechanisms of sensory processing and learning
Researcher (PI) Jan GRUNDEMANN
Host Institution (HI) UNIVERSITAT BASEL
Call Details Starting Grant (StG), LS5, ERC-2018-STG
Summary Learning and memory are the basis of our behaviour and mental well-being. Understanding the mechanisms of structural and cellular plasticity in defined neuronal circuits in vivo will be crucial to elucidate principles of circuit-specific memory formation and their relation to changes in neuronal ensemble dynamics.
Structural plasticity studies were technically limited to cortex, excluding deep brain areas like the amygdala, and mainly focussed on the input site (dendritic spines), whilst the plasticity of the axon initial segment (AIS), a neuron’s site of output generation, was so far not studied in vivo. Length and location of the AIS are plastic and strongly affects a neurons spike output. However, it remains unknown if AIS plasticity regulates neuronal activity upon learning in vivo.
We will combine viral expression of AIS live markers and genetically-encoded Ca2+-sensors with novel deep brain imaging techniques via gradient index (GRIN) lenses to investigate how AIS location and length are regulated upon associative learning in amygdala circuits in vivo. Two-photon time-lapse imaging of the AIS of amygdala neurons upon fear conditioning will help us to track learning-driven AIS location dynamics. Next, we will combine miniature microscope imaging of neuronal activity in freely moving animals with two-photon imaging to link AIS location, length and plasticity to the intrinsic activity as well as learning-related response plasticity of amygdala neurons during fear learning and extinction in vivo. Finally, we will test if AIS plasticity is a general cellular plasticity mechanisms in brain areas afferent to the amygdala, e.g. thalamus.
Using a combination of two-photon and miniature microscopy imaging to map structural dynamics of defined neural circuits in the amygdala and its thalamic input areas will provide fundamental insights into the cellular mechanisms underlying sensory processing upon learning and relate network level plasticity with the cellular level.
Summary
Learning and memory are the basis of our behaviour and mental well-being. Understanding the mechanisms of structural and cellular plasticity in defined neuronal circuits in vivo will be crucial to elucidate principles of circuit-specific memory formation and their relation to changes in neuronal ensemble dynamics.
Structural plasticity studies were technically limited to cortex, excluding deep brain areas like the amygdala, and mainly focussed on the input site (dendritic spines), whilst the plasticity of the axon initial segment (AIS), a neuron’s site of output generation, was so far not studied in vivo. Length and location of the AIS are plastic and strongly affects a neurons spike output. However, it remains unknown if AIS plasticity regulates neuronal activity upon learning in vivo.
We will combine viral expression of AIS live markers and genetically-encoded Ca2+-sensors with novel deep brain imaging techniques via gradient index (GRIN) lenses to investigate how AIS location and length are regulated upon associative learning in amygdala circuits in vivo. Two-photon time-lapse imaging of the AIS of amygdala neurons upon fear conditioning will help us to track learning-driven AIS location dynamics. Next, we will combine miniature microscope imaging of neuronal activity in freely moving animals with two-photon imaging to link AIS location, length and plasticity to the intrinsic activity as well as learning-related response plasticity of amygdala neurons during fear learning and extinction in vivo. Finally, we will test if AIS plasticity is a general cellular plasticity mechanisms in brain areas afferent to the amygdala, e.g. thalamus.
Using a combination of two-photon and miniature microscopy imaging to map structural dynamics of defined neural circuits in the amygdala and its thalamic input areas will provide fundamental insights into the cellular mechanisms underlying sensory processing upon learning and relate network level plasticity with the cellular level.
Max ERC Funding
1 475 475 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym BABE
Project Why is the world green: testing top-down control of plant-herbivore food webs by experiments with birds, bats and ants
Researcher (PI) Katerina SAM
Host Institution (HI) Biologicke centrum AV CR, v. v. i.
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary Why is the world green? Because predators control herbivores, allowing plants to flourish. This >50 years old answer to the deceptively simple question remains controversial. After all, plants are also protected from herbivores physically and by secondary chemistry. My goal is to test novel aspects of the “green world hypothesis”: ● How the importance of top-down effects varies with forest diversity and productivity along a latitudinal gradient? ● How the key predators, birds, bats and ants, contribute to top-down effects individually and in synergy? I strive to understand this because: ● While there is evidence that predators reduce herbivore abundance and enhance plant growth, the importance of top-down control is poorly understood across a range of forests. ● The importance of key predatory groups, and their antagonistic and synergic interactions, have been rarely studied, despite their potential impact on ecosystem dynamics in changing world. I wish to achieve my goals by: ● Factorial manipulations of key insectivorous predators (birds, bats, ants) to measure their effects on lower trophic levels in forest understories and canopies, accessed by canopy cranes, along latitudinal gradient spanning 75o from Australia to Japan. ● Studying compensatory effects among predatory taxa on herbivore and plant performance. Why this has not been done before: ● Factorial experimental exclusion of predatory groups replicated on a large spatial scale is logistically difficult. ● Canopy crane network along a latitudinal gradient has only recently become available. I am in excellent position to succeed as I have experience with ● foodweb experiments along an elevation gradient in New Guinea rainforests, ● study of bird, bat and arthropod communities. If the project is successful, it will: ● Allow understanding the importance of predators from temperate to tropical forests. ● Establish a network of experimental sites along a network of canopy cranes open for follow-up research.
Summary
Why is the world green? Because predators control herbivores, allowing plants to flourish. This >50 years old answer to the deceptively simple question remains controversial. After all, plants are also protected from herbivores physically and by secondary chemistry. My goal is to test novel aspects of the “green world hypothesis”: ● How the importance of top-down effects varies with forest diversity and productivity along a latitudinal gradient? ● How the key predators, birds, bats and ants, contribute to top-down effects individually and in synergy? I strive to understand this because: ● While there is evidence that predators reduce herbivore abundance and enhance plant growth, the importance of top-down control is poorly understood across a range of forests. ● The importance of key predatory groups, and their antagonistic and synergic interactions, have been rarely studied, despite their potential impact on ecosystem dynamics in changing world. I wish to achieve my goals by: ● Factorial manipulations of key insectivorous predators (birds, bats, ants) to measure their effects on lower trophic levels in forest understories and canopies, accessed by canopy cranes, along latitudinal gradient spanning 75o from Australia to Japan. ● Studying compensatory effects among predatory taxa on herbivore and plant performance. Why this has not been done before: ● Factorial experimental exclusion of predatory groups replicated on a large spatial scale is logistically difficult. ● Canopy crane network along a latitudinal gradient has only recently become available. I am in excellent position to succeed as I have experience with ● foodweb experiments along an elevation gradient in New Guinea rainforests, ● study of bird, bat and arthropod communities. If the project is successful, it will: ● Allow understanding the importance of predators from temperate to tropical forests. ● Establish a network of experimental sites along a network of canopy cranes open for follow-up research.
Max ERC Funding
1 455 032 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym BRITE
Project Elucidating the molecular mechanisms underlying brite adipocyte specification and activation
Researcher (PI) Ferdinand VON MEYENN
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS4, ERC-2018-STG
Summary Brown adipocytes can dissipate energy in a process called adaptive thermogenesis. Whilst the classical brown adipose tissue (BAT) depots disappear during early life in humans, cold exposure can promote the appearance of brown-like adipocytes within the white adipose tissue (WAT), termed brite (brown-in-white). Increased BAT activity results in increased energy expenditure and has been correlated with leanness in humans. Hence, recruitment of brite adipocytes may constitute a promising therapeutic strategy to treat obesity and its associated metabolic diseases. Despite the beneficial metabolic properties of brown and brite adipocytes, little is known about the molecular mechanisms underlying their specification and activation in vivo. This proposal focuses on understanding the complex biology of thermogenic adipocyte biology by studying the epigenetic and transcriptional aspects of WAT britening and BAT recruitment in vivo to identify pathways of therapeutic relevance and to better define the brite precursor cells. Specific aims are to 1) investigate epigenetic and transcriptional states and heterogeneity in human and mouse adipose tissue; 2) develop a novel time-resolved method to correlate preceding chromatin states and cell fate decisions during adipose tissue remodelling; 3) identify and validate key (drugable) epigenetic and transcriptional regulators involved in brite adipocyte specification. Experimentally, I will use adipose tissue samples from human donors and mouse models, to asses at the single-cell level cellular heterogeneity, transcriptional and epigenetic states, to identify subpopulations, and to define the adaptive responses to cold or β-adrenergic stimulation. Using computational methods and in vitro and in vivo validation experiments, I will define epigenetic and transcriptional networks that control WAT britening, and develop a model of the molecular events underlying adipocyte tissue plasticity.
Summary
Brown adipocytes can dissipate energy in a process called adaptive thermogenesis. Whilst the classical brown adipose tissue (BAT) depots disappear during early life in humans, cold exposure can promote the appearance of brown-like adipocytes within the white adipose tissue (WAT), termed brite (brown-in-white). Increased BAT activity results in increased energy expenditure and has been correlated with leanness in humans. Hence, recruitment of brite adipocytes may constitute a promising therapeutic strategy to treat obesity and its associated metabolic diseases. Despite the beneficial metabolic properties of brown and brite adipocytes, little is known about the molecular mechanisms underlying their specification and activation in vivo. This proposal focuses on understanding the complex biology of thermogenic adipocyte biology by studying the epigenetic and transcriptional aspects of WAT britening and BAT recruitment in vivo to identify pathways of therapeutic relevance and to better define the brite precursor cells. Specific aims are to 1) investigate epigenetic and transcriptional states and heterogeneity in human and mouse adipose tissue; 2) develop a novel time-resolved method to correlate preceding chromatin states and cell fate decisions during adipose tissue remodelling; 3) identify and validate key (drugable) epigenetic and transcriptional regulators involved in brite adipocyte specification. Experimentally, I will use adipose tissue samples from human donors and mouse models, to asses at the single-cell level cellular heterogeneity, transcriptional and epigenetic states, to identify subpopulations, and to define the adaptive responses to cold or β-adrenergic stimulation. Using computational methods and in vitro and in vivo validation experiments, I will define epigenetic and transcriptional networks that control WAT britening, and develop a model of the molecular events underlying adipocyte tissue plasticity.
Max ERC Funding
1 552 620 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym BRuSH
Project Oral bacteria as determinants for respiratory health
Researcher (PI) Randi BERTELSEN
Host Institution (HI) UNIVERSITETET I BERGEN
Call Details Starting Grant (StG), LS7, ERC-2018-STG
Summary The oral cavity is the gateway to the lower respiratory tract, and oral bacteria are likely to play a role in lung health. This may be the case for pathogens as well as commensal bacteria and the balance between species. The oral bacterial community of patients with periodontitis is dominated by gram-negative bacteria and a higher lipopolysaccharide (LPS) activity than in healthy microbiota. Furthermore, bacteria with especially potent pro-inflammatory LPS have been shown to be more common in the lungs of asthmatic than in healthy individuals. The working hypothesis of BRuSH is that microbiome communities dominated by LPS-producing bacteria which induce a particularly strong pro-inflammatory immune response in the host, will have a negative effect on respiratory health. I will test this hypothesis in two longitudinally designed population-based lung health studies. I aim to identify whether specific bacterial composition and types of LPS producing bacteria in oral and dust samples predict lung function and respiratory health over time; and if the different types of LPS-producing bacteria affect LPS in saliva saliva and dust. BRuSH will apply functional genome annotation that can assign biological significance to raw bacterial DNA sequences. With this bioinformatics tool I will cluster microbiome data into various LPS-producers: bacteria with LPS with strong inflammatory effects and others with weak- or antagonistic effects. The epidemiological studies will be supported by mice-models of asthma and cell assays of human bronchial epithelial cells, by exposing mice and bronchial cells to chemically synthesized Lipid A (the component that drive the LPS-induced immune responses) of various potency. The goal of BRuSH is to prove a causal relationship between oral microbiome and lung health, and gain knowledge that will enable us to make oral health a feasible target for intervention programs aimed at optimizing lung health and preventing respiratory disease.
Summary
The oral cavity is the gateway to the lower respiratory tract, and oral bacteria are likely to play a role in lung health. This may be the case for pathogens as well as commensal bacteria and the balance between species. The oral bacterial community of patients with periodontitis is dominated by gram-negative bacteria and a higher lipopolysaccharide (LPS) activity than in healthy microbiota. Furthermore, bacteria with especially potent pro-inflammatory LPS have been shown to be more common in the lungs of asthmatic than in healthy individuals. The working hypothesis of BRuSH is that microbiome communities dominated by LPS-producing bacteria which induce a particularly strong pro-inflammatory immune response in the host, will have a negative effect on respiratory health. I will test this hypothesis in two longitudinally designed population-based lung health studies. I aim to identify whether specific bacterial composition and types of LPS producing bacteria in oral and dust samples predict lung function and respiratory health over time; and if the different types of LPS-producing bacteria affect LPS in saliva saliva and dust. BRuSH will apply functional genome annotation that can assign biological significance to raw bacterial DNA sequences. With this bioinformatics tool I will cluster microbiome data into various LPS-producers: bacteria with LPS with strong inflammatory effects and others with weak- or antagonistic effects. The epidemiological studies will be supported by mice-models of asthma and cell assays of human bronchial epithelial cells, by exposing mice and bronchial cells to chemically synthesized Lipid A (the component that drive the LPS-induced immune responses) of various potency. The goal of BRuSH is to prove a causal relationship between oral microbiome and lung health, and gain knowledge that will enable us to make oral health a feasible target for intervention programs aimed at optimizing lung health and preventing respiratory disease.
Max ERC Funding
1 499 938 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CAN-IT-BARRIERS
Project Disruption of systemic and microenvironmental barriers to immunotherapy of antigenic tumors
Researcher (PI) Douglas HANAHAN
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary The frontier in cancer therapy of orchestrating the immune system to attack tumors is producing unprecedented survival benefit in some patients. The corollary is lack of efficacy both in ostensibly responsive tumor types as well as others that are mostly non-responsive. The basis lies in pre-existing and adaptive resistance mechanisms that circumvent induction of tumor-reactive cytotoxic T cells (CTLs) capable of infiltrating solid tumors and eliminating cancer cells. A priori, cancers induced by expression of human papillomavirus oncogenes should be responsive to immunotherapy: these cancers encode immunogenic neo-antigens – the oncoproteins E6/7 – necessary for their manifestation. Rather, such tumors are poorly responsive to immunotherapies. Results from my lab and others using mouse models of HPV-induced cancer have established an actionable hypothesis: during tumorigenesis, such tumors erect multiple barriers to the induction, infiltration, and killing of cancer cells by tumor antigen-reactive CTLs. These include overarching systemic antigen-nonspecific immunosuppression mediated by expanded populations of myeloid cells in spleen and lymph nodes, complemented by immune response-impairing barriers operative in the tumor microenvironment. A spectrum of models will probe these barriers, genetically and pharmacologically, establishing their functional importance, alone and in concert. A major focus will be on how oncogene-expressing keratinocytes elicit a marked expansion of immunosuppressive myeloid cells in spleen and lymph nodes, and how these myeloid cells in turn inhibit development and activation of CD8 T cells and antigen-presenting dendritic cells. Then we’ll assess the therapeutic potential of barrier-breaking strategies combined with immuno-stimulatory modalities. This project will deliver new knowledge about multi-faceted barriers to immunotherapy in these refractory cancers, helping lay the groundwork for efficacious immunotherapy.
Summary
The frontier in cancer therapy of orchestrating the immune system to attack tumors is producing unprecedented survival benefit in some patients. The corollary is lack of efficacy both in ostensibly responsive tumor types as well as others that are mostly non-responsive. The basis lies in pre-existing and adaptive resistance mechanisms that circumvent induction of tumor-reactive cytotoxic T cells (CTLs) capable of infiltrating solid tumors and eliminating cancer cells. A priori, cancers induced by expression of human papillomavirus oncogenes should be responsive to immunotherapy: these cancers encode immunogenic neo-antigens – the oncoproteins E6/7 – necessary for their manifestation. Rather, such tumors are poorly responsive to immunotherapies. Results from my lab and others using mouse models of HPV-induced cancer have established an actionable hypothesis: during tumorigenesis, such tumors erect multiple barriers to the induction, infiltration, and killing of cancer cells by tumor antigen-reactive CTLs. These include overarching systemic antigen-nonspecific immunosuppression mediated by expanded populations of myeloid cells in spleen and lymph nodes, complemented by immune response-impairing barriers operative in the tumor microenvironment. A spectrum of models will probe these barriers, genetically and pharmacologically, establishing their functional importance, alone and in concert. A major focus will be on how oncogene-expressing keratinocytes elicit a marked expansion of immunosuppressive myeloid cells in spleen and lymph nodes, and how these myeloid cells in turn inhibit development and activation of CD8 T cells and antigen-presenting dendritic cells. Then we’ll assess the therapeutic potential of barrier-breaking strategies combined with immuno-stimulatory modalities. This project will deliver new knowledge about multi-faceted barriers to immunotherapy in these refractory cancers, helping lay the groundwork for efficacious immunotherapy.
Max ERC Funding
2 500 000 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym CELLONGATE
Project Unraveling the molecular network that drives cell growth in plants
Researcher (PI) Matyas FENDRYCH
Host Institution (HI) UNIVERZITA KARLOVA
Call Details Starting Grant (StG), LS3, ERC-2018-STG
Summary Plants differ strikingly from animals by the almost total absence of cell migration in their development. Plants build their bodies using a hydrostatic skeleton that consists of pressurized cells encased by a cell wall. Consequently, plant cells cannot migrate and must sculpture their bodies by orientation of cell division and precise regulation of cell growth. Cell growth depends on the balance between internal cell pressure – turgor, and strength of the cell wall. Cell growth is under a strict developmental control, which is exemplified in the Arabidopsis thaliana root tip, where massive cell elongation occurs in a defined spatio-temporal developmental window. Despite the immobility of their cells, plant organs move to optimize light and nutrient acquisition and to orient their bodies along the gravity vector. These movements depend on differential regulation of cell elongation across the organ, and on response to the phytohormone auxin. Even though the control of cell growth is in the epicenter of plant development, protein networks steering the developmental growth onset, coordination and termination remain elusive. Similarly, although auxin is the central regulator of growth, the molecular mechanism of its effect on root growth is unknown. In this project, I will establish a unique microscopy setup for high spatio-temporal resolution live-cell imaging equipped with a microfluidic lab-on-chip platform optimized for growing roots, to enable analysis and manipulation of root growth physiology. I will use developmental gradients in the root to discover genes that steer cellular growth, by correlating transcriptome profiles of individual cell types with the cell size. In parallel, I will exploit the auxin effect on root to unravel molecular mechanisms that control cell elongation. Finally, I am going to combine the live-cell imaging methodology with the gene discovery approaches to chart a dynamic spatio-temporal physiological map of a growing Arabidopsis root.
Summary
Plants differ strikingly from animals by the almost total absence of cell migration in their development. Plants build their bodies using a hydrostatic skeleton that consists of pressurized cells encased by a cell wall. Consequently, plant cells cannot migrate and must sculpture their bodies by orientation of cell division and precise regulation of cell growth. Cell growth depends on the balance between internal cell pressure – turgor, and strength of the cell wall. Cell growth is under a strict developmental control, which is exemplified in the Arabidopsis thaliana root tip, where massive cell elongation occurs in a defined spatio-temporal developmental window. Despite the immobility of their cells, plant organs move to optimize light and nutrient acquisition and to orient their bodies along the gravity vector. These movements depend on differential regulation of cell elongation across the organ, and on response to the phytohormone auxin. Even though the control of cell growth is in the epicenter of plant development, protein networks steering the developmental growth onset, coordination and termination remain elusive. Similarly, although auxin is the central regulator of growth, the molecular mechanism of its effect on root growth is unknown. In this project, I will establish a unique microscopy setup for high spatio-temporal resolution live-cell imaging equipped with a microfluidic lab-on-chip platform optimized for growing roots, to enable analysis and manipulation of root growth physiology. I will use developmental gradients in the root to discover genes that steer cellular growth, by correlating transcriptome profiles of individual cell types with the cell size. In parallel, I will exploit the auxin effect on root to unravel molecular mechanisms that control cell elongation. Finally, I am going to combine the live-cell imaging methodology with the gene discovery approaches to chart a dynamic spatio-temporal physiological map of a growing Arabidopsis root.
Max ERC Funding
1 498 750 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CENGIN
Project Deciphering and engineering centriole assembly
Researcher (PI) Pierre Jörg GÖNCZY
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS3, ERC-2018-ADG
Summary Deciphering and engineering the assembly of cellular organelles is a key pursuit in biology. The centriole is an evolutionarily conserved organelle well suited for this goal, and which is crucial for cell signaling, motility and division. The centriole exhibits a striking 9-fold radial symmetry of microtubules around a likewise symmetrical cartwheel containing stacked ring-bearing structures. Components essential for generating this remarkable architecture from alga to man have been identified. A next critical step is to engineer assays to probe the dynamics of centriole assembly with molecular precision to fully understand how these components together build a functional organelle. Our ambitious research proposal aims at taking groundbreaking steps in this direction through four specific aims:
1) Reconstituting cartwheel ring assembly dynamics. We will use high-speed AFM (HS-AFM) to dissect the biophysics of SAS-6 ring polymer dynamics at the root of cartwheel assembly. We will also use HS-AFM to analyze monobodies against SAS-6, as well as engineer surfaces and DNA origamis to further dissect ring assembly.
2) Deciphering ring stacking mechanisms. We will use cryo-ET to identify SAS-6 features that direct stacking of ring structures and set cartwheel height. Moreover, we will develop an HS-AFM stacking assay and a reconstituted stacking assay from human cells.
3) Understanding peripheral element contributions to centriole biogenesis. We will dissect the function of the peripheral centriole pinhead protein Cep135/Bld10p, as well as identify and likewise dissect peripheral A-C linker proteins. Furthermore, we will further engineer the HS-AFM assay to include such peripheral components.
4) Dissecting de novo centriole assembly mechanisms. We will dissect de novo centriole formation in human cells and water fern. We will also explore whether de novo formation involves a phase separation mechanism and repurpose the HS-AFM assay to probe de novo organelle biogenes
Summary
Deciphering and engineering the assembly of cellular organelles is a key pursuit in biology. The centriole is an evolutionarily conserved organelle well suited for this goal, and which is crucial for cell signaling, motility and division. The centriole exhibits a striking 9-fold radial symmetry of microtubules around a likewise symmetrical cartwheel containing stacked ring-bearing structures. Components essential for generating this remarkable architecture from alga to man have been identified. A next critical step is to engineer assays to probe the dynamics of centriole assembly with molecular precision to fully understand how these components together build a functional organelle. Our ambitious research proposal aims at taking groundbreaking steps in this direction through four specific aims:
1) Reconstituting cartwheel ring assembly dynamics. We will use high-speed AFM (HS-AFM) to dissect the biophysics of SAS-6 ring polymer dynamics at the root of cartwheel assembly. We will also use HS-AFM to analyze monobodies against SAS-6, as well as engineer surfaces and DNA origamis to further dissect ring assembly.
2) Deciphering ring stacking mechanisms. We will use cryo-ET to identify SAS-6 features that direct stacking of ring structures and set cartwheel height. Moreover, we will develop an HS-AFM stacking assay and a reconstituted stacking assay from human cells.
3) Understanding peripheral element contributions to centriole biogenesis. We will dissect the function of the peripheral centriole pinhead protein Cep135/Bld10p, as well as identify and likewise dissect peripheral A-C linker proteins. Furthermore, we will further engineer the HS-AFM assay to include such peripheral components.
4) Dissecting de novo centriole assembly mechanisms. We will dissect de novo centriole formation in human cells and water fern. We will also explore whether de novo formation involves a phase separation mechanism and repurpose the HS-AFM assay to probe de novo organelle biogenes
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CLaQS
Project Correlations in Large Quantum Systems
Researcher (PI) Benjamin Schlein
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), PE1, ERC-2018-ADG
Summary This project is devoted to the mathematical analysis of important physical properties of many-body quantum systems. We will be interested in properties of the ground state and low-energy excitations but also of non-equilibrium dynamics. We are going to consider systems with different statistics and in different regimes. The questions we are going to address have a common aspect: correlations among particles play a crucial role. Our main goal consists in developing new tools that allow us to correctly describe many-body correlations and to understand their effects. The starting point of our proposal are ideas and techniques that have been introduced in a series of papers establishing the validity of Bogoliubov theory for Bose gases in the Gross-Pitaevskii regime, and in a recent preprint showing how (bosonic) Bogoliubov theory can also be used to study the correlation energy of Fermi gases. In this project, we plan to develop these techniques further and to apply them to new contexts. We believe they have the potential to approach some fundamental open problem in mathematical physics. Among our most ambitious objectives, we include the proof of the Lee-Huang-Yang formula for the energy of dilute Bose gases and of the corresponding Huang-Yang formula for dilute Fermi gases, as well as the derivation of the Gell-Mann--Brueckner expression for the correlation energy of a high density Fermi system. Furthermore, we propose to work on long-term projects (going beyond the duration of the grant) aiming at a rigorous justification of the quantum Boltzmann equation for fermions in the weak coupling limit and at a proof of Bose-Einstein condensation in the thermodynamic limit, two very challenging and important questions in the field.
Summary
This project is devoted to the mathematical analysis of important physical properties of many-body quantum systems. We will be interested in properties of the ground state and low-energy excitations but also of non-equilibrium dynamics. We are going to consider systems with different statistics and in different regimes. The questions we are going to address have a common aspect: correlations among particles play a crucial role. Our main goal consists in developing new tools that allow us to correctly describe many-body correlations and to understand their effects. The starting point of our proposal are ideas and techniques that have been introduced in a series of papers establishing the validity of Bogoliubov theory for Bose gases in the Gross-Pitaevskii regime, and in a recent preprint showing how (bosonic) Bogoliubov theory can also be used to study the correlation energy of Fermi gases. In this project, we plan to develop these techniques further and to apply them to new contexts. We believe they have the potential to approach some fundamental open problem in mathematical physics. Among our most ambitious objectives, we include the proof of the Lee-Huang-Yang formula for the energy of dilute Bose gases and of the corresponding Huang-Yang formula for dilute Fermi gases, as well as the derivation of the Gell-Mann--Brueckner expression for the correlation energy of a high density Fermi system. Furthermore, we propose to work on long-term projects (going beyond the duration of the grant) aiming at a rigorous justification of the quantum Boltzmann equation for fermions in the weak coupling limit and at a proof of Bose-Einstein condensation in the thermodynamic limit, two very challenging and important questions in the field.
Max ERC Funding
1 876 050 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CRISPR2.0
Project Microbial genome defence pathways: from molecular mechanisms to next-generation molecular tools
Researcher (PI) Martin JINEK
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), LS1, ERC-2018-COG
Summary The constant arms race between prokaryotic microbes and their molecular parasites such as viruses, plasmids and transposons has driven the evolution of complex genome defence mechanisms. The CRISPR-Cas defence systems provide adaptive RNA-guided immunity against invasive nucleic acid elements. CRISPR-associated effector nucleases such as Cas9, Cas12a and Cas13 have emerged as powerful tools for precision genome editing, gene expression control and nucleic acid detection. However, these technologies suffer from drawbacks that limit their efficacy and versatility, necessitating the search for additional exploitable molecular activities. Building on our recent structural and biochemical studies, the goal of this project is to investigate the molecular architectures and mechanisms of CRISPR-associated systems and other genome defence mechanisms, aiming not only to shed light on their biological roles but also inform their technological development. Specifically, the proposed studies will examine (i) the molecular basis of cyclic oligoadenylate signalling in type III CRISPR-Cas systems, (ii) the mechanism of transposon-associated type I CRISPR-Cas systems and their putative function in RNA-guided DNA transposition, and (iii) molecular activities associated with recently described non-CRISPR defence systems. Collectively, the proposed studies will advance our understanding of the molecular functions of genome defence mechanisms in shaping the evolution of prokaryotic genomes and make critical contributions to their development as novel genetic engineering tools.
Summary
The constant arms race between prokaryotic microbes and their molecular parasites such as viruses, plasmids and transposons has driven the evolution of complex genome defence mechanisms. The CRISPR-Cas defence systems provide adaptive RNA-guided immunity against invasive nucleic acid elements. CRISPR-associated effector nucleases such as Cas9, Cas12a and Cas13 have emerged as powerful tools for precision genome editing, gene expression control and nucleic acid detection. However, these technologies suffer from drawbacks that limit their efficacy and versatility, necessitating the search for additional exploitable molecular activities. Building on our recent structural and biochemical studies, the goal of this project is to investigate the molecular architectures and mechanisms of CRISPR-associated systems and other genome defence mechanisms, aiming not only to shed light on their biological roles but also inform their technological development. Specifically, the proposed studies will examine (i) the molecular basis of cyclic oligoadenylate signalling in type III CRISPR-Cas systems, (ii) the mechanism of transposon-associated type I CRISPR-Cas systems and their putative function in RNA-guided DNA transposition, and (iii) molecular activities associated with recently described non-CRISPR defence systems. Collectively, the proposed studies will advance our understanding of the molecular functions of genome defence mechanisms in shaping the evolution of prokaryotic genomes and make critical contributions to their development as novel genetic engineering tools.
Max ERC Funding
1 996 525 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym DiRECT
Project Directly reprogrammed renal cells for targeted medicine
Researcher (PI) Soeren LIENKAMP
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), LS3, ERC-2018-STG
Summary The global incidence of kidney disease is on the rise, but little progress has been made to develop novel therapies or preventative measures.
New methods to generated renal tissue in vitro hold great promise for regenerative medicine and the prospect of organ replacement. Most of the strategies employed differentiate induced pluripotent stem cells (iPSCs) into kidney organoids, which can be derived from patient tissue.
Direct reprogramming is an alternative approach to convert one cell type into another using cell fate specifying transcription factors. We were the first to develop a method to directly reprogram mouse and human fibroblasts to kidney cells (induced renal tubular epithelial cells - iRECs) without the need for pluripotent cells. Morphological, transcriptomic and functional analyses found that directly reprogrammed iRECs are remarkably similar to native renal tubular cells. Direct reprogramming is fast, technically simple and scalable.
This proposal aims to establish direct reprogramming in nephrology and develop novel in vitro models for kidney diseases that primarily affect the renal tubules. We will unravel the mechanics of how only four transcription factors can change the morphology and function of fibroblasts towards a renal tubule cell identity. These insights will be used to identify alternative routes to directly reprogram tubule cells with increased efficiency and accuracy. We will identify cell type specifying factors for reprogramming of tubular segment specific cell types. Finally, we will use of reprogrammed kidney cells to establish new in vitro models for autosomal dominant polycystic kidney disease and nephronophthisis.
Direct reprogramming holds enormous potential to deliver patient specific disease models for diagnostic and therapeutic applications in the age of personalized and targeted medicine.
Summary
The global incidence of kidney disease is on the rise, but little progress has been made to develop novel therapies or preventative measures.
New methods to generated renal tissue in vitro hold great promise for regenerative medicine and the prospect of organ replacement. Most of the strategies employed differentiate induced pluripotent stem cells (iPSCs) into kidney organoids, which can be derived from patient tissue.
Direct reprogramming is an alternative approach to convert one cell type into another using cell fate specifying transcription factors. We were the first to develop a method to directly reprogram mouse and human fibroblasts to kidney cells (induced renal tubular epithelial cells - iRECs) without the need for pluripotent cells. Morphological, transcriptomic and functional analyses found that directly reprogrammed iRECs are remarkably similar to native renal tubular cells. Direct reprogramming is fast, technically simple and scalable.
This proposal aims to establish direct reprogramming in nephrology and develop novel in vitro models for kidney diseases that primarily affect the renal tubules. We will unravel the mechanics of how only four transcription factors can change the morphology and function of fibroblasts towards a renal tubule cell identity. These insights will be used to identify alternative routes to directly reprogram tubule cells with increased efficiency and accuracy. We will identify cell type specifying factors for reprogramming of tubular segment specific cell types. Finally, we will use of reprogrammed kidney cells to establish new in vitro models for autosomal dominant polycystic kidney disease and nephronophthisis.
Direct reprogramming holds enormous potential to deliver patient specific disease models for diagnostic and therapeutic applications in the age of personalized and targeted medicine.
Max ERC Funding
1 499 917 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym EllipticPDE
Project Regularity and singularities in elliptic PDE's: beyond monotonicity formulas
Researcher (PI) Xavier ROS-OTON
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), PE1, ERC-2018-STG
Summary One of the oldest and most important questions in PDE theory is that of regularity. A classical example is Hilbert's XIXth problem (1900), solved by De Giorgi and Nash in 1956. During the second half of the XXth century, the regularity theory for elliptic and parabolic PDE's experienced a huge development, and many fundamental questions were answered by Caffarelli, Nirenberg, Krylov, Evans, Nadirashvili, Friedman, and many others. Still, there are problems of crucial importance that remain open.
The aim of this project is to go significantly beyond the state of the art in some of the most important open questions in this context. In particular, three key objectives of the project are the following. First, to introduce new techniques to obtain fine description of singularities in nonlinear elliptic PDE's. Aside from its intrinsic interest, a good regularity theory for singular points is likely to provide insightful applications in other contexts. A second aim of the project is to establish generic regularity results for free boundaries and other PDE problems. The development of methods which would allow one to prove generic regularity results may be viewed as one of the greatest challenges not only for free boundary problems, but for PDE problems in general. Finally, the third main objective is to achieve a complete regularity theory for nonlinear elliptic PDE's that does not rely on monotonicity formulas. These three objectives, while seemingly different, are in fact deeply interrelated.
Summary
One of the oldest and most important questions in PDE theory is that of regularity. A classical example is Hilbert's XIXth problem (1900), solved by De Giorgi and Nash in 1956. During the second half of the XXth century, the regularity theory for elliptic and parabolic PDE's experienced a huge development, and many fundamental questions were answered by Caffarelli, Nirenberg, Krylov, Evans, Nadirashvili, Friedman, and many others. Still, there are problems of crucial importance that remain open.
The aim of this project is to go significantly beyond the state of the art in some of the most important open questions in this context. In particular, three key objectives of the project are the following. First, to introduce new techniques to obtain fine description of singularities in nonlinear elliptic PDE's. Aside from its intrinsic interest, a good regularity theory for singular points is likely to provide insightful applications in other contexts. A second aim of the project is to establish generic regularity results for free boundaries and other PDE problems. The development of methods which would allow one to prove generic regularity results may be viewed as one of the greatest challenges not only for free boundary problems, but for PDE problems in general. Finally, the third main objective is to achieve a complete regularity theory for nonlinear elliptic PDE's that does not rely on monotonicity formulas. These three objectives, while seemingly different, are in fact deeply interrelated.
Max ERC Funding
1 335 250 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym EngineeringBAP
Project Engineering brain activity patterns for therapeutics of neuropsychiatric and neurological disorders
Researcher (PI) Mehmet Fatih YANIK
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Consolidator Grant (CoG), LS5, ERC-2018-COG
Summary Neuropsychiatric and neurological disorders are complex dysfunctions of neuronal circuits. Their treatment
has been limited by the lack of non-invasive methods for measuring the underlying circuit dysfunctions, and
for direct and localized modifications of these circuits. We propose minimally invasive technologies for
measuring brain activity and functional connectivity patterns, and for manipulating them directly in vivo to
correct the abnormal behavioural phenotypes (in rodents with potential scalability to non-human primates and
humans). First, we present a proof-of-principle study on mutant zebrafish, in which we correct whole-brain
level abnormal activity patterns and behaviours by using large-scale single-neuron resolution measurements,
and by simultaneously modulating multiple sub-networks via neuromodulator cocktails. Next, we present
strong preliminary data in rodents and our plan: (1) For manipulating brain circuits in rodents/primates noninvasively,
we will develop technologies that can deliver receptive-specific neuromodulators to spatially
precise brain targets without opening/damaging the blood brain barrier. These methods will employ engineered
ultrasound pulses and drug carrying microparticles we designed. (2) For reading out the brain circuits in
rodents/primates, we will develop flexible low-power neuromorphic μECoG circuits that can detect single
neuron signals from superficial cortical layers of many cortical areas simultaneously. (3) Finally, these novel
technologies will be comprehensively evaluated on a mouse model of obsessive compulsivity and anxiety
using a battery of behavioural tasks to reverse the pathological symptoms (beyond what is achievable by
existing approaches). This project constitutes a major step towards the development and testing of minimallyinvasive
and high-precision technologies for manipulating brain activity patterns, which can impact both our
understanding of the brain and treatment of intractable brain disorders.
Summary
Neuropsychiatric and neurological disorders are complex dysfunctions of neuronal circuits. Their treatment
has been limited by the lack of non-invasive methods for measuring the underlying circuit dysfunctions, and
for direct and localized modifications of these circuits. We propose minimally invasive technologies for
measuring brain activity and functional connectivity patterns, and for manipulating them directly in vivo to
correct the abnormal behavioural phenotypes (in rodents with potential scalability to non-human primates and
humans). First, we present a proof-of-principle study on mutant zebrafish, in which we correct whole-brain
level abnormal activity patterns and behaviours by using large-scale single-neuron resolution measurements,
and by simultaneously modulating multiple sub-networks via neuromodulator cocktails. Next, we present
strong preliminary data in rodents and our plan: (1) For manipulating brain circuits in rodents/primates noninvasively,
we will develop technologies that can deliver receptive-specific neuromodulators to spatially
precise brain targets without opening/damaging the blood brain barrier. These methods will employ engineered
ultrasound pulses and drug carrying microparticles we designed. (2) For reading out the brain circuits in
rodents/primates, we will develop flexible low-power neuromorphic μECoG circuits that can detect single
neuron signals from superficial cortical layers of many cortical areas simultaneously. (3) Finally, these novel
technologies will be comprehensively evaluated on a mouse model of obsessive compulsivity and anxiety
using a battery of behavioural tasks to reverse the pathological symptoms (beyond what is achievable by
existing approaches). This project constitutes a major step towards the development and testing of minimallyinvasive
and high-precision technologies for manipulating brain activity patterns, which can impact both our
understanding of the brain and treatment of intractable brain disorders.
Max ERC Funding
1 998 984 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym EPICROP
Project Dissecting epistasis for enhanced crop productivity
Researcher (PI) Sebastian Soyk
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Starting Grant (StG), LS2, ERC-2018-STG
Summary A major goal in plant biology is to understand how naturally occurring genetic variation leads to quantitative differences in economically important traits. Efforts to navigate the genotype-to-phenotype map are often focused on linear genetic interactions. As a result, crop breeding is mainly driven by loci with predictable additive effects. However, it has become clear that quantitative trait variation often results from perturbations of complex genetic networks. Thus, understanding epistasis, or interactions between genes, is key for our ability to predictably improve crops. To meet this challenge, this project will reveal and dissect epistatic interactions in gene regulatory networks that guide stem cell differentiation in the model crop tomato. In the first aim, I will utilize exhaustive allelic series for epistatic MADS-box genes that quantitatively regulate flower and fruit production as an experimental model system to study fundamental principles of epistasis that can be applied to other genetic networks. Genome-wide transcript profiling will be used to reveal molecular signatures of epistasis and potential targets for predictable crop improvement by advanced CRISPR/Cas9 gene editing technology. Further, my preliminary data suggests that epistasis is widespread and important across major productivity traits in tomato. Thus, in a second aim, I will access this untapped resource of cryptic genetic variation by sensitizing a tomato diversity panel for weak epistatic effects from unknown natural modifier loci of stem cell differentiation using trans-acting CRISPR/Cas9 editing cassettes. This screen represents a new approach to mutagenesis in plants with potential to reveal cryptic variation in other system. The outcomes of this project will advance our knowledge in a fundamental area of plant genome biology, help uncover and understand the functional architecture of epistasis, and have potential to bring significant improvements to agriculture.
Summary
A major goal in plant biology is to understand how naturally occurring genetic variation leads to quantitative differences in economically important traits. Efforts to navigate the genotype-to-phenotype map are often focused on linear genetic interactions. As a result, crop breeding is mainly driven by loci with predictable additive effects. However, it has become clear that quantitative trait variation often results from perturbations of complex genetic networks. Thus, understanding epistasis, or interactions between genes, is key for our ability to predictably improve crops. To meet this challenge, this project will reveal and dissect epistatic interactions in gene regulatory networks that guide stem cell differentiation in the model crop tomato. In the first aim, I will utilize exhaustive allelic series for epistatic MADS-box genes that quantitatively regulate flower and fruit production as an experimental model system to study fundamental principles of epistasis that can be applied to other genetic networks. Genome-wide transcript profiling will be used to reveal molecular signatures of epistasis and potential targets for predictable crop improvement by advanced CRISPR/Cas9 gene editing technology. Further, my preliminary data suggests that epistasis is widespread and important across major productivity traits in tomato. Thus, in a second aim, I will access this untapped resource of cryptic genetic variation by sensitizing a tomato diversity panel for weak epistatic effects from unknown natural modifier loci of stem cell differentiation using trans-acting CRISPR/Cas9 editing cassettes. This screen represents a new approach to mutagenesis in plants with potential to reveal cryptic variation in other system. The outcomes of this project will advance our knowledge in a fundamental area of plant genome biology, help uncover and understand the functional architecture of epistasis, and have potential to bring significant improvements to agriculture.
Max ERC Funding
1 499 903 €
Duration
Start date: 2019-08-01, End date: 2024-07-31
Project acronym EvoConBiO
Project Uncovering and engineering the principles governing evolution and cellular control of bioenergetic organelles
Researcher (PI) Iain JOHNSTON
Host Institution (HI) UNIVERSITETET I BERGEN
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary "Complex life on Earth is powered by bioenergetic organelles -- mitochondria and chloroplasts. Originally independent organisms, these organelles have retained their own genomes (mtDNA and cpDNA), which have been dramatically reduced through evolutionary history. Organelle genomes form dynamic populations within present-day eukaryotic cells, akin to individuals co-evolving in a ""cellular ecosystem"". The structure of these populations is central to eukaryotic life. However, the processes shaping the content of these genomes through history, and maintaining their integrity in modern organisms, are poorly understood. This challenges our understanding of eukaryotic evolution and our ability to design rational strategies to engineer bioenergetic performance.
EvoConBiO will address these questions using a unique and unprecedented interdisciplinary approach, combining experimental characterisation and manipulation of organelle genomes with mathematical modelling and cutting-edge statistics. This highly novel combination of experiment and theory will drive the field in a new direction, for the first time uncovering the universal principles underlying the evolution and cellular control of mitochondria and chloroplasts. Our groundbreaking recent work on mtDNA suggests a common tension underlying organelle evolution, between genetic robustness (transferring genes to the nucleus) and the control and maintenance of organelles (retaining genes in organelles). EvoConBiO will reveal the pathways underlying organelle evolution, why organisms adapt to different points on these pathways, and how they resolve this underlying tension. In addition to these ""blue sky"" scientific insights into a process of central evolutionary importance, we will harness our findings to ""learn from evolution"" in high-risk high-reward development of new experimental strategies to engineer chloroplast performance in plants and algae of importance in EU agriculture, biofuel production, and bioengineering."
Summary
"Complex life on Earth is powered by bioenergetic organelles -- mitochondria and chloroplasts. Originally independent organisms, these organelles have retained their own genomes (mtDNA and cpDNA), which have been dramatically reduced through evolutionary history. Organelle genomes form dynamic populations within present-day eukaryotic cells, akin to individuals co-evolving in a ""cellular ecosystem"". The structure of these populations is central to eukaryotic life. However, the processes shaping the content of these genomes through history, and maintaining their integrity in modern organisms, are poorly understood. This challenges our understanding of eukaryotic evolution and our ability to design rational strategies to engineer bioenergetic performance.
EvoConBiO will address these questions using a unique and unprecedented interdisciplinary approach, combining experimental characterisation and manipulation of organelle genomes with mathematical modelling and cutting-edge statistics. This highly novel combination of experiment and theory will drive the field in a new direction, for the first time uncovering the universal principles underlying the evolution and cellular control of mitochondria and chloroplasts. Our groundbreaking recent work on mtDNA suggests a common tension underlying organelle evolution, between genetic robustness (transferring genes to the nucleus) and the control and maintenance of organelles (retaining genes in organelles). EvoConBiO will reveal the pathways underlying organelle evolution, why organisms adapt to different points on these pathways, and how they resolve this underlying tension. In addition to these ""blue sky"" scientific insights into a process of central evolutionary importance, we will harness our findings to ""learn from evolution"" in high-risk high-reward development of new experimental strategies to engineer chloroplast performance in plants and algae of importance in EU agriculture, biofuel production, and bioengineering."
Max ERC Funding
1 417 862 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym EVOMORPHYS
Project Identifying how Evolution exploits physical properties of tissues to generate the complexity and diversity of Life
Researcher (PI) Michel Charles MILINKOVITCH
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Advanced Grant (AdG), LS8, ERC-2018-ADG
Summary My project focuses on answering one fundamental question: what are the drivers of Life’s morphological complexity and diversity? I claim that this question can only be addressed by a Newtonian-Darwinian synthesis that considers how Evolution exploits the physical properties of living matter. I will investigate how the evolutionary process explores the phase space of possible interactions between physical (mechanics, reaction-diffusion) and biological (cell signalling, proliferation, migration) processes and generates configurations that compute functional phenotypes. In particular, I will combine experiments in biology and physics, as well as mathematical models and Artificial-Life (ALife) numerical simulations. The latter will be based on physics’ first principles, symmetry-breaking processes and a genetic algorithm. First, I will investigate how geometry affects signalling by (i) imaging the embryonic development of colour patterns and skin geometries of multiple squamate species with various scale-to-colour pattern correspondences, (ii) generating CRISPR/Cas9 scaleless mutants in two lizard species to study the effect of skin 3D geometry on colour patterning, and (iii) performing ALife experiments to explore how the evolutionary process can modify signalling events and exploit geometry to generate new patterns. Second, I will analyse how growth can affect geometry by (i) performing in-silico experiments where coupling between growth and morphogenesis is systematically explored and (ii) evaluating how much the in-silico model captures morphologies generated with physics laboratory experiments using 3D layered polymeric gels. Third, I will build a Newtonian-Darwinian framework by coupling geometry, signalling, growth and mechanics in extensive open-ended ALife experiments. The results of the EVOMORPHYS project will constitute a novel framework for understanding how Evolution exploits physics to generate the morphological diversity and complexity of Life forms.
Summary
My project focuses on answering one fundamental question: what are the drivers of Life’s morphological complexity and diversity? I claim that this question can only be addressed by a Newtonian-Darwinian synthesis that considers how Evolution exploits the physical properties of living matter. I will investigate how the evolutionary process explores the phase space of possible interactions between physical (mechanics, reaction-diffusion) and biological (cell signalling, proliferation, migration) processes and generates configurations that compute functional phenotypes. In particular, I will combine experiments in biology and physics, as well as mathematical models and Artificial-Life (ALife) numerical simulations. The latter will be based on physics’ first principles, symmetry-breaking processes and a genetic algorithm. First, I will investigate how geometry affects signalling by (i) imaging the embryonic development of colour patterns and skin geometries of multiple squamate species with various scale-to-colour pattern correspondences, (ii) generating CRISPR/Cas9 scaleless mutants in two lizard species to study the effect of skin 3D geometry on colour patterning, and (iii) performing ALife experiments to explore how the evolutionary process can modify signalling events and exploit geometry to generate new patterns. Second, I will analyse how growth can affect geometry by (i) performing in-silico experiments where coupling between growth and morphogenesis is systematically explored and (ii) evaluating how much the in-silico model captures morphologies generated with physics laboratory experiments using 3D layered polymeric gels. Third, I will build a Newtonian-Darwinian framework by coupling geometry, signalling, growth and mechanics in extensive open-ended ALife experiments. The results of the EVOMORPHYS project will constitute a novel framework for understanding how Evolution exploits physics to generate the morphological diversity and complexity of Life forms.
Max ERC Funding
2 499 070 €
Duration
Start date: 2019-08-01, End date: 2024-07-31
Project acronym FuncMAB
Project High-throughput single-cell phenotypic analysis of functional antibody repertoires
Researcher (PI) Klaus EYER
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS9, ERC-2018-STG
Summary Antibodies play an important role ensuring successful protection after vaccination. Upon injection, antigen-binding antibodies are generated to prime the host’s immune system for future encounters with the threat. These responses are highly heterogeneous, with each cell contributing with a single antibody variant to the complexity. Each antibody variant furthermore can recognize a different antigen/epitope with varying specificity and affinity. The immunological function induced is related to those parameters.
Depending on the nature of the threat, required protective functional antibodies vary. Therefore, also each vaccination against those threads needs to trigger a specific functional antibody repertoire. Presently, induced functional antibody repertoires have not yet been studied sufficiently, mostly due to the lack of technologies that enable analysing these repertoires with high enough throughput and resolution. Consequently, the mechanisms behind the evolution of these functional repertoires, and the influence of vaccination on these repertoires remain poorly understood.
An innovative technology combined with a methodical approach to vaccinations will enable the FuncMab research team to generate data sets needed for the understanding of immunological processes that result in different functional antibody repertoires. Herein, antibodies are analysed on the individual cell level in high-throughput using specific bioassays that target various antibody functions and their biophysical parameters, generating high-resolution data. These functional repertoires are followed over time and evolutionary changes can be linked to introduced vaccine variations, allowing a quantitative approach to study the changes within the repertoires. These in-depth data sets will not only allow understanding interactions between vaccine components and their generated immune responses, but also propels this project to the forefront of creating a new generation of successful vaccines
Summary
Antibodies play an important role ensuring successful protection after vaccination. Upon injection, antigen-binding antibodies are generated to prime the host’s immune system for future encounters with the threat. These responses are highly heterogeneous, with each cell contributing with a single antibody variant to the complexity. Each antibody variant furthermore can recognize a different antigen/epitope with varying specificity and affinity. The immunological function induced is related to those parameters.
Depending on the nature of the threat, required protective functional antibodies vary. Therefore, also each vaccination against those threads needs to trigger a specific functional antibody repertoire. Presently, induced functional antibody repertoires have not yet been studied sufficiently, mostly due to the lack of technologies that enable analysing these repertoires with high enough throughput and resolution. Consequently, the mechanisms behind the evolution of these functional repertoires, and the influence of vaccination on these repertoires remain poorly understood.
An innovative technology combined with a methodical approach to vaccinations will enable the FuncMab research team to generate data sets needed for the understanding of immunological processes that result in different functional antibody repertoires. Herein, antibodies are analysed on the individual cell level in high-throughput using specific bioassays that target various antibody functions and their biophysical parameters, generating high-resolution data. These functional repertoires are followed over time and evolutionary changes can be linked to introduced vaccine variations, allowing a quantitative approach to study the changes within the repertoires. These in-depth data sets will not only allow understanding interactions between vaccine components and their generated immune responses, but also propels this project to the forefront of creating a new generation of successful vaccines
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym FunDiT
Project Functional Diversity of T cells
Researcher (PI) Ondrej STEPANEK
Host Institution (HI) USTAV MOLEKULARNI GENETIKY AKADEMIE VED CESKE REPUBLIKY VEREJNA VYZKUMNA INSTITUCE
Call Details Starting Grant (StG), LS6, ERC-2018-STG
Summary T cells have a central role in most adaptive immune responses, including immunity to infection, cancer, and autoimmunity. Increasing evidence shows that even resting steady-state T cells form many different subsets with unique functions. Variable level of self-reactivity and previous antigenic exposure are most likely two major determinants of the T-cell diversity. However, the number, identity, and biological function of steady-state T-cell subsets are still very incompletely understood. Receptors to ligands from TNF and B7 families exhibit variable expression among T-cell subsets and are important regulators of T-cell fate decisions. We hypothesize that pathways triggered by these receptors substantially contribute to the functional diversity of T cells.The FunDiT project uses a set of novel tools to systematically identify steady-state CD8+ T cell subsets and characterize their biological roles. The project has three complementary objectives.
(1) Identification of CD8+ T cell subsets. We will identify subsets based on single cell gene expression profiling. We will determine the role of self and foreign antigens in the formation of these subsets and match corresponding subsets between mice and humans.
(2) Role of particular subsets in the immune response. We will compare antigenic responses of particular subsets using our novel model allowing inducible expression of a defined TCR. The activity of T-cell subsets in three disease models (infection, cancer, autoimmunity) will be characterized.
(3) Characterization of key costimulatory/inhibitory pathways. We will use our novel mass spectrometry-based approach to identify receptors and signaling molecules involved in the signaling by ligands from TNF and B7 families in T cells.
The results will provide understanding of the adaptive immunity in particular disease context and resolve long-standing questions concerning the roles of T-cell diversity in protective immunity and tolerance to healthy tissues and tumors.
Summary
T cells have a central role in most adaptive immune responses, including immunity to infection, cancer, and autoimmunity. Increasing evidence shows that even resting steady-state T cells form many different subsets with unique functions. Variable level of self-reactivity and previous antigenic exposure are most likely two major determinants of the T-cell diversity. However, the number, identity, and biological function of steady-state T-cell subsets are still very incompletely understood. Receptors to ligands from TNF and B7 families exhibit variable expression among T-cell subsets and are important regulators of T-cell fate decisions. We hypothesize that pathways triggered by these receptors substantially contribute to the functional diversity of T cells.The FunDiT project uses a set of novel tools to systematically identify steady-state CD8+ T cell subsets and characterize their biological roles. The project has three complementary objectives.
(1) Identification of CD8+ T cell subsets. We will identify subsets based on single cell gene expression profiling. We will determine the role of self and foreign antigens in the formation of these subsets and match corresponding subsets between mice and humans.
(2) Role of particular subsets in the immune response. We will compare antigenic responses of particular subsets using our novel model allowing inducible expression of a defined TCR. The activity of T-cell subsets in three disease models (infection, cancer, autoimmunity) will be characterized.
(3) Characterization of key costimulatory/inhibitory pathways. We will use our novel mass spectrometry-based approach to identify receptors and signaling molecules involved in the signaling by ligands from TNF and B7 families in T cells.
The results will provide understanding of the adaptive immunity in particular disease context and resolve long-standing questions concerning the roles of T-cell diversity in protective immunity and tolerance to healthy tissues and tumors.
Max ERC Funding
1 725 000 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym HealthierWomen
Project A woman's reproductive experience: Long-term implications for chronic disease and death
Researcher (PI) Rolv SKJAERVEN
Host Institution (HI) UNIVERSITETET I BERGEN
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary Pregnancy complications such as preeclampsia and preterm birth are known to affect infant health, but their influence on mothers’ long-term health is not well understood. Most previous studies are seriously limited by their reliance on information from the first pregnancy. Often they lack the data to study women’s complete reproductive histories. Without a complete reproductive history, the relationship between pregnancy complications and women’s long-term health cannot be reliably studied. The Medical Birth Registry of Norway, covering all births from 1967-, includes information on more than 3 million births and 1.5 million sibships. Linking this to population based death and cancer registries provides a worldwide unique source of population-based data which can be analysed to identify heterogeneities in risk by lifetime parity and the cumulative experience of pregnancy complications. Having worked in this field of research for many years, I see many erroneous conclusions in studies based on insufficient data. For instance, both after preeclampsia and after a stillbirth, the high risk of heart disease observed in one-child mothers is strongly attenuated in women with subsequent pregnancies. I will study different patterns of pregnancy complications that occur alone or in combination across pregnancies, and analyse their associations with cause specific maternal mortality. Using this unique methodology, I will challenge the idea that placental dysfunction is the origin of preeclampsia and test the hypothesis that pregnancy complications may cause direct long-term effects on maternal health. The findings of this research have the potential to advance our understanding of how pregnancy complications affect the long-term maternal health and help to develop more effective chronic disease prevention strategies.
Summary
Pregnancy complications such as preeclampsia and preterm birth are known to affect infant health, but their influence on mothers’ long-term health is not well understood. Most previous studies are seriously limited by their reliance on information from the first pregnancy. Often they lack the data to study women’s complete reproductive histories. Without a complete reproductive history, the relationship between pregnancy complications and women’s long-term health cannot be reliably studied. The Medical Birth Registry of Norway, covering all births from 1967-, includes information on more than 3 million births and 1.5 million sibships. Linking this to population based death and cancer registries provides a worldwide unique source of population-based data which can be analysed to identify heterogeneities in risk by lifetime parity and the cumulative experience of pregnancy complications. Having worked in this field of research for many years, I see many erroneous conclusions in studies based on insufficient data. For instance, both after preeclampsia and after a stillbirth, the high risk of heart disease observed in one-child mothers is strongly attenuated in women with subsequent pregnancies. I will study different patterns of pregnancy complications that occur alone or in combination across pregnancies, and analyse their associations with cause specific maternal mortality. Using this unique methodology, I will challenge the idea that placental dysfunction is the origin of preeclampsia and test the hypothesis that pregnancy complications may cause direct long-term effects on maternal health. The findings of this research have the potential to advance our understanding of how pregnancy complications affect the long-term maternal health and help to develop more effective chronic disease prevention strategies.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym Healthybiota
Project Microbiota-host interactions for integrative metabolic health reprogramming
Researcher (PI) Mirko TRAJKOVSKI
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Consolidator Grant (CoG), LS4, ERC-2018-COG
Summary Obesity is a metabolic disorder leading to various health risks and reduced life expectancy. Insulin resistance is a major obesity related disorder, and a main cause for the onset of type 2 diabetes. During cold exposure or caloric restriction (CR), brown adipocytes emerge within the white fat (known as “beige” cells). This process, referred to as fat browning, increases the metabolic capacity of the adipose tissues to combust energy and is seen as promising anti-obesity and anti-diabetic strategy. The intestinal microbiota co-develops with the host; microbiota depletion, or cold-induced shift of its composition are sufficient to improve insulin sensitivity and glucose metabolism, in part mediated by the innate immune system-mediated fat browning. The microbial signals and composition, critical for our understanding of the microbiota-host mutualism and metabolic improvements during cold and CR, remain unclear.
By integrating expertise from several areas including physiology, bioinformatics, immunology, microbiology and developmental biology; and by developing computational approaches for comparing the metagenomics, metabolomics and transcriptomics data from the CR- and the cold-exposed mice with cohorts of human subjects, we will establish the microbiota role in orchestrating the CR-induced metabolic improvements and innate immune response, and provide mechanistic explanations on the microbiota-host mutualism during CR and cold. Finally, by using lineage-tracing studies and developing transgenic mouse models, we will determine the importance of the beige fat in the CR-induced beneficial effects on the host, and the importance of the microbiota in mediating this process. Manipulating the gut microbiota and exploiting the mechanistic links revealed by this study would be of conceptual importance for our understanding of microbiota-host mutualism in the metabolic homeostasis, and could lead to development of novel therapeutics for improving metabolic health.
Summary
Obesity is a metabolic disorder leading to various health risks and reduced life expectancy. Insulin resistance is a major obesity related disorder, and a main cause for the onset of type 2 diabetes. During cold exposure or caloric restriction (CR), brown adipocytes emerge within the white fat (known as “beige” cells). This process, referred to as fat browning, increases the metabolic capacity of the adipose tissues to combust energy and is seen as promising anti-obesity and anti-diabetic strategy. The intestinal microbiota co-develops with the host; microbiota depletion, or cold-induced shift of its composition are sufficient to improve insulin sensitivity and glucose metabolism, in part mediated by the innate immune system-mediated fat browning. The microbial signals and composition, critical for our understanding of the microbiota-host mutualism and metabolic improvements during cold and CR, remain unclear.
By integrating expertise from several areas including physiology, bioinformatics, immunology, microbiology and developmental biology; and by developing computational approaches for comparing the metagenomics, metabolomics and transcriptomics data from the CR- and the cold-exposed mice with cohorts of human subjects, we will establish the microbiota role in orchestrating the CR-induced metabolic improvements and innate immune response, and provide mechanistic explanations on the microbiota-host mutualism during CR and cold. Finally, by using lineage-tracing studies and developing transgenic mouse models, we will determine the importance of the beige fat in the CR-induced beneficial effects on the host, and the importance of the microbiota in mediating this process. Manipulating the gut microbiota and exploiting the mechanistic links revealed by this study would be of conceptual importance for our understanding of microbiota-host mutualism in the metabolic homeostasis, and could lead to development of novel therapeutics for improving metabolic health.
Max ERC Funding
1 999 999 €
Duration
Start date: 2019-06-01, End date: 2024-05-31