Project acronym 5D-NanoTrack
Project Five-Dimensional Localization Microscopy for Sub-Cellular Dynamics
Researcher (PI) Yoav SHECHTMAN
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Summary
The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Max ERC Funding
1 802 500 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AEROBIC
Project Assessing the Effects of Rising O2 on Biogeochemical Cycles: Integrated Laboratory Experiments and Numerical Simulations
Researcher (PI) Itay Halevy
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary The rise of atmospheric O2 ~2,500 million years ago is one of the most profound transitions in Earth's history. Yet, despite its central role in shaping Earth's surface environment, the cause for the rise of O2 remains poorly understood. Tight coupling between the O2 cycle and the biogeochemical cycles of redox-active elements, such as C, Fe and S, implies radical changes in these cycles before, during and after the rise of O2. These changes, too, are incompletely understood, but have left valuable information encoded in the geological record. This information has been qualitatively interpreted, leaving many aspects of the rise of O2, including its causes and constraints on ocean chemistry before and after it, topics of ongoing research and debate. Here, I outline a research program to address this fundamental question in geochemical Earth systems evolution. The inherently interdisciplinary program uniquely integrates laboratory experiments, numerical models, geological observations, and geochemical analyses. Laboratory experiments and geological observations will constrain unknown parameters of the early biogeochemical cycles, and, in combination with field studies, will validate and refine the use of paleoenvironmental proxies. The insight gained will be used to develop detailed models of the coupled biogeochemical cycles, which will themselves be used to quantitatively understand the events surrounding the rise of O2, and to illuminate the dynamics of elemental cycles in the early oceans.
This program is expected to yield novel, quantitative insight into these important events in Earth history and to have a major impact on our understanding of early ocean chemistry and the rise of O2. An ERC Starting Grant will enable me to use the excellent experimental and computational facilities at my disposal, to access the outstanding human resource at the Weizmann Institute of Science, and to address one of the major open questions in modern geochemistry.
Summary
The rise of atmospheric O2 ~2,500 million years ago is one of the most profound transitions in Earth's history. Yet, despite its central role in shaping Earth's surface environment, the cause for the rise of O2 remains poorly understood. Tight coupling between the O2 cycle and the biogeochemical cycles of redox-active elements, such as C, Fe and S, implies radical changes in these cycles before, during and after the rise of O2. These changes, too, are incompletely understood, but have left valuable information encoded in the geological record. This information has been qualitatively interpreted, leaving many aspects of the rise of O2, including its causes and constraints on ocean chemistry before and after it, topics of ongoing research and debate. Here, I outline a research program to address this fundamental question in geochemical Earth systems evolution. The inherently interdisciplinary program uniquely integrates laboratory experiments, numerical models, geological observations, and geochemical analyses. Laboratory experiments and geological observations will constrain unknown parameters of the early biogeochemical cycles, and, in combination with field studies, will validate and refine the use of paleoenvironmental proxies. The insight gained will be used to develop detailed models of the coupled biogeochemical cycles, which will themselves be used to quantitatively understand the events surrounding the rise of O2, and to illuminate the dynamics of elemental cycles in the early oceans.
This program is expected to yield novel, quantitative insight into these important events in Earth history and to have a major impact on our understanding of early ocean chemistry and the rise of O2. An ERC Starting Grant will enable me to use the excellent experimental and computational facilities at my disposal, to access the outstanding human resource at the Weizmann Institute of Science, and to address one of the major open questions in modern geochemistry.
Max ERC Funding
1 472 690 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym AGALT
Project Asymptotic Geometric Analysis and Learning Theory
Researcher (PI) Shahar Mendelson
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary In a typical learning problem one tries to approximate an unknown function by a function from a given class using random data, sampled according to an unknown measure. In this project we will be interested in parameters that govern the complexity of a learning problem. It turns out that this complexity is determined by the geometry of certain sets in high dimension that are connected to the given class (random coordinate projections of the class). Thus, one has to understand the structure of these sets as a function of the dimension - which is given by the cardinality of the random sample. The resulting analysis leads to many theoretical questions in Asymptotic Geometric Analysis, Probability (most notably, Empirical Processes Theory) and Combinatorics, which are of independent interest beyond the application to Learning Theory. Our main goal is to describe the role of various complexity parameters involved in a learning problem, to analyze the connections between them and to investigate the way they determine the geometry of the relevant high dimensional sets. Some of the questions we intend to tackle are well known open problems and making progress towards their solution will have a significant theoretical impact. Moreover, this project should lead to a more complete theory of learning and is likely to have some practical impact, for example, in the design of more efficient learning algorithms.
Summary
In a typical learning problem one tries to approximate an unknown function by a function from a given class using random data, sampled according to an unknown measure. In this project we will be interested in parameters that govern the complexity of a learning problem. It turns out that this complexity is determined by the geometry of certain sets in high dimension that are connected to the given class (random coordinate projections of the class). Thus, one has to understand the structure of these sets as a function of the dimension - which is given by the cardinality of the random sample. The resulting analysis leads to many theoretical questions in Asymptotic Geometric Analysis, Probability (most notably, Empirical Processes Theory) and Combinatorics, which are of independent interest beyond the application to Learning Theory. Our main goal is to describe the role of various complexity parameters involved in a learning problem, to analyze the connections between them and to investigate the way they determine the geometry of the relevant high dimensional sets. Some of the questions we intend to tackle are well known open problems and making progress towards their solution will have a significant theoretical impact. Moreover, this project should lead to a more complete theory of learning and is likely to have some practical impact, for example, in the design of more efficient learning algorithms.
Max ERC Funding
750 000 €
Duration
Start date: 2009-03-01, End date: 2014-02-28
Project acronym AMD
Project Algorithmic Mechanism Design: Beyond Truthful Mechanisms
Researcher (PI) Michal Feldman
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE6, ERC-2013-StG
Summary "The first decade of Algorithmic Mechanism Design (AMD) concentrated, very successfully, on the design of truthful mechanisms for the allocation of resources among agents with private preferences.
Truthful mechanisms are ones that incentivize rational users to report their preferences truthfully.
Truthfulness, however, for all its theoretical appeal, suffers from several inherent limitations, mainly its high communication and computation complexities.
It is not surprising, therefore, that practical applications forego truthfulness and use simpler mechanisms instead.
Simplicity in itself, however, is not sufficient, as any meaningful mechanism should also have some notion of fairness; otherwise agents will stop using it over time.
In this project I plan to develop an innovative AMD theoretical framework that will go beyond truthfulness and focus instead on the natural themes of simplicity and fairness, in addition to computational tractability.
One of my primary goals will be the design of simple and fair poly-time mechanisms that perform at near optimal levels with respect to important economic objectives such as social welfare and revenue.
To this end, I will work toward providing precise definitions of simplicity and fairness and quantifying the effects of these restrictions on the performance levels that can be obtained.
A major challenge in the evaluation of non-truthful mechanisms is defining a reasonable behavior model that will enable their evaluation.
The success of this project could have a broad impact on Europe and beyond, as it would guide the design of natural mechanisms for markets of tens of billions of dollars in revenue, such as online advertising, or sales of wireless frequencies.
The timing of this project is ideal, as the AMD field is now sufficiently mature to lead to a breakthrough and at the same time young enough to be receptive to new approaches and themes."
Summary
"The first decade of Algorithmic Mechanism Design (AMD) concentrated, very successfully, on the design of truthful mechanisms for the allocation of resources among agents with private preferences.
Truthful mechanisms are ones that incentivize rational users to report their preferences truthfully.
Truthfulness, however, for all its theoretical appeal, suffers from several inherent limitations, mainly its high communication and computation complexities.
It is not surprising, therefore, that practical applications forego truthfulness and use simpler mechanisms instead.
Simplicity in itself, however, is not sufficient, as any meaningful mechanism should also have some notion of fairness; otherwise agents will stop using it over time.
In this project I plan to develop an innovative AMD theoretical framework that will go beyond truthfulness and focus instead on the natural themes of simplicity and fairness, in addition to computational tractability.
One of my primary goals will be the design of simple and fair poly-time mechanisms that perform at near optimal levels with respect to important economic objectives such as social welfare and revenue.
To this end, I will work toward providing precise definitions of simplicity and fairness and quantifying the effects of these restrictions on the performance levels that can be obtained.
A major challenge in the evaluation of non-truthful mechanisms is defining a reasonable behavior model that will enable their evaluation.
The success of this project could have a broad impact on Europe and beyond, as it would guide the design of natural mechanisms for markets of tens of billions of dollars in revenue, such as online advertising, or sales of wireless frequencies.
The timing of this project is ideal, as the AMD field is now sufficiently mature to lead to a breakthrough and at the same time young enough to be receptive to new approaches and themes."
Max ERC Funding
1 394 600 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym ANYONIC
Project Statistics of Exotic Fractional Hall States
Researcher (PI) Mordehai HEIBLUM
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE3, ERC-2018-ADG
Summary Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Summary
Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Max ERC Funding
1 801 094 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym ARITHQUANTUMCHAOS
Project Arithmetic and Quantum Chaos
Researcher (PI) Zeev Rudnick
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary Quantum Chaos is an emerging discipline which is crossing over from Physics into Pure Mathematics. The recent crossover is driven in part by a connection with Number Theory. This project explores several aspects of this interrelationship and is composed of a number of sub-projects. The sub-projects deal with: statistics of energy levels and wave functions of pseudo-integrable systems, a hitherto unexplored subject in the mathematical community which is not well understood in the physics community; with statistics of zeros of zeta functions over function fields, a purely number theoretic topic which is linked to the subproject on Quantum Chaos through the mysterious connections to Random Matrix Theory and an analogy between energy levels and zeta zeros; and with spatial statistics in arithmetic.
Summary
Quantum Chaos is an emerging discipline which is crossing over from Physics into Pure Mathematics. The recent crossover is driven in part by a connection with Number Theory. This project explores several aspects of this interrelationship and is composed of a number of sub-projects. The sub-projects deal with: statistics of energy levels and wave functions of pseudo-integrable systems, a hitherto unexplored subject in the mathematical community which is not well understood in the physics community; with statistics of zeros of zeta functions over function fields, a purely number theoretic topic which is linked to the subproject on Quantum Chaos through the mysterious connections to Random Matrix Theory and an analogy between energy levels and zeta zeros; and with spatial statistics in arithmetic.
Max ERC Funding
1 714 000 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym BANDWIDTH
Project The cost of limited communication bandwidth in distributed computing
Researcher (PI) Keren CENSOR-HILLEL
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE6, ERC-2017-STG
Summary Distributed systems underlie many modern technologies, a prime example being the Internet. The ever-increasing abundance of distributed systems necessitates their design and usage to be backed by strong theoretical foundations.
A major challenge that distributed systems face is the lack of a central authority, which brings many aspects of uncertainty into the environment, in the form of unknown network topology or unpredictable dynamic behavior. A practical restriction of distributed systems, which is at the heart of this proposal, is the limited bandwidth available for communication between the network components.
A central family of distributed tasks is that of local tasks, which are informally described as tasks which are possible to solve by sending information through only a relatively small number of hops. A cornerstone example is the need to break symmetry and provide a better utilization of resources, which can be obtained by the task of producing a valid coloring of the nodes given some small number of colors. Amazingly, there are still huge gaps between the known upper and lower bounds for the complexity of many local tasks. This holds even if one allows powerful assumptions of unlimited bandwidth. While some known algorithms indeed use small messages, the complexity gaps are even larger compared to the unlimited bandwidth case. This is not a mere coincidence, and in fact the existing theoretical infrastructure is provably incapable of
giving stronger lower bounds for many local tasks under limited bandwidth.
This proposal zooms in on this crucial blind spot in the current literature on the theory of distributed computing, namely, the study of local tasks under limited bandwidth. The goal of this research is to produce fast algorithms for fundamental distributed local tasks under restricted bandwidth, as well as understand their limitations by providing lower bounds.
Summary
Distributed systems underlie many modern technologies, a prime example being the Internet. The ever-increasing abundance of distributed systems necessitates their design and usage to be backed by strong theoretical foundations.
A major challenge that distributed systems face is the lack of a central authority, which brings many aspects of uncertainty into the environment, in the form of unknown network topology or unpredictable dynamic behavior. A practical restriction of distributed systems, which is at the heart of this proposal, is the limited bandwidth available for communication between the network components.
A central family of distributed tasks is that of local tasks, which are informally described as tasks which are possible to solve by sending information through only a relatively small number of hops. A cornerstone example is the need to break symmetry and provide a better utilization of resources, which can be obtained by the task of producing a valid coloring of the nodes given some small number of colors. Amazingly, there are still huge gaps between the known upper and lower bounds for the complexity of many local tasks. This holds even if one allows powerful assumptions of unlimited bandwidth. While some known algorithms indeed use small messages, the complexity gaps are even larger compared to the unlimited bandwidth case. This is not a mere coincidence, and in fact the existing theoretical infrastructure is provably incapable of
giving stronger lower bounds for many local tasks under limited bandwidth.
This proposal zooms in on this crucial blind spot in the current literature on the theory of distributed computing, namely, the study of local tasks under limited bandwidth. The goal of this research is to produce fast algorithms for fundamental distributed local tasks under restricted bandwidth, as well as understand their limitations by providing lower bounds.
Max ERC Funding
1 486 480 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BeadsOnString
Project Beads on String Genomics: Experimental Toolbox for Unmasking Genetic / Epigenetic Variation in Genomic DNA and Chromatin
Researcher (PI) Yuval Ebenstein
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material and is lacking in its ability to resolve variations between genomes. The high degree of genome variation exhibited both on the population level as well as between genetically “identical” cells (even in the same organ) makes genetic and epigenetic analysis on the single cell and single genome level a necessity.
Chromosomes may be conceptually represented as a linear one-dimensional barcode. However, in contrast to a traditional binary barcode approach that considers only two possible bits of information (1 & 0), I will use colour and molecular structure to expand the variety of information represented in the barcode. Like colourful beads threaded on a string, where each bead represents a distinct type of observable, I will label each type of genomic information with a different chemical moiety thus expanding the repertoire of information that can be simultaneously measured. A major effort in this proposal is invested in the development of unique chemistries to enable this labelling.
I specifically address three types of genomic variation: Variations in genomic layout (including DNA repeats, structural and copy number variations), variations in the patterns of chemical DNA modifications (such as methylation of cytosine bases) and variations in the chromatin composition (including nucleosome and transcription factor distributions). I will use physical extension of long DNA molecules on surfaces and in nanofluidic channels to reveal this information visually in the form of a linear, fluorescent “barcode” that is read-out by advanced imaging techniques. Similarly, DNA molecules will be threaded through a nanopore where the sequential position of “bulky” molecular groups attached to the DNA may be inferred from temporal modulation of an ionic current measured across the pore.
Summary
Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material and is lacking in its ability to resolve variations between genomes. The high degree of genome variation exhibited both on the population level as well as between genetically “identical” cells (even in the same organ) makes genetic and epigenetic analysis on the single cell and single genome level a necessity.
Chromosomes may be conceptually represented as a linear one-dimensional barcode. However, in contrast to a traditional binary barcode approach that considers only two possible bits of information (1 & 0), I will use colour and molecular structure to expand the variety of information represented in the barcode. Like colourful beads threaded on a string, where each bead represents a distinct type of observable, I will label each type of genomic information with a different chemical moiety thus expanding the repertoire of information that can be simultaneously measured. A major effort in this proposal is invested in the development of unique chemistries to enable this labelling.
I specifically address three types of genomic variation: Variations in genomic layout (including DNA repeats, structural and copy number variations), variations in the patterns of chemical DNA modifications (such as methylation of cytosine bases) and variations in the chromatin composition (including nucleosome and transcription factor distributions). I will use physical extension of long DNA molecules on surfaces and in nanofluidic channels to reveal this information visually in the form of a linear, fluorescent “barcode” that is read-out by advanced imaging techniques. Similarly, DNA molecules will be threaded through a nanopore where the sequential position of “bulky” molecular groups attached to the DNA may be inferred from temporal modulation of an ionic current measured across the pore.
Max ERC Funding
1 627 600 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym BEAMING
Project Detecting massive-planet/brown-dwarf/low-mass-stellar companions with the beaming effect
Researcher (PI) Moshe Zvi Mazeh
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), PE9, ERC-2011-ADG_20110209
Summary "I propose to lead an international observational effort to characterize the population of massive planets, brown dwarf and stellar secondaries orbiting their parent stars with short periods, up to 10-30 days. The effort will utilize the superb, accurate, continuous lightcurves of more than hundred thousand stars obtained recently by two space missions – CoRoT and Kepler. I propose to use these lightcurves to detect non-transiting low-mass companions with a new algorithm, BEER, which I developed recently together with Simchon Faigler. BEER searches for the beaming effect, which causes the stellar intensity to increase if the star is moving towards the observer. The combination of the beaming effect with other modulations induced by a low-mass companion produces periodic modulation with a specific signature, which is used to detect small non-transiting companions. The accuracy of the space mission lightcurves is enough to detect massive planets with short periods. The proposed project is equivalent to a radial-velocity survey of tens of thousands of stars, instead of the presently active surveys which observe only hundreds of stars.
We will use an assortment of telescopes to perform radial velocity follow-up observations in order to confirm the existence of the detected companions, and to derive their masses and orbital eccentricities. We will discover many tens, if not hundreds, of new massive planets and brown dwarfs with short periods, and many thousands of new binaries. The findings will enable us to map the mass, period, and eccentricity distributions of planets and stellar companions, determine the upper mass of planets, understand the nature of the brown-dwarf desert, and put strong constrains on the theory of planet and binary formation and evolution."
Summary
"I propose to lead an international observational effort to characterize the population of massive planets, brown dwarf and stellar secondaries orbiting their parent stars with short periods, up to 10-30 days. The effort will utilize the superb, accurate, continuous lightcurves of more than hundred thousand stars obtained recently by two space missions – CoRoT and Kepler. I propose to use these lightcurves to detect non-transiting low-mass companions with a new algorithm, BEER, which I developed recently together with Simchon Faigler. BEER searches for the beaming effect, which causes the stellar intensity to increase if the star is moving towards the observer. The combination of the beaming effect with other modulations induced by a low-mass companion produces periodic modulation with a specific signature, which is used to detect small non-transiting companions. The accuracy of the space mission lightcurves is enough to detect massive planets with short periods. The proposed project is equivalent to a radial-velocity survey of tens of thousands of stars, instead of the presently active surveys which observe only hundreds of stars.
We will use an assortment of telescopes to perform radial velocity follow-up observations in order to confirm the existence of the detected companions, and to derive their masses and orbital eccentricities. We will discover many tens, if not hundreds, of new massive planets and brown dwarfs with short periods, and many thousands of new binaries. The findings will enable us to map the mass, period, and eccentricity distributions of planets and stellar companions, determine the upper mass of planets, understand the nature of the brown-dwarf desert, and put strong constrains on the theory of planet and binary formation and evolution."
Max ERC Funding
1 737 600 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym BeyondA1
Project Set theory beyond the first uncountable cardinal
Researcher (PI) Assaf Shmuel Rinot
Host Institution (HI) BAR ILAN UNIVERSITY
Call Details Starting Grant (StG), PE1, ERC-2018-STG
Summary We propose to establish a research group that will unveil the combinatorial nature of the second uncountable cardinal. This includes its Ramsey-theoretic, order-theoretic, graph-theoretic and topological features. Among others, we will be directly addressing fundamental problems due to Erdos, Rado, Galvin, and Shelah.
While some of these problems are old and well-known, an unexpected series of breakthroughs from the last three years suggest that now is a promising point in time to carry out such a project. Indeed, through a short period, four previously unattainable problems concerning the second uncountable cardinal were successfully tackled: Aspero on a club-guessing problem of Shelah, Krueger on the club-isomorphism problem for Aronszajn trees, Neeman on the isomorphism problem for dense sets of reals, and the PI on the Souslin problem. Each of these results was obtained through the development of a completely new technical framework, and these frameworks could now pave the way for the solution of some major open questions.
A goal of the highest risk in this project is the discovery of a consistent (possibly, parameterized) forcing axiom that will (preferably, simultaneously) provide structure theorems for stationary sets, linearly ordered sets, trees, graphs, and partition relations, as well as the refutation of various forms of club-guessing principles, all at the level of the second uncountable cardinal. In comparison, at the level of the first uncountable cardinal, a forcing axiom due to Foreman, Magidor and Shelah achieves exactly that.
To approach our goals, the proposed project is divided into four core areas: Uncountable trees, Ramsey theory on ordinals, Club-guessing principles, and Forcing Axioms. There is a rich bilateral interaction between any pair of the four different cores, but the proposed division will allow an efficient allocation of manpower, and will increase the chances of parallel success.
Summary
We propose to establish a research group that will unveil the combinatorial nature of the second uncountable cardinal. This includes its Ramsey-theoretic, order-theoretic, graph-theoretic and topological features. Among others, we will be directly addressing fundamental problems due to Erdos, Rado, Galvin, and Shelah.
While some of these problems are old and well-known, an unexpected series of breakthroughs from the last three years suggest that now is a promising point in time to carry out such a project. Indeed, through a short period, four previously unattainable problems concerning the second uncountable cardinal were successfully tackled: Aspero on a club-guessing problem of Shelah, Krueger on the club-isomorphism problem for Aronszajn trees, Neeman on the isomorphism problem for dense sets of reals, and the PI on the Souslin problem. Each of these results was obtained through the development of a completely new technical framework, and these frameworks could now pave the way for the solution of some major open questions.
A goal of the highest risk in this project is the discovery of a consistent (possibly, parameterized) forcing axiom that will (preferably, simultaneously) provide structure theorems for stationary sets, linearly ordered sets, trees, graphs, and partition relations, as well as the refutation of various forms of club-guessing principles, all at the level of the second uncountable cardinal. In comparison, at the level of the first uncountable cardinal, a forcing axiom due to Foreman, Magidor and Shelah achieves exactly that.
To approach our goals, the proposed project is divided into four core areas: Uncountable trees, Ramsey theory on ordinals, Club-guessing principles, and Forcing Axioms. There is a rich bilateral interaction between any pair of the four different cores, but the proposed division will allow an efficient allocation of manpower, and will increase the chances of parallel success.
Max ERC Funding
1 362 500 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym BioMet
Project Selective Functionalization of Saturated Hydrocarbons
Researcher (PI) Ilan MAREK
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Despite that C–H functionalization represents a paradigm shift from the standard logic of organic synthesis, the selective activation of non-functionalized alkanes has puzzled chemists for centuries and is always referred to one of the remaining major challenges in chemical sciences. Alkanes are inert compounds representing the major constituents of natural gas and petroleum. Converting these cheap and widely available hydrocarbon feedstocks into added-value intermediates would tremendously affect the field of chemistry. For long saturated hydrocarbons, one must distinguish between non-equivalent but chemically very similar alkane substrate C−H bonds, and for functionalization at the terminus position, one must favor activation of the stronger, primary C−H bonds at the expense of weaker and numerous secondary C-H bonds. The goal of this work is to develop a general principle in organic synthesis for the preparation of a wide variety of more complex molecular architectures from saturated hydrocarbons. In our approach, the alkane will first be transformed into an alkene that will subsequently be engaged in a metal-catalyzed hydrometalation/migration sequence. The first step of the sequence, ideally represented by the removal of two hydrogen atoms, will be performed by the use of a mutated strain of Rhodococcus. The position and geometry of the formed double bond has no effect on the second step of the reaction as the metal-catalyzed hydrometalation/migration will isomerize the double bond along the carbon skeleton to selectively produce the primary organometallic species. Trapping the resulting organometallic derivatives with a large variety of electrophiles will provide the desired functionalized alkane. This work will lead to the invention of new, selective and efficient processes for the utilization of simple hydrocarbons and valorize the synthetic potential of raw hydrocarbon feedstock for the environmentally benign production of new compounds and new materials.
Summary
Despite that C–H functionalization represents a paradigm shift from the standard logic of organic synthesis, the selective activation of non-functionalized alkanes has puzzled chemists for centuries and is always referred to one of the remaining major challenges in chemical sciences. Alkanes are inert compounds representing the major constituents of natural gas and petroleum. Converting these cheap and widely available hydrocarbon feedstocks into added-value intermediates would tremendously affect the field of chemistry. For long saturated hydrocarbons, one must distinguish between non-equivalent but chemically very similar alkane substrate C−H bonds, and for functionalization at the terminus position, one must favor activation of the stronger, primary C−H bonds at the expense of weaker and numerous secondary C-H bonds. The goal of this work is to develop a general principle in organic synthesis for the preparation of a wide variety of more complex molecular architectures from saturated hydrocarbons. In our approach, the alkane will first be transformed into an alkene that will subsequently be engaged in a metal-catalyzed hydrometalation/migration sequence. The first step of the sequence, ideally represented by the removal of two hydrogen atoms, will be performed by the use of a mutated strain of Rhodococcus. The position and geometry of the formed double bond has no effect on the second step of the reaction as the metal-catalyzed hydrometalation/migration will isomerize the double bond along the carbon skeleton to selectively produce the primary organometallic species. Trapping the resulting organometallic derivatives with a large variety of electrophiles will provide the desired functionalized alkane. This work will lead to the invention of new, selective and efficient processes for the utilization of simple hydrocarbons and valorize the synthetic potential of raw hydrocarbon feedstock for the environmentally benign production of new compounds and new materials.
Max ERC Funding
2 499 375 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BIONICS
Project Bio-Inspired Routes for Controlling the Structure and Properties of Materials: Reusing proven tricks on new materials
Researcher (PI) Boaz Pokroy
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary "In the course of biomineralization, organisms produce a large variety of functional biogenic crystals that exhibit fascinating mechanical, optical, magnetic and other characteristics. More specifically, when living organisms grow crystals they can effectively control polymorph selection as well as the crystal morphology, shape, and even atomic structure. Materials existing in nature have extraordinary and specific functions, yet the materials employed in nature are quite different from those engineers would select.
I propose to emulate specific strategies used by organisms in forming structural biogenic crystals, and to apply these strategies biomimetically so as to form new structural materials with new properties and characteristics. This bio-inspired approach will involve the adoption of three specific biological strategies. We believe that this procedure will open up new ways to control the structure and properties of smart materials.
The three bio-inspired strategies that we will utilize are:
(i) to control the short-range order of amorphous materials, making it possible to predetermine the polymorph obtained when they transform from the amorphous to the succeeding crystalline phase;
(ii) to control the morphology of single crystals of various functional materials so that they can have intricate and curved surfaces and yet maintain their single-crystal nature;
(iii) to entrap organic molecules into single crystals of functional materials so as to tailor and manipulate their electronic structure.
The proposed research has significant potential for opening up new routes for the formation of novel functional materials. Specifically, it will make it possible for us
(1) to produce single, intricately shaped crystals without the need to etch, drill or polish;
(2) to control the short-range order of amorphous materials and hence the polymorph of the successive crystalline phase;
(3) to tune the band gap of semiconductors via incorporation of tailored bio-molecules."
Summary
"In the course of biomineralization, organisms produce a large variety of functional biogenic crystals that exhibit fascinating mechanical, optical, magnetic and other characteristics. More specifically, when living organisms grow crystals they can effectively control polymorph selection as well as the crystal morphology, shape, and even atomic structure. Materials existing in nature have extraordinary and specific functions, yet the materials employed in nature are quite different from those engineers would select.
I propose to emulate specific strategies used by organisms in forming structural biogenic crystals, and to apply these strategies biomimetically so as to form new structural materials with new properties and characteristics. This bio-inspired approach will involve the adoption of three specific biological strategies. We believe that this procedure will open up new ways to control the structure and properties of smart materials.
The three bio-inspired strategies that we will utilize are:
(i) to control the short-range order of amorphous materials, making it possible to predetermine the polymorph obtained when they transform from the amorphous to the succeeding crystalline phase;
(ii) to control the morphology of single crystals of various functional materials so that they can have intricate and curved surfaces and yet maintain their single-crystal nature;
(iii) to entrap organic molecules into single crystals of functional materials so as to tailor and manipulate their electronic structure.
The proposed research has significant potential for opening up new routes for the formation of novel functional materials. Specifically, it will make it possible for us
(1) to produce single, intricately shaped crystals without the need to etch, drill or polish;
(2) to control the short-range order of amorphous materials and hence the polymorph of the successive crystalline phase;
(3) to tune the band gap of semiconductors via incorporation of tailored bio-molecules."
Max ERC Funding
1 500 000 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym BIOSELFORGANIZATION
Project Biophysical aspects of self-organization in actin-based cell motility
Researcher (PI) Kinneret Magda Keren
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary Cell motility is a fascinating dynamic process crucial for a wide variety of biological phenomena including defense against injury or infection, embryogenesis and cancer metastasis. A spatially extended, self-organized, mechanochemical machine consisting of numerous actin polymers, accessory proteins and molecular motors drives this process. This impressive assembly self-organizes over several orders of magnitude in both the temporal and spatial domains bridging from the fast dynamics of individual molecular-sized building blocks to the persistent motion of whole cells over minutes and hours. The molecular players involved in the process and the basic biochemical mechanisms are largely known. However, the principles governing the assembly of the motility apparatus, which involve an intricate interplay between biophysical processes and biochemical reactions, are still poorly understood. The proposed research is focused on investigating the biophysical aspects of the self-organization processes underlying cell motility and trying to adapt these processes to instill motility in artificial cells. Important biophysical characteristics of moving cells such as the intracellular fluid flow and membrane tension will be measured and their effect on the motility process will be examined, using fish epithelial keratocytes as a model system. The dynamics of the system will be further investigated by quantitatively analyzing the morphological and kinematic variation displayed by a population of cells and by an individual cell through time. Such measurements will feed into and direct the development of quantitative theoretical models. In parallel, I will work toward the development of a synthetic physical model system for cell motility by encapsulating the actin machinery in a cell-sized compartment. This synthetic system will allow cell motility to be studied in a simplified and controlled environment, detached from the complexity of the living cell.
Summary
Cell motility is a fascinating dynamic process crucial for a wide variety of biological phenomena including defense against injury or infection, embryogenesis and cancer metastasis. A spatially extended, self-organized, mechanochemical machine consisting of numerous actin polymers, accessory proteins and molecular motors drives this process. This impressive assembly self-organizes over several orders of magnitude in both the temporal and spatial domains bridging from the fast dynamics of individual molecular-sized building blocks to the persistent motion of whole cells over minutes and hours. The molecular players involved in the process and the basic biochemical mechanisms are largely known. However, the principles governing the assembly of the motility apparatus, which involve an intricate interplay between biophysical processes and biochemical reactions, are still poorly understood. The proposed research is focused on investigating the biophysical aspects of the self-organization processes underlying cell motility and trying to adapt these processes to instill motility in artificial cells. Important biophysical characteristics of moving cells such as the intracellular fluid flow and membrane tension will be measured and their effect on the motility process will be examined, using fish epithelial keratocytes as a model system. The dynamics of the system will be further investigated by quantitatively analyzing the morphological and kinematic variation displayed by a population of cells and by an individual cell through time. Such measurements will feed into and direct the development of quantitative theoretical models. In parallel, I will work toward the development of a synthetic physical model system for cell motility by encapsulating the actin machinery in a cell-sized compartment. This synthetic system will allow cell motility to be studied in a simplified and controlled environment, detached from the complexity of the living cell.
Max ERC Funding
900 000 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym BirNonArchGeom
Project Birational and non-archimedean geometries
Researcher (PI) Michael TEMKIN
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), PE1, ERC-2017-COG
Summary Resolution of singularities is one of classical, central and difficult areas of algebraic geometry, with a centennial history of intensive research and contributions of such great names as Zariski, Hironaka and Abhyankar. Nowadays, desingularization of schemes of characteristic zero is very well understood, while semistable reduction of morphisms and desingularization in positive characteristic are still waiting for major breakthroughs. In addition to the classical techniques with their triumph in characteristic zero, modern resolution of singularities includes de Jong's method of alterations, toroidal methods, formal analytic and non-archimedean methods, etc.
The aim of the proposed research is to study nearly all directions in resolution of singularities and semistable reduction, as well as the wild ramification phenomena, which are probably the main obstacle to transfer methods from characteristic zero to positive characteristic.
The methods of algebraic and non-archimedean geometries are intertwined in the proposal, though algebraic geometry is somewhat dominating, especially due to the new stack-theoretic techniques. It seems very probable that increasing the symbiosis between birational and non-archimedean geometries will be one of by-products of this research.
Summary
Resolution of singularities is one of classical, central and difficult areas of algebraic geometry, with a centennial history of intensive research and contributions of such great names as Zariski, Hironaka and Abhyankar. Nowadays, desingularization of schemes of characteristic zero is very well understood, while semistable reduction of morphisms and desingularization in positive characteristic are still waiting for major breakthroughs. In addition to the classical techniques with their triumph in characteristic zero, modern resolution of singularities includes de Jong's method of alterations, toroidal methods, formal analytic and non-archimedean methods, etc.
The aim of the proposed research is to study nearly all directions in resolution of singularities and semistable reduction, as well as the wild ramification phenomena, which are probably the main obstacle to transfer methods from characteristic zero to positive characteristic.
The methods of algebraic and non-archimedean geometries are intertwined in the proposal, though algebraic geometry is somewhat dominating, especially due to the new stack-theoretic techniques. It seems very probable that increasing the symbiosis between birational and non-archimedean geometries will be one of by-products of this research.
Max ERC Funding
1 365 600 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym BNYQ
Project Breaking the Nyquist Barrier: A New Paradigm in Data Conversion and Transmission
Researcher (PI) Yonina Eldar
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Consolidator Grant (CoG), PE7, ERC-2014-CoG
Summary Digital signal processing (DSP) is a revolutionary paradigm shift enabling processing of physical data in the digital domain where design and implementation are considerably simplified. However, state-of-the-art analog-to-digital convertors (ADCs) preclude high-rate wideband sampling and processing with low cost and energy consumption, presenting a major bottleneck. This is mostly due to a traditional assumption that sampling must be performed at the Nyquist rate, that is, twice the signal bandwidth. Modern applications including communications, medical imaging, radar and more use signals with high bandwidth, resulting in prohibitively large Nyquist rates.
Our ambitious goal is to introduce a paradigm shift in ADC design that will enable systems capable of low-rate, wideband sensing and low-rate DSP.
While DSP has a rich history in exploiting structure to reduce dimensionality and perform efficient parameter extraction, current ADCs do not exploit such knowledge.
We challenge current practice that separates the sampling stage from the processing stage and exploit structure in analog signals already in the ADC, to drastically reduce the sampling and processing rates.
Our preliminary data shows that this allows substantial savings in sampling and processing rates --- we show rate reduction of 1/28 in ultrasound imaging, and 1/30 in radar detection.
To achieve our overreaching goal we focus on three interconnected objectives -- developing the 1) theory 2) hardware and 3) applications of sub-Nyquist sampling.
Our methodology ties together two areas on the frontier of signal processing: compressed sensing (CS), focused on finite length vectors, and analog sampling. Our research plan also inherently relies on advances in several other important areas within signal processing and combines multi-disciplinary research at the intersection of signal processing, information theory, optimization, estimation theory and hardware design.
Summary
Digital signal processing (DSP) is a revolutionary paradigm shift enabling processing of physical data in the digital domain where design and implementation are considerably simplified. However, state-of-the-art analog-to-digital convertors (ADCs) preclude high-rate wideband sampling and processing with low cost and energy consumption, presenting a major bottleneck. This is mostly due to a traditional assumption that sampling must be performed at the Nyquist rate, that is, twice the signal bandwidth. Modern applications including communications, medical imaging, radar and more use signals with high bandwidth, resulting in prohibitively large Nyquist rates.
Our ambitious goal is to introduce a paradigm shift in ADC design that will enable systems capable of low-rate, wideband sensing and low-rate DSP.
While DSP has a rich history in exploiting structure to reduce dimensionality and perform efficient parameter extraction, current ADCs do not exploit such knowledge.
We challenge current practice that separates the sampling stage from the processing stage and exploit structure in analog signals already in the ADC, to drastically reduce the sampling and processing rates.
Our preliminary data shows that this allows substantial savings in sampling and processing rates --- we show rate reduction of 1/28 in ultrasound imaging, and 1/30 in radar detection.
To achieve our overreaching goal we focus on three interconnected objectives -- developing the 1) theory 2) hardware and 3) applications of sub-Nyquist sampling.
Our methodology ties together two areas on the frontier of signal processing: compressed sensing (CS), focused on finite length vectors, and analog sampling. Our research plan also inherently relies on advances in several other important areas within signal processing and combines multi-disciplinary research at the intersection of signal processing, information theory, optimization, estimation theory and hardware design.
Max ERC Funding
2 400 000 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym BOTTOM-UP_SYSCHEM
Project Systems Chemistry from Bottom Up: Switching, Gating and Oscillations in Non Enzymatic Peptide Networks
Researcher (PI) Gonen Ashkenasy
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary The study of synthetic molecular networks is of fundamental importance for understanding the organizational principles of biological systems and may well be the key to unraveling the origins of life. In addition, such systems may be useful for parallel synthesis of molecules, implementation of catalysis via multi-step pathways, and as media for various applications in nano-medicine and nano-electronics. We have been involved recently in developing peptide-based replicating networks and revealed their dynamic characteristics. We argue here that the structural information embedded in the polypeptide chains is sufficiently rich to allow the construction of peptide 'Systems Chemistry', namely, to facilitate the use of replicating networks as cell-mimetics, featuring complex dynamic behavior. To bring this novel idea to reality, we plan to take a unique holistic approach by studying such networks both experimentally and via simulations, for elucidating basic-principles and towards applications in adjacent fields, such as molecular electronics. Towards realizing these aims, we will study three separate but inter-related objectives: (i) design and characterization of networks that react and rewire in response to external triggers, such as light, (ii) design of networks that operate via new dynamic rules of product formation that lead to oscillations, and (iii) exploitation of the molecular information gathered from the networks as means to control switching and gating in molecular electronic devices. We believe that achieving the project's objectives will be highly significant for the development of the arising field of Systems Chemistry, and in addition will provide valuable tools for studying related scientific fields, such as systems biology and molecular electronics.
Summary
The study of synthetic molecular networks is of fundamental importance for understanding the organizational principles of biological systems and may well be the key to unraveling the origins of life. In addition, such systems may be useful for parallel synthesis of molecules, implementation of catalysis via multi-step pathways, and as media for various applications in nano-medicine and nano-electronics. We have been involved recently in developing peptide-based replicating networks and revealed their dynamic characteristics. We argue here that the structural information embedded in the polypeptide chains is sufficiently rich to allow the construction of peptide 'Systems Chemistry', namely, to facilitate the use of replicating networks as cell-mimetics, featuring complex dynamic behavior. To bring this novel idea to reality, we plan to take a unique holistic approach by studying such networks both experimentally and via simulations, for elucidating basic-principles and towards applications in adjacent fields, such as molecular electronics. Towards realizing these aims, we will study three separate but inter-related objectives: (i) design and characterization of networks that react and rewire in response to external triggers, such as light, (ii) design of networks that operate via new dynamic rules of product formation that lead to oscillations, and (iii) exploitation of the molecular information gathered from the networks as means to control switching and gating in molecular electronic devices. We believe that achieving the project's objectives will be highly significant for the development of the arising field of Systems Chemistry, and in addition will provide valuable tools for studying related scientific fields, such as systems biology and molecular electronics.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym CAC
Project Cryptography and Complexity
Researcher (PI) Yuval Ishai
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary Modern cryptography has deeply rooted connections with computational complexity theory and other areas of computer science. This proposal suggests to explore several {\em new connections} between questions in cryptography and questions from other domains, including computational complexity, coding theory, and even the natural sciences. The project is expected to broaden the impact of ideas from cryptography on other domains, and on the other hand to benefit cryptography by applying tools from other domains towards better solutions for central problems in cryptography.
Summary
Modern cryptography has deeply rooted connections with computational complexity theory and other areas of computer science. This proposal suggests to explore several {\em new connections} between questions in cryptography and questions from other domains, including computational complexity, coding theory, and even the natural sciences. The project is expected to broaden the impact of ideas from cryptography on other domains, and on the other hand to benefit cryptography by applying tools from other domains towards better solutions for central problems in cryptography.
Max ERC Funding
1 459 703 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CAP
Project Computers Arguing with People
Researcher (PI) Sarit Kraus
Host Institution (HI) BAR ILAN UNIVERSITY
Call Details Advanced Grant (AdG), PE6, ERC-2010-AdG_20100224
Summary An important form of negotiation is argumentation. This is the ability to argue and to persuade the other party to accept a desired agreement, to acquire or give information, to coordinate goals and actions, and to find and verify evidence. This is a key capability in negotiating with humans.
While automated negotiations between software agents can often exchange offers and counteroffers, humans require persuasion. This challenges the design of agents arguing with people, with the objective that the outcome of the negotiation will meet the preferences of the arguer agent.
CAP’s objective is to enable automated agents to argue and persuade humans.
To achieve this, we intend to develop the following key components:
1) The extension of current game theory models of persuasion and bargaining to more realistic settings, 2) Algorithms and heuristics for generation and evaluation of arguments during negotiation with people, 3) Algorithms and heuristics for managing inconsistent views of the negotiation environment, and decision procedures for revelation, signalling, and requesting information, 4) The revision and update of the agent’s mental state and incorporation of social context, 5) Identifying strategies for expressing emotions in negotiations, 6) Technology for general opponent modelling from sparse and noisy data.
To demonstrate the developed methods, we will implement two training systems for people to improve their interviewing capabilities, and for training negotiators in inter-culture negotiations.
CAP will revolutionise the state of the art of automated systems negotiating with people. It will also create breakthroughs in the research of multi-agent systems in general, and will change paradigms by providing new directions for the way computers interact with people.
Summary
An important form of negotiation is argumentation. This is the ability to argue and to persuade the other party to accept a desired agreement, to acquire or give information, to coordinate goals and actions, and to find and verify evidence. This is a key capability in negotiating with humans.
While automated negotiations between software agents can often exchange offers and counteroffers, humans require persuasion. This challenges the design of agents arguing with people, with the objective that the outcome of the negotiation will meet the preferences of the arguer agent.
CAP’s objective is to enable automated agents to argue and persuade humans.
To achieve this, we intend to develop the following key components:
1) The extension of current game theory models of persuasion and bargaining to more realistic settings, 2) Algorithms and heuristics for generation and evaluation of arguments during negotiation with people, 3) Algorithms and heuristics for managing inconsistent views of the negotiation environment, and decision procedures for revelation, signalling, and requesting information, 4) The revision and update of the agent’s mental state and incorporation of social context, 5) Identifying strategies for expressing emotions in negotiations, 6) Technology for general opponent modelling from sparse and noisy data.
To demonstrate the developed methods, we will implement two training systems for people to improve their interviewing capabilities, and for training negotiators in inter-culture negotiations.
CAP will revolutionise the state of the art of automated systems negotiating with people. It will also create breakthroughs in the research of multi-agent systems in general, and will change paradigms by providing new directions for the way computers interact with people.
Max ERC Funding
2 334 057 €
Duration
Start date: 2011-07-01, End date: 2016-06-30
Project acronym CAPRI
Project Clouds and Precipitation Response to Anthropogenic Changes in the Natural Environment
Researcher (PI) Ilan Koren
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE10, ERC-2012-StG_20111012
Summary Clouds and precipitation play a crucial role in the Earth's energy balance, global atmospheric circulation and the water cycle. Despite their importance, clouds still pose the largest uncertainty in climate research.
I propose a new approach for studying anthropogenic effects on cloud fields and rain, tackling the challenge from both scientific ends: reductionism and systems approach. We will develop a novel research approach using observations and models interactively that will allow us to “peel apart” detailed physical processes. In parallel we will develop a systems view of cloud fields looking for Emergent Behavior rising out of the complexity, as the end result of all of the coupled processes. Better understanding of key processes on a detailed (reductionist) manner will enable us to formulate the important basic rules that control the field and to look for emergence of the overall effects.
We will merge ideas and methods from four different disciplines: remote sensing and radiative transfer, cloud physics, pattern recognition and computer vision and ideas developed in systems approach. All of this will be done against the backdrop of natural variability of meteorological systems.
The outcomes of this work will include fundamental new understanding of the coupled surface-aerosol-cloud-precipitation system. More importantly this work will emphasize the consequences of human actions on the environment, and how we change our climate and hydrological cycle as we input pollutants and transform the Earth’s surface. This work will open new horizons in cloud research by developing novel methods and employing the bulk knowledge of pattern recognition, complexity, networking and self organization to cloud and climate studies. We are proposing a long-term, open-ended program of study that will have scientific and societal relevance as long as human-caused influences continue, evolve and change.
Summary
Clouds and precipitation play a crucial role in the Earth's energy balance, global atmospheric circulation and the water cycle. Despite their importance, clouds still pose the largest uncertainty in climate research.
I propose a new approach for studying anthropogenic effects on cloud fields and rain, tackling the challenge from both scientific ends: reductionism and systems approach. We will develop a novel research approach using observations and models interactively that will allow us to “peel apart” detailed physical processes. In parallel we will develop a systems view of cloud fields looking for Emergent Behavior rising out of the complexity, as the end result of all of the coupled processes. Better understanding of key processes on a detailed (reductionist) manner will enable us to formulate the important basic rules that control the field and to look for emergence of the overall effects.
We will merge ideas and methods from four different disciplines: remote sensing and radiative transfer, cloud physics, pattern recognition and computer vision and ideas developed in systems approach. All of this will be done against the backdrop of natural variability of meteorological systems.
The outcomes of this work will include fundamental new understanding of the coupled surface-aerosol-cloud-precipitation system. More importantly this work will emphasize the consequences of human actions on the environment, and how we change our climate and hydrological cycle as we input pollutants and transform the Earth’s surface. This work will open new horizons in cloud research by developing novel methods and employing the bulk knowledge of pattern recognition, complexity, networking and self organization to cloud and climate studies. We are proposing a long-term, open-ended program of study that will have scientific and societal relevance as long as human-caused influences continue, evolve and change.
Max ERC Funding
1 428 169 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym CartiLube
Project Lubricating Cartilage: exploring the relation between lubrication and gene-regulation to alleviate osteoarthritis
Researcher (PI) Jacob KLEIN
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary Can we exploit insights from the remarkably lubricated surfaces of articular cartilage, to create lubricants that may alleviate osteoarthritis (OA), the most widespread joint disease, affecting millions? These, succinctly, are the challenges of the present proposal. They are driven by our recent finding that lubrication of destabilised joints leads to changes in gene-regulation of the cartilage-embedded chondrocytes to protect against development of the disease. OA alleviation is known to arise through orthopedically suppressing shear-stresses on the cartilage, and a central premise of this project is that, by reducing friction at the articulating cartilage through suitable lubrication, we may achieve the same beneficial effect on the disease. The objectives of this project are to better understand the origins of cartilage boundary lubrication through examination of friction-reduction by its main molecular components, and exploit that understanding to create lubricants that, on intra-articular injection, will lubricate cartilage sufficiently well to achieve alleviation of OA via gene regulation. The project will examine, via both nanotribometric and macroscopic measurements, how the main molecular species implicated in cartilage lubrication, lipids, hyaluronan and lubricin, and their combinations, act together to form optimally lubricating boundary layers on model surfaces as well as on excised cartilage. Based on this, we shall develop suitable materials to lubricate cartilage in joints, using mouse models. Lubricants will further be optimized with respect to their retention in the joint and cartilage targeting, both in model studies and in vivo. The effect of the lubricants in regulating gene expression, in reducing pain and cartilage degradation, and in promoting stem-cell adhesion to the cartilage will be studied in a mouse model in which OA has been induced. Our results will have implications for treatment of a common, debilitating disease.
Summary
Can we exploit insights from the remarkably lubricated surfaces of articular cartilage, to create lubricants that may alleviate osteoarthritis (OA), the most widespread joint disease, affecting millions? These, succinctly, are the challenges of the present proposal. They are driven by our recent finding that lubrication of destabilised joints leads to changes in gene-regulation of the cartilage-embedded chondrocytes to protect against development of the disease. OA alleviation is known to arise through orthopedically suppressing shear-stresses on the cartilage, and a central premise of this project is that, by reducing friction at the articulating cartilage through suitable lubrication, we may achieve the same beneficial effect on the disease. The objectives of this project are to better understand the origins of cartilage boundary lubrication through examination of friction-reduction by its main molecular components, and exploit that understanding to create lubricants that, on intra-articular injection, will lubricate cartilage sufficiently well to achieve alleviation of OA via gene regulation. The project will examine, via both nanotribometric and macroscopic measurements, how the main molecular species implicated in cartilage lubrication, lipids, hyaluronan and lubricin, and their combinations, act together to form optimally lubricating boundary layers on model surfaces as well as on excised cartilage. Based on this, we shall develop suitable materials to lubricate cartilage in joints, using mouse models. Lubricants will further be optimized with respect to their retention in the joint and cartilage targeting, both in model studies and in vivo. The effect of the lubricants in regulating gene expression, in reducing pain and cartilage degradation, and in promoting stem-cell adhesion to the cartilage will be studied in a mouse model in which OA has been induced. Our results will have implications for treatment of a common, debilitating disease.
Max ERC Funding
2 499 944 €
Duration
Start date: 2017-09-01, End date: 2022-08-31