Project acronym ANADEL
Project Analysis of Geometrical Effects on Dispersive Equations
Researcher (PI) Danela Oana IVANOVICI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE1, ERC-2017-STG
Summary We are concerned with localization properties of solutions to hyperbolic PDEs, especially problems with a geometric component: how do boundaries and heterogeneous media influence spreading and concentration of solutions. While our first focus is on wave and Schrödinger equations on manifolds with boundary, strong connections exist with phase space localization for (clusters of) eigenfunctions, which are of independent interest. Motivations come from nonlinear dispersive models (in physically relevant settings), properties of eigenfunctions in quantum chaos (related to both physics of optic fiber design as well as number theoretic questions), or harmonic analysis on manifolds.
Waves propagation in real life physics occur in media which are neither homogeneous or spatially infinity. The birth of radar/sonar technologies (and the raise of computed tomography) greatly motivated numerous developments in microlocal analysis and the linear theory. Only recently toy nonlinear models have been studied on a curved background, sometimes compact or rough. Understanding how to extend such tools, dealing with wave dispersion or focusing, will allow us to significantly progress in our mathematical understanding of physically relevant models. There, boundaries appear naturally and most earlier developments related to propagation of singularities in this context have limited scope with respect to crucial dispersive effects. Despite great progress over the last decade, driven by the study of quasilinear equations, our knowledge is still very limited. Going beyond this recent activity requires new tools whose development is at the heart of this proposal, including good approximate solutions (parametrices) going over arbitrarily large numbers of caustics, sharp pointwise bounds on Green functions, development of efficient wave packets methods, quantitative refinements of propagation of singularities (with direct applications in control theory), only to name a few important ones.
Summary
We are concerned with localization properties of solutions to hyperbolic PDEs, especially problems with a geometric component: how do boundaries and heterogeneous media influence spreading and concentration of solutions. While our first focus is on wave and Schrödinger equations on manifolds with boundary, strong connections exist with phase space localization for (clusters of) eigenfunctions, which are of independent interest. Motivations come from nonlinear dispersive models (in physically relevant settings), properties of eigenfunctions in quantum chaos (related to both physics of optic fiber design as well as number theoretic questions), or harmonic analysis on manifolds.
Waves propagation in real life physics occur in media which are neither homogeneous or spatially infinity. The birth of radar/sonar technologies (and the raise of computed tomography) greatly motivated numerous developments in microlocal analysis and the linear theory. Only recently toy nonlinear models have been studied on a curved background, sometimes compact or rough. Understanding how to extend such tools, dealing with wave dispersion or focusing, will allow us to significantly progress in our mathematical understanding of physically relevant models. There, boundaries appear naturally and most earlier developments related to propagation of singularities in this context have limited scope with respect to crucial dispersive effects. Despite great progress over the last decade, driven by the study of quasilinear equations, our knowledge is still very limited. Going beyond this recent activity requires new tools whose development is at the heart of this proposal, including good approximate solutions (parametrices) going over arbitrarily large numbers of caustics, sharp pointwise bounds on Green functions, development of efficient wave packets methods, quantitative refinements of propagation of singularities (with direct applications in control theory), only to name a few important ones.
Max ERC Funding
1 293 763 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym BirNonArchGeom
Project Birational and non-archimedean geometries
Researcher (PI) Michael TEMKIN
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), PE1, ERC-2017-COG
Summary Resolution of singularities is one of classical, central and difficult areas of algebraic geometry, with a centennial history of intensive research and contributions of such great names as Zariski, Hironaka and Abhyankar. Nowadays, desingularization of schemes of characteristic zero is very well understood, while semistable reduction of morphisms and desingularization in positive characteristic are still waiting for major breakthroughs. In addition to the classical techniques with their triumph in characteristic zero, modern resolution of singularities includes de Jong's method of alterations, toroidal methods, formal analytic and non-archimedean methods, etc.
The aim of the proposed research is to study nearly all directions in resolution of singularities and semistable reduction, as well as the wild ramification phenomena, which are probably the main obstacle to transfer methods from characteristic zero to positive characteristic.
The methods of algebraic and non-archimedean geometries are intertwined in the proposal, though algebraic geometry is somewhat dominating, especially due to the new stack-theoretic techniques. It seems very probable that increasing the symbiosis between birational and non-archimedean geometries will be one of by-products of this research.
Summary
Resolution of singularities is one of classical, central and difficult areas of algebraic geometry, with a centennial history of intensive research and contributions of such great names as Zariski, Hironaka and Abhyankar. Nowadays, desingularization of schemes of characteristic zero is very well understood, while semistable reduction of morphisms and desingularization in positive characteristic are still waiting for major breakthroughs. In addition to the classical techniques with their triumph in characteristic zero, modern resolution of singularities includes de Jong's method of alterations, toroidal methods, formal analytic and non-archimedean methods, etc.
The aim of the proposed research is to study nearly all directions in resolution of singularities and semistable reduction, as well as the wild ramification phenomena, which are probably the main obstacle to transfer methods from characteristic zero to positive characteristic.
The methods of algebraic and non-archimedean geometries are intertwined in the proposal, though algebraic geometry is somewhat dominating, especially due to the new stack-theoretic techniques. It seems very probable that increasing the symbiosis between birational and non-archimedean geometries will be one of by-products of this research.
Max ERC Funding
1 365 600 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym COMBINEPIC
Project Elliptic Combinatorics: Solving famous models from combinatorics, probability and statistical mechanics, via a transversal approach of special functions
Researcher (PI) Kilian RASCHEL
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE1, ERC-2017-STG
Summary I am willing to solve several well-known models from combinatorics, probability theory and statistical mechanics: the Ising model on isoradial graphs, dimer models, spanning forests, random walks in cones, occupation time problems. Although completely unrelated a priori, these models have the common feature of being presumed “exactly solvable” models, for which surprising and spectacular formulas should exist for quantities of interest. This is captured by the title “Elliptic Combinatorics”, the wording elliptic referring to the use of special functions, in a broad sense: algebraic/differentially finite (or holonomic)/diagonals/(hyper)elliptic/ hypergeometric/etc.
Besides the exciting nature of the models which we aim at solving, one main strength of our project lies in the variety of modern methods and fields that we cover: combinatorics, probability, algebra (representation theory), computer algebra, algebraic geometry, with a spectrum going from applied to pure mathematics.
We propose in addition two major applications, in finance (Markovian order books) and in population biology (evolution of multitype populations). We plan to work in close collaborations with researchers from these fields, to eventually apply our results (study of extinction probabilities for self-incompatible flower populations, for instance).
Summary
I am willing to solve several well-known models from combinatorics, probability theory and statistical mechanics: the Ising model on isoradial graphs, dimer models, spanning forests, random walks in cones, occupation time problems. Although completely unrelated a priori, these models have the common feature of being presumed “exactly solvable” models, for which surprising and spectacular formulas should exist for quantities of interest. This is captured by the title “Elliptic Combinatorics”, the wording elliptic referring to the use of special functions, in a broad sense: algebraic/differentially finite (or holonomic)/diagonals/(hyper)elliptic/ hypergeometric/etc.
Besides the exciting nature of the models which we aim at solving, one main strength of our project lies in the variety of modern methods and fields that we cover: combinatorics, probability, algebra (representation theory), computer algebra, algebraic geometry, with a spectrum going from applied to pure mathematics.
We propose in addition two major applications, in finance (Markovian order books) and in population biology (evolution of multitype populations). We plan to work in close collaborations with researchers from these fields, to eventually apply our results (study of extinction probabilities for self-incompatible flower populations, for instance).
Max ERC Funding
1 242 400 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym CORFRONMAT
Project Correlated frontiers of many-body quantum mathematics and condensed matter physics
Researcher (PI) Nicolas ROUGERIE
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE1, ERC-2017-STG
Summary One of the main challenges in condensed matter physics is to understand strongly correlated quantum systems. Our purpose is to approach this issue from the point of view of rigorous mathematical analysis. The goals are twofold: develop a mathematical framework applicable to physically relevant scenarii, take inspiration from the physics to introduce new topics in mathematics. The scope of the proposal thus goes from physically oriented questions (theoretical description and modelization of physical systems) to analytical ones (rigorous derivation and analysis of reduced models) in several cases where strong correlations play the key role.
In a first part, we aim at developing mathematical methods of general applicability to go beyond mean-field theory in different contexts. Our long-term goal is to forge new tools to attack important open problems in the field. Particular emphasis will be put on the structural properties of large quantum states as a general tool.
A second part is concerned with so-called fractional quantum Hall states, host of the fractional quantum Hall effect. Despite the appealing structure of their built-in correlations, their mathematical study is in its infancy. They however constitute an excellent testing ground to develop ideas of possible wider applicability. In particular, we introduce and study a new class of many-body variational problems.
In the third part we discuss so-called anyons, exotic quasi-particles thought to emerge as excitations of highly-correlated quantum systems. Their modelization gives rise to rather unusual, strongly interacting, many-body Hamiltonians with a topological content. Mathematical analysis will help us shed light on those, clarifying the characteristic properties that could ultimately be experimentally tested.
Summary
One of the main challenges in condensed matter physics is to understand strongly correlated quantum systems. Our purpose is to approach this issue from the point of view of rigorous mathematical analysis. The goals are twofold: develop a mathematical framework applicable to physically relevant scenarii, take inspiration from the physics to introduce new topics in mathematics. The scope of the proposal thus goes from physically oriented questions (theoretical description and modelization of physical systems) to analytical ones (rigorous derivation and analysis of reduced models) in several cases where strong correlations play the key role.
In a first part, we aim at developing mathematical methods of general applicability to go beyond mean-field theory in different contexts. Our long-term goal is to forge new tools to attack important open problems in the field. Particular emphasis will be put on the structural properties of large quantum states as a general tool.
A second part is concerned with so-called fractional quantum Hall states, host of the fractional quantum Hall effect. Despite the appealing structure of their built-in correlations, their mathematical study is in its infancy. They however constitute an excellent testing ground to develop ideas of possible wider applicability. In particular, we introduce and study a new class of many-body variational problems.
In the third part we discuss so-called anyons, exotic quasi-particles thought to emerge as excitations of highly-correlated quantum systems. Their modelization gives rise to rather unusual, strongly interacting, many-body Hamiltonians with a topological content. Mathematical analysis will help us shed light on those, clarifying the characteristic properties that could ultimately be experimentally tested.
Max ERC Funding
1 056 664 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CriBLaM
Project Critical behavior of lattice models
Researcher (PI) Hugo DUMINIL-COPIN
Host Institution (HI) INSTITUT DES HAUTES ETUDES SCIENTIFIQUES
Call Details Starting Grant (StG), PE1, ERC-2017-STG
Summary Statistical physics is a theory allowing the derivation of the statistical behavior of macroscopic systems from the description of the interactions of their microscopic constituents. For more than a century, lattice models (i.e. random systems defined on lattices) have been introduced as discrete models describing the phase transition for a large variety of phenomena, ranging from ferroelectrics to lattice gas.
In the last decades, our understanding of percolation and the Ising model, two classical exam- ples of lattice models, progressed greatly. Nonetheless, major questions remain open on these two models.
The goal of this project is to break new grounds in the understanding of phase transition in statistical physics by using and aggregating in a pioneering way multiple techniques from proba- bility, combinatorics, analysis and integrable systems. In this project, we will focus on three main goals:
Objective A Provide a solid mathematical framework for the study of universality for Bernoulli percolation and the Ising model in two dimensions.
Objective B Advance in the understanding of the critical behavior of Bernoulli percolation and the Ising model in dimensions larger or equal to 3.
Objective C Greatly improve the understanding of planar lattice models obtained by general- izations of percolation and the Ising model, through the design of an innovative mathematical theory of phase transition dedicated to graphical representations of classical lattice models, such as Fortuin-Kasteleyn percolation, Ashkin-Teller models and Loop models.
Most of the questions that we propose to tackle are notoriously difficult open problems. We believe that breakthroughs in these fundamental questions would reshape significantly our math- ematical understanding of phase transition.
Summary
Statistical physics is a theory allowing the derivation of the statistical behavior of macroscopic systems from the description of the interactions of their microscopic constituents. For more than a century, lattice models (i.e. random systems defined on lattices) have been introduced as discrete models describing the phase transition for a large variety of phenomena, ranging from ferroelectrics to lattice gas.
In the last decades, our understanding of percolation and the Ising model, two classical exam- ples of lattice models, progressed greatly. Nonetheless, major questions remain open on these two models.
The goal of this project is to break new grounds in the understanding of phase transition in statistical physics by using and aggregating in a pioneering way multiple techniques from proba- bility, combinatorics, analysis and integrable systems. In this project, we will focus on three main goals:
Objective A Provide a solid mathematical framework for the study of universality for Bernoulli percolation and the Ising model in two dimensions.
Objective B Advance in the understanding of the critical behavior of Bernoulli percolation and the Ising model in dimensions larger or equal to 3.
Objective C Greatly improve the understanding of planar lattice models obtained by general- izations of percolation and the Ising model, through the design of an innovative mathematical theory of phase transition dedicated to graphical representations of classical lattice models, such as Fortuin-Kasteleyn percolation, Ashkin-Teller models and Loop models.
Most of the questions that we propose to tackle are notoriously difficult open problems. We believe that breakthroughs in these fundamental questions would reshape significantly our math- ematical understanding of phase transition.
Max ERC Funding
1 499 912 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym CSG
Project C° symplectic geometry
Researcher (PI) Lev Buhovski
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE1, ERC-2017-STG
Summary "The objective of this proposal is to study ""continuous"" (or C^0) objects, as well as C^0 properties of smooth objects, in the field of symplectic geometry and topology. C^0 symplectic geometry has seen spectacular progress in recent years, drawing attention of mathematicians from various background. The proposed study aims to discover new fascinating C^0 phenomena in symplectic geometry.
One circle of questions concerns symplectic and Hamiltonian homeomorphisms. Recent studies indicate that these objects possess both rigidity and flexibility, appearing in surprising and counter-intuitive ways. Our understanding of symplectic and Hamiltonian homeomorphisms is far from being satisfactory, and here we intend to study questions related to action of symplectic homeomorphisms on submanifolds. Some other questions are about Hamiltonian homeomorphisms in relation to the celebrated Arnold conjecture. The PI suggests to study spectral invariants of continuous Hamiltonian flows, which allow to formulate the C^0 Arnold conjecture in higher dimensions. Another central problem that the PI will work on is the C^0 flux conjecture.
A second circle of questions is about the Poisson bracket operator, and its functional-theoretic properties. The first question concerns the lower bound for the Poisson bracket invariant of a cover, conjectured by L. Polterovich who indicated relations between this problem and quantum mechanics. Another direction aims to study the C^0 rigidity versus flexibility of the L_p norm of the Poisson bracket. Despite a recent progress in dimension two showing rigidity, very little is known in higher dimensions. The PI proposes to use combination of tools from topology and from hard analysis in order to address this question, whose solution will be a big step towards understanding functional-theoretic properties of the Poisson bracket operator."
Summary
"The objective of this proposal is to study ""continuous"" (or C^0) objects, as well as C^0 properties of smooth objects, in the field of symplectic geometry and topology. C^0 symplectic geometry has seen spectacular progress in recent years, drawing attention of mathematicians from various background. The proposed study aims to discover new fascinating C^0 phenomena in symplectic geometry.
One circle of questions concerns symplectic and Hamiltonian homeomorphisms. Recent studies indicate that these objects possess both rigidity and flexibility, appearing in surprising and counter-intuitive ways. Our understanding of symplectic and Hamiltonian homeomorphisms is far from being satisfactory, and here we intend to study questions related to action of symplectic homeomorphisms on submanifolds. Some other questions are about Hamiltonian homeomorphisms in relation to the celebrated Arnold conjecture. The PI suggests to study spectral invariants of continuous Hamiltonian flows, which allow to formulate the C^0 Arnold conjecture in higher dimensions. Another central problem that the PI will work on is the C^0 flux conjecture.
A second circle of questions is about the Poisson bracket operator, and its functional-theoretic properties. The first question concerns the lower bound for the Poisson bracket invariant of a cover, conjectured by L. Polterovich who indicated relations between this problem and quantum mechanics. Another direction aims to study the C^0 rigidity versus flexibility of the L_p norm of the Poisson bracket. Despite a recent progress in dimension two showing rigidity, very little is known in higher dimensions. The PI proposes to use combination of tools from topology and from hard analysis in order to address this question, whose solution will be a big step towards understanding functional-theoretic properties of the Poisson bracket operator."
Max ERC Funding
1 345 282 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym DerSympApp
Project Derived Symplectic Geometry and Applications
Researcher (PI) Damien CALAQUE
Host Institution (HI) UNIVERSITE DE MONTPELLIER
Call Details Consolidator Grant (CoG), PE1, ERC-2017-COG
Summary We propose a program that aims at providing new developments and new applications of shifted symplectic and Poisson structures. It is formulated in the language and framework of derived algebraic geometry after Toën–Vezzosi and Lurie.
On the foundational side, we will introduce the new notion of shifted symplectic groupoids and prove that they provide an alternative approach to shifted Poisson structures (as they were defined by the PI together with Tony Pantev, Bertrand Toën, Michel Vaquié and Gabriele Vezzosi). Along the way, we shall be able to prove several conjectures that have recently been formulated by the PI and other people.
Applications are related to mathematical physics. For instance:
- We will provide an interpretation of the Batalin–Vilkovisky formalism in terms of derived symplectic reduction.
- We will show that the semi-classical topological field theories with values in derived Lagrangian correspondences that were previously introduced by the PI are actually fully extended topological field theories in the sense of Baez–Dolan and Lurie.
- We will explain how one may use this formalism to rigorously construct a 2D topological field theory that has been discovered by Moore and Tachikawa.
Quantization problems will also be discussed at the end of the proposal.
This project proposal lies at the crossroads of algebraic geometry, mathematical physics (in its algebraic and geometric aspects) and higher algebra.
Summary
We propose a program that aims at providing new developments and new applications of shifted symplectic and Poisson structures. It is formulated in the language and framework of derived algebraic geometry after Toën–Vezzosi and Lurie.
On the foundational side, we will introduce the new notion of shifted symplectic groupoids and prove that they provide an alternative approach to shifted Poisson structures (as they were defined by the PI together with Tony Pantev, Bertrand Toën, Michel Vaquié and Gabriele Vezzosi). Along the way, we shall be able to prove several conjectures that have recently been formulated by the PI and other people.
Applications are related to mathematical physics. For instance:
- We will provide an interpretation of the Batalin–Vilkovisky formalism in terms of derived symplectic reduction.
- We will show that the semi-classical topological field theories with values in derived Lagrangian correspondences that were previously introduced by the PI are actually fully extended topological field theories in the sense of Baez–Dolan and Lurie.
- We will explain how one may use this formalism to rigorously construct a 2D topological field theory that has been discovered by Moore and Tachikawa.
Quantization problems will also be discussed at the end of the proposal.
This project proposal lies at the crossroads of algebraic geometry, mathematical physics (in its algebraic and geometric aspects) and higher algebra.
Max ERC Funding
1 385 247 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym G-Statistics
Project Foundations of Geometric Statistics and Their Application in the Life Sciences
Researcher (PI) Xavier Jean-Louis PENNEC
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Advanced Grant (AdG), PE1, ERC-2017-ADG
Summary "Invariance under gauge transformation groups provides the natural structure explaining the laws of physics. In life sciences, new mathematical tools are needed to estimate approximate invariance and establish general but approximate laws. Rephrasing Poincaré: a geometry cannot be more true than another, it may just be more convenient, and statisticians must find the most convenient one for their data. At the crossing of geometry and statistics, G-Statistics aims at establishing the mathematical foundations of geometric statistics and exemplifying their impact on selected applications in the life sciences.
So far, mainly Riemannian manifolds and negatively curved metric spaces have been studied. Other geometric structures like quotient spaces, stratified spaces or affine connection spaces naturally arise in applications. G-Statistics will explore ways to unify statistical estimation theories, explaining how the statistical estimations diverges from the Euclidean case in the presence of curvature, singularities, stratification. Beyond classical manifolds, particular emphasis will be put on flags of subspaces in manifolds as they appear to be natural mathematical object to encode hierarchically embedded approximation spaces.
In order to establish geometric statistics as an effective discipline, G-Statistics will propose new mathematical structures and theorems to characterize their properties. It will also implement novel generic algorithms and illustrate the impact of some of their efficient specializations on selected applications in life sciences. Surveying the manifolds of anatomical shapes and forecasting their evolution from databases of medical images is a key problem in computational anatomy requiring dimension reduction in non-linear spaces and Lie groups. By inventing radically new principled estimations methods, we aim at illustrating the power of the methodology and strengthening the ""unreasonable effectiveness of mathematics"" for life sciences."
Summary
"Invariance under gauge transformation groups provides the natural structure explaining the laws of physics. In life sciences, new mathematical tools are needed to estimate approximate invariance and establish general but approximate laws. Rephrasing Poincaré: a geometry cannot be more true than another, it may just be more convenient, and statisticians must find the most convenient one for their data. At the crossing of geometry and statistics, G-Statistics aims at establishing the mathematical foundations of geometric statistics and exemplifying their impact on selected applications in the life sciences.
So far, mainly Riemannian manifolds and negatively curved metric spaces have been studied. Other geometric structures like quotient spaces, stratified spaces or affine connection spaces naturally arise in applications. G-Statistics will explore ways to unify statistical estimation theories, explaining how the statistical estimations diverges from the Euclidean case in the presence of curvature, singularities, stratification. Beyond classical manifolds, particular emphasis will be put on flags of subspaces in manifolds as they appear to be natural mathematical object to encode hierarchically embedded approximation spaces.
In order to establish geometric statistics as an effective discipline, G-Statistics will propose new mathematical structures and theorems to characterize their properties. It will also implement novel generic algorithms and illustrate the impact of some of their efficient specializations on selected applications in life sciences. Surveying the manifolds of anatomical shapes and forecasting their evolution from databases of medical images is a key problem in computational anatomy requiring dimension reduction in non-linear spaces and Lie groups. By inventing radically new principled estimations methods, we aim at illustrating the power of the methodology and strengthening the ""unreasonable effectiveness of mathematics"" for life sciences."
Max ERC Funding
2 183 584 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym HD-App
Project New horizons in homogeneous dynamics and its applications
Researcher (PI) Uri SHAPIRA
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE1, ERC-2017-STG
Summary We present a large variety of novel lines of research in Homogeneous Dynamics with emphasis on the dynamics of the diagonal group. Both new and classical applications are suggested, most notably to
• Number Theory
• Geometry of Numbers
• Diophantine approximation.
Emphasis is given to applications in
• Diophantine properties of algebraic numbers.
The proposal is built of 4 sections.
(1) In the first section we discuss questions pertaining to topological and distributional aspects of periodic orbits of the diagonal group in the space of lattices in Euclidean space. These objects encode deep information regarding Diophantine properties of algebraic numbers. We demonstrate how these questions are closely related to, and may help solve, some of the central open problems in the geometry of numbers and Diophantine approximation.
(2) In the second section we discuss Minkowski's conjecture regarding integral values of products of linear forms. For over a century this central conjecture is resisting a general solution and a novel and promising strategy for its resolution is presented.
(3) In the third section, a novel conjecture regarding limiting distribution of infinite-volume-orbits is presented, in analogy with existing results regarding finite-volume-orbits. Then, a variety of applications and special cases are discussed, some of which give new results regarding classical concepts such as continued fraction expansion of rational numbers.
(4) In the last section we suggest a novel strategy to attack one of the most notorious open problems in Diophantine approximation, namely: Do cubic numbers have unbounded continued fraction expansion? This novel strategy leads us to embark on a systematic study of an area in homogeneous dynamics which has not been studied yet. Namely, the dynamics in the space of discrete subgroups of rank k in R^n (identified up to scaling).
Summary
We present a large variety of novel lines of research in Homogeneous Dynamics with emphasis on the dynamics of the diagonal group. Both new and classical applications are suggested, most notably to
• Number Theory
• Geometry of Numbers
• Diophantine approximation.
Emphasis is given to applications in
• Diophantine properties of algebraic numbers.
The proposal is built of 4 sections.
(1) In the first section we discuss questions pertaining to topological and distributional aspects of periodic orbits of the diagonal group in the space of lattices in Euclidean space. These objects encode deep information regarding Diophantine properties of algebraic numbers. We demonstrate how these questions are closely related to, and may help solve, some of the central open problems in the geometry of numbers and Diophantine approximation.
(2) In the second section we discuss Minkowski's conjecture regarding integral values of products of linear forms. For over a century this central conjecture is resisting a general solution and a novel and promising strategy for its resolution is presented.
(3) In the third section, a novel conjecture regarding limiting distribution of infinite-volume-orbits is presented, in analogy with existing results regarding finite-volume-orbits. Then, a variety of applications and special cases are discussed, some of which give new results regarding classical concepts such as continued fraction expansion of rational numbers.
(4) In the last section we suggest a novel strategy to attack one of the most notorious open problems in Diophantine approximation, namely: Do cubic numbers have unbounded continued fraction expansion? This novel strategy leads us to embark on a systematic study of an area in homogeneous dynamics which has not been studied yet. Namely, the dynamics in the space of discrete subgroups of rank k in R^n (identified up to scaling).
Max ERC Funding
1 432 730 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym PolSymAGA
Project Polarity and Central-Symmetry in Asymptotic Geometric Analysis
Researcher (PI) Shiri ARTSTEIN
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Consolidator Grant (CoG), PE1, ERC-2017-COG
Summary Asymptotic Geometric Analysis is a relatively new field, the young finite dimensional cousin of Banach Space theory, functional analysis and classical convexity. It concerns the {\em geometric} study of high, but finite, dimensional objects, where the disorder of many parameters and many dimensions is "regularized" by convexity assumptions.
The proposed research is composed of several connected innovative studies in the frontier of Asymptotic Geometric Analysis, pertaining to the deeper understanding of two fundamental notions: Polarity and Central-Symmetry.
While the main drive comes from Asymptotic Convex Geometry, the applications extend throughout many mathematical fields from analysis, probability and symplectic geometry to combinatorics and computer science. The project will concern: The polarity map for functions, functional covering numbers, measures of Symmetry, Godbersen's conjecture, Mahler's conjecture, Minkowski billiard dynamics and caustics.
My research objectives are twofold. First, to progress towards a solution of the open research questions described in the proposal, which I consider to be pivotal in the field, including Mahler's conjecture, Viterbo's conjecture and Godberesen's conjecture. Some of these questions have already been studied intensively, and the solution is yet to found; progress toward solving them would be of high significance. Secondly, as the studies in this proposal lie at the meeting point of several mathematical fields, and use Asymptotic Geometric Analysis in order to address major questions in other fields, such as Symplectic Geometry and Optimal transport theory, my second goal is to deepen these connections, creating a powerful framework that will lead to a deeper understanding, and the formulation, and resolution, of interesting questions currently unattainable.
Summary
Asymptotic Geometric Analysis is a relatively new field, the young finite dimensional cousin of Banach Space theory, functional analysis and classical convexity. It concerns the {\em geometric} study of high, but finite, dimensional objects, where the disorder of many parameters and many dimensions is "regularized" by convexity assumptions.
The proposed research is composed of several connected innovative studies in the frontier of Asymptotic Geometric Analysis, pertaining to the deeper understanding of two fundamental notions: Polarity and Central-Symmetry.
While the main drive comes from Asymptotic Convex Geometry, the applications extend throughout many mathematical fields from analysis, probability and symplectic geometry to combinatorics and computer science. The project will concern: The polarity map for functions, functional covering numbers, measures of Symmetry, Godbersen's conjecture, Mahler's conjecture, Minkowski billiard dynamics and caustics.
My research objectives are twofold. First, to progress towards a solution of the open research questions described in the proposal, which I consider to be pivotal in the field, including Mahler's conjecture, Viterbo's conjecture and Godberesen's conjecture. Some of these questions have already been studied intensively, and the solution is yet to found; progress toward solving them would be of high significance. Secondly, as the studies in this proposal lie at the meeting point of several mathematical fields, and use Asymptotic Geometric Analysis in order to address major questions in other fields, such as Symplectic Geometry and Optimal transport theory, my second goal is to deepen these connections, creating a powerful framework that will lead to a deeper understanding, and the formulation, and resolution, of interesting questions currently unattainable.
Max ERC Funding
1 514 125 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym RMAST
Project Random Models in Arithmetic and Spectral Theory
Researcher (PI) Zeev Rudnick
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), PE1, ERC-2017-ADG
Summary The proposal studies deterministic problems in the spectral theory of the Laplacian and in analytic number theory by using random models. I propose two projects in spectral theory on this theme, both with a strong arithmetic ingredient, the first about minimal gaps between the eigenvalues of the Laplacian, where I seek a fit with the corresponding quantities for the various conjectured universality classes (Poisson/GUE/GOE), and the second about curvature measures of nodal lines of eigenfunctions of the Laplacian, where I seek to determine the size of the curvature measures for the large eigenvalue limit. The third project originates in analytic number theory, on angular distribution of prime ideals in number fields, function field analogues and connections with Random Matrix Theory, where I raise new conjectures and problems on a very classical subject, and aim to resolve them at least in the function field setting.
Summary
The proposal studies deterministic problems in the spectral theory of the Laplacian and in analytic number theory by using random models. I propose two projects in spectral theory on this theme, both with a strong arithmetic ingredient, the first about minimal gaps between the eigenvalues of the Laplacian, where I seek a fit with the corresponding quantities for the various conjectured universality classes (Poisson/GUE/GOE), and the second about curvature measures of nodal lines of eigenfunctions of the Laplacian, where I seek to determine the size of the curvature measures for the large eigenvalue limit. The third project originates in analytic number theory, on angular distribution of prime ideals in number fields, function field analogues and connections with Random Matrix Theory, where I raise new conjectures and problems on a very classical subject, and aim to resolve them at least in the function field setting.
Max ERC Funding
1 840 625 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym SOS
Project Smooth dynamics via Operators, with Singularities
Researcher (PI) Viviane BALADI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE1, ERC-2017-ADG
Summary The ergodic theory of smooth dynamical systems enjoying some form of hyperbolicity has undergone important progress since the beginning of the twenty first century, in part due to the development of a new technical tool: anisotropic Banach or Hilbert spaces, on which transfer operators have good spectral properties. Very recently, such tools have yielded exponential mixing for dispersing (Sinai) billiard flows (i.e. the 2D periodic Lorentz gas), which are the archetypal smooth systems with singularities.
We will study other challenging natural systems, mostly with singularities, by using functional analytical tools, in particular transfer operators acting on anisotropic spaces (including the new ""ultimate'"" space introduced recently, which combines desirable features of several existing spaces), and revisiting the Milnor-Thurston kneading theory to obtain nuclear decompositions in low regularity.
Goals of the project include:
-Thermodynamic formalism for the Sinai billiard maps and flows (2D periodic Lorentz gas), in particular existence and statistical properties of the measure of maximal entropy.
-Intrinsic resonances of Sinai billiard maps and flows (2D periodic Lorentz gas) via the dynamical zeta function.
-Fine statistical properties of (infinite measure) semi-dispersing billiards with non compact cusps.
-Growth of dynamical determinants and zeta functions of differentiable (non analytic) geodesic flows, with applications to the global Gutzwiller formula.
-Fractional response and fractional susceptibility function for transversal families of smooth nonuniformly hyperbolic maps (including the logistic family).
Summary
The ergodic theory of smooth dynamical systems enjoying some form of hyperbolicity has undergone important progress since the beginning of the twenty first century, in part due to the development of a new technical tool: anisotropic Banach or Hilbert spaces, on which transfer operators have good spectral properties. Very recently, such tools have yielded exponential mixing for dispersing (Sinai) billiard flows (i.e. the 2D periodic Lorentz gas), which are the archetypal smooth systems with singularities.
We will study other challenging natural systems, mostly with singularities, by using functional analytical tools, in particular transfer operators acting on anisotropic spaces (including the new ""ultimate'"" space introduced recently, which combines desirable features of several existing spaces), and revisiting the Milnor-Thurston kneading theory to obtain nuclear decompositions in low regularity.
Goals of the project include:
-Thermodynamic formalism for the Sinai billiard maps and flows (2D periodic Lorentz gas), in particular existence and statistical properties of the measure of maximal entropy.
-Intrinsic resonances of Sinai billiard maps and flows (2D periodic Lorentz gas) via the dynamical zeta function.
-Fine statistical properties of (infinite measure) semi-dispersing billiards with non compact cusps.
-Growth of dynamical determinants and zeta functions of differentiable (non analytic) geodesic flows, with applications to the global Gutzwiller formula.
-Fractional response and fractional susceptibility function for transversal families of smooth nonuniformly hyperbolic maps (including the logistic family).
Max ERC Funding
1 830 070 €
Duration
Start date: 2018-09-01, End date: 2023-08-31