Project acronym AFFINITY
Project Actuation of Ferromagnetic Fibre Networks to improve Implant Longevity
Researcher (PI) Athina Markaki
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2009-StG
Summary This proposal is for an exploratory study into a radical new approach to the problem of orthopaedic implant loosening. Such loosening commonly occurs because the joint between the implant and the surrounding bone is insufficiently strong and durable. It is a serious problem both for implants cemented to the bone and for those dependent on bone in-growth into a rough/porous implant surface. In the latter case, the main problem is commonly that bone in-growth is insufficiently rapid or deep for a strong bond to be established. The idea proposed in this work is that the implant should have a highly porous surface layer, made by bonding ferromagnetic fibres together, into which bone tissue growth would occur. During the post-operative period, application of a magnetic field will cause the fibre network to deform elastically, as individual fibres tend to align with the field. This will impose strains on the bone tissue as it grows into the fibre network. Such mechanical deformation is known to be highly beneficial in promoting bone growth, providing the associated strain lies in a certain range (~0.1%). Preliminary work, involving both model development and experimental studies on the effect of magnetic fields on fibre networks, has suggested that beneficial therapeutic effects can be induced using field strengths no greater than those already employed for diagnostic purposes. A comprehensive 5-year, highly inter-disciplinary programme is planned, encompassing processing, network architecture characterisation, magneto-mechanical response investigations, various modelling activities and systematic in vitro experimentation to establish whether magneto-mechanical Actuation of Ferromagnetic Fibre Networks shows promise as a new therapeutic approach to improve implant longevity.
Summary
This proposal is for an exploratory study into a radical new approach to the problem of orthopaedic implant loosening. Such loosening commonly occurs because the joint between the implant and the surrounding bone is insufficiently strong and durable. It is a serious problem both for implants cemented to the bone and for those dependent on bone in-growth into a rough/porous implant surface. In the latter case, the main problem is commonly that bone in-growth is insufficiently rapid or deep for a strong bond to be established. The idea proposed in this work is that the implant should have a highly porous surface layer, made by bonding ferromagnetic fibres together, into which bone tissue growth would occur. During the post-operative period, application of a magnetic field will cause the fibre network to deform elastically, as individual fibres tend to align with the field. This will impose strains on the bone tissue as it grows into the fibre network. Such mechanical deformation is known to be highly beneficial in promoting bone growth, providing the associated strain lies in a certain range (~0.1%). Preliminary work, involving both model development and experimental studies on the effect of magnetic fields on fibre networks, has suggested that beneficial therapeutic effects can be induced using field strengths no greater than those already employed for diagnostic purposes. A comprehensive 5-year, highly inter-disciplinary programme is planned, encompassing processing, network architecture characterisation, magneto-mechanical response investigations, various modelling activities and systematic in vitro experimentation to establish whether magneto-mechanical Actuation of Ferromagnetic Fibre Networks shows promise as a new therapeutic approach to improve implant longevity.
Max ERC Funding
1 442 756 €
Duration
Start date: 2010-01-01, End date: 2015-11-30
Project acronym BioBlood
Project Development of a Bio-Inspired Blood Factory for Personalised Healthcare
Researcher (PI) Athanasios Mantalaris
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary Personalized medicine is a medical model that proposes the customization of healthcare, with decisions and practices being tailored to the individual patient by use of patient-specific information and/or application of patient-specific cell-based therapies. BioBlood aims to deliver personalised healthcare through a “step change” in the clinical field of haemato-oncology. BioBlood represents an engineered bio-inspired integrated experimental/modelling platform for normal and abnormal haematopoiesis that receives disease & patient input (patient primary cells & patient/disease-specific data) and will produce cellular (red blood cell product) and drug (optimal drug treatment) therapies as its output. Blood supply to meet demand is the primary challenge for Blood Banks and requires significant resources to avoid shortages and ensure safety. An alternative, practical and cost-effective solution to conventional donated blood is essential to reduce patient morbidity and mortality, stabilise and guarantee the donor supply, limit multiple donor exposures, reduce risk of infection of known or as yet unidentified pathogens, and ensure a robust and safe turn-around for blood supply management. BioBlood aims to meet this challenge by developing a novel in vitro platform for the mass production of RBCs for clinical use. More than £32b/year is spent to develop and bring new drugs to market, which takes 14 years. Most patients diagnosed with leukaemias are unable to tolerate treatment and would benefit from novel agents. There is a need to optimise current treatment schedules for cancers such as AML to limit toxicities and improve clinical trial pathways for new drugs to enable personalised healthcare. BioBlood’s in vitro & in silico platform would be a powerful tool to tailor treatments in a patient- and leukaemia-specific chemotherapy schedule by considering the level of toxicity to the specific individual and treatment efficiency for the specific leukaemia a priori.
Summary
Personalized medicine is a medical model that proposes the customization of healthcare, with decisions and practices being tailored to the individual patient by use of patient-specific information and/or application of patient-specific cell-based therapies. BioBlood aims to deliver personalised healthcare through a “step change” in the clinical field of haemato-oncology. BioBlood represents an engineered bio-inspired integrated experimental/modelling platform for normal and abnormal haematopoiesis that receives disease & patient input (patient primary cells & patient/disease-specific data) and will produce cellular (red blood cell product) and drug (optimal drug treatment) therapies as its output. Blood supply to meet demand is the primary challenge for Blood Banks and requires significant resources to avoid shortages and ensure safety. An alternative, practical and cost-effective solution to conventional donated blood is essential to reduce patient morbidity and mortality, stabilise and guarantee the donor supply, limit multiple donor exposures, reduce risk of infection of known or as yet unidentified pathogens, and ensure a robust and safe turn-around for blood supply management. BioBlood aims to meet this challenge by developing a novel in vitro platform for the mass production of RBCs for clinical use. More than £32b/year is spent to develop and bring new drugs to market, which takes 14 years. Most patients diagnosed with leukaemias are unable to tolerate treatment and would benefit from novel agents. There is a need to optimise current treatment schedules for cancers such as AML to limit toxicities and improve clinical trial pathways for new drugs to enable personalised healthcare. BioBlood’s in vitro & in silico platform would be a powerful tool to tailor treatments in a patient- and leukaemia-specific chemotherapy schedule by considering the level of toxicity to the specific individual and treatment efficiency for the specific leukaemia a priori.
Max ERC Funding
2 498 903 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CIF
Project Complex Interfacial Flows: From the Nano- to the Macro-Scale
Researcher (PI) Serafim Kalliadasis
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Advanced Grant (AdG), PE8, ERC-2009-AdG
Summary A wide variety of natural phenomena and technological applications involve flow, transport and chemical reactions taking place on or near fluid-solid or fluid-fluid interfaces. From gravity currents under water and lava flows to heat and mass transport processes in engineering applications and to the rapidly developing field of microfluidics. Both equilibrium properties of a fluid and transportcoefficients are modified in the vicinity of interfaces. The effect of these changes is crucial in the behavior of ultra-thin fluidfilms and fluid motion in microchannels of micro-electromechanical systems, but is essential as well in macroscopic phenomena involving interfacial singularities, such as thin-film rupture and motion of three-phase contact lines associated e.g. with droplet spreading. Interface boundaries are mesoscopic structures. While material properties vary smoothly at macroscopic distances from an interface, gradients in the normal direction of conserved parameters, such as density, are steep with strong variations as the molecular scale in the neighborhood of the interface is approached. This brings about a contradiction between the need in macroscopic description and a necessity to take into consideration microscopic factors that come to influence the fluid motion and transport on incommensurately larger scales. The aim of the proposed research is to develop a class of novel continuous models bridging the gap between molecular dynamics and conventional hydrodynamics and applicable at mesoscopic distances from gas-liquid and fluid-solid interfaces. A combination of analytical techniques, numerical modeling and computer-aided multiscale analysis will be employed. The results of the proposed work will greatly contribute to the fundamental understanding of mesoscopic non-equilibrium phenomena in the vicinity of interfaces and to the development of novel computational methods combining the advantages of molecular and continuous models.
Summary
A wide variety of natural phenomena and technological applications involve flow, transport and chemical reactions taking place on or near fluid-solid or fluid-fluid interfaces. From gravity currents under water and lava flows to heat and mass transport processes in engineering applications and to the rapidly developing field of microfluidics. Both equilibrium properties of a fluid and transportcoefficients are modified in the vicinity of interfaces. The effect of these changes is crucial in the behavior of ultra-thin fluidfilms and fluid motion in microchannels of micro-electromechanical systems, but is essential as well in macroscopic phenomena involving interfacial singularities, such as thin-film rupture and motion of three-phase contact lines associated e.g. with droplet spreading. Interface boundaries are mesoscopic structures. While material properties vary smoothly at macroscopic distances from an interface, gradients in the normal direction of conserved parameters, such as density, are steep with strong variations as the molecular scale in the neighborhood of the interface is approached. This brings about a contradiction between the need in macroscopic description and a necessity to take into consideration microscopic factors that come to influence the fluid motion and transport on incommensurately larger scales. The aim of the proposed research is to develop a class of novel continuous models bridging the gap between molecular dynamics and conventional hydrodynamics and applicable at mesoscopic distances from gas-liquid and fluid-solid interfaces. A combination of analytical techniques, numerical modeling and computer-aided multiscale analysis will be employed. The results of the proposed work will greatly contribute to the fundamental understanding of mesoscopic non-equilibrium phenomena in the vicinity of interfaces and to the development of novel computational methods combining the advantages of molecular and continuous models.
Max ERC Funding
1 273 788 €
Duration
Start date: 2010-04-01, End date: 2016-03-31
Project acronym GeopolyConc
Project Durability of geopolymers as 21st century concretes
Researcher (PI) John Lloyd Provis
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary GeopolyConc will provide the necessary scientific basis for the prediction of the long-term durability performance of alkali-activated ‘geopolymer’ concretes. These materials can be synthesised from industrial by-products and widely-available natural resources, and provide the opportunity for a highly significant reduction in the environmental footprint of the global construction materials industry, as it expands to meet the infrastructure needs of 21st century society. Experimental and modelling approaches will be coupled to provide major advances in the state of the art in the science and engineering of geopolymer concretes. The key scientific focus areas will be: (a) the development of the first ever rigorous mathematical description of the factors influencing the transport properties of alkali-activated concretes, and (b) ground-breaking work in understanding and controlling the factors which lead to the onset of corrosion of steel reinforcing embedded in alkali-activated concretes. This project will generate confidence in geopolymer concrete durability, which is essential to the application of these materials in reducing EU and global CO2 emissions. The GeopolyConc project will also be integrated with leading multinational collaborative test programmes coordinated through a RILEM Technical Committee (TC DTA) which is chaired by the PI, providing a route to direct international utilisation of the project outcomes.
Summary
GeopolyConc will provide the necessary scientific basis for the prediction of the long-term durability performance of alkali-activated ‘geopolymer’ concretes. These materials can be synthesised from industrial by-products and widely-available natural resources, and provide the opportunity for a highly significant reduction in the environmental footprint of the global construction materials industry, as it expands to meet the infrastructure needs of 21st century society. Experimental and modelling approaches will be coupled to provide major advances in the state of the art in the science and engineering of geopolymer concretes. The key scientific focus areas will be: (a) the development of the first ever rigorous mathematical description of the factors influencing the transport properties of alkali-activated concretes, and (b) ground-breaking work in understanding and controlling the factors which lead to the onset of corrosion of steel reinforcing embedded in alkali-activated concretes. This project will generate confidence in geopolymer concrete durability, which is essential to the application of these materials in reducing EU and global CO2 emissions. The GeopolyConc project will also be integrated with leading multinational collaborative test programmes coordinated through a RILEM Technical Committee (TC DTA) which is chaired by the PI, providing a route to direct international utilisation of the project outcomes.
Max ERC Funding
1 495 458 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym GLYCOSURF
Project Surface-Based Molecular Imprinting for Glycoprotein Recognition
Researcher (PI) Paula Maria Da Silva Mendes
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Consolidator Grant (CoG), PE8, ERC-2013-CoG
Summary "There is now overwhelming evidence that glycosylation changes during the development and progression of various malignancies. Altered glycosylation has been implicated in cancer, immune deficiencies, neurodegenerative diseases, hereditary disorders and cardiovascular diseases. Currently, antibodies are playing a central role in enabling the detection of glycoprotein biomarkers using a variety of immunodiagnostic tests. Nonetheless, antibodies do have their own set of drawbacks that limit the commercialization of antibody sensing technology. They suffer from poor stability, need special handling and require a complicated, costly production procedure. More importantly, they lack specificity because they bind only to a small site on the biomarker and are not able to discriminate, for instance, among different glycosylated proteins. The current antibody diagnostic technology has well recognized limitations regarding their accuracy and timeliness of diagnose of disease. This project will focus on research into the means of developing a generic, robust, reliable and cost-effective alternative to monoclonal antibody technology. The project aims to exploit concepts and tools from nanochemistry, supramolecular chemistry and molecular imprinting to provide highly innovative synthetic recognition platforms with high sensitivity and specificity for glycoproteins. Such novel type of platforms will make a profound and significant impact in the broad fields of biosensors and protein separation devices with applications in many areas such as biomedical diagnostics, pharmaceutical industry, defense and environmental monitoring. The proposed technology may open an untraveled path in the successful diagnosis, prognosis and monitoring of therapeutic treatment for major diseases such as cancer, immune deficiencies, neurodegenerative diseases, hereditary disorders and cardiovascular diseases."
Summary
"There is now overwhelming evidence that glycosylation changes during the development and progression of various malignancies. Altered glycosylation has been implicated in cancer, immune deficiencies, neurodegenerative diseases, hereditary disorders and cardiovascular diseases. Currently, antibodies are playing a central role in enabling the detection of glycoprotein biomarkers using a variety of immunodiagnostic tests. Nonetheless, antibodies do have their own set of drawbacks that limit the commercialization of antibody sensing technology. They suffer from poor stability, need special handling and require a complicated, costly production procedure. More importantly, they lack specificity because they bind only to a small site on the biomarker and are not able to discriminate, for instance, among different glycosylated proteins. The current antibody diagnostic technology has well recognized limitations regarding their accuracy and timeliness of diagnose of disease. This project will focus on research into the means of developing a generic, robust, reliable and cost-effective alternative to monoclonal antibody technology. The project aims to exploit concepts and tools from nanochemistry, supramolecular chemistry and molecular imprinting to provide highly innovative synthetic recognition platforms with high sensitivity and specificity for glycoproteins. Such novel type of platforms will make a profound and significant impact in the broad fields of biosensors and protein separation devices with applications in many areas such as biomedical diagnostics, pharmaceutical industry, defense and environmental monitoring. The proposed technology may open an untraveled path in the successful diagnosis, prognosis and monitoring of therapeutic treatment for major diseases such as cancer, immune deficiencies, neurodegenerative diseases, hereditary disorders and cardiovascular diseases."
Max ERC Funding
1 894 046 €
Duration
Start date: 2014-12-01, End date: 2019-11-30
Project acronym HIENA
Project Hierarchical Carbon Nanomaterials
Researcher (PI) Michael Franciscus Lucas De Volder
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary "Over the past years, carbon nanomaterial such as graphene and carbon nanotubes (CNTs) have attracted the interest of scientists, because some of their properties are unlike any other engineering material. Individual graphene sheets and CNTs have shown a Youngs Modulus of 1 TPa and a tensile strength of 100 GPa, hereby exceeding steel at only a fraction of its weight. Further, they offer high currents carrying capacities of 10^9 A/cm², and thermal conductivities up to 3500 W/mK, exceeding diamond. Importantly, these off-the-chart properties are only valid for high quality individualized nanotubes or sheets. However, most engineering applications require the assembly of tens to millions of these nanoparticles into one device. Unfortunately, the mechanical and electronic figures of merit of such assembled materials typically drop by at least an order of magnitude in comparison to the constituent nanoparticles.
In this ERC project, we aim at the development of new techniques to create structured assemblies of carbon nanoparticles. Herein we emphasize the importance of controlling hierarchical arrangement at different length scales in order to engineer the properties of the final device. The project will follow a methodical approach, bringing together different fields of expertise ranging from macro- and microscale manufacturing, to nanoscale material synthesis and mesoscale chemical surface modification. For instance, we will pursue combined top-down microfabrication and bottom-up self-assembly, accompanied with surface modification through hydrothermal processing.
This research will impact scientific understanding of how nanotubes and nanosheets interact, and will create new hierarchical assembly techniques for nanomaterials. Further, this ERC project pursues applications with high societal impact, including energy storage and water filtration. Finally, HIENA will tie relations with EU’s rich CNT industry to disseminate its technologic achievements."
Summary
"Over the past years, carbon nanomaterial such as graphene and carbon nanotubes (CNTs) have attracted the interest of scientists, because some of their properties are unlike any other engineering material. Individual graphene sheets and CNTs have shown a Youngs Modulus of 1 TPa and a tensile strength of 100 GPa, hereby exceeding steel at only a fraction of its weight. Further, they offer high currents carrying capacities of 10^9 A/cm², and thermal conductivities up to 3500 W/mK, exceeding diamond. Importantly, these off-the-chart properties are only valid for high quality individualized nanotubes or sheets. However, most engineering applications require the assembly of tens to millions of these nanoparticles into one device. Unfortunately, the mechanical and electronic figures of merit of such assembled materials typically drop by at least an order of magnitude in comparison to the constituent nanoparticles.
In this ERC project, we aim at the development of new techniques to create structured assemblies of carbon nanoparticles. Herein we emphasize the importance of controlling hierarchical arrangement at different length scales in order to engineer the properties of the final device. The project will follow a methodical approach, bringing together different fields of expertise ranging from macro- and microscale manufacturing, to nanoscale material synthesis and mesoscale chemical surface modification. For instance, we will pursue combined top-down microfabrication and bottom-up self-assembly, accompanied with surface modification through hydrothermal processing.
This research will impact scientific understanding of how nanotubes and nanosheets interact, and will create new hierarchical assembly techniques for nanomaterials. Further, this ERC project pursues applications with high societal impact, including energy storage and water filtration. Finally, HIENA will tie relations with EU’s rich CNT industry to disseminate its technologic achievements."
Max ERC Funding
1 496 379 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym HYDROFAKIR
Project Roughness design towards reversible non- / full-wetting surfaces: From Fakir Droplets to Liquid Films
Researcher (PI) Athanasios Papathanasiou
Host Institution (HI) NATIONAL TECHNICAL UNIVERSITY OF ATHENS - NTUA
Call Details Starting Grant (StG), PE8, ERC-2009-StG
Summary Creating tunable surfaces that are able to undergo reversible transitions between superhydrophobic and superhydrophilic behaviour is a challenging and vital issue due to their potential use in applications involving self cleaning, very low flow resistance and liquid handling without moving mechanical parts. Superhydrophobic surfaces arising from micro-scale roughened hydrophobic materials spontaneously exhibit transitions to become superhydrophilic when their material wetting properties are suitably modified by external stimuli. The reverse transition, however, requires external actuation/ perturbation which can be strong as to deteriorate the liquids handled and therefore limit the use such techniques in applications. Here we plan to combine continuum and mesoscale computational analysis of wetting phenomena in solid surfaces to create designer roughness that will minimize, or even eliminate, the strength of the actuation required to achieve full- to non-wetting reversibility. The modelling will be done in a continuous dialogue with surface fabrication and wetting tests. Wetting experiments will be performed along with novel microactuation techniques for liquid interfaces.
Summary
Creating tunable surfaces that are able to undergo reversible transitions between superhydrophobic and superhydrophilic behaviour is a challenging and vital issue due to their potential use in applications involving self cleaning, very low flow resistance and liquid handling without moving mechanical parts. Superhydrophobic surfaces arising from micro-scale roughened hydrophobic materials spontaneously exhibit transitions to become superhydrophilic when their material wetting properties are suitably modified by external stimuli. The reverse transition, however, requires external actuation/ perturbation which can be strong as to deteriorate the liquids handled and therefore limit the use such techniques in applications. Here we plan to combine continuum and mesoscale computational analysis of wetting phenomena in solid surfaces to create designer roughness that will minimize, or even eliminate, the strength of the actuation required to achieve full- to non-wetting reversibility. The modelling will be done in a continuous dialogue with surface fabrication and wetting tests. Wetting experiments will be performed along with novel microactuation techniques for liquid interfaces.
Max ERC Funding
1 131 840 €
Duration
Start date: 2010-02-01, End date: 2015-09-30
Project acronym MechJointMorph
Project The role of mechanical forces induced by prenatal movements in joint morphogenesis
Researcher (PI) Niamh Catherine Nowlan
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary Most joints start off the same during embryonic development, as two opposing cartilage surfaces, and are moulded into the diverse range of shapes seen in the adult in a process known as morphogenesis. While we understand very little of the biological or mechanobiological processes driving joint morphogenesis, there is evidence to suggest that fetal movements play a critical role in joint shape development. Developmental Dysplasia of the Hip (DDH), where the hip is partly or fully dislocated, is much more common when the baby’s movement is restricted or prevented. This proposal will determine how mechanical forces influence joint shape morphogenesis, which is of key relevance to neonatal joint conditions such as DDH, to adult joint health and disease, and to tissue engineering of cartilage. A mouse line in which mutant embryos have no skeletal muscle will be studied, providing the first in depth analysis of mammalian joint shape development for normal and abnormal mechanical environments. The mouse line could provide the first mammalian model system for prenatal onset DDH. ‘Passive’ movements of these mutant embryos will then be induced by massage of the mother, and the effects on the joints measured. If the effects on joint shape of absent spontaneous movement are mitigated by the treatment, this technique could eventually be used as a preventative treatment for DDH. Next, an in vitro approach will be used to quantify how much movement is needed for joint shape development. This research will provide an optimised protocol for applying biophysical stimuli to promote cartilage growth and morphogenesis in culture, providing valuable cues to cartilage tissue engineers. Finally, a computational simulation of joint shape morphogenesis will be created, which will integrate the new understanding gained from the experimental research in order to predict how different joints shapes develop in normal and abnormal mechanical environments.
Summary
Most joints start off the same during embryonic development, as two opposing cartilage surfaces, and are moulded into the diverse range of shapes seen in the adult in a process known as morphogenesis. While we understand very little of the biological or mechanobiological processes driving joint morphogenesis, there is evidence to suggest that fetal movements play a critical role in joint shape development. Developmental Dysplasia of the Hip (DDH), where the hip is partly or fully dislocated, is much more common when the baby’s movement is restricted or prevented. This proposal will determine how mechanical forces influence joint shape morphogenesis, which is of key relevance to neonatal joint conditions such as DDH, to adult joint health and disease, and to tissue engineering of cartilage. A mouse line in which mutant embryos have no skeletal muscle will be studied, providing the first in depth analysis of mammalian joint shape development for normal and abnormal mechanical environments. The mouse line could provide the first mammalian model system for prenatal onset DDH. ‘Passive’ movements of these mutant embryos will then be induced by massage of the mother, and the effects on the joints measured. If the effects on joint shape of absent spontaneous movement are mitigated by the treatment, this technique could eventually be used as a preventative treatment for DDH. Next, an in vitro approach will be used to quantify how much movement is needed for joint shape development. This research will provide an optimised protocol for applying biophysical stimuli to promote cartilage growth and morphogenesis in culture, providing valuable cues to cartilage tissue engineers. Finally, a computational simulation of joint shape morphogenesis will be created, which will integrate the new understanding gained from the experimental research in order to predict how different joints shapes develop in normal and abnormal mechanical environments.
Max ERC Funding
1 499 501 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym OMSAMA
Project Optimisation of Multiscale Structures with Applications to Morphing Aircraft
Researcher (PI) Michael Ian Friswell
Host Institution (HI) SWANSEA UNIVERSITY
Call Details Advanced Grant (AdG), PE8, ERC-2009-AdG
Summary The performance of engineering structures is continuously increasing, enabled by the accurate simulation and subsequent optimization of these systems. The ACARE Vision 2020 document set the ambitious goal of a 50% reduction in aircraft emissions that can only be achieved through a step change in aircraft technology. Adaptive structures and morphing aircraft are novel technologies that can provide this step change, and this proposal provides an efficient method to model, optimize and realize these structures. Morphing aircraft have the ability to alter the shape of their wings to improve fuel efficiency or to increase control effectiveness. The Wright brothers employed wing warping for roll control, but as aircraft speeds increased compliant structures were replaced with small, rigid control surfaces. Bird flight motivates the search for more efficient solutions, where a compliant structure is continuously optimized in flight using distributed sensors and actuators. From the structural perspective the objective is to produce fully integrated, hierarchical structures with compliance control. However the requirements are conflicting: the structure must be stiff to withstand the external loads, but must be flexible to enable shape changes. The solution to this conflict is to design the structure to decouple the two actions, through components with significant anisotropy and integrated actuation. The components may be modelled at the micro scale, but these models are too large for system optimization studies. This proposal provides a step change to existing methods by developing a framework where multi-scale and multi-physics modelling may be achieved efficiently, though significant improvements in the way in which the different models of varying fidelity communicate.
Summary
The performance of engineering structures is continuously increasing, enabled by the accurate simulation and subsequent optimization of these systems. The ACARE Vision 2020 document set the ambitious goal of a 50% reduction in aircraft emissions that can only be achieved through a step change in aircraft technology. Adaptive structures and morphing aircraft are novel technologies that can provide this step change, and this proposal provides an efficient method to model, optimize and realize these structures. Morphing aircraft have the ability to alter the shape of their wings to improve fuel efficiency or to increase control effectiveness. The Wright brothers employed wing warping for roll control, but as aircraft speeds increased compliant structures were replaced with small, rigid control surfaces. Bird flight motivates the search for more efficient solutions, where a compliant structure is continuously optimized in flight using distributed sensors and actuators. From the structural perspective the objective is to produce fully integrated, hierarchical structures with compliance control. However the requirements are conflicting: the structure must be stiff to withstand the external loads, but must be flexible to enable shape changes. The solution to this conflict is to design the structure to decouple the two actions, through components with significant anisotropy and integrated actuation. The components may be modelled at the micro scale, but these models are too large for system optimization studies. This proposal provides a step change to existing methods by developing a framework where multi-scale and multi-physics modelling may be achieved efficiently, though significant improvements in the way in which the different models of varying fidelity communicate.
Max ERC Funding
2 481 462 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym UrbanWaves
Project Urban Waves: evaluating structure vulnerability to tsunami and earthquakes
Researcher (PI) Tiziana Rossetto
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary Exposure to coastal floods across the world is forecast to increase to 150 million people and £20 trillion in assets by 2070 (>9% of projected annual global GDP). In addition to cities, potentially vulnerable assets include key infrastructure such as nuclear power plants and ports: the recent Japan earthquake and tsunami demonstrating this. Urban Waves will fill the gap in the engineering design and assessment of buildings in coastal areas subjected to onshore flow from tsunami preceded (or not) by earthquake ground shaking.
In Aim 1 the unique experimental capability developed by the PI to reproduce flows on shorelines from tsunami will be used to provide information for fundamental research into tsunami flows onshore as well as the forces and pressures they exert on model buildings and coastal protection structures. In Aim 2 the experimentally measured force/pressure time-histories will be used to calibrate advanced finite element models of the structures that will then be used to further investigate the influence of bathymetry, topography, tsunami and structure characteristics on the structure forces/pressures. The study findings will be used to propose simplified relationships for tsunami forces/pressures suitable for inclusion in codes of practice (for buildings and coastal defences). In Aim 3, the FE models built will be used to generate fragility functions for buildings that can be used for the assessment of risk to urban areas. The first analytical tsunami fragility functions to be derived, these will also account for the effect of preceding earthquake ground shaking. These will also be compared to data collected after past tsunami events using advanced statistical methods.
Urban Waves capitalises on the PI's recognised expertise in large-scale experiments, structural dynamics, analytical and empirical fragility function derivation and ability to carry out high quality multi-disciplinary research..
Summary
Exposure to coastal floods across the world is forecast to increase to 150 million people and £20 trillion in assets by 2070 (>9% of projected annual global GDP). In addition to cities, potentially vulnerable assets include key infrastructure such as nuclear power plants and ports: the recent Japan earthquake and tsunami demonstrating this. Urban Waves will fill the gap in the engineering design and assessment of buildings in coastal areas subjected to onshore flow from tsunami preceded (or not) by earthquake ground shaking.
In Aim 1 the unique experimental capability developed by the PI to reproduce flows on shorelines from tsunami will be used to provide information for fundamental research into tsunami flows onshore as well as the forces and pressures they exert on model buildings and coastal protection structures. In Aim 2 the experimentally measured force/pressure time-histories will be used to calibrate advanced finite element models of the structures that will then be used to further investigate the influence of bathymetry, topography, tsunami and structure characteristics on the structure forces/pressures. The study findings will be used to propose simplified relationships for tsunami forces/pressures suitable for inclusion in codes of practice (for buildings and coastal defences). In Aim 3, the FE models built will be used to generate fragility functions for buildings that can be used for the assessment of risk to urban areas. The first analytical tsunami fragility functions to be derived, these will also account for the effect of preceding earthquake ground shaking. These will also be compared to data collected after past tsunami events using advanced statistical methods.
Urban Waves capitalises on the PI's recognised expertise in large-scale experiments, structural dynamics, analytical and empirical fragility function derivation and ability to carry out high quality multi-disciplinary research..
Max ERC Funding
1 911 315 €
Duration
Start date: 2014-01-01, End date: 2018-12-31