Project acronym 1st-principles-discs
Project A First Principles Approach to Accretion Discs
Researcher (PI) Martin Elias Pessah
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Summary
Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Max ERC Funding
1 793 697 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym ABINITIODGA
Project Ab initio Dynamical Vertex Approximation
Researcher (PI) Karsten Held
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary Some of the most fascinating physical phenomena are experimentally observed in strongly correlated electron systems and, on the theoretical side, only poorly understood hitherto. The aim of the ERC project AbinitioDGA is the development, implementation and application of a new, 21th century method for the ab initio calculation of materials with such strong electronic correlations. AbinitioDGA includes strong electronic correlations on all time and length scales and hence is a big step beyond the state-of-the-art methods, such as the local density approximation, dynamical mean field theory, and the GW approach (Green function G times screened interaction W). It has the potential for an extraordinary high impact not only in the field of computational materials science but also for a better understanding of quantum critical heavy fermion systems, high-temperature superconductors, and transport through nano- and heterostructures. These four physical problems and related materials will be studied within the ERC project, besides the methodological development.
On the technical side, AbinitioDGA realizes Hedin's idea to include vertex corrections beyond the GW approximation. All vertex corrections which can be traced back to a fully irreducible local vertex and the bare non-local Coulomb interaction are included. This way, AbinitioDGA does not only contain the GW physics of screened exchange and the strong local correlations of dynamical mean field theory but also non-local correlations beyond on all length scales. Through the latter, AbinitioDGA can prospectively describe phenomena such as quantum criticality, spin-fluctuation mediated superconductivity, and weak localization corrections to the conductivity. Nonetheless, the computational effort is still manageable even for realistic materials calculations, making the considerable effort to implement AbinitioDGA worthwhile.
Summary
Some of the most fascinating physical phenomena are experimentally observed in strongly correlated electron systems and, on the theoretical side, only poorly understood hitherto. The aim of the ERC project AbinitioDGA is the development, implementation and application of a new, 21th century method for the ab initio calculation of materials with such strong electronic correlations. AbinitioDGA includes strong electronic correlations on all time and length scales and hence is a big step beyond the state-of-the-art methods, such as the local density approximation, dynamical mean field theory, and the GW approach (Green function G times screened interaction W). It has the potential for an extraordinary high impact not only in the field of computational materials science but also for a better understanding of quantum critical heavy fermion systems, high-temperature superconductors, and transport through nano- and heterostructures. These four physical problems and related materials will be studied within the ERC project, besides the methodological development.
On the technical side, AbinitioDGA realizes Hedin's idea to include vertex corrections beyond the GW approximation. All vertex corrections which can be traced back to a fully irreducible local vertex and the bare non-local Coulomb interaction are included. This way, AbinitioDGA does not only contain the GW physics of screened exchange and the strong local correlations of dynamical mean field theory but also non-local correlations beyond on all length scales. Through the latter, AbinitioDGA can prospectively describe phenomena such as quantum criticality, spin-fluctuation mediated superconductivity, and weak localization corrections to the conductivity. Nonetheless, the computational effort is still manageable even for realistic materials calculations, making the considerable effort to implement AbinitioDGA worthwhile.
Max ERC Funding
1 491 090 €
Duration
Start date: 2013-01-01, End date: 2018-07-31
Project acronym ADAPT
Project Origins and factors governing adaptation: Insights from experimental evolution and population genomic data
Researcher (PI) Thomas, Martin Jean Bataillon
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary "I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Summary
"I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Max ERC Funding
1 159 857 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym BRiCPT
Project Basic Research in Cryptographic Protocol Theory
Researcher (PI) Jesper Buus Nielsen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary In cryptographic protocol theory, we consider a situation where a number of entities want to solve some problem over a computer network. Each entity has some secret data it does not want the other entities to learn, yet, they all want to learn something about the common set of data. In an electronic election, they want to know the number of yes-votes without revealing who voted what. For instance, in an electronic auction, they want to find the winner without leaking the bids of the losers.
A main focus of the project is to develop new techniques for solving such protocol problems. We are in particular interested in techniques which can automatically construct a protocol solving a problem given only a description of what the problem is. My focus will be theoretical basic research, but I believe that advancing the theory of secure protocol compilers will have an immense impact on the practice of developing secure protocols for practice.
When one develops complex protocols, it is important to be able to verify their correctness before they are deployed, in particular so, when the purpose of the protocols is to protect information. If and when an error is found and corrected, the sensitive data will possibly already be compromised. Therefore, cryptographic protocol theory develops models of what it means for a protocol to be secure, and techniques for analyzing whether a given protocol is secure or not.
A main focuses of the project is to develop better security models, as existing security models either suffer from the problem that it is possible to prove some protocols secure which are not secure in practice, or they suffer from the problem that it is impossible to prove security of some protocol which are believed to be secure in practice. My focus will again be on theoretical basic research, but I believe that better security models are important for advancing a practice where protocols are verified as secure before deployed.
Summary
In cryptographic protocol theory, we consider a situation where a number of entities want to solve some problem over a computer network. Each entity has some secret data it does not want the other entities to learn, yet, they all want to learn something about the common set of data. In an electronic election, they want to know the number of yes-votes without revealing who voted what. For instance, in an electronic auction, they want to find the winner without leaking the bids of the losers.
A main focus of the project is to develop new techniques for solving such protocol problems. We are in particular interested in techniques which can automatically construct a protocol solving a problem given only a description of what the problem is. My focus will be theoretical basic research, but I believe that advancing the theory of secure protocol compilers will have an immense impact on the practice of developing secure protocols for practice.
When one develops complex protocols, it is important to be able to verify their correctness before they are deployed, in particular so, when the purpose of the protocols is to protect information. If and when an error is found and corrected, the sensitive data will possibly already be compromised. Therefore, cryptographic protocol theory develops models of what it means for a protocol to be secure, and techniques for analyzing whether a given protocol is secure or not.
A main focuses of the project is to develop better security models, as existing security models either suffer from the problem that it is possible to prove some protocols secure which are not secure in practice, or they suffer from the problem that it is impossible to prove security of some protocol which are believed to be secure in practice. My focus will again be on theoretical basic research, but I believe that better security models are important for advancing a practice where protocols are verified as secure before deployed.
Max ERC Funding
1 171 019 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym CanCoop
Project Understanding the Proximate Mechanisms of
Canine Cooperation
Researcher (PI) Friederike Range
Host Institution (HI) VETERINAERMEDIZINISCHE UNIVERSITAET WIEN
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary Although it is clear that human collaborative skills are exceptional, elucidating similarities and differences of proximate processes underlying cooperative interactions between non-primate and primate taxa may have important implications for our understanding of cooperation in humans and non human-animals via a profound knowledge of 1) socio-cognitive skills as adaptations to specific environments and/or 2) the evolutionary background and origin of our own skills. The closely related wolves and dogs constitute the ideal non-primate model to implement this approach, since cooperation is at the core of their social organization and they are adapted to very different environments.
I propose a series of experiments with wolves (N = 20) and identically raised and kept dogs (N= 20) that will focus on cognitive processes closely linked to the emotional system such as empathy, inequity aversion and delayed gratification that are thought to be involved in triggering and maintaining primate cooperation. In Part 1 of the project, we will investigate whether and to what extent these processes are present in canines, while in Part 2 we will elucidate how they influence partner choice in cooperative interactions. Using social network theory, we will integrate knowledge about animals’ emotional tendencies and cognitive abilities to model canine cooperation. This is an important step towards unifying theoretical and empirical approaches in animal behaviour.
CanCoop incorporates innovative methods and a novel approach that has the potential to elucidate the interactions between proximate and ultimate processes in regard to cooperation. The nature of CanCoop guarantees public and media attention needed for proper societal dissemination of the results, which will be relevant for animal behaviour, social sciences, wildlife and zoo management.
Summary
Although it is clear that human collaborative skills are exceptional, elucidating similarities and differences of proximate processes underlying cooperative interactions between non-primate and primate taxa may have important implications for our understanding of cooperation in humans and non human-animals via a profound knowledge of 1) socio-cognitive skills as adaptations to specific environments and/or 2) the evolutionary background and origin of our own skills. The closely related wolves and dogs constitute the ideal non-primate model to implement this approach, since cooperation is at the core of their social organization and they are adapted to very different environments.
I propose a series of experiments with wolves (N = 20) and identically raised and kept dogs (N= 20) that will focus on cognitive processes closely linked to the emotional system such as empathy, inequity aversion and delayed gratification that are thought to be involved in triggering and maintaining primate cooperation. In Part 1 of the project, we will investigate whether and to what extent these processes are present in canines, while in Part 2 we will elucidate how they influence partner choice in cooperative interactions. Using social network theory, we will integrate knowledge about animals’ emotional tendencies and cognitive abilities to model canine cooperation. This is an important step towards unifying theoretical and empirical approaches in animal behaviour.
CanCoop incorporates innovative methods and a novel approach that has the potential to elucidate the interactions between proximate and ultimate processes in regard to cooperation. The nature of CanCoop guarantees public and media attention needed for proper societal dissemination of the results, which will be relevant for animal behaviour, social sciences, wildlife and zoo management.
Max ERC Funding
1 295 716 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym CHILDGROWTH2CANCER
Project Childhood body size, growth and pubertal timing and the risk of cancer in adulthood
Researcher (PI) Jennifer Lyn Baker
Host Institution (HI) REGION HOVEDSTADEN
Call Details Starting Grant (StG), LS7, ERC-2011-StG_20101109
Summary The goal of the proposed research is to examine how the independent and combined effects of childhood adiposity (assessed by body mass index [BMI]; kg/m2) height, change in BMI and height, and pubertal timing from the ages of 7 to 13 years are associated with the risk of cancer incidence in adulthood. Greater body size (adipose tissue and different types of lean tissue) reflecting past or ongoing growth may increase the risk of cancer in individuals as greater numbers of proliferating cells increase the risk that mutations leading to the subsequent development of cancer occur. As childhood is a period of growth, it is plausible that it is of particular relevance for the early establishment of the risk of cancer.
Data from the Copenhagen School Health Records Register, which is based on a population of schoolchildren born between 1930-1983 and contains computerised weight and height measurements on >350.000 boys and girls in the capital city of Denmark, as well as data from other cohorts will be used. Survival analysis techniques and the newly developed Dynamic Path Analysis model will be used to examine how body size (BMI and height) at each age from 7 to 13 years as well as change in body size during this period is associated with the risk of multiple forms of cancer in adulthood with a simultaneous exploration of the effects of birth weight and pubertal timing. Additionally, potential effects of childhood and adult health and social circumstances will be investigated in sub-cohorts with this information available.
Results from this research will demonstrate if childhood is a critical period for the establishment of the risk for cancer in adulthood and will lead into mechanistic explorations of the associations at the biological level, investigations into associations between childhood body size and mortality and contribute to developing improved definitions of childhood overweight and obesity that are based upon long-term health outcomes.
Summary
The goal of the proposed research is to examine how the independent and combined effects of childhood adiposity (assessed by body mass index [BMI]; kg/m2) height, change in BMI and height, and pubertal timing from the ages of 7 to 13 years are associated with the risk of cancer incidence in adulthood. Greater body size (adipose tissue and different types of lean tissue) reflecting past or ongoing growth may increase the risk of cancer in individuals as greater numbers of proliferating cells increase the risk that mutations leading to the subsequent development of cancer occur. As childhood is a period of growth, it is plausible that it is of particular relevance for the early establishment of the risk of cancer.
Data from the Copenhagen School Health Records Register, which is based on a population of schoolchildren born between 1930-1983 and contains computerised weight and height measurements on >350.000 boys and girls in the capital city of Denmark, as well as data from other cohorts will be used. Survival analysis techniques and the newly developed Dynamic Path Analysis model will be used to examine how body size (BMI and height) at each age from 7 to 13 years as well as change in body size during this period is associated with the risk of multiple forms of cancer in adulthood with a simultaneous exploration of the effects of birth weight and pubertal timing. Additionally, potential effects of childhood and adult health and social circumstances will be investigated in sub-cohorts with this information available.
Results from this research will demonstrate if childhood is a critical period for the establishment of the risk for cancer in adulthood and will lead into mechanistic explorations of the associations at the biological level, investigations into associations between childhood body size and mortality and contribute to developing improved definitions of childhood overweight and obesity that are based upon long-term health outcomes.
Max ERC Funding
1 199 998 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym CHROMATINREPLICATION
Project How to Replicate Chromatin - Maturation, Timing Control and Stress-Induced Aberrations
Researcher (PI) Anja Groth
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary Inheritance of DNA sequence and its proper organization into chromatin is fundamental for eukaryotic life. The challenge of propagating genetic and epigenetic information is met in S phase and entails genome-wide disruption and restoration of chromatin coupled to faithful copying of DNA. How specific chromatin structures are restored on new DNA and transmitted through mitotic cell division remains a fundamental question in biology central to understand cell fate and identity.
Chromatin restoration on new DNA involves a complex set of events including nucleosome assembly and remodelling, restoration of marks on DNA and histones, deposition of histone variants and establishment of higher order chromosomal structures including sister-chromatid cohesion. To dissect these fundamental processes and their coordination in time and space with DNA replication, we have developed a novel technology termed nascent chromatin capture (NCC) that provides unique possibility for biochemical and proteomic analysis of chromatin replication in human cells. I propose to apply this innovative cutting-edge technique for a comprehensive characterization of chromatin restoration during DNA replication and to reveal how replication timing and genotoxic stress impact on final chromatin state. This highly topical project brings together the fields of chromatin biology, DNA replication, epigenetics and genome stability and we expect to make groundbreaking discoveries that will improve our understanding of human development, somatic cell reprogramming and complex diseases like cancer.
The proposed research will 1) identify and characterize novel mechanisms in chromatin restoration and 2) address molecularly how replication timing and genotoxic insults influence chromatin maturation and final chromatin state.
Summary
Inheritance of DNA sequence and its proper organization into chromatin is fundamental for eukaryotic life. The challenge of propagating genetic and epigenetic information is met in S phase and entails genome-wide disruption and restoration of chromatin coupled to faithful copying of DNA. How specific chromatin structures are restored on new DNA and transmitted through mitotic cell division remains a fundamental question in biology central to understand cell fate and identity.
Chromatin restoration on new DNA involves a complex set of events including nucleosome assembly and remodelling, restoration of marks on DNA and histones, deposition of histone variants and establishment of higher order chromosomal structures including sister-chromatid cohesion. To dissect these fundamental processes and their coordination in time and space with DNA replication, we have developed a novel technology termed nascent chromatin capture (NCC) that provides unique possibility for biochemical and proteomic analysis of chromatin replication in human cells. I propose to apply this innovative cutting-edge technique for a comprehensive characterization of chromatin restoration during DNA replication and to reveal how replication timing and genotoxic stress impact on final chromatin state. This highly topical project brings together the fields of chromatin biology, DNA replication, epigenetics and genome stability and we expect to make groundbreaking discoveries that will improve our understanding of human development, somatic cell reprogramming and complex diseases like cancer.
The proposed research will 1) identify and characterize novel mechanisms in chromatin restoration and 2) address molecularly how replication timing and genotoxic insults influence chromatin maturation and final chromatin state.
Max ERC Funding
1 692 737 €
Duration
Start date: 2011-11-01, End date: 2017-04-30
Project acronym CONSTRUCTIVEMEM
Project Emergence and decline of constructive memory – Life-span changes in a common brain network for imagination and episodic memory
Researcher (PI) Anders Martin Fjell
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), SH4, ERC-2011-StG_20101124
Summary The creation of personal, episodic memory from a previous experience is a remarkably complex process, which substantially differs from the processes leading to non-personal knowledge and memory about the world, so-called semantic memory. The act of remembering an episodic event is as much an act of creation as an act of reproduction. Modality-specific memory items are assembled through a re-construction process that allows us to re-experience the episode in rich details. Recent research has shown that recall of episodes and imagination of the future depends on a common core brain network. Early damage to this network will dramatically affect the development of personal memories, effectively preventing the creation of a vivid personal past, while leaving general cognitive development relatively intact. Still, no attempts have been made to study how development and subsequent aging of constructive memory, the arguably most relevant form of memory for daily life-function, is determined by structural and functional properties of the brain. I propose to study how characteristics of the brain determine the development of the ability to form episodic memories in childhood, and how the same factors contribute to the decline in episodic memory function experienced by most healthy elderly. The aim of the current proposal is to understand how maturation and aging of the brain networks for reconstructive memory impacts the ability to form and re-experience ones past. To address this aim, we will study children (4-10 years), adolescents (11-19 years), young adults (20-30 years) and elderly (60-80 years), 100 participants in each group, with repeated cognitive testing and brain scanning with magnetic resonance imaging (MRI). The children will be examined annually, yielding four examinations, while the other participants will be examined bi-annually, yielding to examinations within the project period.
Summary
The creation of personal, episodic memory from a previous experience is a remarkably complex process, which substantially differs from the processes leading to non-personal knowledge and memory about the world, so-called semantic memory. The act of remembering an episodic event is as much an act of creation as an act of reproduction. Modality-specific memory items are assembled through a re-construction process that allows us to re-experience the episode in rich details. Recent research has shown that recall of episodes and imagination of the future depends on a common core brain network. Early damage to this network will dramatically affect the development of personal memories, effectively preventing the creation of a vivid personal past, while leaving general cognitive development relatively intact. Still, no attempts have been made to study how development and subsequent aging of constructive memory, the arguably most relevant form of memory for daily life-function, is determined by structural and functional properties of the brain. I propose to study how characteristics of the brain determine the development of the ability to form episodic memories in childhood, and how the same factors contribute to the decline in episodic memory function experienced by most healthy elderly. The aim of the current proposal is to understand how maturation and aging of the brain networks for reconstructive memory impacts the ability to form and re-experience ones past. To address this aim, we will study children (4-10 years), adolescents (11-19 years), young adults (20-30 years) and elderly (60-80 years), 100 participants in each group, with repeated cognitive testing and brain scanning with magnetic resonance imaging (MRI). The children will be examined annually, yielding four examinations, while the other participants will be examined bi-annually, yielding to examinations within the project period.
Max ERC Funding
1 499 088 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym CYFI
Project Cycle-Sculpted Strong Field Optics
Researcher (PI) Andrius Baltuska
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Call Details Starting Grant (StG), PE2, ERC-2011-StG_20101014
Summary The past decade saw a remarkable progress in the development of attosecond technologies based on the use of intense few-cycle optical pulses. The control over the underlying single-cycle phenomena, such as the higher-order harmonic generation by an ionized and subsequently re-scattered electronic wave packet, has become routine once the carrier-envelope phase (CEP) of an amplified laser pulse was stabilized, opening the way to maintain the shot-to-shot reproducible pulse electric field. Drawing on a mix of several laser technologies and phase-control concepts, this proposal aims to take strong-field optical tools to a conceptually new level: from adjusting the intensity and timing of a principal half-cycle to achieving a full-fledged multicolor Fourier synthesis of the optical cycle dynamics by controlling a multi-dimensional space of carrier frequencies, relative, and absolute phases. The applicant and his team, through their unique expertise in the CEP control and optical amplification methods, are currently best positioned to pioneer the development of an optical programmable “attosecond optical shaper” and attain the relevant multicolor pulse intensity levels of PW/cm2. This will enable an immediate pursuit of several exciting strong-field applications that can be jump-started by the emergence of a technique for the fully-controlled cycle sculpting and would rely on the relevant experimental capabilities already established in the applicant’s emerging group. We show that even the simplest form of an incommensurate-frequency synthesizer can potentially solve the long-standing debate on the mechanism of strong-field rectification. More advanced waveforms will be employed to dramatically enhance coherent X ray yield, trace the time profile of attosecond ionization in transparent bulk solids, and potentially control the result of molecular dissociation by influencing electronic coherences in polyatomic molecules.
Summary
The past decade saw a remarkable progress in the development of attosecond technologies based on the use of intense few-cycle optical pulses. The control over the underlying single-cycle phenomena, such as the higher-order harmonic generation by an ionized and subsequently re-scattered electronic wave packet, has become routine once the carrier-envelope phase (CEP) of an amplified laser pulse was stabilized, opening the way to maintain the shot-to-shot reproducible pulse electric field. Drawing on a mix of several laser technologies and phase-control concepts, this proposal aims to take strong-field optical tools to a conceptually new level: from adjusting the intensity and timing of a principal half-cycle to achieving a full-fledged multicolor Fourier synthesis of the optical cycle dynamics by controlling a multi-dimensional space of carrier frequencies, relative, and absolute phases. The applicant and his team, through their unique expertise in the CEP control and optical amplification methods, are currently best positioned to pioneer the development of an optical programmable “attosecond optical shaper” and attain the relevant multicolor pulse intensity levels of PW/cm2. This will enable an immediate pursuit of several exciting strong-field applications that can be jump-started by the emergence of a technique for the fully-controlled cycle sculpting and would rely on the relevant experimental capabilities already established in the applicant’s emerging group. We show that even the simplest form of an incommensurate-frequency synthesizer can potentially solve the long-standing debate on the mechanism of strong-field rectification. More advanced waveforms will be employed to dramatically enhance coherent X ray yield, trace the time profile of attosecond ionization in transparent bulk solids, and potentially control the result of molecular dissociation by influencing electronic coherences in polyatomic molecules.
Max ERC Funding
980 000 €
Duration
Start date: 2012-01-01, End date: 2015-06-30
Project acronym DIVIMAGE
Project Bridging spatial and temporal resolution gaps in the study of cell division
Researcher (PI) Daniel Wolfram Gerlich
Host Institution (HI) INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
Call Details Starting Grant (StG), LS3, ERC-2011-StG_20101109
Summary Cell division underlies the growth and development of all living organisms. Following partitioning of bulk cytoplasmic contents by cleavage furrow ingression, dividing animal cells split by a distinct process termed abscission. Whereas a number of factors required for abscission have been identified in previous studies, it is not known by which mechanism they mediate fission of the intercellular bridge between the nascent sister cells. Here, we will establish correlative workflows of time-lapse imaging, super resolution fluorescence microscopy, electron tomography, and electrophysiological assays to bridge spatial and temporal resolution gaps in the study of abscission. We will further develop computational tools for image-based RNAi screening. With this, we aim to:
1) elucidate how membrane and cytoskeletal dynamics coordinately split the intercellular bridge;
2) uncover the signaling pathways controlling abscission timing.
Failure in abscission can lead to aneuploidy and cancer. Elucidating its mechanism and temporal control is therefore of general biological and medical relevance. The computational and correlative imaging methods developed in this project will further provide the research community new possibilities for mechanistic studies in intact cells.
Summary
Cell division underlies the growth and development of all living organisms. Following partitioning of bulk cytoplasmic contents by cleavage furrow ingression, dividing animal cells split by a distinct process termed abscission. Whereas a number of factors required for abscission have been identified in previous studies, it is not known by which mechanism they mediate fission of the intercellular bridge between the nascent sister cells. Here, we will establish correlative workflows of time-lapse imaging, super resolution fluorescence microscopy, electron tomography, and electrophysiological assays to bridge spatial and temporal resolution gaps in the study of abscission. We will further develop computational tools for image-based RNAi screening. With this, we aim to:
1) elucidate how membrane and cytoskeletal dynamics coordinately split the intercellular bridge;
2) uncover the signaling pathways controlling abscission timing.
Failure in abscission can lead to aneuploidy and cancer. Elucidating its mechanism and temporal control is therefore of general biological and medical relevance. The computational and correlative imaging methods developed in this project will further provide the research community new possibilities for mechanistic studies in intact cells.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym ECOGENOMICINBREEDING
Project Comparative studies of inbreeding effects on evolutionary processes in non-model animal populations
Researcher (PI) Trine Bilde
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Comparative studies of inbreeding and evolution in non-model animal populations: a research proposal directed towards integrating ecological and evolutionary research on inbreeding. Specifically, my aim is to apply novel ecogenomics tools in the study of evolutionary consequences of inbreeding in non-model animal populations. At present, our understanding of inbreeding is dominated by studies of a small number of model organisms. I will undertake comparative studies on inbreeding effects in a genus of spiders containing independently evolved naturally inbreeding species as well as outcrossing sister species. The study of a naturally inbreeding animal species will provide unique insights to consequences of inbreeding for population genetic structure, genome-wide genetic diversity, and evolution of life history traits. Social spiders are not only unique because they naturally inbreed, but also by being cooperative and showing allomaternal brood care including self-sacrifice, and they evolve highly female-biased sex-ratios, a trait that is not well understood in diploid species. My research objectives are 1) to establish a robust phylogeny for comparative studies; 2) to quantify the effects of inbreeding on the genetic diversity within and between populations; 3) to estimate gene flow among inbred lineages to determine whether inbred lineages diversify but retain the potential for gene exchange, or undergo cryptic speciation; 4) to determine effects of inbreeding on gene expression; 5) to investigate the mechanism underlying the genetic sex determination system that cause female biased sex-ratios; and finally 6) to determine whether sex-ratio is under adaptive parental control in response to genetic relatedness and ecological constraints. Addressing these objectives will generate novel insights and expand current knowledge on the evolutionary ecology of inbreeding in wild animal populations.
Summary
Comparative studies of inbreeding and evolution in non-model animal populations: a research proposal directed towards integrating ecological and evolutionary research on inbreeding. Specifically, my aim is to apply novel ecogenomics tools in the study of evolutionary consequences of inbreeding in non-model animal populations. At present, our understanding of inbreeding is dominated by studies of a small number of model organisms. I will undertake comparative studies on inbreeding effects in a genus of spiders containing independently evolved naturally inbreeding species as well as outcrossing sister species. The study of a naturally inbreeding animal species will provide unique insights to consequences of inbreeding for population genetic structure, genome-wide genetic diversity, and evolution of life history traits. Social spiders are not only unique because they naturally inbreed, but also by being cooperative and showing allomaternal brood care including self-sacrifice, and they evolve highly female-biased sex-ratios, a trait that is not well understood in diploid species. My research objectives are 1) to establish a robust phylogeny for comparative studies; 2) to quantify the effects of inbreeding on the genetic diversity within and between populations; 3) to estimate gene flow among inbred lineages to determine whether inbred lineages diversify but retain the potential for gene exchange, or undergo cryptic speciation; 4) to determine effects of inbreeding on gene expression; 5) to investigate the mechanism underlying the genetic sex determination system that cause female biased sex-ratios; and finally 6) to determine whether sex-ratio is under adaptive parental control in response to genetic relatedness and ecological constraints. Addressing these objectives will generate novel insights and expand current knowledge on the evolutionary ecology of inbreeding in wild animal populations.
Max ERC Funding
1 497 248 €
Duration
Start date: 2012-01-01, End date: 2017-09-30
Project acronym EGGS
Project The first Galaxies
Researcher (PI) Johan Peter Uldall Fynbo
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary The goal of this project is to discover the first galaxies that formed after the Big Bang. The astrophysics of galaxy formation is deeply fascinating. From tiny density fluctuations of quantum mechanical nature believed to have formed during an inflationary period a tiny fraction of a second after the Big Bang during structure slowly formed through gravitational collapse. This process is strongly dependent on the nature of the dominant, but unknown form of matter - the dark matter. In the project proposed here I will study the epoch of first galaxy formation and the subsequent few billion years of cosmic evolution using gamma-ray bursts and Lyman-α (Lyα) emitting galaxies as probes. I am the principal investigator on two observational projects utilizing these probes. In the first project, I will over three years starting October 2009 be using the new X-shooter spectrograph on the European Southern Observatory Very Large Telescope to build a sample of ~100 gamma-ray bursts with UV/optical/near-IR spectroscopic follow-up. The objective of this project is to measure primarily metallicities, molecular content, and dust content of the gamma-ray burst host galaxies. I am primarily interested in the redshift range from 9 to 2 corresponding to about 500 million years to 3 billions years after the Big Bang. In the 2nd project we will use the new European Southern Observatory survey telescope VISTA. I am co-PI of the Ultra-VISTA project that over the next 5 years starting December 2009 will create an ultradeep image (about 2000 hr of total integration time) of a piece of sky known as the COSMOS field. I am responsible for the part of the project that will use a narrow-band filter to search for Lyα emitting galaxies at a redshift of 8.8 (corresponding to about 500 million years after the Big Bang) - believed to correspond to the epoch of formation of some of the very first galaxies.
Summary
The goal of this project is to discover the first galaxies that formed after the Big Bang. The astrophysics of galaxy formation is deeply fascinating. From tiny density fluctuations of quantum mechanical nature believed to have formed during an inflationary period a tiny fraction of a second after the Big Bang during structure slowly formed through gravitational collapse. This process is strongly dependent on the nature of the dominant, but unknown form of matter - the dark matter. In the project proposed here I will study the epoch of first galaxy formation and the subsequent few billion years of cosmic evolution using gamma-ray bursts and Lyman-α (Lyα) emitting galaxies as probes. I am the principal investigator on two observational projects utilizing these probes. In the first project, I will over three years starting October 2009 be using the new X-shooter spectrograph on the European Southern Observatory Very Large Telescope to build a sample of ~100 gamma-ray bursts with UV/optical/near-IR spectroscopic follow-up. The objective of this project is to measure primarily metallicities, molecular content, and dust content of the gamma-ray burst host galaxies. I am primarily interested in the redshift range from 9 to 2 corresponding to about 500 million years to 3 billions years after the Big Bang. In the 2nd project we will use the new European Southern Observatory survey telescope VISTA. I am co-PI of the Ultra-VISTA project that over the next 5 years starting December 2009 will create an ultradeep image (about 2000 hr of total integration time) of a piece of sky known as the COSMOS field. I am responsible for the part of the project that will use a narrow-band filter to search for Lyα emitting galaxies at a redshift of 8.8 (corresponding to about 500 million years after the Big Bang) - believed to correspond to the epoch of formation of some of the very first galaxies.
Max ERC Funding
1 002 000 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym ELEGANSNEUROCIRCUITS
Project Neuromodulation of Oxygen Chemosensory Circuits in Caenorhabditis elegans
Researcher (PI) Manuel Zimmer
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary An animal’s decision on how to respond to the environment is based not only on the sensory information available, but further depends on internal factors such as stress, sleep / wakefulness, hunger / satiety and experience. Neurotransmitters and neuropeptides in the brain modulate neural circuits accordingly so that appropriate behaviors are generated. Aberrant neuromodulation is implicated in diseases such as insomnia, obesity or anorexia. Given the complexity of most neural systems studied, we lack good models of how neuromodulators systemically affect the activities of neural networks.
To overcome this problem, I propose to study neural circuits in the nematode C. elegans, which is a genetically tractable model organism with a simple and anatomically defined nervous system. I will focus on the neural circuits involved in oxygen chemosensory behaviors. Worms can smell oxygen and they use this information to navigate through heterogeneous environments. This enables them to find food and to engage in social interactions. Oxygen chemosensory behaviors are highly modulated by experience and nutritional status, but the underlying mechanisms are not understood.
I established behavioral assays that allow studying the modulation of oxygen behaviors in a rigorously quantifiable manner. I also acquired expertise in micro-fabrication technologies and developed imaging devices to measure the activity of neurons in live animals. The first two aims of this proposal focus on the application of these technologies to study (A) how neuropeptides mediate experience dependent modulation of oxygen chemosensory circuits; and (B) how food availability and nutritional status modulate the same neural circuits. Aim (C) is an innovative engineering approach in which I will develop new microfluidic technologies that allow the simultaneous recording of oxygen evoked behaviors and neural activity. This will be beneficial for aims A and B and will pave way for new future research directions.
Summary
An animal’s decision on how to respond to the environment is based not only on the sensory information available, but further depends on internal factors such as stress, sleep / wakefulness, hunger / satiety and experience. Neurotransmitters and neuropeptides in the brain modulate neural circuits accordingly so that appropriate behaviors are generated. Aberrant neuromodulation is implicated in diseases such as insomnia, obesity or anorexia. Given the complexity of most neural systems studied, we lack good models of how neuromodulators systemically affect the activities of neural networks.
To overcome this problem, I propose to study neural circuits in the nematode C. elegans, which is a genetically tractable model organism with a simple and anatomically defined nervous system. I will focus on the neural circuits involved in oxygen chemosensory behaviors. Worms can smell oxygen and they use this information to navigate through heterogeneous environments. This enables them to find food and to engage in social interactions. Oxygen chemosensory behaviors are highly modulated by experience and nutritional status, but the underlying mechanisms are not understood.
I established behavioral assays that allow studying the modulation of oxygen behaviors in a rigorously quantifiable manner. I also acquired expertise in micro-fabrication technologies and developed imaging devices to measure the activity of neurons in live animals. The first two aims of this proposal focus on the application of these technologies to study (A) how neuropeptides mediate experience dependent modulation of oxygen chemosensory circuits; and (B) how food availability and nutritional status modulate the same neural circuits. Aim (C) is an innovative engineering approach in which I will develop new microfluidic technologies that allow the simultaneous recording of oxygen evoked behaviors and neural activity. This will be beneficial for aims A and B and will pave way for new future research directions.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2017-06-30
Project acronym EMOTIONCIRCUITS
Project Circuit mechanics of emotions in the limbic system
Researcher (PI) Wulf Eckhard Haubensak
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary Numerous studies established the role of the limbic system in fear and reward: it integrates sensory information, encodes emotional states and instructs other brain centers to regulate physiology and behavior. The limbic system, however, consists of many distinct and highly interconnected neuronal populations. Resolving how emotions are processed in this network at the level of single neural circuits remains a major challenge.
As entry point into the complexity of emotion circuitry, we propose to study, in exemplary fashion, how fear, as the most basic paradigm for emotions, is processed in key limbic hubs. Genetic manipulation of brain circuitry with electrophysiological methods and Pavlovian conditioning in mice, are powerful tools to explore which and how individual circuits in these hubs control emotional states, and, in turn, how genes and psychoactive drugs modulate circuit activity, emotional states and behavior.
We envision this ERC funded research to uncover general principles of the network organization of both emotions and behaviors. It is our hope that we contribute useful tools and methodological framework for investigating other brain functions in a similar manner.
Summary
Numerous studies established the role of the limbic system in fear and reward: it integrates sensory information, encodes emotional states and instructs other brain centers to regulate physiology and behavior. The limbic system, however, consists of many distinct and highly interconnected neuronal populations. Resolving how emotions are processed in this network at the level of single neural circuits remains a major challenge.
As entry point into the complexity of emotion circuitry, we propose to study, in exemplary fashion, how fear, as the most basic paradigm for emotions, is processed in key limbic hubs. Genetic manipulation of brain circuitry with electrophysiological methods and Pavlovian conditioning in mice, are powerful tools to explore which and how individual circuits in these hubs control emotional states, and, in turn, how genes and psychoactive drugs modulate circuit activity, emotional states and behavior.
We envision this ERC funded research to uncover general principles of the network organization of both emotions and behaviors. It is our hope that we contribute useful tools and methodological framework for investigating other brain functions in a similar manner.
Max ERC Funding
1 499 922 €
Duration
Start date: 2013-01-01, End date: 2018-06-30
Project acronym ENVNANO
Project Environmental Effects and Risk Evaluation of Engineered Nanoparticles
Researcher (PI) Anders Baun
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2011-StG_20101109
Summary The objective of the project Environmental Effects and Risk Evaluation of Engineered Nanoparticles (EnvNano) is to elucidate the particle specific properties that govern the ecotoxicological effects of engineered nanoparticles and in this way shift the paradigm for environmental risk assessment of nanomaterials.
While current activities in the emerging field of nano-ecotoxicology and environmental risk assessment of nanomaterials are based on the assumption that the methodologies developed for chemicals can be adapted to be applicable for nanomaterials, EnvNano has a completely different starting point: The behaviour of nanoparticles in suspension is fundamentally different from that of chemicals in on solution.
Therefore, all modifications of existing techniques that do not take this fact into account are bound to have a limited sphere of application or in the worst case to be invalid. By replacing the assumption of dissolved chemicals with a particle behaviour assumption, the traditional risk assessment paradigm will be so seriously impaired that a shift of paradigm will be needed.
EnvNano is based on the following hypotheses: 1. The ecotoxicity and bioaccumulation of engineered nanoparticles will be a function of specific physical and chemical characteristics of the nanoparticles; 2. The environmental hazards of engineered nanoparticles cannot be derived from hazard identifications of the material in other forms; 3. Existing regulatory risk assessment procedures for chemicals will not be appropriate to assess the behaviour and potential harmful effects of engineered nanoparticles on the environment.
These research hypotheses will be addressed in the four interacting research topics of EnvNano: Particle Characterization, Ecotoxicty, Bioaccumulation, and Framework for Risk Evaluation of Nanoparticles aimed to form the foundation for a movement from coefficient-based to kinetic-based environmental nanotoxicology and risk assessment.
Summary
The objective of the project Environmental Effects and Risk Evaluation of Engineered Nanoparticles (EnvNano) is to elucidate the particle specific properties that govern the ecotoxicological effects of engineered nanoparticles and in this way shift the paradigm for environmental risk assessment of nanomaterials.
While current activities in the emerging field of nano-ecotoxicology and environmental risk assessment of nanomaterials are based on the assumption that the methodologies developed for chemicals can be adapted to be applicable for nanomaterials, EnvNano has a completely different starting point: The behaviour of nanoparticles in suspension is fundamentally different from that of chemicals in on solution.
Therefore, all modifications of existing techniques that do not take this fact into account are bound to have a limited sphere of application or in the worst case to be invalid. By replacing the assumption of dissolved chemicals with a particle behaviour assumption, the traditional risk assessment paradigm will be so seriously impaired that a shift of paradigm will be needed.
EnvNano is based on the following hypotheses: 1. The ecotoxicity and bioaccumulation of engineered nanoparticles will be a function of specific physical and chemical characteristics of the nanoparticles; 2. The environmental hazards of engineered nanoparticles cannot be derived from hazard identifications of the material in other forms; 3. Existing regulatory risk assessment procedures for chemicals will not be appropriate to assess the behaviour and potential harmful effects of engineered nanoparticles on the environment.
These research hypotheses will be addressed in the four interacting research topics of EnvNano: Particle Characterization, Ecotoxicty, Bioaccumulation, and Framework for Risk Evaluation of Nanoparticles aimed to form the foundation for a movement from coefficient-based to kinetic-based environmental nanotoxicology and risk assessment.
Max ERC Funding
1 196 260 €
Duration
Start date: 2011-12-01, End date: 2016-03-31
Project acronym EURREP
Project Fertility, reproduction and population change in 21st Century Europe
Researcher (PI) Tomas Sobotka
Host Institution (HI) OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN
Call Details Starting Grant (StG), SH3, ERC-2011-StG_20101124
Summary This project will address key issues related to fertility and reproduction in 21st century Europe and their implications. We aim to expand our knowledge of contemporary reproductive behaviour, critically assess theoretical perspectives on fertility, develop new indicators for analyzing and projecting fertility and improve our understanding of fertility intentions.
Combining detailed databases, especially the expanding Human Fertility Database, as well as surveys, and theoretical perspectives, the research team will study contemporary fertility trends and their explanations. An emphasis will be put on analyzing and explaining very low fertility that became a matter of public concern in some countries.
We will review and confront the existing theories of fertility and examine their validity and premises at different levels of explanation. We will look how and under which circumstances they can illuminate observed fertility trends as well as the reversals in correlation between selected aggregate level-level indicators (female labour force participation, GDP level, marriage rates, etc.) and fertility.
Specific attention will be paid to studying systematically fertility intentions and desires of men and women in different settings and populations. Here the key issue is whether and why a systematic disagreement between intended and realized fertility exists at an aggregate level.
Finally, we aim to elaborate the indicators of fertility and population replacement. These will be used to assess long-term implications of contemporary fertility and migration patterns for population change and composition in different regions of Europe.
Summary
This project will address key issues related to fertility and reproduction in 21st century Europe and their implications. We aim to expand our knowledge of contemporary reproductive behaviour, critically assess theoretical perspectives on fertility, develop new indicators for analyzing and projecting fertility and improve our understanding of fertility intentions.
Combining detailed databases, especially the expanding Human Fertility Database, as well as surveys, and theoretical perspectives, the research team will study contemporary fertility trends and their explanations. An emphasis will be put on analyzing and explaining very low fertility that became a matter of public concern in some countries.
We will review and confront the existing theories of fertility and examine their validity and premises at different levels of explanation. We will look how and under which circumstances they can illuminate observed fertility trends as well as the reversals in correlation between selected aggregate level-level indicators (female labour force participation, GDP level, marriage rates, etc.) and fertility.
Specific attention will be paid to studying systematically fertility intentions and desires of men and women in different settings and populations. Here the key issue is whether and why a systematic disagreement between intended and realized fertility exists at an aggregate level.
Finally, we aim to elaborate the indicators of fertility and population replacement. These will be used to assess long-term implications of contemporary fertility and migration patterns for population change and composition in different regions of Europe.
Max ERC Funding
1 271 342 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym EVOCHLAMY
Project The Evolution of the Chlamydiae - an Experimental Approach
Researcher (PI) Matthias Horn
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Chlamydiae are a unique group of obligate intracellular bacteria that comprises symbionts of protozoa as well as important pathogens of humans and a wide range of animals. The intracellular life style and the obligate association with a eukaryotic host was established early in chlamydial evolution and possibly also contributed to the origin of the primary phototrophic eukaryote. While much has been learned during the past decade with respect to chlamydial diversity, their evolutionary history, pathogenesis and mechanisms for host cell interaction, very little is known about genome dynamics, genome evolution, and adaptation in this important group of microorganisms. This project aims to fill this gap by three complementary work packages using experimental evolution approaches and state-of-the-art genome sequencing techniques.
Chlamydiae that naturally infect free-living amoebae, namely Protochlamydia amoebophila and Simkania negevensis, will be established as model systems for studying genome evolution of obligate intracellular bacteria (living in protozoa). Due to their larger, less reduced genomes compared to chlamydial pathogens, amoeba-associated Chlamydiae are ideally suited for these investigations. Experimental evolution approaches – among the prokaryotes so far almost exclusively used for studying free-living bacteria – will be applied to understand the genomic and molecular basis of the intracellular life style of Chlamydiae with respect to host adaptation, host interaction, and the character of the symbioses (mutualism versus parasitism). In addition, the role of amoebae for horizontal gene transfer among intracellular bacteria will be investigated experimentally. Taken together, this project will break new ground with respect to evolution experiments with intracellular bacteria, and it will provide unprecedented insights into the evolution and adaptive processes of intracellular bacteria in general, and the Chlamydiae in particular.
Summary
Chlamydiae are a unique group of obligate intracellular bacteria that comprises symbionts of protozoa as well as important pathogens of humans and a wide range of animals. The intracellular life style and the obligate association with a eukaryotic host was established early in chlamydial evolution and possibly also contributed to the origin of the primary phototrophic eukaryote. While much has been learned during the past decade with respect to chlamydial diversity, their evolutionary history, pathogenesis and mechanisms for host cell interaction, very little is known about genome dynamics, genome evolution, and adaptation in this important group of microorganisms. This project aims to fill this gap by three complementary work packages using experimental evolution approaches and state-of-the-art genome sequencing techniques.
Chlamydiae that naturally infect free-living amoebae, namely Protochlamydia amoebophila and Simkania negevensis, will be established as model systems for studying genome evolution of obligate intracellular bacteria (living in protozoa). Due to their larger, less reduced genomes compared to chlamydial pathogens, amoeba-associated Chlamydiae are ideally suited for these investigations. Experimental evolution approaches – among the prokaryotes so far almost exclusively used for studying free-living bacteria – will be applied to understand the genomic and molecular basis of the intracellular life style of Chlamydiae with respect to host adaptation, host interaction, and the character of the symbioses (mutualism versus parasitism). In addition, the role of amoebae for horizontal gene transfer among intracellular bacteria will be investigated experimentally. Taken together, this project will break new ground with respect to evolution experiments with intracellular bacteria, and it will provide unprecedented insights into the evolution and adaptive processes of intracellular bacteria in general, and the Chlamydiae in particular.
Max ERC Funding
1 499 621 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym FLATOUT
Project From Flat to Chiral: A unified approach to converting achiral aromatic compounds to optically active valuable building blocks
Researcher (PI) Nuno Xavier Dias Maulide
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), PE5, ERC-2011-StG_20101014
Summary "The stereoselective preparation of enantioenriched organic compounds of high structural complexity and synthetic value, in an economically viable and expeditious manner, is one of the most important goals in contemporary Organic Synthesis. In this proposal, I present a unified and conceptually novel approach for the conversion of flat, aromatic heterocycles into highly valuable compounds for a variety of applications. This approach hinges upon a synergistic combination of the dramatic power of organic photochemical transformations combined with the exceedingly high selectivity and atom-economy of efficient catalytic processes. Indeed, the use of probably the cheapest reagent (light) combined with a catalytic transformation ensures near perfect atom-economy in this journey from flat and inexpensive substructures to chiral added-value products. Conceptually, the photochemical operation is envisaged as a energy-loading step whereas the catalytic transformation functions as an energy-release where asymmetric information is inscribed into the products.
The chemistry proposed herein will open up new vistas in enantioselective synthesis. Furthermore, groundbreaking and unprecedented methodology in the field of catalytic allylic alkylation is proposed that significantly expands (and goes beyond) the currently accepted “dogmas” for these textbook reactions. These include (but are not limited to) systematic violations of well-established rules “by design”, new contexts for application, new activation modes and innovative leaving groups. Finally, the comprehensive body of synthetic technology presented will be applied to pressing target-oriented problems in Organic Synthesis. It shall result in a landmark, highly efficient total synthesis of Tamiflu, as well as in application to an environmentally important target (Fomannosin), allowing the easy production of analogues for biological testing."
Summary
"The stereoselective preparation of enantioenriched organic compounds of high structural complexity and synthetic value, in an economically viable and expeditious manner, is one of the most important goals in contemporary Organic Synthesis. In this proposal, I present a unified and conceptually novel approach for the conversion of flat, aromatic heterocycles into highly valuable compounds for a variety of applications. This approach hinges upon a synergistic combination of the dramatic power of organic photochemical transformations combined with the exceedingly high selectivity and atom-economy of efficient catalytic processes. Indeed, the use of probably the cheapest reagent (light) combined with a catalytic transformation ensures near perfect atom-economy in this journey from flat and inexpensive substructures to chiral added-value products. Conceptually, the photochemical operation is envisaged as a energy-loading step whereas the catalytic transformation functions as an energy-release where asymmetric information is inscribed into the products.
The chemistry proposed herein will open up new vistas in enantioselective synthesis. Furthermore, groundbreaking and unprecedented methodology in the field of catalytic allylic alkylation is proposed that significantly expands (and goes beyond) the currently accepted “dogmas” for these textbook reactions. These include (but are not limited to) systematic violations of well-established rules “by design”, new contexts for application, new activation modes and innovative leaving groups. Finally, the comprehensive body of synthetic technology presented will be applied to pressing target-oriented problems in Organic Synthesis. It shall result in a landmark, highly efficient total synthesis of Tamiflu, as well as in application to an environmentally important target (Fomannosin), allowing the easy production of analogues for biological testing."
Max ERC Funding
1 487 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym FRICTIONS
Project Financial Frictions
Researcher (PI) Lasse Heje Pedersen
Host Institution (HI) COPENHAGEN BUSINESS SCHOOL
Call Details Starting Grant (StG), SH1, ERC-2012-StG_20111124
Summary "Financial economics is at a crossroads: Academics are struggling to redefine the theory of finance and practitioners and regulators to restructure the financial industry. The current financial crisis will have significant impact on how we regulate financial markets and how we manage risk in companies and financial institutions. It will continue to inspire an intense discussion and research agenda over the next decade in academics, in industry, and among financial regulators and a central focus will be the role of frictions in financial markets. Nowhere are these issues more pertinent than in Europe right now.
To take up the challenge presented by this crossroad of financial economics, my research project seeks to contribute to the knowledge of financial frictions and what to do about them. FRICTIONS will explore how financial frictions affect asset prices and the economy, and the implications of frictions for financial risk management, the optimal regulation, and the conduct of monetary policy.
Whereas economists have traditionally focused on the assumption of perfect markets, a growing body of evidence is leading to a widespread recognition that markets are plagued by significant financial frictions. FRICTIONS will model key financial frictions such as leverage constraints, margin requirements, transaction costs, liquidity risk, and short sale constraints. The objective is to develop theories of the origins of these frictions, study how these frictions change over time and across markets, and, importantly, how they affect the required return on assets and the economy.
The project will test these theories using data from global equity, bond, and derivative markets. In particular, the project will measure these frictions empirically and study the empirical effect of frictions on asset returns and economic dynamics. The end result is an empirically-validated model of economic behavior subject to financial frictions that yields qualitative and quantitative insights."
Summary
"Financial economics is at a crossroads: Academics are struggling to redefine the theory of finance and practitioners and regulators to restructure the financial industry. The current financial crisis will have significant impact on how we regulate financial markets and how we manage risk in companies and financial institutions. It will continue to inspire an intense discussion and research agenda over the next decade in academics, in industry, and among financial regulators and a central focus will be the role of frictions in financial markets. Nowhere are these issues more pertinent than in Europe right now.
To take up the challenge presented by this crossroad of financial economics, my research project seeks to contribute to the knowledge of financial frictions and what to do about them. FRICTIONS will explore how financial frictions affect asset prices and the economy, and the implications of frictions for financial risk management, the optimal regulation, and the conduct of monetary policy.
Whereas economists have traditionally focused on the assumption of perfect markets, a growing body of evidence is leading to a widespread recognition that markets are plagued by significant financial frictions. FRICTIONS will model key financial frictions such as leverage constraints, margin requirements, transaction costs, liquidity risk, and short sale constraints. The objective is to develop theories of the origins of these frictions, study how these frictions change over time and across markets, and, importantly, how they affect the required return on assets and the economy.
The project will test these theories using data from global equity, bond, and derivative markets. In particular, the project will measure these frictions empirically and study the empirical effect of frictions on asset returns and economic dynamics. The end result is an empirically-validated model of economic behavior subject to financial frictions that yields qualitative and quantitative insights."
Max ERC Funding
1 307 160 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym GINE
Project General Institutional Equilibrium
- theory and policy implications
Researcher (PI) Bard Harstad
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), SH1, ERC-2011-StG_20101124
Summary Existing institutional theory, including political economics and contract theory, convincingly show that institutional details have large impacts on economic and policy outcomes. Once this is recognized, it follows that contracts should depend on the organisational design of the institution to which the contract is offered. Stage 1 of Project Gine aims at characterising optimal contracts as a function of this design. Stage 2 develops a framework for endogenising and characterising the optimal institutional design. At Stage 3, sets of institutions are endogenised at the same time, where the design of one is an optimal response to the designs of the others. This outcome is referred to as a general institutional equilibrium.
Such a theory or methodological framework has several immensely important applications. Development aid contracts should carefully account for the political structure in the recipient country; otherwise the effect of aid may surprise and be counterproductive. The major application motivating this study, however, is environmental policy. Not only must the optimal environmental policy be conditioned on political economy forces; it must also be a function of institutional details, such as the political system. This can explain why the choice of instrument differs across political systems, and why politicians often prefer standards rather than economic instruments. Furthermore, we still do not have a good knowledge of how to design effective and implementable international environmental treaties. The optimal treaty design as well as the best choice of policy instrument must take into account that certain institutions (e.g., interest groups, firm structures, and perhaps even local governance) respond endogenously to these policies.
Summary
Existing institutional theory, including political economics and contract theory, convincingly show that institutional details have large impacts on economic and policy outcomes. Once this is recognized, it follows that contracts should depend on the organisational design of the institution to which the contract is offered. Stage 1 of Project Gine aims at characterising optimal contracts as a function of this design. Stage 2 develops a framework for endogenising and characterising the optimal institutional design. At Stage 3, sets of institutions are endogenised at the same time, where the design of one is an optimal response to the designs of the others. This outcome is referred to as a general institutional equilibrium.
Such a theory or methodological framework has several immensely important applications. Development aid contracts should carefully account for the political structure in the recipient country; otherwise the effect of aid may surprise and be counterproductive. The major application motivating this study, however, is environmental policy. Not only must the optimal environmental policy be conditioned on political economy forces; it must also be a function of institutional details, such as the political system. This can explain why the choice of instrument differs across political systems, and why politicians often prefer standards rather than economic instruments. Furthermore, we still do not have a good knowledge of how to design effective and implementable international environmental treaties. The optimal treaty design as well as the best choice of policy instrument must take into account that certain institutions (e.g., interest groups, firm structures, and perhaps even local governance) respond endogenously to these policies.
Max ERC Funding
760 170 €
Duration
Start date: 2012-07-01, End date: 2016-06-30