Project acronym APRA
Project Active Polymers for Renewable Functional Actuators
Researcher (PI) Eugene TERENTJEV
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary The idea of mechanical actuator based on intrinsic material properties of liquid-crystalline elastomers (rather than complex engineering of interacting components) has been understood for 20+ years. The remarkable characteristics of LCE actuation (fully reversible action; large-amplitude, with a stroke of 5%-300%; stress-strain-speed response almost exactly matching the human muscle) make it highly attractive in biomedical engineering, robotics, smart textiles, and other fields. Yet, there is a profound difficulty (bottleneck), which remains the reason why this concept has not found its way into any practical devices & applications. LCE actuation requires alignment (monodomain structure) of the local anisotropy in the permanently crosslinked polymer network - which has been impossible to achieve in any useful large-scale configuration except the flat film, due to the unavoidable restrictions of two competing processes: orientational alignment and network crosslinking.
Recently, we made a breakthrough, developing LCE vitrimers (polymer networks covalently crosslinked by a bond-exchange reaction). Vitrimers are much more stable than other transient elastomer networks, allow easy thermal re-moulding (making the material fully renewable), and permit molding of complex shapes with intricate local alignment (which are impossible in traditional elastomers). This project will bridge from the concept to technology, tuning the material design for robust nematic LCE vitrimers, imparting photo-actuation capacity with a controlled wavelength, and finally utilising them in practical-engineering actuator applications where the reversible mechanical action is stimulated by light, solvent exposure, or more traditionally - heat. These applications include (but not limited to): continuous spinning light-driven motor, tactile dynamic Braille display, capillary pump and toggle flow switch for microfuidics, active textile fibre, and heliotracking filament that always points at the Sun.
Summary
The idea of mechanical actuator based on intrinsic material properties of liquid-crystalline elastomers (rather than complex engineering of interacting components) has been understood for 20+ years. The remarkable characteristics of LCE actuation (fully reversible action; large-amplitude, with a stroke of 5%-300%; stress-strain-speed response almost exactly matching the human muscle) make it highly attractive in biomedical engineering, robotics, smart textiles, and other fields. Yet, there is a profound difficulty (bottleneck), which remains the reason why this concept has not found its way into any practical devices & applications. LCE actuation requires alignment (monodomain structure) of the local anisotropy in the permanently crosslinked polymer network - which has been impossible to achieve in any useful large-scale configuration except the flat film, due to the unavoidable restrictions of two competing processes: orientational alignment and network crosslinking.
Recently, we made a breakthrough, developing LCE vitrimers (polymer networks covalently crosslinked by a bond-exchange reaction). Vitrimers are much more stable than other transient elastomer networks, allow easy thermal re-moulding (making the material fully renewable), and permit molding of complex shapes with intricate local alignment (which are impossible in traditional elastomers). This project will bridge from the concept to technology, tuning the material design for robust nematic LCE vitrimers, imparting photo-actuation capacity with a controlled wavelength, and finally utilising them in practical-engineering actuator applications where the reversible mechanical action is stimulated by light, solvent exposure, or more traditionally - heat. These applications include (but not limited to): continuous spinning light-driven motor, tactile dynamic Braille display, capillary pump and toggle flow switch for microfuidics, active textile fibre, and heliotracking filament that always points at the Sun.
Max ERC Funding
2 012 136 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym ATG9_SOLVES_IT
Project In vitro high resolution reconstitution of autophagosome nucleation and expansion catalyzed byATG9
Researcher (PI) Sharon TOOZE
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Country United Kingdom
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Autophagy is a conserved, lysosomal-mediated pathway required for cell homeostasis and survival. It is controlled by the master regulators of energy (AMPK) and growth (TORC1) and mediated by the ATG (autophagy) proteins. Deregulation of autophagy is implicated in cancer, immunity, infection, aging and neurodegeneration. Autophagosomes form and expand using membranes from the secretory and endocytic pathways but how this occurs is not understood. ATG9, the only transmembrane ATG protein traffics through the cell in vesicles, and is essential for rapid initiation and expansion of the membranes which form the autophagosome. Crucially, how ATG9 functions is unknown. I will determine how ATG9 initiates the formation and expansion of the autophagosome by amino acid starvation through a molecular dissection of proteins resident in ATG9 vesicles which modulate the composition and property of the initiating membrane. I will employ high resolution light and electron microscopy to characterize the nucleation of the autophagosome, proximity-specific biotinylation and quantitative Mass Spectrometry to uncover the proteome required for the function of the ATG9, and optogenetic tools to acutely regulate signaling lipids. Lastly, with our tools and knowledge I will develop an in vitro reconstitution system to define at a molecular level how ATG9 vesicle proteins, membranes that interact with ATG9 vesicles, and other accessory ATG components nucleate and form an autophagosome. In vitro reconstitution of autophagosomes will be assayed biochemically, and by correlative light and cryo-EM and cryo-EM tomography, while functional reconstitution of autophagy will be tested by selective cargo recruitment. The development of a reconstituted system and identification proteins and lipids which are key components for autophagosome formation will provide a means to identify a new generation of targets for translational work leading to manipulation of autophagy for disease related therapies.
Summary
Autophagy is a conserved, lysosomal-mediated pathway required for cell homeostasis and survival. It is controlled by the master regulators of energy (AMPK) and growth (TORC1) and mediated by the ATG (autophagy) proteins. Deregulation of autophagy is implicated in cancer, immunity, infection, aging and neurodegeneration. Autophagosomes form and expand using membranes from the secretory and endocytic pathways but how this occurs is not understood. ATG9, the only transmembrane ATG protein traffics through the cell in vesicles, and is essential for rapid initiation and expansion of the membranes which form the autophagosome. Crucially, how ATG9 functions is unknown. I will determine how ATG9 initiates the formation and expansion of the autophagosome by amino acid starvation through a molecular dissection of proteins resident in ATG9 vesicles which modulate the composition and property of the initiating membrane. I will employ high resolution light and electron microscopy to characterize the nucleation of the autophagosome, proximity-specific biotinylation and quantitative Mass Spectrometry to uncover the proteome required for the function of the ATG9, and optogenetic tools to acutely regulate signaling lipids. Lastly, with our tools and knowledge I will develop an in vitro reconstitution system to define at a molecular level how ATG9 vesicle proteins, membranes that interact with ATG9 vesicles, and other accessory ATG components nucleate and form an autophagosome. In vitro reconstitution of autophagosomes will be assayed biochemically, and by correlative light and cryo-EM and cryo-EM tomography, while functional reconstitution of autophagy will be tested by selective cargo recruitment. The development of a reconstituted system and identification proteins and lipids which are key components for autophagosome formation will provide a means to identify a new generation of targets for translational work leading to manipulation of autophagy for disease related therapies.
Max ERC Funding
2 121 055 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym BiomeRiskFactors
Project Discovering microbiome-based disease risk factors
Researcher (PI) Eran Segal
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary Identifying risk factors for diseases that can be prevented or delayed by early intervention is of major importance, and numerous genetic, lifestyle, anthropometric and clinical risk factors were found for many different diseases. Another source of potentially pertinent disease risk factors is the human microbiome - the collective genome of trillions of bacteria, viruses, fungi, and parasites that reside in the human gut. However, very few microbiome disease markers were found to date.
Here, we aim to develop risk prediction tools based on the human microbiome that predict the likelihood of an individual to develop a particular condition or disease within 5-10 years. We will use a cohort of >2200 individuals that my group previously assembled, for whom we have clinical profiles, gut microbiome data, and banked blood and stool samples. We will invite people 5-10 years after their initial recruitment time, profile disease status and blood markers, and develop algorithms for predicting 5-10 year onset of Type 2 diabetes, cardiovascular disease, and obesity, using microbiome data from recruitment time.
To increase the likelihood of finding microbiome markers predictive of disease onset, we will develop novel experimental and computational methods for in-depth characterization of microbial gene function, the metabolites produced by the microbiome, the underexplored fungal microbiome members, and the interactions between the gut microbiota and the host adaptive immune system. We will then apply these methods to >2200 banked samples from cohort recruitment time and use the resulting data in devising our microbiome-based risk prediction tools. In themselves, these novel assays and their application to >2200 samples should greatly advance the microbiome field.
If successful, our proposal will identify new disease risk factors and risk prediction tools based on the microbiome, paving the way towards using the microbiome in early disease detection and prevention.
Summary
Identifying risk factors for diseases that can be prevented or delayed by early intervention is of major importance, and numerous genetic, lifestyle, anthropometric and clinical risk factors were found for many different diseases. Another source of potentially pertinent disease risk factors is the human microbiome - the collective genome of trillions of bacteria, viruses, fungi, and parasites that reside in the human gut. However, very few microbiome disease markers were found to date.
Here, we aim to develop risk prediction tools based on the human microbiome that predict the likelihood of an individual to develop a particular condition or disease within 5-10 years. We will use a cohort of >2200 individuals that my group previously assembled, for whom we have clinical profiles, gut microbiome data, and banked blood and stool samples. We will invite people 5-10 years after their initial recruitment time, profile disease status and blood markers, and develop algorithms for predicting 5-10 year onset of Type 2 diabetes, cardiovascular disease, and obesity, using microbiome data from recruitment time.
To increase the likelihood of finding microbiome markers predictive of disease onset, we will develop novel experimental and computational methods for in-depth characterization of microbial gene function, the metabolites produced by the microbiome, the underexplored fungal microbiome members, and the interactions between the gut microbiota and the host adaptive immune system. We will then apply these methods to >2200 banked samples from cohort recruitment time and use the resulting data in devising our microbiome-based risk prediction tools. In themselves, these novel assays and their application to >2200 samples should greatly advance the microbiome field.
If successful, our proposal will identify new disease risk factors and risk prediction tools based on the microbiome, paving the way towards using the microbiome in early disease detection and prevention.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym CardHeal
Project Novel strategies for mammalian cardiac repair
Researcher (PI) Eldad TZAHOR
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Advanced Grant (AdG), LS4, ERC-2017-ADG
Summary Recent ground-breaking studies by my team and others demonstrated that latent heart regeneration machinery can be awakened even in adult mammals. My lab’s main contribution is the identification of two, apparently different, molecular mechanisms for augmenting cardiac regeneration in adult mice. The first requires transient activation of ErbB2 signalling in cardiomyocytes and the second involves extra cellular matrix-driven signalling by the proteoglycan agrin. Impressively, both mechanisms promote a major regenerative response that, in turn, enhances cardiac repair. In CardHeal we will use the two powerful regenerative models to obtain a holistic view of cardiac regeneration and repair mechanisms in mammals (mice and pigs).
In Aim 1, we will explore the molecular mechanisms underlying our discovery that transient activation of ErbB2 in adult cardiomyocytes results in massive cardiomyocyte dedifferentiation and proliferation followed by new vessels formation, scar resolution and functional cardiac repair. Specific objectives focus on ErbB2-Yap/Hippo signalling during cardiac regeneration; ErbB2 activation in a chronic heart failure model; ErbB2-induced regenerative EMT-like process; and cardiomyocyte re-differentiation.
In Aim 2, we will investigate the therapeutic effects of agrin, whose administration into injured hearts of mice and pigs elicits a significant regenerative response. Specific objectives are matrix-related cardiac regenerative cues, modulation of the immune response, angiogenesis, matrix remodeling, and developing a preclinical, large animal model to study agrin efficacy for cardiac repair.
Interrogating the differences and similarities between our two regenerative models should give us a detailed roadmap for cardiac regenerative medicine by providing deeper knowledge of the regenerative process in the heart and pointing to novel targets for cardiac repair in human patients.
Summary
Recent ground-breaking studies by my team and others demonstrated that latent heart regeneration machinery can be awakened even in adult mammals. My lab’s main contribution is the identification of two, apparently different, molecular mechanisms for augmenting cardiac regeneration in adult mice. The first requires transient activation of ErbB2 signalling in cardiomyocytes and the second involves extra cellular matrix-driven signalling by the proteoglycan agrin. Impressively, both mechanisms promote a major regenerative response that, in turn, enhances cardiac repair. In CardHeal we will use the two powerful regenerative models to obtain a holistic view of cardiac regeneration and repair mechanisms in mammals (mice and pigs).
In Aim 1, we will explore the molecular mechanisms underlying our discovery that transient activation of ErbB2 in adult cardiomyocytes results in massive cardiomyocyte dedifferentiation and proliferation followed by new vessels formation, scar resolution and functional cardiac repair. Specific objectives focus on ErbB2-Yap/Hippo signalling during cardiac regeneration; ErbB2 activation in a chronic heart failure model; ErbB2-induced regenerative EMT-like process; and cardiomyocyte re-differentiation.
In Aim 2, we will investigate the therapeutic effects of agrin, whose administration into injured hearts of mice and pigs elicits a significant regenerative response. Specific objectives are matrix-related cardiac regenerative cues, modulation of the immune response, angiogenesis, matrix remodeling, and developing a preclinical, large animal model to study agrin efficacy for cardiac repair.
Interrogating the differences and similarities between our two regenerative models should give us a detailed roadmap for cardiac regenerative medicine by providing deeper knowledge of the regenerative process in the heart and pointing to novel targets for cardiac repair in human patients.
Max ERC Funding
2 268 750 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym CRISPR-EVOL
Project The eco-evolutionary costs and benefits of CRISPR-Cas systems, and their effect on genome diversity within populations
Researcher (PI) Uri Gophna
Host Institution (HI) TEL AVIV UNIVERSITY
Country Israel
Call Details Advanced Grant (AdG), LS8, ERC-2017-ADG
Summary CRISPR-Cas systems are microbial defense systems that provide prokaryotes with acquired and heritable DNA-based immunity against selfish genetic elements, primarily viruses. However, the full scope of benefits that these systems can provide, as well as their costs remain unknown. Specifically, it is unclear whether the benefits against viral infection outweigh the continual costs incurred even in the absence of parasitic elements, and whether CRISPR-Cas systems affect microbial genome diversity in nature.
Since CRISPR-Cas systems can impede lateral gene transfer, it is often assumed that they reduce genetic diversity. Conversely, our recent results suggest the exact opposite: that these systems generate a high level of genomic diversity within populations. We have recently combined genomics of environmental strains and experimental genetics to show that archaea frequently acquire CRISPR immune memory, known as spacers, from chromosomes of related species in the environment. The presence of these spacers reduces gene exchange between lineages, indicating that CRISPR-Cas contributes to diversification. We have also shown that such inter-species mating events induce the acquisition of spacers against a strain's own replicons, supporting a role for CRISPR-Cas systems in generating deletions in natural plasmids and unessential genomic loci, again increasing genome diversity within populations.
Here we aim to test our hypothesis that CRISPR-Cas systems increase within-population diversity, and quantify their benefits to both cells and populations, using large-scale genomics and experimental evolution. We will explore how these systems alter the patterns of recombination within and between species, and explore the potential involvement of CRISPR-associated proteins in cellular DNA repair.
This work will reveal the eco-evolutionary role of CRISPR-Cas systems in shaping microbial populations, and open new research avenues regarding additional roles beyond anti-viral defense
Summary
CRISPR-Cas systems are microbial defense systems that provide prokaryotes with acquired and heritable DNA-based immunity against selfish genetic elements, primarily viruses. However, the full scope of benefits that these systems can provide, as well as their costs remain unknown. Specifically, it is unclear whether the benefits against viral infection outweigh the continual costs incurred even in the absence of parasitic elements, and whether CRISPR-Cas systems affect microbial genome diversity in nature.
Since CRISPR-Cas systems can impede lateral gene transfer, it is often assumed that they reduce genetic diversity. Conversely, our recent results suggest the exact opposite: that these systems generate a high level of genomic diversity within populations. We have recently combined genomics of environmental strains and experimental genetics to show that archaea frequently acquire CRISPR immune memory, known as spacers, from chromosomes of related species in the environment. The presence of these spacers reduces gene exchange between lineages, indicating that CRISPR-Cas contributes to diversification. We have also shown that such inter-species mating events induce the acquisition of spacers against a strain's own replicons, supporting a role for CRISPR-Cas systems in generating deletions in natural plasmids and unessential genomic loci, again increasing genome diversity within populations.
Here we aim to test our hypothesis that CRISPR-Cas systems increase within-population diversity, and quantify their benefits to both cells and populations, using large-scale genomics and experimental evolution. We will explore how these systems alter the patterns of recombination within and between species, and explore the potential involvement of CRISPR-associated proteins in cellular DNA repair.
This work will reveal the eco-evolutionary role of CRISPR-Cas systems in shaping microbial populations, and open new research avenues regarding additional roles beyond anti-viral defense
Max ERC Funding
2 495 625 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym CuRE
Project Cardiac REgeneration from within
Researcher (PI) Mauro GIACCA
Host Institution (HI) KING'S COLLEGE LONDON
Country United Kingdom
Call Details Advanced Grant (AdG), LS4, ERC-2017-ADG
Summary Biotechnological therapies for patients with myocardial infarction and heart failure are urgently needed, in light of the breadth of these diseases and a lack of curative treatments. CuRE is an ambitious project aimed at identifying novel factors (cytokines, growth factors, microRNAs) that promote cardiomyocyte proliferation and can thus be transformed into innovative therapeutics to stimulate cardiac regeneration. The Project leads from two concepts: first, that cardiac regeneration can be obtained by stimulating the endogenous capacity of cardiomyocytes to proliferate, second that effective biotherapeutics might be identified through systematic screenings both in vivo and ex vivo. In the mouse, CuRE will take advantage of two unique arrayed libraries cloned in adeno-associated virus (AAV) vectors, one corresponding to the secretome (1200 factors) and the other to the miRNAome (800 pri-miRNA genes). Both libraries will be functionally screened in mice to search for factors that enhance cardiac regeneration. This in vivo selection approach will be complemented by a series of high throughput screenings on primary cardiomyocytes ex vivo, aimed at systematically assessing the involvement of all components of the ubiquitin/proteasome pathway, the cytoskeleton and the sarcomere on cell proliferation. Cytokines and miRNAs can both be developed to become therapeutic molecules, in the form of recombinant proteins and synthetic nucleic acids, respectively. Therefore, a key aim of CuRE will be to establish procedures for their production and administration in vivo, and to assess their efficacy in both small and large animal models of myocardial damage. In addition to this translational goal, the project will entail the successful achievement of several intermediate objectives, each of which possesses intrinsic validity in terms of basic discovery and is thus expected to extend technology and knowledge in the cardiovascular field beyond state-of-the art.
Summary
Biotechnological therapies for patients with myocardial infarction and heart failure are urgently needed, in light of the breadth of these diseases and a lack of curative treatments. CuRE is an ambitious project aimed at identifying novel factors (cytokines, growth factors, microRNAs) that promote cardiomyocyte proliferation and can thus be transformed into innovative therapeutics to stimulate cardiac regeneration. The Project leads from two concepts: first, that cardiac regeneration can be obtained by stimulating the endogenous capacity of cardiomyocytes to proliferate, second that effective biotherapeutics might be identified through systematic screenings both in vivo and ex vivo. In the mouse, CuRE will take advantage of two unique arrayed libraries cloned in adeno-associated virus (AAV) vectors, one corresponding to the secretome (1200 factors) and the other to the miRNAome (800 pri-miRNA genes). Both libraries will be functionally screened in mice to search for factors that enhance cardiac regeneration. This in vivo selection approach will be complemented by a series of high throughput screenings on primary cardiomyocytes ex vivo, aimed at systematically assessing the involvement of all components of the ubiquitin/proteasome pathway, the cytoskeleton and the sarcomere on cell proliferation. Cytokines and miRNAs can both be developed to become therapeutic molecules, in the form of recombinant proteins and synthetic nucleic acids, respectively. Therefore, a key aim of CuRE will be to establish procedures for their production and administration in vivo, and to assess their efficacy in both small and large animal models of myocardial damage. In addition to this translational goal, the project will entail the successful achievement of several intermediate objectives, each of which possesses intrinsic validity in terms of basic discovery and is thus expected to extend technology and knowledge in the cardiovascular field beyond state-of-the art.
Max ERC Funding
2 428 492 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym DCPOIESIS
Project Steady-state and demand-driven dendritic cell generation
Researcher (PI) Caetano Maria Pacheco Pais Dos Reis e Sousa
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Country United Kingdom
Call Details Advanced Grant (AdG), LS6, ERC-2017-ADG
Summary Classical dendritic cells (cDCs) are leucocytes that play a key role in innate immunity as well as the initiation and regulation of T cell responses. cDCpoiesis starts with commitment of a bone marrow (BM) haematopoietic progenitor, known as the classical DC precursor (CDP), to the cDC lineage. CDPs then give rise to pre-cDCs that exit the BM via the blood and seed tissues to give rise to the two major types of fully-differentiated cDCs, the cDC1 and cDC2 subsets. The key parameters of cDCpoiesis are poorly understood. We propose to characterise the niche in which cDCs develop within the BM and to study how pre-cDCs seed tissues and establish local clones of differentiated cDC1 and cDC2. We further wish to ask how the activity of CDPs and pre-cDCs is altered following infection, inflammation or tissue damage. Finally, we want to know to what extent cDCpoiesis is affected by direct sensing of infection or cell damage by cDC precursors. All these objectives will be addressed in a mouse lineage tracing model in which cDC precursors are genetically labelled through the activity of a Cre recombinase driven by the Clec9a locus. These mice will be crossed to fluorescent protein reporter mice, including Confetti mice that allow for clonal analysis, and the appearance of labelled cDCs and cDC clones in tissues will be followed over time in the steady-state or after induction of infection or inflammation. The dependence of cDC precursor activity on specific pathogen and damage sensing pathways will be assessed by loss-of-function experiments. The interactions of cDC precursors with their BM niche will be analysed in steady-state or inflammatory conditions by visualising the cells in situ. Finally, the consequences of demand-driven cDCpoiesis for immunity will be assessed. The results from this project will lead to a greater understanding of the influence of environmental signals on cDCpoiesis and may have applications in the design of better vaccines and immunotherapies.
Summary
Classical dendritic cells (cDCs) are leucocytes that play a key role in innate immunity as well as the initiation and regulation of T cell responses. cDCpoiesis starts with commitment of a bone marrow (BM) haematopoietic progenitor, known as the classical DC precursor (CDP), to the cDC lineage. CDPs then give rise to pre-cDCs that exit the BM via the blood and seed tissues to give rise to the two major types of fully-differentiated cDCs, the cDC1 and cDC2 subsets. The key parameters of cDCpoiesis are poorly understood. We propose to characterise the niche in which cDCs develop within the BM and to study how pre-cDCs seed tissues and establish local clones of differentiated cDC1 and cDC2. We further wish to ask how the activity of CDPs and pre-cDCs is altered following infection, inflammation or tissue damage. Finally, we want to know to what extent cDCpoiesis is affected by direct sensing of infection or cell damage by cDC precursors. All these objectives will be addressed in a mouse lineage tracing model in which cDC precursors are genetically labelled through the activity of a Cre recombinase driven by the Clec9a locus. These mice will be crossed to fluorescent protein reporter mice, including Confetti mice that allow for clonal analysis, and the appearance of labelled cDCs and cDC clones in tissues will be followed over time in the steady-state or after induction of infection or inflammation. The dependence of cDC precursor activity on specific pathogen and damage sensing pathways will be assessed by loss-of-function experiments. The interactions of cDC precursors with their BM niche will be analysed in steady-state or inflammatory conditions by visualising the cells in situ. Finally, the consequences of demand-driven cDCpoiesis for immunity will be assessed. The results from this project will lead to a greater understanding of the influence of environmental signals on cDCpoiesis and may have applications in the design of better vaccines and immunotherapies.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym DEVINCI
Project Developmental principles for the functional specialisation of inhibitory circuits in neocortical areas
Researcher (PI) Oscar MARIN
Host Institution (HI) KING'S COLLEGE LONDON
Country United Kingdom
Call Details Advanced Grant (AdG), LS5, ERC-2017-ADG
Summary The mammalian neocortex consists of discrete, but highly interconnected, functional areas that collectively encode features of the environment, form associations between stimuli and drive behaviour by transforming sensory input into motor output. All neocortical areas are organised into six layers containing two major classes of neurons, excitatory glutamatergic pyramidal cells and inhibitory GABAergic interneurons. However, each area has distinctive cytoarchitectonical features and inputs that largely determine its computational capabilities. As pyramidal cells comprise the large majority of neurons in the cerebral cortex, much emphasis has been made on their contribution to the differential organisation of cortical areas. In contrast, interneurons have received little attention in the context of the functional specialisation of cortical areas, even though their distribution is highly heterogeneous.
The central tenet of this research proposal is that distinct patterns of inhibitory connectivity may accompany, and perhaps even determine, the functional specialisation of neocortical areas. We hypothesise that interneurons play an important role in the tuning of circuits in each cortical area, and therefore that quantitative differences in the relative distribution of specific classes of interneurons, which arise during development, reflect functional specialisations. The overall aim of this research project is to understand how developmental mechanisms ‘sculpting’ the distribution of inhibitory neurons across different neocortical areas contribute to their functional specialisation. This project has the potential to transform our understanding of the organisation of inhibitory circuits in the mammalian neocortex.
Summary
The mammalian neocortex consists of discrete, but highly interconnected, functional areas that collectively encode features of the environment, form associations between stimuli and drive behaviour by transforming sensory input into motor output. All neocortical areas are organised into six layers containing two major classes of neurons, excitatory glutamatergic pyramidal cells and inhibitory GABAergic interneurons. However, each area has distinctive cytoarchitectonical features and inputs that largely determine its computational capabilities. As pyramidal cells comprise the large majority of neurons in the cerebral cortex, much emphasis has been made on their contribution to the differential organisation of cortical areas. In contrast, interneurons have received little attention in the context of the functional specialisation of cortical areas, even though their distribution is highly heterogeneous.
The central tenet of this research proposal is that distinct patterns of inhibitory connectivity may accompany, and perhaps even determine, the functional specialisation of neocortical areas. We hypothesise that interneurons play an important role in the tuning of circuits in each cortical area, and therefore that quantitative differences in the relative distribution of specific classes of interneurons, which arise during development, reflect functional specialisations. The overall aim of this research project is to understand how developmental mechanisms ‘sculpting’ the distribution of inhibitory neurons across different neocortical areas contribute to their functional specialisation. This project has the potential to transform our understanding of the organisation of inhibitory circuits in the mammalian neocortex.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym DYNACEUTICS
Project Remote control healing: Next generation mechano-nano-therapeutics
Researcher (PI) Alicia El Haj
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Country United Kingdom
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary Imagine if doctors could heal patients via remote control. Following simple injections into regions of the body, they could activate internal cells by an external bandage. In this way, they could remotely control the ways tissue heal. This Advanced grant sets out to understand, design and develop the mechano-nano-magnetic platform that will underpin this therapeutic strategy for the future – DYNACEUTICS.
Key receptors have been identified such as ion channels, integrins and growth factors which respond to mechanical cues on the membrane and activate downstream pathways. How do we ‘bottle’ an agonist like a drug which can influence or regulate mechano-sensors on the membrane and can be controlled remotely? This project tackles this complex interdisciplinary question through breakthrough nanotechnologies. We aim to expand and develop a platform technology using magnetic particle tagging which will allow us to direct cells for therapeutic purposes.
Specifically, we aim
• to identify mechano-receptor binding sites on stem and mature cells which will enable remote activation of signalling pathways via magnetic fields,
• to design and test magnetic particles with tailored tagging strategies using single cell through 3D human organoid models to in vivo disease models,
• to tailor and design external remote control devices
• to create clinically relevant treatment modalities for remote control healing.
This proposal presents a unique opportunity to launch a new dynamic treatment platform, DYNACEUTICS, which we propose will extend the therapeutic horizon and provide a new form of remote controlled healing.
Summary
Imagine if doctors could heal patients via remote control. Following simple injections into regions of the body, they could activate internal cells by an external bandage. In this way, they could remotely control the ways tissue heal. This Advanced grant sets out to understand, design and develop the mechano-nano-magnetic platform that will underpin this therapeutic strategy for the future – DYNACEUTICS.
Key receptors have been identified such as ion channels, integrins and growth factors which respond to mechanical cues on the membrane and activate downstream pathways. How do we ‘bottle’ an agonist like a drug which can influence or regulate mechano-sensors on the membrane and can be controlled remotely? This project tackles this complex interdisciplinary question through breakthrough nanotechnologies. We aim to expand and develop a platform technology using magnetic particle tagging which will allow us to direct cells for therapeutic purposes.
Specifically, we aim
• to identify mechano-receptor binding sites on stem and mature cells which will enable remote activation of signalling pathways via magnetic fields,
• to design and test magnetic particles with tailored tagging strategies using single cell through 3D human organoid models to in vivo disease models,
• to tailor and design external remote control devices
• to create clinically relevant treatment modalities for remote control healing.
This proposal presents a unique opportunity to launch a new dynamic treatment platform, DYNACEUTICS, which we propose will extend the therapeutic horizon and provide a new form of remote controlled healing.
Max ERC Funding
2 499 068 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym E-T1IFNs
Project Elaboration of the type I interferonopathies
Researcher (PI) Yanick Joseph CROW
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Country United Kingdom
Call Details Advanced Grant (AdG), LS6, ERC-2017-ADG
Summary Type I interferons represent both key molecules in anti-viral defence and mediators of inflammatory disease, so that the induction, transmission and resolution of the interferon response are tightly regulated - balancing protection against infection versus the risk of immunopathology. Monogenic type I interferonopathies (T1IFNs), and related ‘complex’ phenotypes such as systemic lupus erythematosus and dermatomyositis, represent examples of a disturbance of the homeostatic control of this system, where a constitutive upregulation of type I interferon activity is considered directly relevant to pathology.
Set against the absence of a routine assay in clinical medicine for the detection of upregulated type I interferon, the current application addresses major questions in the developing T1IFN field. Analogous to other screening strategies (e.g. using mouse ENU mutagenesis or yeast gene deletion series), we have established a pipeline for the systematic identification of human mutant states predisposing to upregulated type I interferon signalling. Such an approach will allow for the comprehensive definition of important themes in interferon biology, informing our understanding of anti-viral signalling and self-non-self discrimination. Furthermore, these studies will have direct translational benefit - since the identification of a phenotype as a T1IFN implies the possibility of therapy to reduce type I interferon levels and / or block interferon signalling.
Summary
Type I interferons represent both key molecules in anti-viral defence and mediators of inflammatory disease, so that the induction, transmission and resolution of the interferon response are tightly regulated - balancing protection against infection versus the risk of immunopathology. Monogenic type I interferonopathies (T1IFNs), and related ‘complex’ phenotypes such as systemic lupus erythematosus and dermatomyositis, represent examples of a disturbance of the homeostatic control of this system, where a constitutive upregulation of type I interferon activity is considered directly relevant to pathology.
Set against the absence of a routine assay in clinical medicine for the detection of upregulated type I interferon, the current application addresses major questions in the developing T1IFN field. Analogous to other screening strategies (e.g. using mouse ENU mutagenesis or yeast gene deletion series), we have established a pipeline for the systematic identification of human mutant states predisposing to upregulated type I interferon signalling. Such an approach will allow for the comprehensive definition of important themes in interferon biology, informing our understanding of anti-viral signalling and self-non-self discrimination. Furthermore, these studies will have direct translational benefit - since the identification of a phenotype as a T1IFN implies the possibility of therapy to reduce type I interferon levels and / or block interferon signalling.
Max ERC Funding
2 418 800 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym ENIGMA
Project ENIneering MAterial properties with advanced laser direct writing
Researcher (PI) Peter KAZANSKY
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Country United Kingdom
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary Ultrafast laser material processing is approaching its limits in terms of ability to produce innovative materials with
compositional and structural consistency. The main idea of this project is to remove barriers to product development and go
beyond state-of-the-art by applying tailored and few-cycle laser pulses (FCLPs) for engineering of materials.
In this project I will investigate the interaction between intense ultra-short light pulses and matter at or below the wavelength
scale reaching states of matter found only deep planetary conditions.A key goal of the project is to exploit these extreme
conditions for synthesising unique material phases with on-demand optical and electronic properties, and progress photonic
devices with utilizing FCLP advantages: control over the bond scissoring density; efficient and highly localized energy
deposition; seeding of self-organized nanostructures; manipulation of spatio-temporal coupling.
Currently, a key limitation is plasma scattering that diminishes the performance of engineered materials. The question I will
address is whether control of ultra-short pulses can lead to ways around this limitation. The control of self-organization
process will revolutionize the field of data storage by achieving record high 100 TB/cm3 densities, high writing speed and
practically unlimited lifetime. I will radically improve the performance of printed flat optics with perfected nanostructures
engineered from nano- to macro-scale and capable of replacing conventional optics significantly advancing photonic devices
used in high-resolution microscopy, consumer electronics, and high-power laser applications. I envisage obtaining exotic
material phases such as metallic phases of silicon and tailored metallic nanoparticles in silicate glass. Hence this project will
push the frontiers of laser material processing to unprecedented precision and will develop novel family of devices that will
feed into the future of optics, electronics and computing
Summary
Ultrafast laser material processing is approaching its limits in terms of ability to produce innovative materials with
compositional and structural consistency. The main idea of this project is to remove barriers to product development and go
beyond state-of-the-art by applying tailored and few-cycle laser pulses (FCLPs) for engineering of materials.
In this project I will investigate the interaction between intense ultra-short light pulses and matter at or below the wavelength
scale reaching states of matter found only deep planetary conditions.A key goal of the project is to exploit these extreme
conditions for synthesising unique material phases with on-demand optical and electronic properties, and progress photonic
devices with utilizing FCLP advantages: control over the bond scissoring density; efficient and highly localized energy
deposition; seeding of self-organized nanostructures; manipulation of spatio-temporal coupling.
Currently, a key limitation is plasma scattering that diminishes the performance of engineered materials. The question I will
address is whether control of ultra-short pulses can lead to ways around this limitation. The control of self-organization
process will revolutionize the field of data storage by achieving record high 100 TB/cm3 densities, high writing speed and
practically unlimited lifetime. I will radically improve the performance of printed flat optics with perfected nanostructures
engineered from nano- to macro-scale and capable of replacing conventional optics significantly advancing photonic devices
used in high-resolution microscopy, consumer electronics, and high-power laser applications. I envisage obtaining exotic
material phases such as metallic phases of silicon and tailored metallic nanoparticles in silicate glass. Hence this project will
push the frontiers of laser material processing to unprecedented precision and will develop novel family of devices that will
feed into the future of optics, electronics and computing
Max ERC Funding
2 499 957 €
Duration
Start date: 2019-01-01, End date: 2024-06-30
Project acronym EPICut
Project Molecular mechanisms, evolutionary impacts and applications of prokaryotic epigenetic-targeted immune systems
Researcher (PI) Mark Dominik SZCZELKUN
Host Institution (HI) UNIVERSITY OF BRISTOL
Country United Kingdom
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Interactions between bacteria and their viruses (bacteriophages) have led to the evolution of a wide range of bacterial mechanisms to resist viral infection. The exploitation of such systems has produced true revolutions in biotechnology; firstly, the restriction-modification (RM) enzymes for genetic engineering, and secondly, CRISPR-Cas9 for gene editing. This project aims to unravel the mechanisms and consequences of prokaryotic immune systems that target covalently-modified DNA, such as base methylation, hydroxymethylation and glucosylation. Very little is known about these Type IV restriction enzymes at a mechanistic level, or about their importance to the coevolution of prokaryotic-phage communities. I propose a unique interdisciplinary approach that combines biophysical and single-molecule analysis of enzyme function, nucleoprotein structure determination, prokaryotic evolutionary ecology, and epigenome sequencing, to link the molecular mechanisms of prokaryotic defence to individual, population and community-level phenotypes. This knowledge is vital to a full understanding of how bacterial immunity influences horizontal gene transfer, including the spread of virulence or antimicrobial resistance. In addition, a deeper analysis of enzyme function will support our reengineering of these systems to produce improved restriction enzyme tools for the mapping of eukaryotic epigenetics markers.
Summary
Interactions between bacteria and their viruses (bacteriophages) have led to the evolution of a wide range of bacterial mechanisms to resist viral infection. The exploitation of such systems has produced true revolutions in biotechnology; firstly, the restriction-modification (RM) enzymes for genetic engineering, and secondly, CRISPR-Cas9 for gene editing. This project aims to unravel the mechanisms and consequences of prokaryotic immune systems that target covalently-modified DNA, such as base methylation, hydroxymethylation and glucosylation. Very little is known about these Type IV restriction enzymes at a mechanistic level, or about their importance to the coevolution of prokaryotic-phage communities. I propose a unique interdisciplinary approach that combines biophysical and single-molecule analysis of enzyme function, nucleoprotein structure determination, prokaryotic evolutionary ecology, and epigenome sequencing, to link the molecular mechanisms of prokaryotic defence to individual, population and community-level phenotypes. This knowledge is vital to a full understanding of how bacterial immunity influences horizontal gene transfer, including the spread of virulence or antimicrobial resistance. In addition, a deeper analysis of enzyme function will support our reengineering of these systems to produce improved restriction enzyme tools for the mapping of eukaryotic epigenetics markers.
Max ERC Funding
2 196 414 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym EXACTYMER
Project ADVANCED NANOMEMBRANES FOR EXACT POLYMER PRODUCTION
Researcher (PI) Andrew LIVINGSTON
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Country United Kingdom
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary The production of synthetic polymers with precisely defined monomer sequences – exact polymers, which I call “exactymers” – is highly challenging. Iterative synthesis, in which specific monomers are added one-at-a-time to the end of a growing polymer chain, affords exquisite control over the final sequence, but requires accurate purification of the growing polymer with each and every cycle. EXACTYMER will create new super-stable, ultra-selective nanomembranes, with high permeances, enabling rapid, repeated purifications, which will transform exactymer fabrication. Multiple growing polymer chains will be attached to a central hub molecule to create a macromolecular homostar with enhanced molecular size, promoting accurate separation of the growing exactymer from reaction debris via nanomembrane processing. Automation and engineering will enable rapid, accurate and precise cycles of exactymer chain growth. EXACTYMER objectives will be achieved through curiosity-driven research into (1) the creation of nanomembranes with exquisite molecular selectivity between growing homostars and monomer plus reaction debris; (2) advancing the chemistry of iterative synthesis by creating strategies for step-wise growth of polyethers, polysiloxanes, and polyesters, and side chain functionalised monomers of these species; (3) combining iterative chemistry and nanomembranes together in an automated homostar nanofiltration platform, and; (4) exploring the use of exactymers in healthcare, nanotechnology and information storage. EXACTYMER will undertake pioneering research at the boundaries of membrane technology, polymer synthesis, process engineering and nanotechnology. The most profound anticipated outcome is a new capability to produce synthetic polymers, over 20 monomers in length, with exactly defined monomer sequences to an unprecedented accuracy, at multi-gram scale. New scientific insights will derive from the properties and performances of these newly accessible molecules.
Summary
The production of synthetic polymers with precisely defined monomer sequences – exact polymers, which I call “exactymers” – is highly challenging. Iterative synthesis, in which specific monomers are added one-at-a-time to the end of a growing polymer chain, affords exquisite control over the final sequence, but requires accurate purification of the growing polymer with each and every cycle. EXACTYMER will create new super-stable, ultra-selective nanomembranes, with high permeances, enabling rapid, repeated purifications, which will transform exactymer fabrication. Multiple growing polymer chains will be attached to a central hub molecule to create a macromolecular homostar with enhanced molecular size, promoting accurate separation of the growing exactymer from reaction debris via nanomembrane processing. Automation and engineering will enable rapid, accurate and precise cycles of exactymer chain growth. EXACTYMER objectives will be achieved through curiosity-driven research into (1) the creation of nanomembranes with exquisite molecular selectivity between growing homostars and monomer plus reaction debris; (2) advancing the chemistry of iterative synthesis by creating strategies for step-wise growth of polyethers, polysiloxanes, and polyesters, and side chain functionalised monomers of these species; (3) combining iterative chemistry and nanomembranes together in an automated homostar nanofiltration platform, and; (4) exploring the use of exactymers in healthcare, nanotechnology and information storage. EXACTYMER will undertake pioneering research at the boundaries of membrane technology, polymer synthesis, process engineering and nanotechnology. The most profound anticipated outcome is a new capability to produce synthetic polymers, over 20 monomers in length, with exactly defined monomer sequences to an unprecedented accuracy, at multi-gram scale. New scientific insights will derive from the properties and performances of these newly accessible molecules.
Max ERC Funding
2 499 814 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym GrowCELL
Project The smallest of the small: determining size through cell number
Researcher (PI) Andrew JACKSON
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Country United Kingdom
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary Determination of organismal size is a fundamental biological question. Vertebrate size is established based on total cell number generated during development. Despite the 75 million-fold difference in size between the smallest and largest mammals, the mechanisms for this remain to be determined. This proposal seeks insight into how total cell number is determined in both pathological and physiological states.
Over the last decade our study of extreme growth disorders has identified 18 new human disease genes. We established these encode core components of the cell-cycle machinery, providing cellular and developmental insights into the pathophysiological mechanisms of these disorders. From our starting point of human disease, this approach also revealed novel genome instability genes informing fundamental research of basic biological processes. Still, the molecular basis for over half of individuals with microcephalic dwarfism remains unknown.
This proposal will break new ground through the comprehensive application of Whole Genome Sequencing to our patient cohort to achieve screen saturation via identification of coding and non-coding mutations. Forward-genetic genome-wide CRISPR screens in developmentally relevant cell and organoid systems will also be developed to define key cellular processes impacting human growth. Beyond these ‘discovery science’ approaches, cellular and model organism techniques will be used to define the mechanistic basis for human disease caused by mutations in core replication machinery and key epigenetic factors. To extend prior work on pathophysiological mechanisms, we aim to establish a subset of microcephalic dwarfism genes as growth regulators, and thereby further define when and how organism size is determined. These studies will link essential cellular machinery governing proliferation with human disease, identify novel genome-stability factors and may yield insights into the developmental regulation of mammalian size.
Summary
Determination of organismal size is a fundamental biological question. Vertebrate size is established based on total cell number generated during development. Despite the 75 million-fold difference in size between the smallest and largest mammals, the mechanisms for this remain to be determined. This proposal seeks insight into how total cell number is determined in both pathological and physiological states.
Over the last decade our study of extreme growth disorders has identified 18 new human disease genes. We established these encode core components of the cell-cycle machinery, providing cellular and developmental insights into the pathophysiological mechanisms of these disorders. From our starting point of human disease, this approach also revealed novel genome instability genes informing fundamental research of basic biological processes. Still, the molecular basis for over half of individuals with microcephalic dwarfism remains unknown.
This proposal will break new ground through the comprehensive application of Whole Genome Sequencing to our patient cohort to achieve screen saturation via identification of coding and non-coding mutations. Forward-genetic genome-wide CRISPR screens in developmentally relevant cell and organoid systems will also be developed to define key cellular processes impacting human growth. Beyond these ‘discovery science’ approaches, cellular and model organism techniques will be used to define the mechanistic basis for human disease caused by mutations in core replication machinery and key epigenetic factors. To extend prior work on pathophysiological mechanisms, we aim to establish a subset of microcephalic dwarfism genes as growth regulators, and thereby further define when and how organism size is determined. These studies will link essential cellular machinery governing proliferation with human disease, identify novel genome-stability factors and may yield insights into the developmental regulation of mammalian size.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-08-01, End date: 2024-01-31
Project acronym H-Unique
Project In search of uniqueness - harnessing anatomical hand variation
Researcher (PI) Sue BLACK
Host Institution (HI) UNIVERSITY OF LANCASTER
Country United Kingdom
Call Details Advanced Grant (AdG), LS9, ERC-2017-ADG
Summary H-unique will be the first multimodal automated interrogation of visible hand anatomy, through analysis and interpretation of human variation. It will be an interdisciplinary project, supported by anatomists, anthropologists, geneticists, bioinformaticians, image analysts and computer scientists. We will investigate inherent and acquired variation in search of uniqueness, as the hand retains and displays a multiplicity of anatomical variants formed by different aetiologies (genetics, development, environment, accident etc).
Hard biometrics, such as fingerprints, are well understood and some soft biometrics are gaining traction within both biometric and forensic domains (e.g. superficial vein pattern, skin crease pattern, morphometry, scars, tattoos and pigmentation pattern). A combinatorial approach of soft and hard biometrics has not been previously attempted from images of the hand. We will pioneer the development of new methods that will release the full extent of variation locked within the visible anatomy of the human hand and reconstruct its discriminatory profile as a retro-engineered multimodal biometric. A significant step change is required in the science to both reliably and repeatably extract and compare anatomical information from large numbers of images especially when the hand is not in a standard position or when either the resolution or lighting in the image is not ideal.
Large datasets are vital for this work to be legally admissible. Through citizen engagement with science, this research will collect images from over 5,000 participants, creating an active, open source, ground-truth dataset. It will examine and address the effects of variable image conditions on data extraction and will design algorithms that permit auto-pattern searching across large numbers of stored images of variable quality. This will provide a major novel breakthrough in the study of anatomical variation, with wide-ranging, interdisciplinary and transdisciplinary impact.
Summary
H-unique will be the first multimodal automated interrogation of visible hand anatomy, through analysis and interpretation of human variation. It will be an interdisciplinary project, supported by anatomists, anthropologists, geneticists, bioinformaticians, image analysts and computer scientists. We will investigate inherent and acquired variation in search of uniqueness, as the hand retains and displays a multiplicity of anatomical variants formed by different aetiologies (genetics, development, environment, accident etc).
Hard biometrics, such as fingerprints, are well understood and some soft biometrics are gaining traction within both biometric and forensic domains (e.g. superficial vein pattern, skin crease pattern, morphometry, scars, tattoos and pigmentation pattern). A combinatorial approach of soft and hard biometrics has not been previously attempted from images of the hand. We will pioneer the development of new methods that will release the full extent of variation locked within the visible anatomy of the human hand and reconstruct its discriminatory profile as a retro-engineered multimodal biometric. A significant step change is required in the science to both reliably and repeatably extract and compare anatomical information from large numbers of images especially when the hand is not in a standard position or when either the resolution or lighting in the image is not ideal.
Large datasets are vital for this work to be legally admissible. Through citizen engagement with science, this research will collect images from over 5,000 participants, creating an active, open source, ground-truth dataset. It will examine and address the effects of variable image conditions on data extraction and will design algorithms that permit auto-pattern searching across large numbers of stored images of variable quality. This will provide a major novel breakthrough in the study of anatomical variation, with wide-ranging, interdisciplinary and transdisciplinary impact.
Max ERC Funding
2 495 378 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym HealthcareLabour
Project Empirical evidence on the impact of the labour market on the production of healthcare and health
Researcher (PI) Carol Propper
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Country United Kingdom
Call Details Advanced Grant (AdG), SH1, ERC-2017-ADG
Summary What determines the quality of public services? How do shocks to the economy affect the delivery of public services? Why is there such variation in the efficiency of public service providers and how does this affect those who use their services?
My aim is to make a fundamental contribution to our understanding of the labour supply behaviour of public service providers and the impact of their behaviour on the quality and distribution of critical outcomes. To achieve this I will primarily focus on the healthcare sector. The importance of the healthcare sector to social wellbeing, the existence of shocks that create ‘natural’ experiments, and the availability of large administrative datasets makes the healthcare market the ideal test-bed. Further, understanding how labour markets in healthcare operate is crucial for public expenditure and central because society cares about the output produced.
I will adopt two broad approaches. The first is to examine the micro-foundations of behaviour for critical agents. The second is to examine the effect of policy and macro shocks to the economy on the reallocation of labour within, and between, healthcare and other sectors. In all cases my focus is on understanding labour supply responses and how these impact on the level and distribution of critical outcomes in society.
The ideas are applicable to all labour markets characterised by high levels of investment in human capital and where market failures mean society cares about the outcomes. My research will contribute to the fields of labour and health economics. My research will also inform the development of policies to increase the uptake and spread of medical innovation, increase the quality of the medical labour force and improve the design of healthcare systems.
Summary
What determines the quality of public services? How do shocks to the economy affect the delivery of public services? Why is there such variation in the efficiency of public service providers and how does this affect those who use their services?
My aim is to make a fundamental contribution to our understanding of the labour supply behaviour of public service providers and the impact of their behaviour on the quality and distribution of critical outcomes. To achieve this I will primarily focus on the healthcare sector. The importance of the healthcare sector to social wellbeing, the existence of shocks that create ‘natural’ experiments, and the availability of large administrative datasets makes the healthcare market the ideal test-bed. Further, understanding how labour markets in healthcare operate is crucial for public expenditure and central because society cares about the output produced.
I will adopt two broad approaches. The first is to examine the micro-foundations of behaviour for critical agents. The second is to examine the effect of policy and macro shocks to the economy on the reallocation of labour within, and between, healthcare and other sectors. In all cases my focus is on understanding labour supply responses and how these impact on the level and distribution of critical outcomes in society.
The ideas are applicable to all labour markets characterised by high levels of investment in human capital and where market failures mean society cares about the outcomes. My research will contribute to the fields of labour and health economics. My research will also inform the development of policies to increase the uptake and spread of medical innovation, increase the quality of the medical labour force and improve the design of healthcare systems.
Max ERC Funding
1 487 748 €
Duration
Start date: 2018-10-01, End date: 2022-09-30
Project acronym HOWPER
Project An open or closed process: Determining the global scheme of perception
Researcher (PI) Ehud AHISSAR
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Advanced Grant (AdG), LS5, ERC-2017-ADG
Summary Despite decades of intensive research, there is no agreement about the general scheme of perception: Is the external object a trigger for a brain-internal process (open-loop perception, OLP) or is the object included in brain dynamics during the entire perceptual process (closed-loop perception, CLP)? HOWPER is designed to provide a definite answer to this question in the cases of human touch and vision. What enables this critical test is our development of an explicit CLP hypothesis, which will be contrasted, via specific testable predictions, with the OLP scheme. In the event that CLP is validated, HOWPER will introduce a radical paradigm shift in the study of perception, since almost all current experiments are guided, implicitly or explicitly, by the OLP scheme. If OLP is confirmed, HOWPER will provide the first formal affirmation for its superiority over CLP.
Our approach in this novel paradigm is based on a triangle of interactive efforts comprising theory, analytical experiments, and synthetic experiments. The theoretical effort (WP1) will be based on the core theoretical framework already developed in our lab. The analytical experiments (WP2) will involve human perceivers. The synthetic experiments (WP3) will be performed on synthesized artificial perceivers. The fourth WP will exploit our novel rat-machine hybrid model for testing the neural applicability of the insights gained in the other WPs, whereas the fifth WP will translate our insights into novel visual-to-tactile sensory substitution algorithms.
HOWPER is expected to either revolutionize or significantly advance the field of human perception, to greatly improve visual to tactile sensory substitution approaches and to contribute novel biomimetic algorithms for autonomous robotic agents.
Summary
Despite decades of intensive research, there is no agreement about the general scheme of perception: Is the external object a trigger for a brain-internal process (open-loop perception, OLP) or is the object included in brain dynamics during the entire perceptual process (closed-loop perception, CLP)? HOWPER is designed to provide a definite answer to this question in the cases of human touch and vision. What enables this critical test is our development of an explicit CLP hypothesis, which will be contrasted, via specific testable predictions, with the OLP scheme. In the event that CLP is validated, HOWPER will introduce a radical paradigm shift in the study of perception, since almost all current experiments are guided, implicitly or explicitly, by the OLP scheme. If OLP is confirmed, HOWPER will provide the first formal affirmation for its superiority over CLP.
Our approach in this novel paradigm is based on a triangle of interactive efforts comprising theory, analytical experiments, and synthetic experiments. The theoretical effort (WP1) will be based on the core theoretical framework already developed in our lab. The analytical experiments (WP2) will involve human perceivers. The synthetic experiments (WP3) will be performed on synthesized artificial perceivers. The fourth WP will exploit our novel rat-machine hybrid model for testing the neural applicability of the insights gained in the other WPs, whereas the fifth WP will translate our insights into novel visual-to-tactile sensory substitution algorithms.
HOWPER is expected to either revolutionize or significantly advance the field of human perception, to greatly improve visual to tactile sensory substitution approaches and to contribute novel biomimetic algorithms for autonomous robotic agents.
Max ERC Funding
2 493 441 €
Duration
Start date: 2018-06-01, End date: 2023-11-30
Project acronym iCOMM
Project New Frontiers in Nanophotonics: Integrating Complex Beams and Active Metasurface Devices
Researcher (PI) Anatoly ZAYATS
Host Institution (HI) KING'S COLLEGE LONDON
Country United Kingdom
Call Details Advanced Grant (AdG), PE7, ERC-2017-ADG
Summary Complex, structured optical beams have unique properties offering new degrees of freedom for achieving unusual wavefront, polarisation and optical angular momentum demanded in microscopy, optical trapping and manipulation of nano-objects, information encoding in optical communications, holography, quantum technologies and laser micromachining. Metasurfaces, a subwavelength-thin nanostructured films, which were initially developed for controlling the phase of light and its reflection and transmission beyond the Snell’s law, provide a rich playground for generation and manipulation of structured beams. iCOMM will establish a metasurface platform for generating and controlling complex vector beams in space and time and develop its applications in sensing and identification of chiral molecules and nonlinear optical trapping. Using unique optical properties of designer-metasurfaces capable of controlling both phase and amplitude of light, nonlinear interactions of pulsed vector beams will be optimised and explored. We will aim to develop a series of active metamaterial chips for nonlinear control of CVBs, linear and nonlinear sensing of chiral molecules and optical trapping applications, opening new application areas in information processing and biochemical technologies. This will be a transformative development for the applications of complex vector beams and metasurfaces in optical communications, displays, security and bio- and chemical sensing and optical trapping. The success of the project will unlock the potential of metasurfaces in providing tuneability for the improvement of the real-world photonic devices and provide insight into physical phenomena which are vital for various areas of photonics and sensing, demonstrating commercially-viable application of metasurfaces and complex beams. It will transform the areas of both complex beams and metasurfaces by introducing real-time active control and consolidate and enhance the European leadership in this field.
Summary
Complex, structured optical beams have unique properties offering new degrees of freedom for achieving unusual wavefront, polarisation and optical angular momentum demanded in microscopy, optical trapping and manipulation of nano-objects, information encoding in optical communications, holography, quantum technologies and laser micromachining. Metasurfaces, a subwavelength-thin nanostructured films, which were initially developed for controlling the phase of light and its reflection and transmission beyond the Snell’s law, provide a rich playground for generation and manipulation of structured beams. iCOMM will establish a metasurface platform for generating and controlling complex vector beams in space and time and develop its applications in sensing and identification of chiral molecules and nonlinear optical trapping. Using unique optical properties of designer-metasurfaces capable of controlling both phase and amplitude of light, nonlinear interactions of pulsed vector beams will be optimised and explored. We will aim to develop a series of active metamaterial chips for nonlinear control of CVBs, linear and nonlinear sensing of chiral molecules and optical trapping applications, opening new application areas in information processing and biochemical technologies. This will be a transformative development for the applications of complex vector beams and metasurfaces in optical communications, displays, security and bio- and chemical sensing and optical trapping. The success of the project will unlock the potential of metasurfaces in providing tuneability for the improvement of the real-world photonic devices and provide insight into physical phenomena which are vital for various areas of photonics and sensing, demonstrating commercially-viable application of metasurfaces and complex beams. It will transform the areas of both complex beams and metasurfaces by introducing real-time active control and consolidate and enhance the European leadership in this field.
Max ERC Funding
2 737 327 €
Duration
Start date: 2018-09-01, End date: 2024-02-29
Project acronym INNOVATION
Project Innovation and opportunity in the evolution of life
Researcher (PI) Michael James BENTON
Host Institution (HI) UNIVERSITY OF BRISTOL
Country United Kingdom
Call Details Advanced Grant (AdG), LS8, ERC-2017-ADG
Summary The aim is to produce a complete evolutionary tree of tetrapods and use this to explore two core questions in macroevolution: the balance between innovation and external processes in driving the evolution of life; and, identifying the best model for morphological evolution. Biodiversity today is unbalanced, with a small number of highly successful groups, like birds and beetles, and many others of equal antiquity but with far fewer species. Why are those groups so successful – was it chance or do they have some remarkable adaptation(s)? The core of the project is to construct a complete evolutionary tree of all 30,000 living species of tetrapods (amphibians, reptiles, birds, mammals) and add the 10,000 fossil species; this will generate a database of key characters, the homologies, shared by major groups. The probability of different drivers of diversification will be tested, focusing on those key, highly successful groups (e.g. lizards, birds, neornithines, passerines, rodents) that show explosive evolution to very high species diversity. The proposal goes to the roots of macroevolutionary understanding, and encompasses key questions about origins and modern biodiversity. The project is ambitious, but is possible because of advances in knowledge of relationships of all key tetrapod groups based on phylogenomic and morphological data, increasing precision of geological dating, and the availability of a range of computational methods to construct large phylogenetic trees, to assess likelihood of trees, to explore innovation and evolutionary rates and models, and Bayesian modelling techniques that can map trait data onto large trees and evaluate multiple models of drivers and bias. A unique outcome will be the chance to explore waiting time between major morphological changes, assessing distribution and magnitude, and use this information to inform the construction of a meaningful model of morphological evolution for computational phylogenetics.
Summary
The aim is to produce a complete evolutionary tree of tetrapods and use this to explore two core questions in macroevolution: the balance between innovation and external processes in driving the evolution of life; and, identifying the best model for morphological evolution. Biodiversity today is unbalanced, with a small number of highly successful groups, like birds and beetles, and many others of equal antiquity but with far fewer species. Why are those groups so successful – was it chance or do they have some remarkable adaptation(s)? The core of the project is to construct a complete evolutionary tree of all 30,000 living species of tetrapods (amphibians, reptiles, birds, mammals) and add the 10,000 fossil species; this will generate a database of key characters, the homologies, shared by major groups. The probability of different drivers of diversification will be tested, focusing on those key, highly successful groups (e.g. lizards, birds, neornithines, passerines, rodents) that show explosive evolution to very high species diversity. The proposal goes to the roots of macroevolutionary understanding, and encompasses key questions about origins and modern biodiversity. The project is ambitious, but is possible because of advances in knowledge of relationships of all key tetrapod groups based on phylogenomic and morphological data, increasing precision of geological dating, and the availability of a range of computational methods to construct large phylogenetic trees, to assess likelihood of trees, to explore innovation and evolutionary rates and models, and Bayesian modelling techniques that can map trait data onto large trees and evaluate multiple models of drivers and bias. A unique outcome will be the chance to explore waiting time between major morphological changes, assessing distribution and magnitude, and use this information to inform the construction of a meaningful model of morphological evolution for computational phylogenetics.
Max ERC Funding
2 482 225 €
Duration
Start date: 2018-10-01, End date: 2024-03-31
Project acronym IntraGutSex
Project Sex differences in intestinal plasticity
Researcher (PI) Irene MIGUEL-ALIAGA
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Country United Kingdom
Call Details Advanced Grant (AdG), LS3, ERC-2017-ADG
Summary Sex differences in intestinal plasticity
Males and females often differ in their physiology and disease susceptibility. Sex hormones play key roles in sculpting and maintaining such sex differences, but increasing evidence points to a contribution of cell-intrinsic mechanisms. We are only beginning to understand the molecular mediators of these intrinsic mechanisms, and little is known about the organs where they function and their effects at the whole-organism level.
Our work in flies recently revealed the existence of intrinsic sex differences in intestinal stem cell proliferation. This work raised the possibility that other, more metabolically significant intestinal cell types have their own sexual identity, with potential consequences at the organ and whole-organism levels. This proposal will explore the nature and significance of this sexual identity in two such cell types: enterocytes and neurons.
We will first take advantage of our ability to genetically manipulate and sexually transform these cells in Drosophila in order to understand how their sexual identity is specified and whether it needs to be actively maintained. We will then explore the contribution of such sexual identity to organ features and whole-body physiology. Finally, we will investigate the evolutionary conservation of our findings by establishing organoids as a model to investigate enterocyte physiology, and then use them to explore whether intrinsic mechanisms are also active in the mouse intestinal epithelium.
Collectively, our multidisciplinary approach will shed light on the contribution of the intestine - an organ not previously known to have an intrinsic sexual identity - to sex differences in physiology. It will also pioneer the study of enterocyte physiology in organoids: an emerging and extremely powerful ex vivo system. Our work will also lay the foundations for future interventions aimed at tackling sex biases in disease susceptibility/prognosis.
Summary
Sex differences in intestinal plasticity
Males and females often differ in their physiology and disease susceptibility. Sex hormones play key roles in sculpting and maintaining such sex differences, but increasing evidence points to a contribution of cell-intrinsic mechanisms. We are only beginning to understand the molecular mediators of these intrinsic mechanisms, and little is known about the organs where they function and their effects at the whole-organism level.
Our work in flies recently revealed the existence of intrinsic sex differences in intestinal stem cell proliferation. This work raised the possibility that other, more metabolically significant intestinal cell types have their own sexual identity, with potential consequences at the organ and whole-organism levels. This proposal will explore the nature and significance of this sexual identity in two such cell types: enterocytes and neurons.
We will first take advantage of our ability to genetically manipulate and sexually transform these cells in Drosophila in order to understand how their sexual identity is specified and whether it needs to be actively maintained. We will then explore the contribution of such sexual identity to organ features and whole-body physiology. Finally, we will investigate the evolutionary conservation of our findings by establishing organoids as a model to investigate enterocyte physiology, and then use them to explore whether intrinsic mechanisms are also active in the mouse intestinal epithelium.
Collectively, our multidisciplinary approach will shed light on the contribution of the intestine - an organ not previously known to have an intrinsic sexual identity - to sex differences in physiology. It will also pioneer the study of enterocyte physiology in organoids: an emerging and extremely powerful ex vivo system. Our work will also lay the foundations for future interventions aimed at tackling sex biases in disease susceptibility/prognosis.
Max ERC Funding
2 485 217 €
Duration
Start date: 2018-10-01, End date: 2023-09-30