Project acronym 3Ps
Project 3Ps
Plastic-Antibodies, Plasmonics and Photovoltaic-Cells: on-site screening of cancer biomarkers made possible
Researcher (PI) Maria Goreti Ferreira Sales
Host Institution (HI) INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary This project presents a new concept for the detection, diagnosis and monitoring of cancer biomarker patterns in point-of-care. The device under development will make use of the selectivity of the plastic antibodies as sensing materials and the interference they will play on the normal operation of a photovoltaic cell.
Plastic antibodies will be designed by surface imprinting procedures. Self-assembled monolayer and molecular imprinting techniques will be merged in this process because they allow the self-assembly of nanostructured materials on a “bottom-up” nanofabrication approach. A dye-sensitized solar cell will be used as photovoltaic cell. It includes a liquid interface in the cell circuit, which allows the introduction of the sample (also in liquid phase) without disturbing the normal cell operation. Furthermore, it works well with rather low cost materials and requires mild and easy processing conditions. The cell will be equipped with plasmonic structures to enhance light absorption and cell efficiency.
The device under development will be easily operated by any clinician or patient. It will require ambient light and a regular multimeter. Eye detection will be also tried out.
Summary
This project presents a new concept for the detection, diagnosis and monitoring of cancer biomarker patterns in point-of-care. The device under development will make use of the selectivity of the plastic antibodies as sensing materials and the interference they will play on the normal operation of a photovoltaic cell.
Plastic antibodies will be designed by surface imprinting procedures. Self-assembled monolayer and molecular imprinting techniques will be merged in this process because they allow the self-assembly of nanostructured materials on a “bottom-up” nanofabrication approach. A dye-sensitized solar cell will be used as photovoltaic cell. It includes a liquid interface in the cell circuit, which allows the introduction of the sample (also in liquid phase) without disturbing the normal cell operation. Furthermore, it works well with rather low cost materials and requires mild and easy processing conditions. The cell will be equipped with plasmonic structures to enhance light absorption and cell efficiency.
The device under development will be easily operated by any clinician or patient. It will require ambient light and a regular multimeter. Eye detection will be also tried out.
Max ERC Funding
998 584 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 5HT-OPTOGENETICS
Project Optogenetic Analysis of Serotonin Function in the Mammalian Brain
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Summary
Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Max ERC Funding
2 318 636 €
Duration
Start date: 2010-07-01, End date: 2015-12-31
Project acronym 5HTCircuits
Project Modulation of cortical circuits and predictive neural coding by serotonin
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2014-ADG
Summary Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Summary
Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Max ERC Funding
2 486 074 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym A-FRO
Project Actively Frozen - contextual modulation of freezing and its neuronal basis
Researcher (PI) Marta de Aragão Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Consolidator Grant (CoG), LS5, ERC-2018-COG
Summary When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Summary
When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Max ERC Funding
1 969 750 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ABC
Project Targeting Multidrug Resistant Cancer
Researcher (PI) Gergely Szakacs
Host Institution (HI) MAGYAR TUDOMANYOS AKADEMIA TERMESZETTUDOMANYI KUTATOKOZPONT
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Despite considerable advances in drug discovery, resistance to anticancer chemotherapy confounds the effective treatment of patients. Cancer cells can acquire broad cross-resistance to mechanistically and structurally unrelated drugs. P-glycoprotein (Pgp) actively extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. The central tenet of my work is that Pgp, a universally accepted biomarker of drug resistance, should in addition be considered as a molecular target of multidrug-resistant (MDR) cancer cells. Successful targeting of MDR cells would reduce the tumor burden and would also enable the elimination of ABC transporter-overexpressing cancer stem cells that are responsible for the replenishment of tumors. The proposed project is based on the following observations:
- First, by using a pharmacogenomic approach, I have revealed the hidden vulnerability of MDRcells (Szakács et al. 2004, Cancer Cell 6, 129-37);
- Second, I have identified a series of MDR-selective compounds with increased toxicity toPgp-expressing cells
(Turk et al.,Cancer Res, 2009. 69(21));
- Third, I have shown that MDR-selective compounds can be used to prevent theemergence of MDR (Ludwig, Szakács et al. 2006, Cancer Res 66, 4808-15);
- Fourth, we have generated initial pharmacophore models for cytotoxicity and MDR-selectivity (Hall et al. 2009, J Med Chem 52, 3191-3204).
I propose a comprehensive series of studies that will address thefollowing critical questions:
- First, what is the scope of MDR-selective compounds?
- Second, what is their mechanism of action?
- Third, what is the optimal therapeutic modality?
Extensive biological, pharmacological and bioinformatic analyses will be utilized to address four major specific aims. These aims address basic questions concerning the physiology of MDR ABC transporters in determining the mechanism of action of MDR-selective compounds, setting the stage for a fresh therapeutic approach that may eventually translate into improved patient care.
Summary
Despite considerable advances in drug discovery, resistance to anticancer chemotherapy confounds the effective treatment of patients. Cancer cells can acquire broad cross-resistance to mechanistically and structurally unrelated drugs. P-glycoprotein (Pgp) actively extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. The central tenet of my work is that Pgp, a universally accepted biomarker of drug resistance, should in addition be considered as a molecular target of multidrug-resistant (MDR) cancer cells. Successful targeting of MDR cells would reduce the tumor burden and would also enable the elimination of ABC transporter-overexpressing cancer stem cells that are responsible for the replenishment of tumors. The proposed project is based on the following observations:
- First, by using a pharmacogenomic approach, I have revealed the hidden vulnerability of MDRcells (Szakács et al. 2004, Cancer Cell 6, 129-37);
- Second, I have identified a series of MDR-selective compounds with increased toxicity toPgp-expressing cells
(Turk et al.,Cancer Res, 2009. 69(21));
- Third, I have shown that MDR-selective compounds can be used to prevent theemergence of MDR (Ludwig, Szakács et al. 2006, Cancer Res 66, 4808-15);
- Fourth, we have generated initial pharmacophore models for cytotoxicity and MDR-selectivity (Hall et al. 2009, J Med Chem 52, 3191-3204).
I propose a comprehensive series of studies that will address thefollowing critical questions:
- First, what is the scope of MDR-selective compounds?
- Second, what is their mechanism of action?
- Third, what is the optimal therapeutic modality?
Extensive biological, pharmacological and bioinformatic analyses will be utilized to address four major specific aims. These aims address basic questions concerning the physiology of MDR ABC transporters in determining the mechanism of action of MDR-selective compounds, setting the stage for a fresh therapeutic approach that may eventually translate into improved patient care.
Max ERC Funding
1 499 640 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym ACCELERATES
Project Acceleration in Extreme Shocks: from the microphysics to laboratory and astrophysics scenarios
Researcher (PI) Luis Miguel De Oliveira E Silva
Host Institution (HI) INSTITUTO SUPERIOR TECNICO
Call Details Advanced Grant (AdG), PE2, ERC-2010-AdG_20100224
Summary What is the origin of cosmic rays, what are the dominant acceleration mechanisms in relativistic shocks, how do cosmic rays self-consistently influence the shock dynamics, how are relativistic collisionless shocks formed are longstanding scientific questions, closely tied to extreme plasma physics processes, and where a close interplay between the micro-instabilities and the global dynamics is critical.
Relativistic shocks are closely connected with the propagation of intense streams of particles pervasive in many astrophysical scenarios. The possibility of exciting shocks in the laboratory will also be available very soon with multi-PW lasers or intense relativistic particle beams.
Computational modeling is now established as a prominent research tool, by enabling the fully kinetic modeling of these systems for the first time. With the fast paced developments in high performance computing, the time is ripe for a focused research programme on simulation-based studies of relativistic shocks. This proposal therefore focuses on using self-consistent ab initio massively parallel simulations to study the physics of relativistic shocks, bridging the gap between the multidimensional microphysics of shock onset, formation, and propagation and the global system dynamics. Particular focus will be given to the shock acceleration mechanisms and the radiation signatures of the various physical processes, with the goal of solving some of the central questions in plasma/relativistic phenomena in astrophysics and in the laboratory, and opening new avenues between theoretical/massive computational studies, laboratory experiments and astrophysical observations.
Summary
What is the origin of cosmic rays, what are the dominant acceleration mechanisms in relativistic shocks, how do cosmic rays self-consistently influence the shock dynamics, how are relativistic collisionless shocks formed are longstanding scientific questions, closely tied to extreme plasma physics processes, and where a close interplay between the micro-instabilities and the global dynamics is critical.
Relativistic shocks are closely connected with the propagation of intense streams of particles pervasive in many astrophysical scenarios. The possibility of exciting shocks in the laboratory will also be available very soon with multi-PW lasers or intense relativistic particle beams.
Computational modeling is now established as a prominent research tool, by enabling the fully kinetic modeling of these systems for the first time. With the fast paced developments in high performance computing, the time is ripe for a focused research programme on simulation-based studies of relativistic shocks. This proposal therefore focuses on using self-consistent ab initio massively parallel simulations to study the physics of relativistic shocks, bridging the gap between the multidimensional microphysics of shock onset, formation, and propagation and the global system dynamics. Particular focus will be given to the shock acceleration mechanisms and the radiation signatures of the various physical processes, with the goal of solving some of the central questions in plasma/relativistic phenomena in astrophysics and in the laboratory, and opening new avenues between theoretical/massive computational studies, laboratory experiments and astrophysical observations.
Max ERC Funding
1 588 800 €
Duration
Start date: 2011-06-01, End date: 2016-07-31
Project acronym activeFly
Project Circuit mechanisms of self-movement estimation during walking
Researcher (PI) M Eugenia CHIAPPE
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary The brain evolves, develops, and operates in the context of animal movements. As a consequence, fundamental brain functions such as spatial perception and motor control critically depend on the precise knowledge of the ongoing body motion. An accurate internal estimate of self-movement is thought to emerge from sensorimotor integration; nonetheless, which circuits perform this internal estimation, and exactly how motor-sensory coordination is implemented within these circuits are basic questions that remain to be poorly understood. There is growing evidence suggesting that, during locomotion, motor-related and visual signals interact at early stages of visual processing. In mammals, however, it is not clear what the function of this interaction is. Recently, we have shown that a population of Drosophila optic-flow processing neurons —neurons that are sensitive to self-generated visual flow, receives convergent visual and walking-related signals to form a faithful representation of the fly’s walking movements. Leveraging from these results, and combining quantitative analysis of behavior with physiology, optogenetics, and modelling, we propose to investigate circuit mechanisms of self-movement estimation during walking. We will:1) use cell specific manipulations to identify what cells are necessary to generate the motor-related activity in the population of visual neurons, 2) record from the identified neurons and correlate their activity with specific locomotor parameters, and 3) perturb the activity of different cell-types within the identified circuits to test their role in the dynamics of the visual neurons, and on the fly’s walking behavior. These experiments will establish unprecedented causal relationships among neural activity, the formation of an internal representation, and locomotor control. The identified sensorimotor principles will establish a framework that can be tested in other scenarios or animal systems with implications both in health and disease.
Summary
The brain evolves, develops, and operates in the context of animal movements. As a consequence, fundamental brain functions such as spatial perception and motor control critically depend on the precise knowledge of the ongoing body motion. An accurate internal estimate of self-movement is thought to emerge from sensorimotor integration; nonetheless, which circuits perform this internal estimation, and exactly how motor-sensory coordination is implemented within these circuits are basic questions that remain to be poorly understood. There is growing evidence suggesting that, during locomotion, motor-related and visual signals interact at early stages of visual processing. In mammals, however, it is not clear what the function of this interaction is. Recently, we have shown that a population of Drosophila optic-flow processing neurons —neurons that are sensitive to self-generated visual flow, receives convergent visual and walking-related signals to form a faithful representation of the fly’s walking movements. Leveraging from these results, and combining quantitative analysis of behavior with physiology, optogenetics, and modelling, we propose to investigate circuit mechanisms of self-movement estimation during walking. We will:1) use cell specific manipulations to identify what cells are necessary to generate the motor-related activity in the population of visual neurons, 2) record from the identified neurons and correlate their activity with specific locomotor parameters, and 3) perturb the activity of different cell-types within the identified circuits to test their role in the dynamics of the visual neurons, and on the fly’s walking behavior. These experiments will establish unprecedented causal relationships among neural activity, the formation of an internal representation, and locomotor control. The identified sensorimotor principles will establish a framework that can be tested in other scenarios or animal systems with implications both in health and disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym ACTOMYO
Project Mechanisms of actomyosin-based contractility during cytokinesis
Researcher (PI) Ana Costa Xavier de Carvalho
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Call Details Starting Grant (StG), LS3, ERC-2014-STG
Summary Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Summary
Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Max ERC Funding
1 499 989 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym ALICE
Project Strange Mirrors, Unsuspected Lessons: Leading Europe to a new way of sharing the world experiences
Researcher (PI) Boaventura De Sousa Santos
Host Institution (HI) CENTRO DE ESTUDOS SOCIAIS
Call Details Advanced Grant (AdG), SH2, ERC-2010-AdG_20100407
Summary Europe sits uncomfortably on the idea that there are no political and cultural alternatives credible enough to respond to the current uneasiness or malaise caused by both a world that is more and more non-European and a Europe that increasingly questions what is European about itself. This project will develop a new grounded theoretical paradigm for contemporary Europe based on two key ideas: the understanding of the world by far exceeds the European understanding of the world; social, political and institutional transformation in Europe may benefit from innovations taking place in regions and countries with which Europe is increasingly interdependent. I will pursue this objective focusing on four main interconnected topics: democratizing democracy, intercultural constitutionalism, the other economy, human rights (right to health in particular).
In a sense that the European challenges are unique but, in one way or another, are being experienced in different corners of the world. The novelty resides in bringing new ideas and experiences into the European conversation, show their relevance to our current uncertainties and aspirations and thereby contribute to face them with new intellectual and political resources. The usefulness and relevance of non-European conceptions and experiences un-thinking the conventional knowledge through two epistemological devices I have developed: the ecology of knowledges and intercultural translation. By resorting to them I will show that there are alternatives but they cannot be made credible and powerful if we go on relying on the modes of theoretical and political thinking that have dominated so far. In other words, the claim put forward by and worked through this project is that in Europe we don’t need alternatives but rather an alternative thinking of alternatives.
Summary
Europe sits uncomfortably on the idea that there are no political and cultural alternatives credible enough to respond to the current uneasiness or malaise caused by both a world that is more and more non-European and a Europe that increasingly questions what is European about itself. This project will develop a new grounded theoretical paradigm for contemporary Europe based on two key ideas: the understanding of the world by far exceeds the European understanding of the world; social, political and institutional transformation in Europe may benefit from innovations taking place in regions and countries with which Europe is increasingly interdependent. I will pursue this objective focusing on four main interconnected topics: democratizing democracy, intercultural constitutionalism, the other economy, human rights (right to health in particular).
In a sense that the European challenges are unique but, in one way or another, are being experienced in different corners of the world. The novelty resides in bringing new ideas and experiences into the European conversation, show their relevance to our current uncertainties and aspirations and thereby contribute to face them with new intellectual and political resources. The usefulness and relevance of non-European conceptions and experiences un-thinking the conventional knowledge through two epistemological devices I have developed: the ecology of knowledges and intercultural translation. By resorting to them I will show that there are alternatives but they cannot be made credible and powerful if we go on relying on the modes of theoretical and political thinking that have dominated so far. In other words, the claim put forward by and worked through this project is that in Europe we don’t need alternatives but rather an alternative thinking of alternatives.
Max ERC Funding
2 423 140 €
Duration
Start date: 2011-07-01, End date: 2016-12-31
Project acronym Andrea
Project A Novel Detection protocols for REliable prostate cancer Assays
Researcher (PI) Jan TKAC
Host Institution (HI) CHEMICKY USTAV SLOVENSKEJ AKADEMIEVIED
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary The technology validation was successfully completed indicating a great commercial potential, and the innovative and inventive aspects of the assay platform are now covered by the filed priority European Patent Office (EPO) patent applications. Validated glycoprofiling of the proteins now uses lectins in a format, fully compatible with clinical PSA assay kits. This PoC grant focuses on 1. Pre-clinical retrospective validation of the early stage biomarker of prostate cancer (PCa) and 2. Commercialisation of the PCa diagnostics kit. Pre-clinical (60 human serum samples) is ongoing and retrospective validation study (450 human serum samples) of the assay will be performed by statistical analysis using a receiver operating characteristic (ROC) curve. The PoC describes all steps, which have been developed so far and all necessary steps, which need to be done for retrospective validation study, product development and commercialisation through our newly incorporated start-up Glycanostics Ltd. (www.glycanostics.com). We will provide PCa diagnostic test resulting in a second opinion to guide the right decision if the biopsy is needed. This will avoid the needless and unreliable biopsies and in the future rival an inaccurate PSA testing.
Summary
The technology validation was successfully completed indicating a great commercial potential, and the innovative and inventive aspects of the assay platform are now covered by the filed priority European Patent Office (EPO) patent applications. Validated glycoprofiling of the proteins now uses lectins in a format, fully compatible with clinical PSA assay kits. This PoC grant focuses on 1. Pre-clinical retrospective validation of the early stage biomarker of prostate cancer (PCa) and 2. Commercialisation of the PCa diagnostics kit. Pre-clinical (60 human serum samples) is ongoing and retrospective validation study (450 human serum samples) of the assay will be performed by statistical analysis using a receiver operating characteristic (ROC) curve. The PoC describes all steps, which have been developed so far and all necessary steps, which need to be done for retrospective validation study, product development and commercialisation through our newly incorporated start-up Glycanostics Ltd. (www.glycanostics.com). We will provide PCa diagnostic test resulting in a second opinion to guide the right decision if the biopsy is needed. This will avoid the needless and unreliable biopsies and in the future rival an inaccurate PSA testing.
Max ERC Funding
149 500 €
Duration
Start date: 2018-12-01, End date: 2020-05-31
Project acronym ATLAS
Project Bioengineered autonomous cell-biomaterials devices for generating humanised micro-tissues for regenerative medicine
Researcher (PI) João Felipe Colardelle da Luz Mano
Host Institution (HI) UNIVERSIDADE DE AVEIRO
Call Details Advanced Grant (AdG), PE8, ERC-2014-ADG
Summary New generations of devices for tissue engineering (TE) should rationalize better the physical and biochemical cues operating in tandem during native regeneration, in particular at the scale/organizational-level of the stem cell niche. The understanding and the deconstruction of these factors (e.g. multiple cell types exchanging both paracrine and direct signals, structural and chemical arrangement of the extra-cellular matrix, mechanical signals…) should be then incorporated into the design of truly biomimetic biomaterials. ATLAS proposes rather unique toolboxes combining smart biomaterials and cells for the ground-breaking advances of engineering fully time-self-regulated complex 2D and 3D devices, able to adjust the cascade of processes leading to faster high-quality new tissue formation with minimum pre-processing of cells. Versatile biomaterials based on marine-origin macromolecules will be used, namely in the supramolecular assembly of instructive multilayers as nanostratified building-blocks for engineer such structures. The backbone of these biopolymers will be equipped with a variety of (bio)chemical elements permitting: post-processing chemistry and micro-patterning, specific/non-specific cell attachment, and cell-controlled degradation. Aiming at being applied in bone TE, ATLAS will integrate cells from different units of tissue physiology, namely bone and hematopoietic basic elements and consider the interactions between the immune and skeletal systems. These ingredients will permit to architect innovative films with high-level dialogue control with cells, but in particular sophisticated quasi-closed 3D capsules able to compartmentalise such components in a “globe-like” organization, providing local and long-range order for in vitro microtissue development and function. Such hybrid devices could be used in more generalised front-edge applications, including as disease models for drug discovery or test new therapies in vitro.
Summary
New generations of devices for tissue engineering (TE) should rationalize better the physical and biochemical cues operating in tandem during native regeneration, in particular at the scale/organizational-level of the stem cell niche. The understanding and the deconstruction of these factors (e.g. multiple cell types exchanging both paracrine and direct signals, structural and chemical arrangement of the extra-cellular matrix, mechanical signals…) should be then incorporated into the design of truly biomimetic biomaterials. ATLAS proposes rather unique toolboxes combining smart biomaterials and cells for the ground-breaking advances of engineering fully time-self-regulated complex 2D and 3D devices, able to adjust the cascade of processes leading to faster high-quality new tissue formation with minimum pre-processing of cells. Versatile biomaterials based on marine-origin macromolecules will be used, namely in the supramolecular assembly of instructive multilayers as nanostratified building-blocks for engineer such structures. The backbone of these biopolymers will be equipped with a variety of (bio)chemical elements permitting: post-processing chemistry and micro-patterning, specific/non-specific cell attachment, and cell-controlled degradation. Aiming at being applied in bone TE, ATLAS will integrate cells from different units of tissue physiology, namely bone and hematopoietic basic elements and consider the interactions between the immune and skeletal systems. These ingredients will permit to architect innovative films with high-level dialogue control with cells, but in particular sophisticated quasi-closed 3D capsules able to compartmentalise such components in a “globe-like” organization, providing local and long-range order for in vitro microtissue development and function. Such hybrid devices could be used in more generalised front-edge applications, including as disease models for drug discovery or test new therapies in vitro.
Max ERC Funding
2 498 988 €
Duration
Start date: 2015-12-01, End date: 2020-11-30
Project acronym ATOMKI-PPROCESS
Project Nuclear reaction studies relevant to the astrophysical p-process nucleosynthesis
Researcher (PI) György Gyürky
Host Institution (HI) Magyar Tudomanyos Akademia Atommagkutato Intezete
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary The astrophysical p-process, the stellar production mechanism of the heavy, proton rich isotopes (p-isotopes), is one of the least studied processes in nucleosynthesis. The astrophysical site(s) for the p-process could not yet be clearly identified. In order to reproduce the natural abundances of the p-isotopes, the p-process models must take into account a huge nuclear reaction network. A precise knowledge of the rate of the nuclear reactions in this network is essential for a reliable abundance calculation and for a clear assignment of the astrophysical site(s). For lack of experimental data the nuclear physics inputs for the reaction networks are based on statistical model calculations. These calculations are largely untested in the mass and energy range relevant to the p-process and the uncertainties in the reaction rate values result in a correspondingly uncertain prediction of the p-isotope abundances. Therefore, experiments aiming at the determination of reaction rates for the p-process are of great importance. In this project nuclear reaction cross section measurements will be carried out in the mass and energy range of p-process to check the reliability of the statistical model calculations and to put the p-process models on a more reliable base. The accelerators of the Institute of Nuclear Research in Debrecen, Hungary provide the necessary basis for such studies. The p-process model calculations are especially sensitive to the rates of reactions involving alpha particles and heavy nuclei. Because of technical difficulties, so far there are practically no experimental data available on such reactions and the uncertainty in these reaction rates is presently one of the biggest contributions to the uncertainty of p-isotope abundance calculations. With the help of the ERC grant the alpha-induced reaction cross sections can be measured on heavy isotopes for the first time, which could contribute to a better understanding of the astrophysical p-process.
Summary
The astrophysical p-process, the stellar production mechanism of the heavy, proton rich isotopes (p-isotopes), is one of the least studied processes in nucleosynthesis. The astrophysical site(s) for the p-process could not yet be clearly identified. In order to reproduce the natural abundances of the p-isotopes, the p-process models must take into account a huge nuclear reaction network. A precise knowledge of the rate of the nuclear reactions in this network is essential for a reliable abundance calculation and for a clear assignment of the astrophysical site(s). For lack of experimental data the nuclear physics inputs for the reaction networks are based on statistical model calculations. These calculations are largely untested in the mass and energy range relevant to the p-process and the uncertainties in the reaction rate values result in a correspondingly uncertain prediction of the p-isotope abundances. Therefore, experiments aiming at the determination of reaction rates for the p-process are of great importance. In this project nuclear reaction cross section measurements will be carried out in the mass and energy range of p-process to check the reliability of the statistical model calculations and to put the p-process models on a more reliable base. The accelerators of the Institute of Nuclear Research in Debrecen, Hungary provide the necessary basis for such studies. The p-process model calculations are especially sensitive to the rates of reactions involving alpha particles and heavy nuclei. Because of technical difficulties, so far there are practically no experimental data available on such reactions and the uncertainty in these reaction rates is presently one of the biggest contributions to the uncertainty of p-isotope abundance calculations. With the help of the ERC grant the alpha-induced reaction cross sections can be measured on heavy isotopes for the first time, which could contribute to a better understanding of the astrophysical p-process.
Max ERC Funding
750 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym AXIAL.EC
Project PRINCIPLES OF AXIAL POLARITY-DRIVEN VASCULAR PATTERNING
Researcher (PI) Claudio Franco
Host Institution (HI) INSTITUTO DE MEDICINA MOLECULAR JOAO LOBO ANTUNES
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary The formation of a functional patterned vascular network is essential for development, tissue growth and organ physiology. Several human vascular disorders arise from the mis-patterning of blood vessels, such as arteriovenous malformations, aneurysms and diabetic retinopathy. Although blood flow is recognised as a stimulus for vascular patterning, very little is known about the molecular mechanisms that regulate endothelial cell behaviour in response to flow and promote vascular patterning.
Recently, we uncovered that endothelial cells migrate extensively in the immature vascular network, and that endothelial cells polarise against the blood flow direction. Here, we put forward the hypothesis that vascular patterning is dependent on the polarisation and migration of endothelial cells against the flow direction, in a continuous flux of cells going from low-shear stress to high-shear stress regions. We will establish new reporter mouse lines to observe and manipulate endothelial polarity in vivo in order to investigate how polarisation and coordination of endothelial cells movements are orchestrated to generate vascular patterning. We will manipulate cell polarity using mouse models to understand the importance of cell polarisation in vascular patterning. Also, using a unique zebrafish line allowing analysis of endothelial cell polarity, we will perform a screen to identify novel regulators of vascular patterning. Finally, we will explore the hypothesis that defective flow-dependent endothelial polarisation underlies arteriovenous malformations using two genetic models.
This integrative approach, based on high-resolution imaging and unique experimental models, will provide a unifying model defining the cellular and molecular principles involved in vascular patterning. Given the physiological relevance of vascular patterning in health and disease, this research plan will set the basis for the development of novel clinical therapies targeting vascular disorders.
Summary
The formation of a functional patterned vascular network is essential for development, tissue growth and organ physiology. Several human vascular disorders arise from the mis-patterning of blood vessels, such as arteriovenous malformations, aneurysms and diabetic retinopathy. Although blood flow is recognised as a stimulus for vascular patterning, very little is known about the molecular mechanisms that regulate endothelial cell behaviour in response to flow and promote vascular patterning.
Recently, we uncovered that endothelial cells migrate extensively in the immature vascular network, and that endothelial cells polarise against the blood flow direction. Here, we put forward the hypothesis that vascular patterning is dependent on the polarisation and migration of endothelial cells against the flow direction, in a continuous flux of cells going from low-shear stress to high-shear stress regions. We will establish new reporter mouse lines to observe and manipulate endothelial polarity in vivo in order to investigate how polarisation and coordination of endothelial cells movements are orchestrated to generate vascular patterning. We will manipulate cell polarity using mouse models to understand the importance of cell polarisation in vascular patterning. Also, using a unique zebrafish line allowing analysis of endothelial cell polarity, we will perform a screen to identify novel regulators of vascular patterning. Finally, we will explore the hypothesis that defective flow-dependent endothelial polarisation underlies arteriovenous malformations using two genetic models.
This integrative approach, based on high-resolution imaging and unique experimental models, will provide a unifying model defining the cellular and molecular principles involved in vascular patterning. Given the physiological relevance of vascular patterning in health and disease, this research plan will set the basis for the development of novel clinical therapies targeting vascular disorders.
Max ERC Funding
1 618 750 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym AZIDRUGS
Project Molecular tattooing: azidated compounds pave the path towards light-activated covalent inhibitors for drug development
Researcher (PI) András MÁLNÁSI-CSIZMADIA
Host Institution (HI) DRUGMOTIF KORLATOLT FELELOSSEGU TARSASAG
Call Details Proof of Concept (PoC), PC1, ERC-2013-PoC
Summary Until now the greatest limitation in the application of bioactive compounds has been the inability of confining them specifically to single cells or subcellular components within the organism. Our recently synthesized photoactive forms of bioactive compounds solve this problem. We have developed effective chemical synthesis methods to attach an azide group to small drug-like molecules, which makes them photoactive. As a result, light irradiation can induce the covalent attachment of these molecules to their target enzymes. By controlling the timing and position of light irradiation it is possible to confine the effect of these molecules in time and space. It is important to emphasize that azidation is the smallest possible modification (adding 3 nitrogen atoms) that makes a compound photoactive and based on our experience it does not alter biological activities of most of the original compounds.
Azidated inhibitors give unprecedented freedom to researchers because the covalent compound-target formations allow them to address questions which could not have been addressed before. Three major advantages are obtained by using azidated compounds 1: determination of small molecule interactome becomes highly effective, especially, the weak interactions can be determined, which was not possible before 2: it improves the pharmacodynamic and pharmacokinetic properties of biological compounds as the covalent attachment prolongs their effect. 3: Recently, we showed that photoactivation can be initiated by two-photon excitation, thereby confining the effect to femtoliter volumes and well-controlled spatial locations. This feature provides unprecedented spatial and temporal control in localizing the effect of biological compounds in cellular and subcelluler level in in vivo experiments. By realizing the need for photoactive compounds, the PI has established Drugmotif Ltd., a spin-off company, which provides the customers with special azidated chemicals for high-tech research.
Summary
Until now the greatest limitation in the application of bioactive compounds has been the inability of confining them specifically to single cells or subcellular components within the organism. Our recently synthesized photoactive forms of bioactive compounds solve this problem. We have developed effective chemical synthesis methods to attach an azide group to small drug-like molecules, which makes them photoactive. As a result, light irradiation can induce the covalent attachment of these molecules to their target enzymes. By controlling the timing and position of light irradiation it is possible to confine the effect of these molecules in time and space. It is important to emphasize that azidation is the smallest possible modification (adding 3 nitrogen atoms) that makes a compound photoactive and based on our experience it does not alter biological activities of most of the original compounds.
Azidated inhibitors give unprecedented freedom to researchers because the covalent compound-target formations allow them to address questions which could not have been addressed before. Three major advantages are obtained by using azidated compounds 1: determination of small molecule interactome becomes highly effective, especially, the weak interactions can be determined, which was not possible before 2: it improves the pharmacodynamic and pharmacokinetic properties of biological compounds as the covalent attachment prolongs their effect. 3: Recently, we showed that photoactivation can be initiated by two-photon excitation, thereby confining the effect to femtoliter volumes and well-controlled spatial locations. This feature provides unprecedented spatial and temporal control in localizing the effect of biological compounds in cellular and subcelluler level in in vivo experiments. By realizing the need for photoactive compounds, the PI has established Drugmotif Ltd., a spin-off company, which provides the customers with special azidated chemicals for high-tech research.
Max ERC Funding
150 000 €
Duration
Start date: 2013-12-01, End date: 2014-11-30
Project acronym BEHAVIORAL THEORY
Project Behavioral Theory and Economic Applications
Researcher (PI) Botond Koszegi
Host Institution (HI) KOZEP-EUROPAI EGYETEM
Call Details Starting Grant (StG), SH1, ERC-2012-StG_20111124
Summary "This proposal outlines projects to develop robust and portable theories studying the impact of psychological phenomena in economic settings. The proposed work falls in three broad research agendas.
My first main agenda is to formally model and economically apply a simple observation: that when people make decisions, they do not focus equally on all attributes of their available options, and overweight the attributes they focus on. I will build a set of portable models of focusing in attribute-based choice and risky choice based on the idea that a person focuses more on attributes in which her options differ more. I will also use the framework to develop novel, focus-based, theories of intertemporal choice and social preferences, as well as analyze the implications of focusing for product design, principal-agent relationships, and other economic questions.
My second main agenda is to explore some implications for market outcomes, welfare, and policy of the possibility that consumers misperceive certain aspects of products. I will investigate the circumstances that facilitate the profitable deception of consumers; firms' incentives for ""innovating"" deceptive products, including novel financial products aimed at exploiting investors; how firms' ability to distinguish naive and sophisticated consumers affects the consequences of deception; whether learning on the part of consumers will help them to avoid making mistakes; and how regulators and other observers can detect consumer mistakes from market data.
Two further projects apply the model of reference-dependent utility I have developed in earlier work to understand the pricing and advertising behavior of firms. I will also aim to disseminate some of my work, along with other cutting-edge research in psychology and economics, in a Journal of Economic Literature survey on ""Behavioral Contract Theory."""
Summary
"This proposal outlines projects to develop robust and portable theories studying the impact of psychological phenomena in economic settings. The proposed work falls in three broad research agendas.
My first main agenda is to formally model and economically apply a simple observation: that when people make decisions, they do not focus equally on all attributes of their available options, and overweight the attributes they focus on. I will build a set of portable models of focusing in attribute-based choice and risky choice based on the idea that a person focuses more on attributes in which her options differ more. I will also use the framework to develop novel, focus-based, theories of intertemporal choice and social preferences, as well as analyze the implications of focusing for product design, principal-agent relationships, and other economic questions.
My second main agenda is to explore some implications for market outcomes, welfare, and policy of the possibility that consumers misperceive certain aspects of products. I will investigate the circumstances that facilitate the profitable deception of consumers; firms' incentives for ""innovating"" deceptive products, including novel financial products aimed at exploiting investors; how firms' ability to distinguish naive and sophisticated consumers affects the consequences of deception; whether learning on the part of consumers will help them to avoid making mistakes; and how regulators and other observers can detect consumer mistakes from market data.
Two further projects apply the model of reference-dependent utility I have developed in earlier work to understand the pricing and advertising behavior of firms. I will also aim to disseminate some of my work, along with other cutting-edge research in psychology and economics, in a Journal of Economic Literature survey on ""Behavioral Contract Theory."""
Max ERC Funding
1 275 448 €
Duration
Start date: 2012-11-01, End date: 2018-10-31
Project acronym BI-DSC
Project Building Integrated Dye Sensitized Solar Cells
Researcher (PI) Adélio Miguel Magalhaes Mendes
Host Institution (HI) UNIVERSIDADE DO PORTO
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary In the last decade, solar and photovoltaic (PV) technologies have emerged as a potentially major technology for power generation in the world. So far the PV field has been dominated by silicon devices, even though this technology is still expensive.Dye-sensitized solar cells (DSC) are an important type of thin-film photovoltaics due to their potential for low-cost fabrication and versatile applications, and because their aesthetic appearance, semi-transparency and different color possibilities.This advantageous characteristic makes DSC the first choice for building integrated photovoltaics.Despite their great potential, DSCs for building applications are still not available at commercial level. However, to bring DSCs to a marketable product several developments are still needed and the present project targets to give relevant answers to three key limitations: encapsulation, glass substrate enhanced electrical conductivity and more efficient and low-cost raw-materials. Recently, the proponent successfully addressed the hermetic devices sealing by developing a laser-assisted glass sealing procedure.Thus, BI-DSC proposal envisages the development of DSC modules 30x30cm2, containing four individual cells, and their incorporation in a 1m2 double glass sheet arrangement for BIPV with an energy efficiency of at least 9% and a lifetime of 20 years. Additionally, aiming at enhanced efficiency of the final device and decreased total costs of DSCs manufacturing, new materials will be also pursued. The following inner-components were identified as critical: carbon-based counter-electrode; carbon quantum-dots and hierarchically TiO2 photoelectrode. It is then clear that this project is divided into two research though parallel directions: a fundamental research line, contributing to the development of the new generation DSC technology; while a more applied research line targets the development of a DSC functional module that can be used to pave the way for its industrialization.
Summary
In the last decade, solar and photovoltaic (PV) technologies have emerged as a potentially major technology for power generation in the world. So far the PV field has been dominated by silicon devices, even though this technology is still expensive.Dye-sensitized solar cells (DSC) are an important type of thin-film photovoltaics due to their potential for low-cost fabrication and versatile applications, and because their aesthetic appearance, semi-transparency and different color possibilities.This advantageous characteristic makes DSC the first choice for building integrated photovoltaics.Despite their great potential, DSCs for building applications are still not available at commercial level. However, to bring DSCs to a marketable product several developments are still needed and the present project targets to give relevant answers to three key limitations: encapsulation, glass substrate enhanced electrical conductivity and more efficient and low-cost raw-materials. Recently, the proponent successfully addressed the hermetic devices sealing by developing a laser-assisted glass sealing procedure.Thus, BI-DSC proposal envisages the development of DSC modules 30x30cm2, containing four individual cells, and their incorporation in a 1m2 double glass sheet arrangement for BIPV with an energy efficiency of at least 9% and a lifetime of 20 years. Additionally, aiming at enhanced efficiency of the final device and decreased total costs of DSCs manufacturing, new materials will be also pursued. The following inner-components were identified as critical: carbon-based counter-electrode; carbon quantum-dots and hierarchically TiO2 photoelectrode. It is then clear that this project is divided into two research though parallel directions: a fundamental research line, contributing to the development of the new generation DSC technology; while a more applied research line targets the development of a DSC functional module that can be used to pave the way for its industrialization.
Max ERC Funding
1 989 300 €
Duration
Start date: 2013-03-01, End date: 2018-08-31
Project acronym BlackBox
Project A collaborative platform to document performance composition: from conceptual structures in the backstage to customizable visualizations in the front-end
Researcher (PI) Carla Maria De Jesus Fernandes
Host Institution (HI) FACULDADE DE CIENCIAS SOCIAIS E HUMANAS DA UNIVERSIDADE NOVA DE LISBOA
Call Details Starting Grant (StG), SH5, ERC-2013-StG
Summary The global performing arts community is requiring innovative systems to: a) document, transmit and preserve the knowledge contained in choreographic-dramaturgic practices; b) assist artists with tools to facilitate their compositional processes, preferably on a collaborative basis. The existing digital archives of performing arts mostly function as conventional e-libraries, not allowing higher degrees of interactivity or active user intervention. They rarely contemplate accessible video annotation tools or provide relational querying functionalities based on artist-driven conceptual principles or idiosyncratic ontologies.
This proposal endeavours to fill that gap and create a new paradigm for the documentation of performance composition. It aims at the analysis of artists’ unique conceptual structures, by combining the empirical insights of contemporary creators with research theories from Multimodal Communication and Digital Media studies. The challenge is to design a model for a web-based collaborative platform enabling both a robust representation of performance composition methods and novel visualization technologies to support it. This can be done by analysing recurring body movement patterns and by fostering online contributions of users (a.o. performers and researchers) to the multimodal annotations stored in the platform. To accomplish this goal, two subjacent components must be developed: 1. the production of a video annotation-tool to allow artists in rehearsal periods to take notes over video in real-time and share them via the collaborative platform; 2. the linguistic analysis of a corpus of invited artists’ multimodal materials as source for the extraction of indicative conceptual structures, which will guide the architectural logics and interface design of the collaborative platform software.The outputs of these two components will generate critical case-studies to help understanding the human mind when engaged in cultural production processes.
Summary
The global performing arts community is requiring innovative systems to: a) document, transmit and preserve the knowledge contained in choreographic-dramaturgic practices; b) assist artists with tools to facilitate their compositional processes, preferably on a collaborative basis. The existing digital archives of performing arts mostly function as conventional e-libraries, not allowing higher degrees of interactivity or active user intervention. They rarely contemplate accessible video annotation tools or provide relational querying functionalities based on artist-driven conceptual principles or idiosyncratic ontologies.
This proposal endeavours to fill that gap and create a new paradigm for the documentation of performance composition. It aims at the analysis of artists’ unique conceptual structures, by combining the empirical insights of contemporary creators with research theories from Multimodal Communication and Digital Media studies. The challenge is to design a model for a web-based collaborative platform enabling both a robust representation of performance composition methods and novel visualization technologies to support it. This can be done by analysing recurring body movement patterns and by fostering online contributions of users (a.o. performers and researchers) to the multimodal annotations stored in the platform. To accomplish this goal, two subjacent components must be developed: 1. the production of a video annotation-tool to allow artists in rehearsal periods to take notes over video in real-time and share them via the collaborative platform; 2. the linguistic analysis of a corpus of invited artists’ multimodal materials as source for the extraction of indicative conceptual structures, which will guide the architectural logics and interface design of the collaborative platform software.The outputs of these two components will generate critical case-studies to help understanding the human mind when engaged in cultural production processes.
Max ERC Funding
1 378 200 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym BRAINCANNABINOIDS
Project Understanding the molecular blueprint and functional complexity of the endocannabinoid metabolome in the brain
Researcher (PI) István Katona
Host Institution (HI) INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary We and others have recently delineated the molecular architecture of a new feedback pathway in brain synapses, which operates as a synaptic circuit breaker. This pathway is supposed to use a group of lipid messengers as retrograde synaptic signals, the so-called endocannabinoids. Although heterogeneous in their chemical structures, these molecules along with the psychoactive compound in cannabis are thought to target the same effector in the brain, the CB1 receptor. However, the molecular catalog of these bioactive lipids and their metabolic enzymes has been expanding rapidly by recent advances in lipidomics and proteomics raising the possibility that these lipids may also serve novel, yet unidentified physiological functions. Thus, the overall aim of our research program is to define the molecular and anatomical organization of these endocannabinoid-mediated pathways and to determine their functional significance. In the present proposal, we will focus on understanding how these novel pathways regulate synaptic and extrasynaptic signaling in hippocampal neurons. Using combination of lipidomic, genetic and high-resolution anatomical approaches, we will identify distinct chemical species of endocannabinoids and will show how their metabolic enzymes are segregated into different subcellular compartments in cell type- and synapse-specific manner. Subsequently, we will use genetically encoded gain-of-function, loss-of-function and reporter constructs in imaging experiments and electrophysiological recordings to gain insights into the diverse tasks that these new pathways serve in synaptic transmission and extrasynaptic signal processing. Our proposed experiments will reveal fundamental principles of intercellular and intracellular endocannabinoid signaling in the brain.
Summary
We and others have recently delineated the molecular architecture of a new feedback pathway in brain synapses, which operates as a synaptic circuit breaker. This pathway is supposed to use a group of lipid messengers as retrograde synaptic signals, the so-called endocannabinoids. Although heterogeneous in their chemical structures, these molecules along with the psychoactive compound in cannabis are thought to target the same effector in the brain, the CB1 receptor. However, the molecular catalog of these bioactive lipids and their metabolic enzymes has been expanding rapidly by recent advances in lipidomics and proteomics raising the possibility that these lipids may also serve novel, yet unidentified physiological functions. Thus, the overall aim of our research program is to define the molecular and anatomical organization of these endocannabinoid-mediated pathways and to determine their functional significance. In the present proposal, we will focus on understanding how these novel pathways regulate synaptic and extrasynaptic signaling in hippocampal neurons. Using combination of lipidomic, genetic and high-resolution anatomical approaches, we will identify distinct chemical species of endocannabinoids and will show how their metabolic enzymes are segregated into different subcellular compartments in cell type- and synapse-specific manner. Subsequently, we will use genetically encoded gain-of-function, loss-of-function and reporter constructs in imaging experiments and electrophysiological recordings to gain insights into the diverse tasks that these new pathways serve in synaptic transmission and extrasynaptic signal processing. Our proposed experiments will reveal fundamental principles of intercellular and intracellular endocannabinoid signaling in the brain.
Max ERC Funding
1 638 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym BrainControl
Project Stable Brain-Machine control via a learnable standalone interface
Researcher (PI) Rui Manuel Marques Fernandes da Costa
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary Non-invasive Brain Machine Interfaces (BMI) bring great promise for neuro-rehabilitation and neuro-prosthesis, as well as for brain control of everyday devices and performance of simple tasks. Over the last 15 years the interest in BMIs has grown substantially, and a variety of interfaces have been developed. The field has been growing dramatically, and market studies reveal an estimated market size of $1.46 billion by 2020. However, non-invasive BMIs have failed to reach the impressive control seen by BMIs implanted in the brain. To date, they require considerable training to reach a moderate level of control, they are susceptible to noise and interference, do not generalize between people and devices, and performance does not show long-term consolidation. Results from our ERC-funded work uncovered a new paradigm that dramatically improves these issues. We propose to develop a prototype for a novel, standalone, non-invasive, noise-resistant BMI, based on an unexplored BMI learning paradigm. In this POC we will 1) refine the brain signal interface (decoder) to be automatically customizable to each individual and produces faster training, 2) implement our BMI technology into a portable hardware-based system, and 3) develop a virtual reality/gaming training platform that will increase learning, performance and consolidation of BMI control. In addition to these technical aims, we propose to explore commercial opportunities and societal benefits, in particular in the health sector. We will conduct market analysis and develop a business case for this product, while expanding industry contacts for production and commercialization.
The work proposed in this PoC grant will permit, for the first time to our knowledge, the development of a portable, stand-alone, noise-resistant, and easy to learn BMI, applicable across a wide set of devices, which will bring a significant social impact in health, entertainment and other applications.
Summary
Non-invasive Brain Machine Interfaces (BMI) bring great promise for neuro-rehabilitation and neuro-prosthesis, as well as for brain control of everyday devices and performance of simple tasks. Over the last 15 years the interest in BMIs has grown substantially, and a variety of interfaces have been developed. The field has been growing dramatically, and market studies reveal an estimated market size of $1.46 billion by 2020. However, non-invasive BMIs have failed to reach the impressive control seen by BMIs implanted in the brain. To date, they require considerable training to reach a moderate level of control, they are susceptible to noise and interference, do not generalize between people and devices, and performance does not show long-term consolidation. Results from our ERC-funded work uncovered a new paradigm that dramatically improves these issues. We propose to develop a prototype for a novel, standalone, non-invasive, noise-resistant BMI, based on an unexplored BMI learning paradigm. In this POC we will 1) refine the brain signal interface (decoder) to be automatically customizable to each individual and produces faster training, 2) implement our BMI technology into a portable hardware-based system, and 3) develop a virtual reality/gaming training platform that will increase learning, performance and consolidation of BMI control. In addition to these technical aims, we propose to explore commercial opportunities and societal benefits, in particular in the health sector. We will conduct market analysis and develop a business case for this product, while expanding industry contacts for production and commercialization.
The work proposed in this PoC grant will permit, for the first time to our knowledge, the development of a portable, stand-alone, noise-resistant, and easy to learn BMI, applicable across a wide set of devices, which will bring a significant social impact in health, entertainment and other applications.
Max ERC Funding
149 625 €
Duration
Start date: 2016-09-01, End date: 2018-02-28
Project acronym C.o.C.O.
Project Circuits of con-specific observation
Researcher (PI) Marta De Aragao Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary A great deal is known about the neural basis of associative fear learning. However, many animal species are able to use social cues to recognize threats, a defence mechanism that may be less costly than learning from self-experience. We have previously shown that rats perceive the cessation of movement-evoked sound as a signal of danger and its resumption as a signal of safety. To study transmission of fear between rats we assessed the behavior of an observer while witnessing a demonstrator rat display fear responses. With this paradigm we will take advantage of the accumulated knowledge on learned fear to investigate the neural mechanisms by which the social environment regulates defense behaviors. We will unravel the neural circuits involved in detecting the transition from movement-evoked sound to silence. Moreover, since observer rats previously exposed to shock display observational freezing, but naive observer rats do not, we will determine the mechanism by which prior experience contribute to observational freezing. To this end, we will focus on the amygdala, crucial for fear learning and expression, and its auditory inputs, combining immunohistochemistry, pharmacology and optogenetics. Finally, as the detection of and responses to threat are often inherently social, we will study these behaviors in the context of large groups of individuals. To circumvent the serious limitations in using large populations of rats, we will resort to a different model system. The fruit fly is the ideal model system, as it is both amenable to the search for the neural mechanism of behavior, while at the same time allowing the study of the behavior of large groups of individuals. We will develop behavioral tasks, where conditioned demonstrator flies signal danger to other naïve ones. These experiments unravel how the brain uses defense behaviors as signals of danger and how it contributes to defense mechanisms at the population level.
Summary
A great deal is known about the neural basis of associative fear learning. However, many animal species are able to use social cues to recognize threats, a defence mechanism that may be less costly than learning from self-experience. We have previously shown that rats perceive the cessation of movement-evoked sound as a signal of danger and its resumption as a signal of safety. To study transmission of fear between rats we assessed the behavior of an observer while witnessing a demonstrator rat display fear responses. With this paradigm we will take advantage of the accumulated knowledge on learned fear to investigate the neural mechanisms by which the social environment regulates defense behaviors. We will unravel the neural circuits involved in detecting the transition from movement-evoked sound to silence. Moreover, since observer rats previously exposed to shock display observational freezing, but naive observer rats do not, we will determine the mechanism by which prior experience contribute to observational freezing. To this end, we will focus on the amygdala, crucial for fear learning and expression, and its auditory inputs, combining immunohistochemistry, pharmacology and optogenetics. Finally, as the detection of and responses to threat are often inherently social, we will study these behaviors in the context of large groups of individuals. To circumvent the serious limitations in using large populations of rats, we will resort to a different model system. The fruit fly is the ideal model system, as it is both amenable to the search for the neural mechanism of behavior, while at the same time allowing the study of the behavior of large groups of individuals. We will develop behavioral tasks, where conditioned demonstrator flies signal danger to other naïve ones. These experiments unravel how the brain uses defense behaviors as signals of danger and how it contributes to defense mechanisms at the population level.
Max ERC Funding
1 412 376 €
Duration
Start date: 2013-12-01, End date: 2018-11-30