Project acronym EARLYHUMANIMPACT
Project How long have human activities been affecting the climate system?
Researcher (PI) Carlo Barbante
Host Institution (HI) UNIVERSITA CA' FOSCARI VENEZIA
Call Details Advanced Grant (AdG), PE10, ERC-2010-AdG_20100224
Summary Human activities are altering the global climate system at rates faster than ever recorded in geologic time. Ample observational evidence exists for anthropogenic climate change including measured increased in atmospheric CO2, temperature and sea level rise. Biomass burning causes CO2 emissions of ~50% of those from fossil-fuel combustion and so are highly likely to influence future climate change. However, aerosols continue to be the least understood aspect of the modern climate system and even less is known about their past influence. Anthropogenic aerosols may have altered the global climate system for thousands of years as suggested by comparing late-Holocene greenhouse-gas concentrations to those from previous interglacials. The decrease in the spatial extent of forests beginning ~8000 yrs BP may be related to early agricultural activity including forest clearance through burning which should leave a quantifiable signal in climate proxies.
We pioneered a ground-breaking technique for determining a specific molecular marker of biomass burning (levoglucosan) which can record past fire in ice cores and lake sediments. The research incorporates continuous ice and lake core climate records from seven continents with parallel histories of fire regime. These can provide essential insight into the interplay between climate and human activity, especially with the advent of agriculture. Key objectives include:
1) How does biomass burning change through time and space?
2) How do climate parameters respond to or correlate with changes in biomass burning?
3) Did fires increase ~8000 and/or ~5000 years ago?
4) Can natural and anthropogenic fires be differentiated? If so, how do fires and associated climate change ascribed to human activity differ from natural biomass burning?
Summary
Human activities are altering the global climate system at rates faster than ever recorded in geologic time. Ample observational evidence exists for anthropogenic climate change including measured increased in atmospheric CO2, temperature and sea level rise. Biomass burning causes CO2 emissions of ~50% of those from fossil-fuel combustion and so are highly likely to influence future climate change. However, aerosols continue to be the least understood aspect of the modern climate system and even less is known about their past influence. Anthropogenic aerosols may have altered the global climate system for thousands of years as suggested by comparing late-Holocene greenhouse-gas concentrations to those from previous interglacials. The decrease in the spatial extent of forests beginning ~8000 yrs BP may be related to early agricultural activity including forest clearance through burning which should leave a quantifiable signal in climate proxies.
We pioneered a ground-breaking technique for determining a specific molecular marker of biomass burning (levoglucosan) which can record past fire in ice cores and lake sediments. The research incorporates continuous ice and lake core climate records from seven continents with parallel histories of fire regime. These can provide essential insight into the interplay between climate and human activity, especially with the advent of agriculture. Key objectives include:
1) How does biomass burning change through time and space?
2) How do climate parameters respond to or correlate with changes in biomass burning?
3) Did fires increase ~8000 and/or ~5000 years ago?
4) Can natural and anthropogenic fires be differentiated? If so, how do fires and associated climate change ascribed to human activity differ from natural biomass burning?
Max ERC Funding
2 370 767 €
Duration
Start date: 2011-07-01, End date: 2016-12-31
Project acronym ECLAIR
Project Emulation of subgrid-scale aerosol-cloud interactions in climate models: towards a realistic representation of aerosol indirect effect
Researcher (PI) Sari Hannele Korhonen
Host Institution (HI) ILMATIETEEN LAITOS
Call Details Consolidator Grant (CoG), PE10, ERC-2014-CoG
Summary I propose to develop an innovative interdisciplinary model framework to refine the estimate of aerosol indirect effect (i.e. influence of atmospheric aerosol particles on cloud properties), which remains the single largest uncertainty in the current drivers of climate change.
A major reason for this uncertainty is that current climate models are unable to resolve the spatial scales for aerosol-cloud interactions. We will resolve this scale problem by using statistical emulation to build computationally fast surrogate models (i.e. emulators) that can reproduce the effective output of a detailed high-resolution cloud-resolving model. By incorporating these emulators into a state-of-the-science climate model, we will for the first time achieve the accuracy of a limited-area high-resolution model on a global scale with negligible computational cost.
The main scientific outcome of the project will be a highly refined and physically sound estimate of the aerosol indirect effect that enables more accurate projections of future climate change, and thus has high societal relevance. In addition, the developed emulators will help to quantify how the remaining uncertainties in aerosol properties propagate to predictions of aerosol indirect effect. This information will be used, together with an extensive set of remote sensing, in-situ and laboratory data from our collaborators, to improve the process-level understanding of aerosol-cloud interactions.
The comprehensive uncertainty analyses performed during this project will be highly valuable for future research efforts as they point to processes and interactions that most urgently need to be experimentally constrained. Furthermore, our pioneering model framework that incorporates emulators to represent subgrid- scale processes will open up completely new research opportunities also in other fields that deal with heterogeneous spatial scales.
Summary
I propose to develop an innovative interdisciplinary model framework to refine the estimate of aerosol indirect effect (i.e. influence of atmospheric aerosol particles on cloud properties), which remains the single largest uncertainty in the current drivers of climate change.
A major reason for this uncertainty is that current climate models are unable to resolve the spatial scales for aerosol-cloud interactions. We will resolve this scale problem by using statistical emulation to build computationally fast surrogate models (i.e. emulators) that can reproduce the effective output of a detailed high-resolution cloud-resolving model. By incorporating these emulators into a state-of-the-science climate model, we will for the first time achieve the accuracy of a limited-area high-resolution model on a global scale with negligible computational cost.
The main scientific outcome of the project will be a highly refined and physically sound estimate of the aerosol indirect effect that enables more accurate projections of future climate change, and thus has high societal relevance. In addition, the developed emulators will help to quantify how the remaining uncertainties in aerosol properties propagate to predictions of aerosol indirect effect. This information will be used, together with an extensive set of remote sensing, in-situ and laboratory data from our collaborators, to improve the process-level understanding of aerosol-cloud interactions.
The comprehensive uncertainty analyses performed during this project will be highly valuable for future research efforts as they point to processes and interactions that most urgently need to be experimentally constrained. Furthermore, our pioneering model framework that incorporates emulators to represent subgrid- scale processes will open up completely new research opportunities also in other fields that deal with heterogeneous spatial scales.
Max ERC Funding
1 999 511 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym EDEQS
Project ENTANGLING AND DISENTANGLING EXTENDED QUANTUM SYSTEMS IN AND OUT OF EQUILIBRIUM
Researcher (PI) Pasquale Calabrese
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Starting Grant (StG), PE2, ERC-2011-StG_20101014
Summary "It is nowadays well established that many-body quantum systems in one and two spatial dimensions exhibit unconventional collective behavior that gives rise to intriguing novel states of matter. Examples are topological states exhibiting nonabelian statistics in 2D and spin-charge separated metals and Mott insulators in 1D. An important focus of current research is to characterize both equilibrium and non-equilibrium dynamics of such systems. The latter has become experimentally accessible only during the last decade and constitutes one of the main frontiers of modern theoretical physics. In recent years it has become clear that entanglement is a useful concept for characterizing different states of matter as well as non-equilibrium time evolution.
One main aim of this proposal is to utilize entanglement measures to fully classify states of matter in low dimensional systems. This will be achieved by carrying out a systematic study of the entanglement of several disconnected regions in 1D quantum critical systems. In addition, entanglement measures will be used to benchmark the performance of numerical algorithms based on tensor network states (both in 1D and 2D) and identify the ""optimal"" algorithm for finding the ground state of a given strongly correlated many-body system.
The second main aim of this proposal is to utilize the entanglement to identify the most important features of the the non equilibrium time evolution after a ""quantum quench"", with a view to solve exactly the quench dynamics in strongly interacting integrable models. A particular question we will address is which observables ""thermalize"", which is an issue of tremendous current experimental and theoretical interest. By combining analytic and numerical techniques we will then study the non equilibrium dynamics of non integrable models, in order to quantify the effects of integrability."
Summary
"It is nowadays well established that many-body quantum systems in one and two spatial dimensions exhibit unconventional collective behavior that gives rise to intriguing novel states of matter. Examples are topological states exhibiting nonabelian statistics in 2D and spin-charge separated metals and Mott insulators in 1D. An important focus of current research is to characterize both equilibrium and non-equilibrium dynamics of such systems. The latter has become experimentally accessible only during the last decade and constitutes one of the main frontiers of modern theoretical physics. In recent years it has become clear that entanglement is a useful concept for characterizing different states of matter as well as non-equilibrium time evolution.
One main aim of this proposal is to utilize entanglement measures to fully classify states of matter in low dimensional systems. This will be achieved by carrying out a systematic study of the entanglement of several disconnected regions in 1D quantum critical systems. In addition, entanglement measures will be used to benchmark the performance of numerical algorithms based on tensor network states (both in 1D and 2D) and identify the ""optimal"" algorithm for finding the ground state of a given strongly correlated many-body system.
The second main aim of this proposal is to utilize the entanglement to identify the most important features of the the non equilibrium time evolution after a ""quantum quench"", with a view to solve exactly the quench dynamics in strongly interacting integrable models. A particular question we will address is which observables ""thermalize"", which is an issue of tremendous current experimental and theoretical interest. By combining analytic and numerical techniques we will then study the non equilibrium dynamics of non integrable models, in order to quantify the effects of integrability."
Max ERC Funding
1 108 000 €
Duration
Start date: 2011-09-01, End date: 2016-08-31
Project acronym ELYCHE
Project Electron-scale dynamics in chemistry
Researcher (PI) Mauro Nisoli
Host Institution (HI) POLITECNICO DI MILANO
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary The target of the proposal is the first experimental demonstration of attosecond coherent control of electron motion in many-particle systems. The past decade has seen remarkable advances in the field of coherent control of chemical reactions thanks to the application of femtosecond technology; I propose to use the emerging attosecond technology to achieve coherent control of photodissociation reactions on a purely electronic scale. I will mainly concentrate on molecules with biological interest. The success of the project will be based on the possibility to initiate and control the sub-femtosecond electronic motion in large molecules, by using high-intensity isolated attosecond pulses. Such electron motion precedes and determines the subsequent nuclear rearrangement, which ultimately leads to the chemical change. In this way it will be possible to control in a direct way the outcome of a chemical reaction, which is one of the central problems in modern chemistry. A crucial benchmark of the project, substantially beyond the current state-of-the-art in Attosecond Science, will be the experimental demonstration of attosecond pump / attosecond-probe measurements, which for the present are not technically feasible. Electron dynamics will be measured, with attosecond resolution, in many-particle systems, ranging from simple molecules to complex bio-molecules.
The application of attosecond pulses and the development of attochemistry techniques for the investigation of the primary electronic steps of chemical processes, is a completely new and challenging research field, with tremendous prospects for both fundamental research and technology. In particular, the attosecond coherent control of charge localization in bio-molecules can offer unique information on the mechanisms at the basis of biological signal transmission or on the processes leading to damaging of complex biological molecules (from polypeptides to proteins and DNA).
Summary
The target of the proposal is the first experimental demonstration of attosecond coherent control of electron motion in many-particle systems. The past decade has seen remarkable advances in the field of coherent control of chemical reactions thanks to the application of femtosecond technology; I propose to use the emerging attosecond technology to achieve coherent control of photodissociation reactions on a purely electronic scale. I will mainly concentrate on molecules with biological interest. The success of the project will be based on the possibility to initiate and control the sub-femtosecond electronic motion in large molecules, by using high-intensity isolated attosecond pulses. Such electron motion precedes and determines the subsequent nuclear rearrangement, which ultimately leads to the chemical change. In this way it will be possible to control in a direct way the outcome of a chemical reaction, which is one of the central problems in modern chemistry. A crucial benchmark of the project, substantially beyond the current state-of-the-art in Attosecond Science, will be the experimental demonstration of attosecond pump / attosecond-probe measurements, which for the present are not technically feasible. Electron dynamics will be measured, with attosecond resolution, in many-particle systems, ranging from simple molecules to complex bio-molecules.
The application of attosecond pulses and the development of attochemistry techniques for the investigation of the primary electronic steps of chemical processes, is a completely new and challenging research field, with tremendous prospects for both fundamental research and technology. In particular, the attosecond coherent control of charge localization in bio-molecules can offer unique information on the mechanisms at the basis of biological signal transmission or on the processes leading to damaging of complex biological molecules (from polypeptides to proteins and DNA).
Max ERC Funding
2 446 200 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym ENLIGHT
Project The interplay between quantum coherence and environment in the photosynthetic electronic energy transfer and light-harvesting: a quantum chemical picture
Researcher (PI) Benedetta Mennucci
Host Institution (HI) UNIVERSITA DI PISA
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary Photon energy absorption and electronic energy transfer (EET) represents the first fundamental step in both natural and artificial light-harvesting systems. The most striking example is photosynthesis, in which plants, algae and bacteria are able to transfer the absorbed light to the reaction centers in proteins with almost 100% quantum efficiency. Recent two-dimensional spectroscopic measurements suggest that the role of the environment (a protein or a given embedding supramolecular architecture) is fundamental in determining both the dynamics and the efficiency of the process. What is still missing in order to fully understand and characterize EET is a new theoretical and computational approach which can reproduce the microscopic dynamics of the process based on an accurate description of the playing actors, i.e. the transferring pigments and the environment. Such an approach is a formidable challenge due to the large network of interactions which couples all the parts and makes the dynamics of the process a complex competition of random fluctuations and coherences. Only a strategy based upon an integration of computational models with different length and time scales can achieve the required completeness of the description. This project aims at achieving such an integration by developing completely new theoretical and computational tools based on the merging of quantum mechanical methods, polarizable force fields and dielectric continuum models. Such a strategy in which the fundamental effects of polarization between the pigments and the environment will be accounted for in a dynamically coupled way will allow to simulate the full dynamic process of light harvesting and energy transfer in complex multichromophoric supramolecular systems.
Summary
Photon energy absorption and electronic energy transfer (EET) represents the first fundamental step in both natural and artificial light-harvesting systems. The most striking example is photosynthesis, in which plants, algae and bacteria are able to transfer the absorbed light to the reaction centers in proteins with almost 100% quantum efficiency. Recent two-dimensional spectroscopic measurements suggest that the role of the environment (a protein or a given embedding supramolecular architecture) is fundamental in determining both the dynamics and the efficiency of the process. What is still missing in order to fully understand and characterize EET is a new theoretical and computational approach which can reproduce the microscopic dynamics of the process based on an accurate description of the playing actors, i.e. the transferring pigments and the environment. Such an approach is a formidable challenge due to the large network of interactions which couples all the parts and makes the dynamics of the process a complex competition of random fluctuations and coherences. Only a strategy based upon an integration of computational models with different length and time scales can achieve the required completeness of the description. This project aims at achieving such an integration by developing completely new theoretical and computational tools based on the merging of quantum mechanical methods, polarizable force fields and dielectric continuum models. Such a strategy in which the fundamental effects of polarization between the pigments and the environment will be accounted for in a dynamically coupled way will allow to simulate the full dynamic process of light harvesting and energy transfer in complex multichromophoric supramolecular systems.
Max ERC Funding
1 300 000 €
Duration
Start date: 2011-09-01, End date: 2016-08-31
Project acronym ENSURE
Project Exploring the New Science and engineering unveiled by Ultraintense ultrashort Radiation interaction with mattEr
Researcher (PI) Matteo Passoni
Host Institution (HI) POLITECNICO DI MILANO
Call Details Consolidator Grant (CoG), PE8, ERC-2014-CoG
Summary With the ENSURE project I aim at attaining ground-breaking results in the field of superintense laser-driven ion acceleration, proposing a multidisciplinary research program in which theoretical, numerical and experimental research will be coherently developed in a team integrating in an unprecedented way advanced expertise from materials engineering and nanotechnology, laser-plasma physics, computational science. The aim will be to bring this topic from the realm of fundamental basic science into a subject having realistic engineering applications.
The discovery in 2000 of brilliant, multi-MeV, collimated ion sources from targets irradiated by intense laser pulses stimulated great interest worldwide, due to the ultra-compact spatial scale of the accelerator and ion beam properties. The laser-target system provides unique appealing features to fundamental physics which can be studied in a small lab. At the same time, laser-ion beams could have future potential in many technological areas. This is boosting the development of new labs and facilities all over Europe, but to support these efforts, crucial challenges need to be faced to make these applications a reality.
The goals of ENSURE are: i) design and production of nanoengineered targets, with properties tailored to achieve optimized ion acceleration regimes. This will be pursued exploiting advanced techniques of material science & nanotechnology ii) design of laser-ion beams for novel, key applications in nuclear and materials engineering iii) realization of engineering-oriented ion acceleration experiments, in advanced facilities iv) synergic development of all the required theoretical support for i,ii,iii).
The results of the project can determine a unique impact in the research on laser-driven ion acceleration in Europe, providing new directions to support the attainment, in the next future, of concrete applications of great societal relevance, in medical, energy and materials areas.
Summary
With the ENSURE project I aim at attaining ground-breaking results in the field of superintense laser-driven ion acceleration, proposing a multidisciplinary research program in which theoretical, numerical and experimental research will be coherently developed in a team integrating in an unprecedented way advanced expertise from materials engineering and nanotechnology, laser-plasma physics, computational science. The aim will be to bring this topic from the realm of fundamental basic science into a subject having realistic engineering applications.
The discovery in 2000 of brilliant, multi-MeV, collimated ion sources from targets irradiated by intense laser pulses stimulated great interest worldwide, due to the ultra-compact spatial scale of the accelerator and ion beam properties. The laser-target system provides unique appealing features to fundamental physics which can be studied in a small lab. At the same time, laser-ion beams could have future potential in many technological areas. This is boosting the development of new labs and facilities all over Europe, but to support these efforts, crucial challenges need to be faced to make these applications a reality.
The goals of ENSURE are: i) design and production of nanoengineered targets, with properties tailored to achieve optimized ion acceleration regimes. This will be pursued exploiting advanced techniques of material science & nanotechnology ii) design of laser-ion beams for novel, key applications in nuclear and materials engineering iii) realization of engineering-oriented ion acceleration experiments, in advanced facilities iv) synergic development of all the required theoretical support for i,ii,iii).
The results of the project can determine a unique impact in the research on laser-driven ion acceleration in Europe, providing new directions to support the attainment, in the next future, of concrete applications of great societal relevance, in medical, energy and materials areas.
Max ERC Funding
1 887 500 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ENTROPHASE
Project Entropy formulation of evolutionary phase transitions
Researcher (PI) Elisabetta Rocca
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PAVIA
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The ground-breaking nature of the project relies on the possibility of opening new horizons
with a novel mathematical formulation of physical problems.
The project aim is indeed to obtain relevant mathematical results in order to
get further insight into new models for phase transitions and the
corresponding evolution PDE systems. The new approach presented here turns
out to be particularly helpful within the investigation of issues like as existence, uniqueness,
control, and long-time behavior of the solutions for such evolutionary PDEs.
Moreover, the importance of the opportunity to apply such new theory to phase transitions lies
in the fact that such phenomena arise in a variety of applied problems like, e.g.,
melting and freezing in solid-liquid mixtures, phase changes in solids, crystal growth, soil freezing,
damage in elastic materials, plasticity, food conservation, collisions, and so on. From
the practical viewpoint, the possibility to describe these phenomena in a quantitative way
has deeply influenced the technological
development of our society, stimulating the related mathematical interest.
Summary
The ground-breaking nature of the project relies on the possibility of opening new horizons
with a novel mathematical formulation of physical problems.
The project aim is indeed to obtain relevant mathematical results in order to
get further insight into new models for phase transitions and the
corresponding evolution PDE systems. The new approach presented here turns
out to be particularly helpful within the investigation of issues like as existence, uniqueness,
control, and long-time behavior of the solutions for such evolutionary PDEs.
Moreover, the importance of the opportunity to apply such new theory to phase transitions lies
in the fact that such phenomena arise in a variety of applied problems like, e.g.,
melting and freezing in solid-liquid mixtures, phase changes in solids, crystal growth, soil freezing,
damage in elastic materials, plasticity, food conservation, collisions, and so on. From
the practical viewpoint, the possibility to describe these phenomena in a quantitative way
has deeply influenced the technological
development of our society, stimulating the related mathematical interest.
Max ERC Funding
659 785 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym ENUBET
Project Enhanced NeUtrino BEams from kaon Tagging
Researcher (PI) Andrea Longhin
Host Institution (HI) ISTITUTO NAZIONALE DI FISICA NUCLEARE
Call Details Consolidator Grant (CoG), PE2, ERC-2015-CoG
Summary ENUBET has been designed to open a new window of opportunities in accelerator neutrino physics.
The proposed project enables for the first time the measurement of the positrons produced in the decay tunnel of conventional neutrino beams: these particles signal uniquely the generation of an electron neutrino at source.
Neutrino facilities enhanced by the ENUBET technique will have an unprecedented control of the neutrino flux. This will allow to reduce by one order of magnitude the uncertainties on neutrino cross sections: a leap that has been sought after since decades and that is needed to address the challenges of discovering matter-antimatter asymmetries in the leptonic sector.
The apparatus is a highly specialized electromagnetic calorimeter with fast response, sustaining particle rates as high as 0.5 MHz/cm^2, having excellent electron/pion separation capabilities with a reduced number of read-out channels. ENUBET will boost technologies that have been envisaged for high energy colliders to address this new challenge. On the other hand it will operate in a substantially different configuration. The experiment will be performed at the CERN Neutrino Platform, a recently approved facility where innovative neutrino detectors will be developed exploiting dedicated hadron beam-lines from the SPS accelerator. In the first phase of the project, ENUBET will address the challenges of particle identification from extended sources, developing innovative optical readout systems and cost-effective solutions for radiation imaging. This approach is based on cutting-edge technologies for single photon sensitive devices. During the second phase, the detector will be assembled and characterized at CERN with particle beams. Finally, it will be operated in time coincidence with Liquid Argon neutrino detectors, achieving a major step towards the realization of the concept of tagging individual neutrinos both at production and interaction level, on an event-by-event basis.
Summary
ENUBET has been designed to open a new window of opportunities in accelerator neutrino physics.
The proposed project enables for the first time the measurement of the positrons produced in the decay tunnel of conventional neutrino beams: these particles signal uniquely the generation of an electron neutrino at source.
Neutrino facilities enhanced by the ENUBET technique will have an unprecedented control of the neutrino flux. This will allow to reduce by one order of magnitude the uncertainties on neutrino cross sections: a leap that has been sought after since decades and that is needed to address the challenges of discovering matter-antimatter asymmetries in the leptonic sector.
The apparatus is a highly specialized electromagnetic calorimeter with fast response, sustaining particle rates as high as 0.5 MHz/cm^2, having excellent electron/pion separation capabilities with a reduced number of read-out channels. ENUBET will boost technologies that have been envisaged for high energy colliders to address this new challenge. On the other hand it will operate in a substantially different configuration. The experiment will be performed at the CERN Neutrino Platform, a recently approved facility where innovative neutrino detectors will be developed exploiting dedicated hadron beam-lines from the SPS accelerator. In the first phase of the project, ENUBET will address the challenges of particle identification from extended sources, developing innovative optical readout systems and cost-effective solutions for radiation imaging. This approach is based on cutting-edge technologies for single photon sensitive devices. During the second phase, the detector will be assembled and characterized at CERN with particle beams. Finally, it will be operated in time coincidence with Liquid Argon neutrino detectors, achieving a major step towards the realization of the concept of tagging individual neutrinos both at production and interaction level, on an event-by-event basis.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym ERACHRON
Project Eradicating Chronic Infections
Researcher (PI) Sara SATTIN
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Starting Grant (StG), PE5, ERC-2017-STG
Summary "Given the alarming progression of chronic and relapsing infections in the last decades, and the even more alarming predictions for the upcoming years, it is urgent for chemists to be able to provide new molecular tools to study, and ultimately solve, these complex biological problems. Bacterial persisters are an elusive ""dormant"" phenotype that play a pivotal role in chronic infections, with mechanisms that remain to be fully unravelled. Current knowledge suggests that bacterial persisters are not genetically resistant to antibiotic treatment; they simply appear to shut down through a cascade of biochemical events called the stringent response (SR), becoming insensitive to current drugs. This subpopulation remains unaffected during the time of pharmacological treatment and represents a reservoir that sustains pathogen survival and resurgence. The goal of this project is to fill the knowledge gap between persisters formation and infection eradication, providing the community with potent and selective small molecular tools that can be used to challenge complementary survival mechanisms.
I will adopt a combined approach targeting a specific cellular trigger of the persister phenotype with small molecules designed ad hoc in order to switch it off. The target is a bacterial protein involved in the SR cascade, whose activity is proposed to be allosterically regulated. Coordination propensity analysis of the dynamic behaviour of the target will highlight regulation sites exploitable to modulate and control the protein activity. Structure-based design, virtual fragment screening and chemical synthesis will operate in synergy. Experimental screening methodologies intrinsically rich in structural information, such as those based on NMR spectroscopy, will be privileged.
The overarching goal is to identify molecules able to prevent the insurgence of the ""dormant"" drug-tolerant state and, possibly, revert the persisters already present to the ""awake"" drug-sensitive phenotype.
"
Summary
"Given the alarming progression of chronic and relapsing infections in the last decades, and the even more alarming predictions for the upcoming years, it is urgent for chemists to be able to provide new molecular tools to study, and ultimately solve, these complex biological problems. Bacterial persisters are an elusive ""dormant"" phenotype that play a pivotal role in chronic infections, with mechanisms that remain to be fully unravelled. Current knowledge suggests that bacterial persisters are not genetically resistant to antibiotic treatment; they simply appear to shut down through a cascade of biochemical events called the stringent response (SR), becoming insensitive to current drugs. This subpopulation remains unaffected during the time of pharmacological treatment and represents a reservoir that sustains pathogen survival and resurgence. The goal of this project is to fill the knowledge gap between persisters formation and infection eradication, providing the community with potent and selective small molecular tools that can be used to challenge complementary survival mechanisms.
I will adopt a combined approach targeting a specific cellular trigger of the persister phenotype with small molecules designed ad hoc in order to switch it off. The target is a bacterial protein involved in the SR cascade, whose activity is proposed to be allosterically regulated. Coordination propensity analysis of the dynamic behaviour of the target will highlight regulation sites exploitable to modulate and control the protein activity. Structure-based design, virtual fragment screening and chemical synthesis will operate in synergy. Experimental screening methodologies intrinsically rich in structural information, such as those based on NMR spectroscopy, will be privileged.
The overarching goal is to identify molecules able to prevent the insurgence of the ""dormant"" drug-tolerant state and, possibly, revert the persisters already present to the ""awake"" drug-sensitive phenotype.
"
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym EspLORE
Project Extending the science perspectives of linear wires of carbon atoms from fundamental research to emerging materials
Researcher (PI) Carlo Spartaco CASARI
Host Institution (HI) POLITECNICO DI MILANO
Call Details Consolidator Grant (CoG), PE8, ERC-2016-COG
Summary EspLORE aims at addressing the potential of carbon-atom wires for developing novel functional coatings in an application-oriented approach. Carbon-atom wires, based on sp-hybridization, are the ultimate 1-dimensional carbon nanostructure (1-atom diameter) with functional properties strongly dependent on the wire length and termination. The design and control of the wire structure opens the way to build materials with tunable properties, which is at present a largely unexplored topic. The core concept of EspLORE is to exploit the present fundamental knowledge of carbon-atom wires as isolated molecules/nanostructures to explore the applied science and engineering of new materials in the form of thin film assemblies and nanocomposites, so to fill the large existing gap between basic science and engineering. To this aim the main challenging goals are:
1) the controlled synthesis of wires;
2) the development of strategies to assemble wires in thin films and nanocomposites;
3) the exploration of potential use of wire-based materials in direct energy conversion devices (e.g. photovoltaics, water splitting, fuel cells).
The proposed methodology includes fabrication of wires by physical methods, their deposition/assembling on surfaces, and the experimental study of structural, electronic and optical properties. Structure-property relationship is investigated at a multiscale level, moving from the single wire level (atomic scale) to multi-wire interactions (nanoscale) and up to extended systems (macroscale).
The outcomes of the project will put the foundations for the materials engineering of wire-based systems and their realistic implementation in advanced technological applications. These materials, able to provide complementary properties to graphene, will synergistically contribute to open new perspectives for an innovative ‘all-carbon’ approach to present and future challenges in many fields of engineering and technology.
Summary
EspLORE aims at addressing the potential of carbon-atom wires for developing novel functional coatings in an application-oriented approach. Carbon-atom wires, based on sp-hybridization, are the ultimate 1-dimensional carbon nanostructure (1-atom diameter) with functional properties strongly dependent on the wire length and termination. The design and control of the wire structure opens the way to build materials with tunable properties, which is at present a largely unexplored topic. The core concept of EspLORE is to exploit the present fundamental knowledge of carbon-atom wires as isolated molecules/nanostructures to explore the applied science and engineering of new materials in the form of thin film assemblies and nanocomposites, so to fill the large existing gap between basic science and engineering. To this aim the main challenging goals are:
1) the controlled synthesis of wires;
2) the development of strategies to assemble wires in thin films and nanocomposites;
3) the exploration of potential use of wire-based materials in direct energy conversion devices (e.g. photovoltaics, water splitting, fuel cells).
The proposed methodology includes fabrication of wires by physical methods, their deposition/assembling on surfaces, and the experimental study of structural, electronic and optical properties. Structure-property relationship is investigated at a multiscale level, moving from the single wire level (atomic scale) to multi-wire interactions (nanoscale) and up to extended systems (macroscale).
The outcomes of the project will put the foundations for the materials engineering of wire-based systems and their realistic implementation in advanced technological applications. These materials, able to provide complementary properties to graphene, will synergistically contribute to open new perspectives for an innovative ‘all-carbon’ approach to present and future challenges in many fields of engineering and technology.
Max ERC Funding
1 981 875 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym EVERYSOUND
Project Computational Analysis of Everyday Soundscapes
Researcher (PI) Tuomas Oskari Virtanen
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Call Details Starting Grant (StG), PE6, ERC-2014-STG
Summary Sounds carry a large amount of information about our everyday environment and physical events that take place in it. For example, when a car is passing by, one can perceive the approximate size and speed of the car. Sound can easily and unobtrusively be captured e.g. by mobile phones and transmitted further – for example, tens of hours of audio is uploaded to the internet every minute e.g. in the form of YouTube videos. However, today's technology is not able to recognize individual sound sources in realistic soundscapes, where multiple sounds are present, often simultaneously, and distorted by the environment.
The ground-breaking objective of EVERYSOUND is to develop computational methods which will automatically provide high-level descriptions of environmental sounds in realistic everyday soundscapes such as street, park, home, etc. This requires developing several novel methods, including joint source separation and robust pattern classification algorithms to reliably recognize multiple overlapping sounds, and a hierarchical multilayer taxonomy to accurately categorize everyday sounds. The methods are based on the applicant's internationally recognized and awarded expertise on source separation and robust pattern recognition in speech and music processing, which will allow now tackling the new and challenging research area of everyday sound recognition.
The results of EVERYSOUND will enable searching for multimedia based on its audio content, which is not possible with today's technology. It will allow mobile devices, robots, and intelligent monitoring systems to recognize activities in their environments using acoustic information. Producing automatically descriptions of vast quantities of audio will give new tools for geographical, social, cultural, and biological studies to analyze sounds related to human, animal, and natural activity in urban and rural areas, as well as multimedia in social networks.
Summary
Sounds carry a large amount of information about our everyday environment and physical events that take place in it. For example, when a car is passing by, one can perceive the approximate size and speed of the car. Sound can easily and unobtrusively be captured e.g. by mobile phones and transmitted further – for example, tens of hours of audio is uploaded to the internet every minute e.g. in the form of YouTube videos. However, today's technology is not able to recognize individual sound sources in realistic soundscapes, where multiple sounds are present, often simultaneously, and distorted by the environment.
The ground-breaking objective of EVERYSOUND is to develop computational methods which will automatically provide high-level descriptions of environmental sounds in realistic everyday soundscapes such as street, park, home, etc. This requires developing several novel methods, including joint source separation and robust pattern classification algorithms to reliably recognize multiple overlapping sounds, and a hierarchical multilayer taxonomy to accurately categorize everyday sounds. The methods are based on the applicant's internationally recognized and awarded expertise on source separation and robust pattern recognition in speech and music processing, which will allow now tackling the new and challenging research area of everyday sound recognition.
The results of EVERYSOUND will enable searching for multimedia based on its audio content, which is not possible with today's technology. It will allow mobile devices, robots, and intelligent monitoring systems to recognize activities in their environments using acoustic information. Producing automatically descriptions of vast quantities of audio will give new tools for geographical, social, cultural, and biological studies to analyze sounds related to human, animal, and natural activity in urban and rural areas, as well as multimedia in social networks.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym EXPLORINGMATTER
Project Exploring Matter with Precision Charm and Beauty Production Measurements in Heavy Nuclei Collisions at LHCb
Researcher (PI) Giulia Manca
Host Institution (HI) UNIVERSITA DEGLI STUDI DI CAGLIARI
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary Collisions of ultra relativistic nuclei are a tool to reach huge energy densities and to form a new state of matter called Quark-Gluon Plasma (QGP), where quarks and gluons can move freely. A number of experiments have studied the possible formation of QGP, but the behaviour of heavy particles such as charm (c) and beauty (b) quarks when they traverse this medium is largely unknown and is the most powerful tool to prove the creation of the QGP and to characterise it. I will perform novel measurements using the LHCb detector at CERN, which covers an unique kinematic region, essential for a full understanding of QGP and nuclear matter in general. LHCb has been optimised to perform c and b quark physics measurements in proton-proton collisions. In EXPLORINGMATTER I propose to extend the LHCb programme to collect for the first time data in heavy ion collisions. Three experimental scenarios are foreseen: (1) Collisions of protons, benchmark to understand the behaviour of the c and b particles in other more complicated environments, as well as providing the final answers to the mechanism of heavy quarkonium production; (2) Collisions of protons with heavy nuclei, where cold nuclear matter effects in high-energy collisions can be studied in detail to understand lead nuclei collisions, where QGP is expected to be formed. (3) Collisions of heavy nuclei, pursued (a) by analysing heavy nuclei interactions through a dedicated setup in which gas will be injected in the LHCb interaction region, reaching energy densities typical of dedicated fixed target experiments; (b) by collecting heavy ion collision data at the LHC. This second setup, which has not been envisaged by LHCb up to now will revolutionise the measurements in this area thanks to the LHCb coverage and precision not achievable by any other experiment. My measurements will furthermore indicate the route to new experiments that could be designed on the basis of these findings.
Summary
Collisions of ultra relativistic nuclei are a tool to reach huge energy densities and to form a new state of matter called Quark-Gluon Plasma (QGP), where quarks and gluons can move freely. A number of experiments have studied the possible formation of QGP, but the behaviour of heavy particles such as charm (c) and beauty (b) quarks when they traverse this medium is largely unknown and is the most powerful tool to prove the creation of the QGP and to characterise it. I will perform novel measurements using the LHCb detector at CERN, which covers an unique kinematic region, essential for a full understanding of QGP and nuclear matter in general. LHCb has been optimised to perform c and b quark physics measurements in proton-proton collisions. In EXPLORINGMATTER I propose to extend the LHCb programme to collect for the first time data in heavy ion collisions. Three experimental scenarios are foreseen: (1) Collisions of protons, benchmark to understand the behaviour of the c and b particles in other more complicated environments, as well as providing the final answers to the mechanism of heavy quarkonium production; (2) Collisions of protons with heavy nuclei, where cold nuclear matter effects in high-energy collisions can be studied in detail to understand lead nuclei collisions, where QGP is expected to be formed. (3) Collisions of heavy nuclei, pursued (a) by analysing heavy nuclei interactions through a dedicated setup in which gas will be injected in the LHCb interaction region, reaching energy densities typical of dedicated fixed target experiments; (b) by collecting heavy ion collision data at the LHC. This second setup, which has not been envisaged by LHCb up to now will revolutionise the measurements in this area thanks to the LHCb coverage and precision not achievable by any other experiment. My measurements will furthermore indicate the route to new experiments that could be designed on the basis of these findings.
Max ERC Funding
1 849 957 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym FEMTOSCOPY
Project Femtosecond Raman Spectroscopy: ultrafast transformations in physics, chemistry and biology
Researcher (PI) Tullio Scopigno
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary We propose the construction and development of a femtosecond broadband stimulated Raman setup to tackle ultra fast chemical, physical and biological processes taking advantage of the top-notch structural sensitivity inherent to the Raman process. The use of a pump-probe stimulated scheme will allow to overcome time-energy restrictions dictated by the uncertainty principle, enabling to reach the femtosecond timescale with energy resolutions which would pertain to the picosecond time domain in the Heisenberg sense. Protein dynamics span several orders of magnitude extending up to macroscopic timescales, the recipes to tailor properties of rubbers and polymers relevant for human timescales are covered by more than 500000 patents, rust reaction occurs over several days, and lethal brain strokes often lead to death within 24 hours on average. The lowest hierarchical level of such processes, however, is hidden in the very act of atomic motion and chemical binding such as the single bond dynamics in a peptide backbone, the monomer cross-linking elemental reactions, the energy flow and re-distribution in a hydrogen bond network, or the oxygen binding to heme proteins, all performing on the femtosecond stage. Mastering these processes is the essence of femtochemistry, born around the backbone of the femtosecond laser technology and boosted by scientific activity which led to the Nobel prize of Prof. A. Zewail in 1999. The new capabilities offered by femtosecond sources have often left behind in the race traditional spectroscopies, which hardly follow the growing emergence of new challenging problems in which the traditional distinction between biology, chemistry and physics is smeared out by the common ultra short timescale. The set up of a non conventional femtosecond Raman technique will be the initiating event for the establishment of a research group of interdisciplinary nature toiling over unsolved problems in which the ultrafast facet plays a key role.
Summary
We propose the construction and development of a femtosecond broadband stimulated Raman setup to tackle ultra fast chemical, physical and biological processes taking advantage of the top-notch structural sensitivity inherent to the Raman process. The use of a pump-probe stimulated scheme will allow to overcome time-energy restrictions dictated by the uncertainty principle, enabling to reach the femtosecond timescale with energy resolutions which would pertain to the picosecond time domain in the Heisenberg sense. Protein dynamics span several orders of magnitude extending up to macroscopic timescales, the recipes to tailor properties of rubbers and polymers relevant for human timescales are covered by more than 500000 patents, rust reaction occurs over several days, and lethal brain strokes often lead to death within 24 hours on average. The lowest hierarchical level of such processes, however, is hidden in the very act of atomic motion and chemical binding such as the single bond dynamics in a peptide backbone, the monomer cross-linking elemental reactions, the energy flow and re-distribution in a hydrogen bond network, or the oxygen binding to heme proteins, all performing on the femtosecond stage. Mastering these processes is the essence of femtochemistry, born around the backbone of the femtosecond laser technology and boosted by scientific activity which led to the Nobel prize of Prof. A. Zewail in 1999. The new capabilities offered by femtosecond sources have often left behind in the race traditional spectroscopies, which hardly follow the growing emergence of new challenging problems in which the traditional distinction between biology, chemistry and physics is smeared out by the common ultra short timescale. The set up of a non conventional femtosecond Raman technique will be the initiating event for the establishment of a research group of interdisciplinary nature toiling over unsolved problems in which the ultrafast facet plays a key role.
Max ERC Funding
1 544 400 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym FIRST
Project The first stars and galaxies
Researcher (PI) Raffaella Schneider
Host Institution (HI) ISTITUTO NAZIONALE DI ASTROFISICA
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary The FIRST proposal has the goal of investigating the nature and properties of the first stars and galaxies. The project will exploit synergies between observational cosmology, galaxy formation and stellar evolution.
Observations made using large ground-based and space-borne telescopes have probed cosmic history all the way from the present-day to ~ 700 million years after the Big Bang. Earlier on lies the remaining frontier, where the first stars and galaxies formed. Data collected in the last decade have revealed that the Universe at redshift ~ 7-8 is already mature, with galaxies and quasars already formed, many with metal-rich and dust-rich signatures of even earlier generations of stars. Despite these remarkable progresses, the nature of the first stars and black holes, and the impact they had on their environment and on the properties of the first galaxies and quasars remain largely unknown.
The proposed research program aims to address two main scientific objectives:
(1) Understand the evolution of the first metals and dust and their role in setting the characteristic masses of stars and seed black holes;
(2) Assess the properties of the first galaxies and quasars.
These goals will be addressed following an interdisciplinary approach which involves theoretical models of stellar evolution and nucleosynthesis, semi-analytical and numerical models of galaxy evolution, and detailed comparison with observational data from surveys at low and high redshifts. New numerical techniques will be developed, with potential applications that go beyond the primary goals of FIRST. The results will provide new insights on the nature of the first stars and galaxies and will be of important guidance for interpreting data from ongoing surveys (HST, Spitzer, IRAM, ALMA) and for the preparation of key programs with future large telescopes (ELT, JWST).
Summary
The FIRST proposal has the goal of investigating the nature and properties of the first stars and galaxies. The project will exploit synergies between observational cosmology, galaxy formation and stellar evolution.
Observations made using large ground-based and space-borne telescopes have probed cosmic history all the way from the present-day to ~ 700 million years after the Big Bang. Earlier on lies the remaining frontier, where the first stars and galaxies formed. Data collected in the last decade have revealed that the Universe at redshift ~ 7-8 is already mature, with galaxies and quasars already formed, many with metal-rich and dust-rich signatures of even earlier generations of stars. Despite these remarkable progresses, the nature of the first stars and black holes, and the impact they had on their environment and on the properties of the first galaxies and quasars remain largely unknown.
The proposed research program aims to address two main scientific objectives:
(1) Understand the evolution of the first metals and dust and their role in setting the characteristic masses of stars and seed black holes;
(2) Assess the properties of the first galaxies and quasars.
These goals will be addressed following an interdisciplinary approach which involves theoretical models of stellar evolution and nucleosynthesis, semi-analytical and numerical models of galaxy evolution, and detailed comparison with observational data from surveys at low and high redshifts. New numerical techniques will be developed, with potential applications that go beyond the primary goals of FIRST. The results will provide new insights on the nature of the first stars and galaxies and will be of important guidance for interpreting data from ongoing surveys (HST, Spitzer, IRAM, ALMA) and for the preparation of key programs with future large telescopes (ELT, JWST).
Max ERC Funding
882 808 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym FIRSTORM
Project Modeling first-order Mott transitions
Researcher (PI) Michele FABRIZIO
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Advanced Grant (AdG), PE3, ERC-2015-AdG
Summary Mott insulators are “unsuccessful metals”, where conduction is impeded by strong Coulomb repulsion. Their use in microelectronics started to be seriously considered in the 1990s, when first reports of field-effect switches appeared. These attempts were motivated by the expectation that the dielectric breakdown in Mott insulators could suddenly release all formerly localized carriers, a significant potential for nanometer scaling. Over the very last years striking experimental data on narrow-gap Mott insulators have finally materialized that expectation disclosing an unprecedented scenario where the metal phase actually stabilized was only metastable at equilibrium, which foreshadows exciting potential applications. These new data call for an urgent theoretical understanding so far missing. In fact, the conventional portrait of Mott insulators has overlooked that Mott transitions are mostly 1st order, implying an extended insulator-metal coexistence. As a result, bias or light may nucleate long-lived metastable metal droplets within the stable insulator, as indeed seen in experiments. The unexpected 1st order nature of dielectric breakdown in Mott insulators and its poorly explored but important conceptual and practical consequences are the scope of my theoretical project. I will model known Mott insulators identifying the variety of mechanisms (Coulomb, lattice distortions) that support and boost the 1st order character of the Mott transition. I will model and study insulator-metal coexistence and associated novel phenomena such as those related to nucleation and wetting at the interface, including possible unexplored role of quantum fluctuations. I will then simulate in model calculations the spatially inhomogeneous dynamics and non-equilibrium pathways across the 1st order Mott transition, relating the results to ongoing experiments in top groups. The outcome of this project is expected to yield immediate conceptual as well as later technological consequences.
Summary
Mott insulators are “unsuccessful metals”, where conduction is impeded by strong Coulomb repulsion. Their use in microelectronics started to be seriously considered in the 1990s, when first reports of field-effect switches appeared. These attempts were motivated by the expectation that the dielectric breakdown in Mott insulators could suddenly release all formerly localized carriers, a significant potential for nanometer scaling. Over the very last years striking experimental data on narrow-gap Mott insulators have finally materialized that expectation disclosing an unprecedented scenario where the metal phase actually stabilized was only metastable at equilibrium, which foreshadows exciting potential applications. These new data call for an urgent theoretical understanding so far missing. In fact, the conventional portrait of Mott insulators has overlooked that Mott transitions are mostly 1st order, implying an extended insulator-metal coexistence. As a result, bias or light may nucleate long-lived metastable metal droplets within the stable insulator, as indeed seen in experiments. The unexpected 1st order nature of dielectric breakdown in Mott insulators and its poorly explored but important conceptual and practical consequences are the scope of my theoretical project. I will model known Mott insulators identifying the variety of mechanisms (Coulomb, lattice distortions) that support and boost the 1st order character of the Mott transition. I will model and study insulator-metal coexistence and associated novel phenomena such as those related to nucleation and wetting at the interface, including possible unexplored role of quantum fluctuations. I will then simulate in model calculations the spatially inhomogeneous dynamics and non-equilibrium pathways across the 1st order Mott transition, relating the results to ongoing experiments in top groups. The outcome of this project is expected to yield immediate conceptual as well as later technological consequences.
Max ERC Funding
1 422 684 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym FOLDHALO
Project Folding with Halogen Bonding
Researcher (PI) Pierangelo Metrangolo
Host Institution (HI) POLITECNICO DI MILANO
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary "The focus of this research project will be on halogen bonding, namely any noncovalent interactions involving halogen atoms as electrophilic species (electron density acceptor sites, Lewis acids, halogen bonding-donors). In particular, the overall goal of the project will be to fully elucidate the capabilities and properties of halogen atoms as recognition “sticky” sites in the context of biomolecules.
The general objective of this research project will be achieved through the application of a multi-dimensional approach to the understanding of the intermolecular interactions involving halogenated molecules in chemistry and biology. The programme of work will centre around three closely integrated and synergistic strands. The common theme is to exploit halogen bonding for the design of “smart” peptides and foldamers (Strand 1), the obtainment of complexes of polyhalogenated organic pollutants with serum proteins (Strand 2), and to assemble biomimetic sensors for polyhalogenated organic pollutants (Strand 3).
For the first time a multidisciplinary team composed by synthetic chemists, small molecule crystallographers, biologists, physicists, and protein crystallographers will join forces around the fundamental issues of: a) contributing to the establishment of the nature and properties of halogen bonding in ligand/biomolecule systems; b) improving our understanding of long-distance intermolecular interactions and their role on the energy profiles of biochemical transformations; c) facilitating preparation of more rationally designed new halogenated drugs; d) allowing for the mechanistic understanding of reactivity of halogen-containing molecules for the development of efficient and ""green"" synthetic and bioremediation methods.
The overall aim of this project is, therefore, to enlighten to the scientific community the potential that halogen bonding has to become a very powerful tool in the manipulation of molecular recognition phenomena in chemistry and biology."
Summary
"The focus of this research project will be on halogen bonding, namely any noncovalent interactions involving halogen atoms as electrophilic species (electron density acceptor sites, Lewis acids, halogen bonding-donors). In particular, the overall goal of the project will be to fully elucidate the capabilities and properties of halogen atoms as recognition “sticky” sites in the context of biomolecules.
The general objective of this research project will be achieved through the application of a multi-dimensional approach to the understanding of the intermolecular interactions involving halogenated molecules in chemistry and biology. The programme of work will centre around three closely integrated and synergistic strands. The common theme is to exploit halogen bonding for the design of “smart” peptides and foldamers (Strand 1), the obtainment of complexes of polyhalogenated organic pollutants with serum proteins (Strand 2), and to assemble biomimetic sensors for polyhalogenated organic pollutants (Strand 3).
For the first time a multidisciplinary team composed by synthetic chemists, small molecule crystallographers, biologists, physicists, and protein crystallographers will join forces around the fundamental issues of: a) contributing to the establishment of the nature and properties of halogen bonding in ligand/biomolecule systems; b) improving our understanding of long-distance intermolecular interactions and their role on the energy profiles of biochemical transformations; c) facilitating preparation of more rationally designed new halogenated drugs; d) allowing for the mechanistic understanding of reactivity of halogen-containing molecules for the development of efficient and ""green"" synthetic and bioremediation methods.
The overall aim of this project is, therefore, to enlighten to the scientific community the potential that halogen bonding has to become a very powerful tool in the manipulation of molecular recognition phenomena in chemistry and biology."
Max ERC Funding
1 393 000 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym Fornax
Project Galaxy evolution in dense environments
Researcher (PI) Paolo Serra
Host Institution (HI) ISTITUTO NAZIONALE DI ASTROFISICA
Call Details Starting Grant (StG), PE9, ERC-2015-STG
Summary The Universe around us is populated with galaxies, each containing from millions to tens of billions of individual stars. Far from being immutable, galaxies undergo profound changes as they age. Their evolution depends on their position in the cosmic web, a network of sheets and filaments of matter that stretches across the entire Universe. The goal of FORNAX is to study the evolution of galaxies in the densest regions of the cosmic web, galaxy clusters. In these regions, a number of physical processes are thought to make galaxies lose their cold gas – the material from which new stars are born – and change their appearance dramatically. I will study these processes in action by observing the flow of cold gas in and out of galaxies living inside an important, nearby cluster of galaxies: Fornax.
I will observe Fornax for 2,450 hours with MeerKAT, a new, state-of-the-art radio telescope precursor of the Square Kilometre Array. Thanks to the unprecedented combination of sensitivity, resolution and sky-coverage of my survey, I will reveal the most subtle signs of the removal of gas from galaxies, I will detect the smallest gas-bearing galaxies in the cluster, and I will hunt the elusive cold gas which, according to cosmological theories, floats in the space between galaxies along the filaments of the cosmic web.
Summary
The Universe around us is populated with galaxies, each containing from millions to tens of billions of individual stars. Far from being immutable, galaxies undergo profound changes as they age. Their evolution depends on their position in the cosmic web, a network of sheets and filaments of matter that stretches across the entire Universe. The goal of FORNAX is to study the evolution of galaxies in the densest regions of the cosmic web, galaxy clusters. In these regions, a number of physical processes are thought to make galaxies lose their cold gas – the material from which new stars are born – and change their appearance dramatically. I will study these processes in action by observing the flow of cold gas in and out of galaxies living inside an important, nearby cluster of galaxies: Fornax.
I will observe Fornax for 2,450 hours with MeerKAT, a new, state-of-the-art radio telescope precursor of the Square Kilometre Array. Thanks to the unprecedented combination of sensitivity, resolution and sky-coverage of my survey, I will reveal the most subtle signs of the removal of gas from galaxies, I will detect the smallest gas-bearing galaxies in the cluster, and I will hunt the elusive cold gas which, according to cosmological theories, floats in the space between galaxies along the filaments of the cosmic web.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym FoTran
Project Found in Translation – Natural Language Understanding with Cross-Lingual Grounding
Researcher (PI) Jörg TIEDEMANN
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary "Natural language understanding is the ""holy grail"" of computational linguistics and a long-term goal in research on artificial intelligence. Understanding human communication is difficult due to the various ambiguities in natural languages and the wide range of contextual dependencies required to resolve them. Discovering the semantics behind language input is necessary for proper interpretation in interactive tools, which requires an abstraction from language-specific forms to language-independent meaning representations. With this project, I propose a line of research that will focus on the development of novel data-driven models that can learn such meaning representations from indirect supervision provided by human translations covering a substantial proportion of the linguistic diversity in the world. A guiding principle is cross-lingual grounding, the effect of resolving ambiguities through translation. The beauty of that idea is the use of naturally occurring data instead of artificially created resources and costly manual annotations. The framework is based on deep learning and neural machine translation and my hypothesis is that training on increasing amounts of linguistically diverse data improves the abstractions found by the model. Eventually, this will lead to universal sentence-level meaning representations and we will test our ideas with multilingual machine translation and tasks that require semantic reasoning and inference."
Summary
"Natural language understanding is the ""holy grail"" of computational linguistics and a long-term goal in research on artificial intelligence. Understanding human communication is difficult due to the various ambiguities in natural languages and the wide range of contextual dependencies required to resolve them. Discovering the semantics behind language input is necessary for proper interpretation in interactive tools, which requires an abstraction from language-specific forms to language-independent meaning representations. With this project, I propose a line of research that will focus on the development of novel data-driven models that can learn such meaning representations from indirect supervision provided by human translations covering a substantial proportion of the linguistic diversity in the world. A guiding principle is cross-lingual grounding, the effect of resolving ambiguities through translation. The beauty of that idea is the use of naturally occurring data instead of artificially created resources and costly manual annotations. The framework is based on deep learning and neural machine translation and my hypothesis is that training on increasing amounts of linguistically diverse data improves the abstractions found by the model. Eventually, this will lead to universal sentence-level meaning representations and we will test our ideas with multilingual machine translation and tasks that require semantic reasoning and inference."
Max ERC Funding
1 817 622 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym FREENERGY
Project Lead-free halide perovskites for the highest efficient solar energy conversion
Researcher (PI) Antonio ABATE
Host Institution (HI) UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary Achieving zero net carbon emissions by the end of the century is the challenge for capping global warming. The largest share of carbon emissions belongs to the production of electric energy from fossil fuels, which renewable energies are progressively replacing. Sunlight is an ideal renewable energy source since it is most abundant and available worldwide. Photovoltaic solar cells can directly convert the sunlight into electric energy by making use of the photovoltaic effect in semiconductors. Halide perovskites are emerging crystalline semiconducting materials with among the strongest light absorption and the most effective electric charge generation needed to design the highest efficient photovoltaic solar cells. The PI has the ambition to reinvent halide perovskites as environmentally friendly photovoltaic material, aiming at:
(i) Removing lead: state-of-the-art perovskite solar cells are based on lead, which is in the list of hazardous substances of the European Union. The PI will prepare new tin-based perovskites and prove them in the highest efficient solar cells.
(ii) Solvent-free crystallisation: organic solvents drive the crystallisation of the perovskite in the most efficient solar cells. However, crystallising the perovskite without using solvents is more environmentally friendly. The PI will establish physical vapour deposition as a solvent-free method for preparing the perovskite and the other materials comprising the solar cell.
(iii) Durable power output: the long-term power output defines the solar energy yield and thus the return on investment. The PI aims to make stable tin-based perovskites addressing the oxidative instability of tin directly.
The quantified target of FREENERGY is demonstrating a tin-based perovskite solar cell with power conversion efficiency over 20% and stability for 25 years. The research strategy to enable this disruptive outcome comprises innovative perovskites formulations and unconventional supramolecular interactions
Summary
Achieving zero net carbon emissions by the end of the century is the challenge for capping global warming. The largest share of carbon emissions belongs to the production of electric energy from fossil fuels, which renewable energies are progressively replacing. Sunlight is an ideal renewable energy source since it is most abundant and available worldwide. Photovoltaic solar cells can directly convert the sunlight into electric energy by making use of the photovoltaic effect in semiconductors. Halide perovskites are emerging crystalline semiconducting materials with among the strongest light absorption and the most effective electric charge generation needed to design the highest efficient photovoltaic solar cells. The PI has the ambition to reinvent halide perovskites as environmentally friendly photovoltaic material, aiming at:
(i) Removing lead: state-of-the-art perovskite solar cells are based on lead, which is in the list of hazardous substances of the European Union. The PI will prepare new tin-based perovskites and prove them in the highest efficient solar cells.
(ii) Solvent-free crystallisation: organic solvents drive the crystallisation of the perovskite in the most efficient solar cells. However, crystallising the perovskite without using solvents is more environmentally friendly. The PI will establish physical vapour deposition as a solvent-free method for preparing the perovskite and the other materials comprising the solar cell.
(iii) Durable power output: the long-term power output defines the solar energy yield and thus the return on investment. The PI aims to make stable tin-based perovskites addressing the oxidative instability of tin directly.
The quantified target of FREENERGY is demonstrating a tin-based perovskite solar cell with power conversion efficiency over 20% and stability for 25 years. The research strategy to enable this disruptive outcome comprises innovative perovskites formulations and unconventional supramolecular interactions
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym FricLess
Project A seamless multi-scale model for contact, friction, and solid lubrication
Researcher (PI) Lucia Nicola
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PADOVA
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary Friction and wear are liable for enormous losses in terms of energy and resources in modern society. Costs related to unwanted friction in industrialised countries are estimated to be about 3% of the gross domestic product. Urgency is even greater nowadays as friction between micro-components has become the bottleneck of several applications for which miniaturisation is critical.
Lubrication is a commonly adopted solution to reduce friction. Graphite is a broadly used solid lubricant for large scale applications, while the lubricating properties of a few-layers graphene hold great promise especially for smaller scale applications. At present, our knowledge of the friction and lubrication of rough surfaces is essentially phenomenological. This is because friction is only deceivingly a simple mechanisms, which instead requires understanding of physical phenomena simultaneously acting at different length scales. The change in contact size, which controls the friction stress, depends on nano-scale phenomena such as atomic de-adhesion, sliding, dislocation nucleation in metals, but also on micro- and macro-scale phenomena as (size-dependent) plastic deformation.
The objective of this proposal is to reach an unprecedented understanding of metal friction and lubrication by accounting, for the first time, for all relevant phenomena occurring from the atomic to the macro-scale, and their interplay.
To this end, a seamless concurrent multi-scale model will be developed. The power of this new model lies in its capability of describing three-dimensional bodies with realistic roughness in sliding lubricated contact, with the accuracy of an atomistic simulation.
This research builds towards a complete picture of metal friction and lubrication. The materials chosen for the proposed research are copper and multi-layer graphene. However, the model that will be developed is general and can be used to study different materials, lubricants and environmental conditions.
Summary
Friction and wear are liable for enormous losses in terms of energy and resources in modern society. Costs related to unwanted friction in industrialised countries are estimated to be about 3% of the gross domestic product. Urgency is even greater nowadays as friction between micro-components has become the bottleneck of several applications for which miniaturisation is critical.
Lubrication is a commonly adopted solution to reduce friction. Graphite is a broadly used solid lubricant for large scale applications, while the lubricating properties of a few-layers graphene hold great promise especially for smaller scale applications. At present, our knowledge of the friction and lubrication of rough surfaces is essentially phenomenological. This is because friction is only deceivingly a simple mechanisms, which instead requires understanding of physical phenomena simultaneously acting at different length scales. The change in contact size, which controls the friction stress, depends on nano-scale phenomena such as atomic de-adhesion, sliding, dislocation nucleation in metals, but also on micro- and macro-scale phenomena as (size-dependent) plastic deformation.
The objective of this proposal is to reach an unprecedented understanding of metal friction and lubrication by accounting, for the first time, for all relevant phenomena occurring from the atomic to the macro-scale, and their interplay.
To this end, a seamless concurrent multi-scale model will be developed. The power of this new model lies in its capability of describing three-dimensional bodies with realistic roughness in sliding lubricated contact, with the accuracy of an atomistic simulation.
This research builds towards a complete picture of metal friction and lubrication. The materials chosen for the proposed research are copper and multi-layer graphene. However, the model that will be developed is general and can be used to study different materials, lubricants and environmental conditions.
Max ERC Funding
1 999 985 €
Duration
Start date: 2016-06-01, End date: 2022-11-30