Project acronym 5HT-OPTOGENETICS
Project Optogenetic Analysis of Serotonin Function in the Mammalian Brain
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Summary
Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Max ERC Funding
2 318 636 €
Duration
Start date: 2010-07-01, End date: 2015-12-31
Project acronym 5HTCircuits
Project Modulation of cortical circuits and predictive neural coding by serotonin
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2014-ADG
Summary Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Summary
Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Max ERC Funding
2 486 074 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym CARDIOEPIGEN
Project Epigenetics and microRNAs in Myocardial Function and Disease
Researcher (PI) Gianluigi Condorelli
Host Institution (HI) HUMANITAS MIRASOLE SPA
Call Details Advanced Grant (AdG), LS4, ERC-2011-ADG_20110310
Summary Heart failure (HF) is the ultimate outcome of many cardiovascular diseases. Re-expression of fetal genes in the adult heart contributes to development of HF. Two mechanisms involved in the control of gene expression are epigenetics and microRNAs (miRs). We propose a project on epigenetic and miR-mediated mechanisms leading to HF.
Epigenetics refers to heritable modification of DNA and histones that does not modify the genetic code. Depending on the type of modification and on the site affected, these chemical changes up- or down-regulate transcription of specific genes. Despite it being a major player in gene regulation, epigenetics has been only partly investigated in HF. miRs are regulatory RNAs that target mRNAs for inhibition. Dysregulation of the cardiac miR signature occurs in HF. miR expression may itself be under epigenetic control, constituting a miR-epigenetic regulatory network. To our knowledge, this possibility has not been studied yet.
Our specific hypothesis is that the profile of DNA/histone methylation and the cross-talk between epigenetic enzymes and miRs have fundamental roles in defining the characteristics of cells during cardiac development and that the dysregulation of these processes determines the deleterious nature of the stressed heart’s gene programme. We will test this first through a genome-wide study of DNA/histone methylation to generate maps of the main methylation modifications occurring in the genome of cardiac cells treated with a pro-hypertrophy regulator and of a HF model. We will then investigate the role of epigenetic enzymes deemed important in HF, through the generation and study of knockout mice models. Finally, we will test the possible therapeutic potential of modulating epigenetic genes.
We hope to further understand the pathological mechanisms leading to HF and to generate data instrumental to the development of diagnostic and therapeutic strategies for this disease.
Summary
Heart failure (HF) is the ultimate outcome of many cardiovascular diseases. Re-expression of fetal genes in the adult heart contributes to development of HF. Two mechanisms involved in the control of gene expression are epigenetics and microRNAs (miRs). We propose a project on epigenetic and miR-mediated mechanisms leading to HF.
Epigenetics refers to heritable modification of DNA and histones that does not modify the genetic code. Depending on the type of modification and on the site affected, these chemical changes up- or down-regulate transcription of specific genes. Despite it being a major player in gene regulation, epigenetics has been only partly investigated in HF. miRs are regulatory RNAs that target mRNAs for inhibition. Dysregulation of the cardiac miR signature occurs in HF. miR expression may itself be under epigenetic control, constituting a miR-epigenetic regulatory network. To our knowledge, this possibility has not been studied yet.
Our specific hypothesis is that the profile of DNA/histone methylation and the cross-talk between epigenetic enzymes and miRs have fundamental roles in defining the characteristics of cells during cardiac development and that the dysregulation of these processes determines the deleterious nature of the stressed heart’s gene programme. We will test this first through a genome-wide study of DNA/histone methylation to generate maps of the main methylation modifications occurring in the genome of cardiac cells treated with a pro-hypertrophy regulator and of a HF model. We will then investigate the role of epigenetic enzymes deemed important in HF, through the generation and study of knockout mice models. Finally, we will test the possible therapeutic potential of modulating epigenetic genes.
We hope to further understand the pathological mechanisms leading to HF and to generate data instrumental to the development of diagnostic and therapeutic strategies for this disease.
Max ERC Funding
2 500 000 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym CLEAR
Project Modulating cellular clearance to cure human disease
Researcher (PI) Andrea Ballabio
Host Institution (HI) FONDAZIONE TELETHON
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Cellular clearance is a fundamental process required by all cells in all species. Important physiological processes, such as aging, and pathological mechanisms, such as neurodegeneration, are strictly dependent on cellular clearance. In eukaryotes, most of the cellular clearing processes occur in a specialized organelle, the lysosome. This project is based on a recent discovery, made in our laboratory, of a gene network, which we have named CLEAR, that controls lysosomal biogenesis and function and regulates cellular clearance. The specific goals of the project are: 1) the comprehensive characterization of the mechanisms underlying the CLEAR network, 2) the thorough understanding of CLEAR physiological function at the cellular and organism levels, 3) the development of strategies and tools to modulate cellular clearance, and 4) the implementation of proof-of-principle therapeutic studies based on the activation of the CLEAR network in murine models of human lysosomal storage disorders and of neurodegenerative diseases, such as Alzheimers s and Huntington s diseases. A combination of genomics, bioinformatics, systems biology, chemical genomics, cell biology, and mouse genetics approaches will be used to achieve these goals. Our goal is to develop tools to modulate cellular clearance and to use such tools to develop therapies to cure human disease. The potential medical relevance of this project is very high, particularly in the field of neurodegenerative disease. Therapies that prevent, ameliorate or delay neurodegeneration in these diseases would have a huge impact on human health.
Summary
Cellular clearance is a fundamental process required by all cells in all species. Important physiological processes, such as aging, and pathological mechanisms, such as neurodegeneration, are strictly dependent on cellular clearance. In eukaryotes, most of the cellular clearing processes occur in a specialized organelle, the lysosome. This project is based on a recent discovery, made in our laboratory, of a gene network, which we have named CLEAR, that controls lysosomal biogenesis and function and regulates cellular clearance. The specific goals of the project are: 1) the comprehensive characterization of the mechanisms underlying the CLEAR network, 2) the thorough understanding of CLEAR physiological function at the cellular and organism levels, 3) the development of strategies and tools to modulate cellular clearance, and 4) the implementation of proof-of-principle therapeutic studies based on the activation of the CLEAR network in murine models of human lysosomal storage disorders and of neurodegenerative diseases, such as Alzheimers s and Huntington s diseases. A combination of genomics, bioinformatics, systems biology, chemical genomics, cell biology, and mouse genetics approaches will be used to achieve these goals. Our goal is to develop tools to modulate cellular clearance and to use such tools to develop therapies to cure human disease. The potential medical relevance of this project is very high, particularly in the field of neurodegenerative disease. Therapies that prevent, ameliorate or delay neurodegeneration in these diseases would have a huge impact on human health.
Max ERC Funding
2 100 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym COGSYSTEMS
Project Understanding actions and intentions of others
Researcher (PI) Giacomo Rizzolatti
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PARMA
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary How do we understand the actions and intentions of others? Hereby we intend to address this issue by using a multidisciplinary approach. Our project is subdivided into four parts. In the first part we investigate the neural organization of monkey area F5, an area deeply involved in motor act understanding. By using a new set of electrodes we will describe the columnar organization of the area F5, establish the temporal relationships between the activity of F5 mirror and motor neurons, and correlate the activity of mirror neurons coding the observed motor acts in peripersonal and extrapersonal space with the activity of motor neurons in the same cortical column. In the second part we will assess the neural mechanism underlying the understanding of the intention of complex actions , i.e. actions formed by a sequence of two (or more) individual actions. The focus will be on the neurons located in ventrolateral prefrontal cortex, an area involved in the organization of high-order motor behavior. The rational of the experiment is that, while the organization of single actions and the understanding of intention behind them is function of parietal neurons, that of complex actions relies on the activity of the prefrontal lobe. In the third and fourth parts of the project we will delimit the cortical areas involved in understanding the goal (the what) and the intention (the why) of the observed actions in individuals with typical development (TD) and in children with autism and will establish the time relation between these two processes. Our hypothesis is that the chained organization of intentional motor acts is impaired in children with autism and this impairment prevents them from organizing normally their actions and from understanding others intentions.
Summary
How do we understand the actions and intentions of others? Hereby we intend to address this issue by using a multidisciplinary approach. Our project is subdivided into four parts. In the first part we investigate the neural organization of monkey area F5, an area deeply involved in motor act understanding. By using a new set of electrodes we will describe the columnar organization of the area F5, establish the temporal relationships between the activity of F5 mirror and motor neurons, and correlate the activity of mirror neurons coding the observed motor acts in peripersonal and extrapersonal space with the activity of motor neurons in the same cortical column. In the second part we will assess the neural mechanism underlying the understanding of the intention of complex actions , i.e. actions formed by a sequence of two (or more) individual actions. The focus will be on the neurons located in ventrolateral prefrontal cortex, an area involved in the organization of high-order motor behavior. The rational of the experiment is that, while the organization of single actions and the understanding of intention behind them is function of parietal neurons, that of complex actions relies on the activity of the prefrontal lobe. In the third and fourth parts of the project we will delimit the cortical areas involved in understanding the goal (the what) and the intention (the why) of the observed actions in individuals with typical development (TD) and in children with autism and will establish the time relation between these two processes. Our hypothesis is that the chained organization of intentional motor acts is impaired in children with autism and this impairment prevents them from organizing normally their actions and from understanding others intentions.
Max ERC Funding
1 992 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym CONCEPT
Project Construction of Perception from Touch Signals
Researcher (PI) Mathew Diamond
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Advanced Grant (AdG), LS5, ERC-2011-ADG_20110310
Summary Our sensory systems gather stimuli as elemental physical features yet we perceive a world made up of familiar objects, not wavelengths or vibrations. Perception occurs when the neuronal representation of physical parameters is transformed into the neuronal representation of meaningful objects. How does this recoding occur? An ideal platform for the inquiry is the rat whisker sensory system: it produces fast and accurate judgments of complex stimuli, yet can be broken down into accessible neuronal mechanisms. CONCEPT will examine the process that begins with whisker motion and ends with perception of the contacted object. Understanding the general principles for the construction of perception will help explain why we experience the world as we do.
The main hypothesis is that graded neuronal representations at early processing stages are “fractured” to generate discrete object representations at late processing stages. Of particular interest is the emergence of object representations as the meaning of new stimuli is acquired.
We will collect multi-site single-unit and local field potential signals simultaneously with precise behavioral indices, and will interpret data through advanced computational methods. We will begin by quantifying whisker motion as rats discriminate texture, thus defining the raw material on which the brain operates. Next, we will characterize the transformation of texture along an intracortical stream from sensory areas (where we expect that neurons encode whisker kinematics) to frontal and rhinal areas (where we expect that neurons encode objects extracted from the graded physical continuum) and hippocampus (where we expect that neurons encode objects in conjunction with context). We will test candidate processing schemes by manipulating perception on single trials using optogenetic methods.
Summary
Our sensory systems gather stimuli as elemental physical features yet we perceive a world made up of familiar objects, not wavelengths or vibrations. Perception occurs when the neuronal representation of physical parameters is transformed into the neuronal representation of meaningful objects. How does this recoding occur? An ideal platform for the inquiry is the rat whisker sensory system: it produces fast and accurate judgments of complex stimuli, yet can be broken down into accessible neuronal mechanisms. CONCEPT will examine the process that begins with whisker motion and ends with perception of the contacted object. Understanding the general principles for the construction of perception will help explain why we experience the world as we do.
The main hypothesis is that graded neuronal representations at early processing stages are “fractured” to generate discrete object representations at late processing stages. Of particular interest is the emergence of object representations as the meaning of new stimuli is acquired.
We will collect multi-site single-unit and local field potential signals simultaneously with precise behavioral indices, and will interpret data through advanced computational methods. We will begin by quantifying whisker motion as rats discriminate texture, thus defining the raw material on which the brain operates. Next, we will characterize the transformation of texture along an intracortical stream from sensory areas (where we expect that neurons encode whisker kinematics) to frontal and rhinal areas (where we expect that neurons encode objects extracted from the graded physical continuum) and hippocampus (where we expect that neurons encode objects in conjunction with context). We will test candidate processing schemes by manipulating perception on single trials using optogenetic methods.
Max ERC Funding
2 500 000 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym DAMAGECONTROL
Project Tissue Damage Control Regulates The Pathogenesis of Immune Mediated Inflammatory Diseases
Researcher (PI) Miguel Parreira Soares
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Advanced Grant (AdG), LS6, ERC-2011-ADG_20110310
Summary "We propose to study evolutionarily conserved stress-responsive protective mechanisms that limit the extent of tissue damage caused by pathogens or by the innate as well as adaptive immune response elicited by those pathogens, which, without a countervailing response would lead to irreversible tissue damage and disease. We refer to these protective mechanisms as “tissue damage control”, and will argue they are an essential component of immunity that allows the effector mechanisms involved in pathogen clearance to operate without causing disease. This proposal aims at identifying and characterizing the mechanism of action of stress-induced genetic programs conferring tissue damage control and to relate those to the pathogenesis of different immune mediated inflammatory diseases. We hypothesize that these genetic programs share as a common denominator their regulation by a restricted number of evolutionary conserved transcription factors that act as “master regulators” of different protective responses to specific forms of stress. We will use “loss” and “gain” of function approaches targeting these master regulators in mice to characterize their function and identify stress-responsive genes conferring tissue metabolic adaptation, cytoprotection and/or tissue regeneration, all of which are components of tissue damage control. Expression of these master regulators likely impacts the pathogenesis of immune mediated inflammatory conditions, as tested under this proposal for infectious as well as autoimmune-like diseases. This proposal should unveil an essential component of immunity that uncouples pathogen clearance from tissue damage and disease, namely tissue damage control, providing new therapeutic targets to suppress the pathogenesis of a broad range of immune mediated inflammatory diseases."
Summary
"We propose to study evolutionarily conserved stress-responsive protective mechanisms that limit the extent of tissue damage caused by pathogens or by the innate as well as adaptive immune response elicited by those pathogens, which, without a countervailing response would lead to irreversible tissue damage and disease. We refer to these protective mechanisms as “tissue damage control”, and will argue they are an essential component of immunity that allows the effector mechanisms involved in pathogen clearance to operate without causing disease. This proposal aims at identifying and characterizing the mechanism of action of stress-induced genetic programs conferring tissue damage control and to relate those to the pathogenesis of different immune mediated inflammatory diseases. We hypothesize that these genetic programs share as a common denominator their regulation by a restricted number of evolutionary conserved transcription factors that act as “master regulators” of different protective responses to specific forms of stress. We will use “loss” and “gain” of function approaches targeting these master regulators in mice to characterize their function and identify stress-responsive genes conferring tissue metabolic adaptation, cytoprotection and/or tissue regeneration, all of which are components of tissue damage control. Expression of these master regulators likely impacts the pathogenesis of immune mediated inflammatory conditions, as tested under this proposal for infectious as well as autoimmune-like diseases. This proposal should unveil an essential component of immunity that uncouples pathogen clearance from tissue damage and disease, namely tissue damage control, providing new therapeutic targets to suppress the pathogenesis of a broad range of immune mediated inflammatory diseases."
Max ERC Funding
2 306 197 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym DDRNA
Project A novel direct role of non coding RNA in DNA damage response activation
Researcher (PI) Fabrizio D'adda Di Fagagna
Host Institution (HI) IFOM FONDAZIONE ISTITUTO FIRC DI ONCOLOGIA MOLECOLARE
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary DNA, if damaged, cannot be replaced. If not replaceable, it must be repaired. The so-called “DNA damage response” (DDR) is a coordinate set of evolutionary conserved events that arrest the cell-cycle (DNA damage checkpoint function) in proliferating cells and attempts DNA repair. Until DNA damage has not been repaired in full, cell proliferation is not resumed in normal cells.
DNA damage is a physiological event. Ageing and cancer are both associated with DNA damage accumulation. In the past, we contribute to better understand the mechanisms and the consequences of DNA damage generation and DDR activation in both settings.
We have recently identified a completely hitherto undiscovered level of control of DDR activation, so far considered a proteinaceous only signaling cascade. We have discovered that short RNA species are detectable at DNA damage sites and are necessary for DDR activation at DNA lesions. These RNA species are generated by an evolutionary-conserved RNA processing machinery. However, they serve purposes never reported before.
We believe that our findings change radically our understanding of DDR modulation in mammals and disclose a fertile unspoilt ground for exciting investigations.
Summary
DNA, if damaged, cannot be replaced. If not replaceable, it must be repaired. The so-called “DNA damage response” (DDR) is a coordinate set of evolutionary conserved events that arrest the cell-cycle (DNA damage checkpoint function) in proliferating cells and attempts DNA repair. Until DNA damage has not been repaired in full, cell proliferation is not resumed in normal cells.
DNA damage is a physiological event. Ageing and cancer are both associated with DNA damage accumulation. In the past, we contribute to better understand the mechanisms and the consequences of DNA damage generation and DDR activation in both settings.
We have recently identified a completely hitherto undiscovered level of control of DDR activation, so far considered a proteinaceous only signaling cascade. We have discovered that short RNA species are detectable at DNA damage sites and are necessary for DDR activation at DNA lesions. These RNA species are generated by an evolutionary-conserved RNA processing machinery. However, they serve purposes never reported before.
We believe that our findings change radically our understanding of DDR modulation in mammals and disclose a fertile unspoilt ground for exciting investigations.
Max ERC Funding
2 329 200 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym DENOVOSTEM
Project DE NOVO GENERATION OF SOMATIC STEM CELLS: REGULATION AND MECHANISMS OF CELL PLASTICITY
Researcher (PI) Stefano Piccolo
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PADOVA
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary The possibility to artificially induce and expand in vitro tissue-specific stem cells (SCs) is an important goal for regenerative medicine, to understand organ physiology, for in vitro modeling of human diseases and many other applications. Here we found that this goal can be achieved in the culture dish by transiently inducing expression of YAP or TAZ - nuclear effectors of the Hippo and biomechanical pathways - into primary/terminally differentiated cells of distinct tissue origins. Moreover, YAP/TAZ are essential endogenous factors that preserve ex-vivo naturally arising SCs of distinct tissues.
In this grant, we aim to gain insights into YAP/TAZ molecular networks (upstream regulators and downstream targets) involved in somatic SC reprogramming and SC identity. Our studies will entail the identification of the genetic networks and epigenetic changes controlled by YAP/TAZ during cell de-differentiation and the re-acquisition of SC-traits in distinct cell types. We will also investigate upstream inputs establishing YAP/TAZ activity, with particular emphasis on biomechanical and cytoskeletal cues that represent overarching regulators of YAP/TAZ in tissues.
For many tumors, it appears that acquisition of an immature, stem-like state is a prerequisite for tumor progression and an early step in oncogene-mediated transformation. YAP/TAZ activation is widespread in human tumors. However, a connection between YAP/TAZ and oncogene-induced cell plasticity has never been investigated. We will also pursue some intriguing preliminary results and investigate how oncogenes and chromatin remodelers may link to cell mechanics, and the plasticity of the differentiated and SC states by controlling YAP/TAZ.
In sum, this research should advance our understanding of the cellular and molecular basis underpinning organ growth, tissue regeneration and tumor initiation.
Summary
The possibility to artificially induce and expand in vitro tissue-specific stem cells (SCs) is an important goal for regenerative medicine, to understand organ physiology, for in vitro modeling of human diseases and many other applications. Here we found that this goal can be achieved in the culture dish by transiently inducing expression of YAP or TAZ - nuclear effectors of the Hippo and biomechanical pathways - into primary/terminally differentiated cells of distinct tissue origins. Moreover, YAP/TAZ are essential endogenous factors that preserve ex-vivo naturally arising SCs of distinct tissues.
In this grant, we aim to gain insights into YAP/TAZ molecular networks (upstream regulators and downstream targets) involved in somatic SC reprogramming and SC identity. Our studies will entail the identification of the genetic networks and epigenetic changes controlled by YAP/TAZ during cell de-differentiation and the re-acquisition of SC-traits in distinct cell types. We will also investigate upstream inputs establishing YAP/TAZ activity, with particular emphasis on biomechanical and cytoskeletal cues that represent overarching regulators of YAP/TAZ in tissues.
For many tumors, it appears that acquisition of an immature, stem-like state is a prerequisite for tumor progression and an early step in oncogene-mediated transformation. YAP/TAZ activation is widespread in human tumors. However, a connection between YAP/TAZ and oncogene-induced cell plasticity has never been investigated. We will also pursue some intriguing preliminary results and investigate how oncogenes and chromatin remodelers may link to cell mechanics, and the plasticity of the differentiated and SC states by controlling YAP/TAZ.
In sum, this research should advance our understanding of the cellular and molecular basis underpinning organ growth, tissue regeneration and tumor initiation.
Max ERC Funding
2 498 934 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym DEPTH
Project DEsigning new Paths in The differentiation Hyperspace
Researcher (PI) Giovanni Cesareni
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Call Details Advanced Grant (AdG), LS2, ERC-2012-ADG_20120314
Summary The adult human organism contains heterogeneous reservoirs of pluripotent stem cells characterized by a diversified differentiation potential. Understanding their biology at a system level would advance our ability to selectively activate and control their differentiation potential. Aside from the basic implications this would represent a substantial progress in regenerative medicine by providing a rational framework for using small molecules to control cell trans-determination and reprogramming.
Here we propose a combined experimental and modelling approach to assemble a predictive model of mesoderm stem cell differentiation. Different cell states are identified by a vector in the differentiation hyperspace, the coordinates of the vector being the activation levels of a large number of nodes of a logic model linking the cell signalling network to the transcription regulatory network.
The premise of this proposal is that differentiation is equivalent to rewiring the cell regulatory network as a consequence of induced perturbation of the gene expression program. This process can be rationally controlled by perturbing specific nodes of the signalling network that in turn control transcription factor activation. We will develop this novel strategy using the mesoangioblast ex vivo differentiation system. Mesoangioblasts are one of the many different types of mesoderm stem/progenitor cells that exhibit myogenic potential. Ex vivo, they readily differentiate into striated muscle. However, under appropriate conditions they can also differentiate, into smooth muscle and adipocytes, albeit less efficiently. We will start by assembling, training and optimizing different predictive models for the undifferentiated mesoangioblast. Next by a combination of experiments and modelling approaches we will learn how, by perturbing the signalling models with different inhibitors and activators we can rewire the cell networks to induce trans-determination or reprogramming.
Summary
The adult human organism contains heterogeneous reservoirs of pluripotent stem cells characterized by a diversified differentiation potential. Understanding their biology at a system level would advance our ability to selectively activate and control their differentiation potential. Aside from the basic implications this would represent a substantial progress in regenerative medicine by providing a rational framework for using small molecules to control cell trans-determination and reprogramming.
Here we propose a combined experimental and modelling approach to assemble a predictive model of mesoderm stem cell differentiation. Different cell states are identified by a vector in the differentiation hyperspace, the coordinates of the vector being the activation levels of a large number of nodes of a logic model linking the cell signalling network to the transcription regulatory network.
The premise of this proposal is that differentiation is equivalent to rewiring the cell regulatory network as a consequence of induced perturbation of the gene expression program. This process can be rationally controlled by perturbing specific nodes of the signalling network that in turn control transcription factor activation. We will develop this novel strategy using the mesoangioblast ex vivo differentiation system. Mesoangioblasts are one of the many different types of mesoderm stem/progenitor cells that exhibit myogenic potential. Ex vivo, they readily differentiate into striated muscle. However, under appropriate conditions they can also differentiate, into smooth muscle and adipocytes, albeit less efficiently. We will start by assembling, training and optimizing different predictive models for the undifferentiated mesoangioblast. Next by a combination of experiments and modelling approaches we will learn how, by perturbing the signalling models with different inhibitors and activators we can rewire the cell networks to induce trans-determination or reprogramming.
Max ERC Funding
2 639 804 €
Duration
Start date: 2013-04-01, End date: 2018-09-30
Project acronym DIDO
Project Innovative drugs targeting IDO molecular dynamics in autoimmunity and neoplasia
Researcher (PI) Ursula Grohmann
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary "Catabolism of amino acids is an ancient survival strategy that also controls immune responses in mammals. Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions, including autoimmune diseases, in which it is often defective, and neoplasia, in which it promotes immune unresponsiveness. The PI’s group recently revealed that IDO does not merely degrade tryptophan and produce immunoregulatory kynurenines but also acts as a signal-transducing molecule independently of its enzyme activity. IDO’s signaling function relies on the presence of phosphorylable motifs in a region (small IDO domain) distant from the catalytic site (large IDO domain). Preliminary data indicate that IDO, depending on microenvironmental conditions, can move among distinct cellular compartments. Thus IDO may be considered a ‘moonligthing’ protein, i.e., an ancestral metabolic molecule that, during evolution, has acquired the DYNAMIC feature of moving intracellularly and switching among distinct functions by changing its conformational state. By means of computational studies, Macchiarulo’s group (team member) has identified distinct conformations of IDO, some of which are associated with optimal catalytic activity of the enzyme whereas others may favor tyrosine phosphorylation of IDO’s small domain. A switch between distinct conformations can be induced by the use of ligands that bind either the catalytic site or an accessory pocket outside the IDO catalytic site. The first aim of DIDO is to decipher the relationships between IDO conformations and multiple functions of the enzyme. A second aim is to identify small molecules with drug-like properties capable of modulating distinct IDO’s molecular conformations in order to either potentiate (a new therapeutic approach in autoimmune diseases) or inhibit (more efficient anti-tumor therapeutic strategy) immunoregulatory signaling ability of IDO."
Summary
"Catabolism of amino acids is an ancient survival strategy that also controls immune responses in mammals. Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions, including autoimmune diseases, in which it is often defective, and neoplasia, in which it promotes immune unresponsiveness. The PI’s group recently revealed that IDO does not merely degrade tryptophan and produce immunoregulatory kynurenines but also acts as a signal-transducing molecule independently of its enzyme activity. IDO’s signaling function relies on the presence of phosphorylable motifs in a region (small IDO domain) distant from the catalytic site (large IDO domain). Preliminary data indicate that IDO, depending on microenvironmental conditions, can move among distinct cellular compartments. Thus IDO may be considered a ‘moonligthing’ protein, i.e., an ancestral metabolic molecule that, during evolution, has acquired the DYNAMIC feature of moving intracellularly and switching among distinct functions by changing its conformational state. By means of computational studies, Macchiarulo’s group (team member) has identified distinct conformations of IDO, some of which are associated with optimal catalytic activity of the enzyme whereas others may favor tyrosine phosphorylation of IDO’s small domain. A switch between distinct conformations can be induced by the use of ligands that bind either the catalytic site or an accessory pocket outside the IDO catalytic site. The first aim of DIDO is to decipher the relationships between IDO conformations and multiple functions of the enzyme. A second aim is to identify small molecules with drug-like properties capable of modulating distinct IDO’s molecular conformations in order to either potentiate (a new therapeutic approach in autoimmune diseases) or inhibit (more efficient anti-tumor therapeutic strategy) immunoregulatory signaling ability of IDO."
Max ERC Funding
2 442 078 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym EU-rhythmy
Project Molecular strategies to treat inherited arrhythmias
Researcher (PI) Silvia Giuliana Priori
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PAVIA
Call Details Advanced Grant (AdG), LS7, ERC-2014-ADG
Summary Sudden cardiac death (SCD) is a leading cause of death in western countries: coronary artery disease is the major cause of SCD in older subjects while inherited arrhythmogenic diseases are the leading cause of SCD in younger individuals. After 25 years dedicated to research of the molecular bases of heritable arrhythmias, the PI of this proposal now intends to pioneer gene therapy for prevention of SCD: a virtually unexplored field. The development of molecular therapies for rhythm disturbances is a high risk effort however, if successful, it will be highly rewarding. The PI has envisioned an ambitious and comprehensive project to target two severe inherited arrhythmogenic diseases: dominant catecholaminergic polymorphic ventricular tachycardia (CPVT) and Long QT syndrome type 8 (LQT8). The availability of a clinically relevant model is critical to ensure clinical translation of results: the team will exploit an existing CPVT model and will engineer a knock-in pig to model LQT8. The PI and her team will investigate innovative strategies of gene-delivery, gene-silencing and gene-editing to the heart comparing efficacy of different constructs and promoters. The team will also carefully engineer novel gene-therapy approaches to avoid the development of regional inhomogeneity in protein expression that may facilitate proarrhythmic events. Such a comprehensive approach will provide a most valuable core of knowledge on the comparative efficacy of a broad range of molecular strategies on the electrical milieu of the heart. It is expected that these results will not only benefit CPVT and LQT8 but rather they will foster development of gene therapy for other inherited and acquired arrhythmias.
Summary
Sudden cardiac death (SCD) is a leading cause of death in western countries: coronary artery disease is the major cause of SCD in older subjects while inherited arrhythmogenic diseases are the leading cause of SCD in younger individuals. After 25 years dedicated to research of the molecular bases of heritable arrhythmias, the PI of this proposal now intends to pioneer gene therapy for prevention of SCD: a virtually unexplored field. The development of molecular therapies for rhythm disturbances is a high risk effort however, if successful, it will be highly rewarding. The PI has envisioned an ambitious and comprehensive project to target two severe inherited arrhythmogenic diseases: dominant catecholaminergic polymorphic ventricular tachycardia (CPVT) and Long QT syndrome type 8 (LQT8). The availability of a clinically relevant model is critical to ensure clinical translation of results: the team will exploit an existing CPVT model and will engineer a knock-in pig to model LQT8. The PI and her team will investigate innovative strategies of gene-delivery, gene-silencing and gene-editing to the heart comparing efficacy of different constructs and promoters. The team will also carefully engineer novel gene-therapy approaches to avoid the development of regional inhomogeneity in protein expression that may facilitate proarrhythmic events. Such a comprehensive approach will provide a most valuable core of knowledge on the comparative efficacy of a broad range of molecular strategies on the electrical milieu of the heart. It is expected that these results will not only benefit CPVT and LQT8 but rather they will foster development of gene therapy for other inherited and acquired arrhythmias.
Max ERC Funding
2 314 029 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym EYEGET
Project Gene therapy of inherited retinal diseases
Researcher (PI) Alberto AURICCHIO
Host Institution (HI) FONDAZIONE TELETHON
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary Inherited retinal degenerations (IRDs) are a major cause of blindness worldwide. IRD patients witness inexorable progressive vision loss as no therapy is currently available. In the last decade my group has significantly contributed to a change of this scenario by developing efficient adeno-associated viral (AAV) vectors for retinal gene therapy that are safe and effective in humans. The objective of EYEGET (EYE GEne Therapy) is to overcome some of the current major limitations in the field of retinal gene therapy to expand initial therapeutic successes to a larger number of IRDs. To achieve this, we propose to use four parallel, highly innovative and complementary approaches: i. expansion of the limited AAV cargo capacity by a novel methodology based on co-administration of multiple AAVs that reassemble in target retinal cells and reconstitute large genes; ii. targeting of frequent dominant gain-of-function mutations that cause RP using state-of-the-art AAV-mediated genome editing technologies; iii. induction of retinal cells clearance of toxic IRD products by AAV-mediated activation of autophagy and lysosomal function; iv. development of methodologies to directly convert fibroblasts to photoreceptors that can be transplanted in retinas from IRD patients with advanced PR loss and for whom in vivo gene therapy is no longer an option. We will use a combination of in vitro and in vivo state-of-the-art technologies including novel AAV vector design, high content screening of drugs that enhance AAV transduction, genome editing, and advanced in vivo retinal phenotyping to obtain proof-of-concept for each of these therapeutic strategies. The results from this study may impact the quality of life of millions of people worldwide by providing a cure based on gene and/or cell therapy for a large group of IRDs.
Summary
Inherited retinal degenerations (IRDs) are a major cause of blindness worldwide. IRD patients witness inexorable progressive vision loss as no therapy is currently available. In the last decade my group has significantly contributed to a change of this scenario by developing efficient adeno-associated viral (AAV) vectors for retinal gene therapy that are safe and effective in humans. The objective of EYEGET (EYE GEne Therapy) is to overcome some of the current major limitations in the field of retinal gene therapy to expand initial therapeutic successes to a larger number of IRDs. To achieve this, we propose to use four parallel, highly innovative and complementary approaches: i. expansion of the limited AAV cargo capacity by a novel methodology based on co-administration of multiple AAVs that reassemble in target retinal cells and reconstitute large genes; ii. targeting of frequent dominant gain-of-function mutations that cause RP using state-of-the-art AAV-mediated genome editing technologies; iii. induction of retinal cells clearance of toxic IRD products by AAV-mediated activation of autophagy and lysosomal function; iv. development of methodologies to directly convert fibroblasts to photoreceptors that can be transplanted in retinas from IRD patients with advanced PR loss and for whom in vivo gene therapy is no longer an option. We will use a combination of in vitro and in vivo state-of-the-art technologies including novel AAV vector design, high content screening of drugs that enhance AAV transduction, genome editing, and advanced in vivo retinal phenotyping to obtain proof-of-concept for each of these therapeutic strategies. The results from this study may impact the quality of life of millions of people worldwide by providing a cure based on gene and/or cell therapy for a large group of IRDs.
Max ERC Funding
2 499 564 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym FAST
Project Investigating new therapeutic approaches to Friedreich's Ataxia
Researcher (PI) Roberto Testi
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Call Details Advanced Grant (AdG), LS7, ERC-2011-ADG_20110310
Summary Friedreich’s Ataxia (FRDA) is a devastating degenerative disease with no specific therapy. It is passed by autosomal recessive inheritance and affects 1:30,000 individuals in Caucasian populations. Symptoms appear in the first decade of life and include progressive and unremitting lack of movement coordination, leading to complete inability, and dilated cardiomyopathy leading to congestive heart failure, the most common cause of premature death. FRDA is due to the insufficient transcription of the gene coding for the mitochondrial protein frataxin. Reduced cellular levels of frataxin cause impaired mitochondrial function and increased sensitivity to oxidative stress, leading to accelerated cell death in critical tissues.
Severity of the disease critically depends on residual frataxin levels. Therapeutic efforts are mostly focused on increasing cellular frataxin . We found that frataxin is normally degraded by the ubiquitin-proteasome system. We identified the lysine responsible for the ubiquitination of frataxin and, by computational screening followed by experimental validation, we identified and validated a series of small molecules, called ubiquitin-competing molecules (UCM), that prevent frataxin ubiquitination and induce frataxin accumulation in cells derived from FRDA patients. Moreover, treatment with UCM partially rescues aconitase and ATP production defects in cells derived from FRDA patients.
Our goal is two fold: 1) submit a set of leads we already identified, as well as their new and more complex derivatives, to preclinical testing in FRDA mice 2) identify the E3 ligase that is responsible for frataxin ubiquitination, and investigate the possibility to use it as a druggable target for small molecules to prevent frataxin degradation.
Summary
Friedreich’s Ataxia (FRDA) is a devastating degenerative disease with no specific therapy. It is passed by autosomal recessive inheritance and affects 1:30,000 individuals in Caucasian populations. Symptoms appear in the first decade of life and include progressive and unremitting lack of movement coordination, leading to complete inability, and dilated cardiomyopathy leading to congestive heart failure, the most common cause of premature death. FRDA is due to the insufficient transcription of the gene coding for the mitochondrial protein frataxin. Reduced cellular levels of frataxin cause impaired mitochondrial function and increased sensitivity to oxidative stress, leading to accelerated cell death in critical tissues.
Severity of the disease critically depends on residual frataxin levels. Therapeutic efforts are mostly focused on increasing cellular frataxin . We found that frataxin is normally degraded by the ubiquitin-proteasome system. We identified the lysine responsible for the ubiquitination of frataxin and, by computational screening followed by experimental validation, we identified and validated a series of small molecules, called ubiquitin-competing molecules (UCM), that prevent frataxin ubiquitination and induce frataxin accumulation in cells derived from FRDA patients. Moreover, treatment with UCM partially rescues aconitase and ATP production defects in cells derived from FRDA patients.
Our goal is two fold: 1) submit a set of leads we already identified, as well as their new and more complex derivatives, to preclinical testing in FRDA mice 2) identify the E3 ligase that is responsible for frataxin ubiquitination, and investigate the possibility to use it as a druggable target for small molecules to prevent frataxin degradation.
Max ERC Funding
1 496 200 €
Duration
Start date: 2012-03-01, End date: 2015-02-28
Project acronym FRONTHAL
Project Specificity of cortico-thalamic interactions and its role in frontal cortical functions
Researcher (PI) Laszlo ACSADY
Host Institution (HI) INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES
Call Details Advanced Grant (AdG), LS5, ERC-2016-ADG
Summary Frontal cortical areas are responsible for a wide range of executive and cognitive functions. Frontal cortices communicate with the thalamus via bidirectional pathways and these connections are indispensable for frontal cortical operations. Still, we have very little information about the specificity of connections, synaptic interactions and plasticity between frontal cortex and thalamus and the roles of these interactions in frontal cortical functions.
In the present proposal, we will test the hypothesis that frontal cortical areas developed a highly specialized connectivity pattern with the thalamus. This supports unique interactions between the cortex and the thalamus according to the specific requirements of frontal cortical activity, including experience-dependent plastic changes.
The project will use cell type-specific viral tracing in mice and 3D electron microscopic reconstructions in mice and humans to identify circuit motifs that are evolutionarily conserved, yet, still specific to fronto-thalamic pathways. The physiological approach will employ in vivo optogenetics combined with intra-, juxta- and extracellular recordings. We will perform behavioral experiments by bidirectional modulation of well-defined elements in the network, in learning paradigms, which depend on the integrity of frontal cortex.
The project is the first systematic approach which aims to understand the nature of interaction between the frontal cortex and the thalamus. It will not only fill the tremendous gap in our knowledge regarding these pathways but will help us elucidate the functional organization of non-sensory thalamus in general.
Frontal cortices are involved in a wide range of major neurological disorders (e.g. Parkinson’s disease, epilepsy, schizophrenia, chronic pain) which affect executive functions and involve fronto-thalamic pathways. We believe that understanding fronto-thalamic interactions will lead to fundamentally novel insight into the nature of these diseases.
Summary
Frontal cortical areas are responsible for a wide range of executive and cognitive functions. Frontal cortices communicate with the thalamus via bidirectional pathways and these connections are indispensable for frontal cortical operations. Still, we have very little information about the specificity of connections, synaptic interactions and plasticity between frontal cortex and thalamus and the roles of these interactions in frontal cortical functions.
In the present proposal, we will test the hypothesis that frontal cortical areas developed a highly specialized connectivity pattern with the thalamus. This supports unique interactions between the cortex and the thalamus according to the specific requirements of frontal cortical activity, including experience-dependent plastic changes.
The project will use cell type-specific viral tracing in mice and 3D electron microscopic reconstructions in mice and humans to identify circuit motifs that are evolutionarily conserved, yet, still specific to fronto-thalamic pathways. The physiological approach will employ in vivo optogenetics combined with intra-, juxta- and extracellular recordings. We will perform behavioral experiments by bidirectional modulation of well-defined elements in the network, in learning paradigms, which depend on the integrity of frontal cortex.
The project is the first systematic approach which aims to understand the nature of interaction between the frontal cortex and the thalamus. It will not only fill the tremendous gap in our knowledge regarding these pathways but will help us elucidate the functional organization of non-sensory thalamus in general.
Frontal cortices are involved in a wide range of major neurological disorders (e.g. Parkinson’s disease, epilepsy, schizophrenia, chronic pain) which affect executive functions and involve fronto-thalamic pathways. We believe that understanding fronto-thalamic interactions will lead to fundamentally novel insight into the nature of these diseases.
Max ERC Funding
1 597 575 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym FUEL-PATH
Project Exploiting the saccharification potential of pathogenic microorganisms to improve biofuel production from plants
Researcher (PI) Felice Cervone
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Advanced Grant (AdG), LS9, ERC-2008-AdG
Summary "FUEL-PATH aims at providing new knowledge on plant cell wall and innovative biotechnological solutions for biomass utilization. A key process for biomass utilization is the initial degradation of cell walls into fermentable sugars (saccharification); this is hindered by the wall recalcitrance to hydrolysis. We propose to improve the plant saccharification characteristics by mimicking a strategy successfully used by phytopathogenic microorganisms. These produce pectic enzymes before other cell wall-degrading enzymes (CWDEs) to weaken the linkages between the wall components and favour the maceration of the plant tissue. Homogalacturonan (HGA), a major component of pectin, is synthesized in a methylated form and is de-esterified in the wall by methylesterases (PMEs). De-esterified HGA interacts with calcium to form ""egg-box"" structures, which are critical for maintaining the integrity of the entire wall. We propose to improve saccharification by expression in plants of microbial polygalacturonases (PGs) hydrolizing HGA. Plants expressing a fungal PG have reduced levels of HGA and enhanced saccharification (unpublished preliminary data). Since PG activity in pianta affects normal growth, a technology of enzyme control through the use of specific protein inhibitors will be developed. A second strategy to be adopted for weakening the ""egg-box"" is the overexpression of PME inhibitors. This may cause not only an increased degradability but also an enhanced biomass production. FUEL-PATH will provide detailed information on the structure, function and construction of tailor-made enzymes and inhibitors suitable for the saccharification process. FUEL-PATH will also address the relationship between pectin composition and developmental responses mediated by hormones in PG-expressing plants. A genetic screen will be performed to isolate genes involved growth defects and increased cell wall degradability and these will be characterized for a possible biotechnological use."
Summary
"FUEL-PATH aims at providing new knowledge on plant cell wall and innovative biotechnological solutions for biomass utilization. A key process for biomass utilization is the initial degradation of cell walls into fermentable sugars (saccharification); this is hindered by the wall recalcitrance to hydrolysis. We propose to improve the plant saccharification characteristics by mimicking a strategy successfully used by phytopathogenic microorganisms. These produce pectic enzymes before other cell wall-degrading enzymes (CWDEs) to weaken the linkages between the wall components and favour the maceration of the plant tissue. Homogalacturonan (HGA), a major component of pectin, is synthesized in a methylated form and is de-esterified in the wall by methylesterases (PMEs). De-esterified HGA interacts with calcium to form ""egg-box"" structures, which are critical for maintaining the integrity of the entire wall. We propose to improve saccharification by expression in plants of microbial polygalacturonases (PGs) hydrolizing HGA. Plants expressing a fungal PG have reduced levels of HGA and enhanced saccharification (unpublished preliminary data). Since PG activity in pianta affects normal growth, a technology of enzyme control through the use of specific protein inhibitors will be developed. A second strategy to be adopted for weakening the ""egg-box"" is the overexpression of PME inhibitors. This may cause not only an increased degradability but also an enhanced biomass production. FUEL-PATH will provide detailed information on the structure, function and construction of tailor-made enzymes and inhibitors suitable for the saccharification process. FUEL-PATH will also address the relationship between pectin composition and developmental responses mediated by hormones in PG-expressing plants. A genetic screen will be performed to isolate genes involved growth defects and increased cell wall degradability and these will be characterized for a possible biotechnological use."
Max ERC Funding
2 099 600 €
Duration
Start date: 2009-01-01, End date: 2014-06-30
Project acronym FunctionalProteomics
Project Proteomic fingerprinting of functionally characterized single synapses
Researcher (PI) Zoltan NUSSER
Host Institution (HI) INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES
Call Details Advanced Grant (AdG), LS5, ERC-2017-ADG
Summary Our astonishing cognitive abilities are the consequence of complex connectivity within our neuronal networks and the large functional diversity of excitable nerve cells and their synapses. Investigations over the past half a century revealed dramatic diversity in shape, size and functional properties among synapses established by distinct cell types in different brain regions and demonstrated that the functional differences are partly due to different molecular mechanisms. However, synaptic diversity is also observed among synapses established by molecularly and morphologically uniform presynaptic cells on molecularly and morphologically uniform postsynaptic cells. Our hypothesis is that quantitative molecular differences underlie the functional diversity of such synapses. We will focus on hippocampal CA1 pyramidal cell (PC) to mGluR1α+ O-LM cell synapses, which show remarkable functional and molecular heterogeneity. In vitro multiple cell patch-clamp recordings followed by quantal analysis will be performed to quantify well-defined biophysical properties of these synapses. The molecular composition of the functionally characterized single synapses will be determined following the development of a novel postembedding immunolocalization method. Correlations between the molecular content and functional properties will be established and genetic up- and downregulation of individual synaptic proteins will be conducted to reveal causal relationships. Finally, correlations of the activity history and the functional properties of the synapses will be established by performing in vivo two-photon Ca2+ imaging in head-fixed behaving animals followed by in vitro functional characterization of their synapses. Our results will reveal quantitative molecular fingerprints of functional properties, allowing us to render dynamic behaviour to billions of synapses when the connectome of the hippocampal circuit is created using array tomography.
Summary
Our astonishing cognitive abilities are the consequence of complex connectivity within our neuronal networks and the large functional diversity of excitable nerve cells and their synapses. Investigations over the past half a century revealed dramatic diversity in shape, size and functional properties among synapses established by distinct cell types in different brain regions and demonstrated that the functional differences are partly due to different molecular mechanisms. However, synaptic diversity is also observed among synapses established by molecularly and morphologically uniform presynaptic cells on molecularly and morphologically uniform postsynaptic cells. Our hypothesis is that quantitative molecular differences underlie the functional diversity of such synapses. We will focus on hippocampal CA1 pyramidal cell (PC) to mGluR1α+ O-LM cell synapses, which show remarkable functional and molecular heterogeneity. In vitro multiple cell patch-clamp recordings followed by quantal analysis will be performed to quantify well-defined biophysical properties of these synapses. The molecular composition of the functionally characterized single synapses will be determined following the development of a novel postembedding immunolocalization method. Correlations between the molecular content and functional properties will be established and genetic up- and downregulation of individual synaptic proteins will be conducted to reveal causal relationships. Finally, correlations of the activity history and the functional properties of the synapses will be established by performing in vivo two-photon Ca2+ imaging in head-fixed behaving animals followed by in vitro functional characterization of their synapses. Our results will reveal quantitative molecular fingerprints of functional properties, allowing us to render dynamic behaviour to billions of synapses when the connectome of the hippocampal circuit is created using array tomography.
Max ERC Funding
2 498 750 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym FUNMETA
Project Metabolomics of fungal diseases: a systems biology approach for biomarkers discovery and therapy
Researcher (PI) Luigina Romani
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Advanced Grant (AdG), LS7, ERC-2011-ADG_20110310
Summary Humans have evolved intimate symbiotic relationships with a consortium of gut microbes (including fungi) and individual variations in the microbiome influence host health and disease. The fact that fungi are capable of colonizing almost every niche within the human body suggests that they must possess particular immune adaptation mechanisms, the breakdown of which may result in fatal fungal infections and severe fungal diseases. Traditional reductionist approaches of the past have not been sufficient to address these new challenges in the pathogenesis of fungal diseases. Here, I propose an integrated, systems biology approach to understand the role of L-tryptophan (trp) metabolic pathways in multilevel host−fungus interactions. Present in mammals as well as in fungi, pathways of trp metabolic pathways are exploited by the host and the fungal biota for survival and immune adaptation. A variety of indole derivatives, generated through conversion from dietary trp by symbiotic bacteria, activate the aryl hydrocarbon receptor/IL-22 pathway that provides antifungal resistance and tissue repair. Harmful inflammatory responses to fungi are instead tamed by kynurenines generated via the enzyme indoleamine 2,3–dioxygenase (IDO) of the trp pathway. Through high-throughput wet-lab ‘omics’ techniques combined with computational techniques, the project aims at defining the molecular basis of mammalian and fungal IDO activity and a metabolic network linking the metabolic phenotype (metabotype) to immune adaptations and its possible breakdown in experimental and human fungal infections. The project will provide ideal post-graduate training focussed on the development of metabolomics for diagnosis of fungal diseases and optimization of current antifungal therapy and diet that are of relevance to public health care solutions.
Summary
Humans have evolved intimate symbiotic relationships with a consortium of gut microbes (including fungi) and individual variations in the microbiome influence host health and disease. The fact that fungi are capable of colonizing almost every niche within the human body suggests that they must possess particular immune adaptation mechanisms, the breakdown of which may result in fatal fungal infections and severe fungal diseases. Traditional reductionist approaches of the past have not been sufficient to address these new challenges in the pathogenesis of fungal diseases. Here, I propose an integrated, systems biology approach to understand the role of L-tryptophan (trp) metabolic pathways in multilevel host−fungus interactions. Present in mammals as well as in fungi, pathways of trp metabolic pathways are exploited by the host and the fungal biota for survival and immune adaptation. A variety of indole derivatives, generated through conversion from dietary trp by symbiotic bacteria, activate the aryl hydrocarbon receptor/IL-22 pathway that provides antifungal resistance and tissue repair. Harmful inflammatory responses to fungi are instead tamed by kynurenines generated via the enzyme indoleamine 2,3–dioxygenase (IDO) of the trp pathway. Through high-throughput wet-lab ‘omics’ techniques combined with computational techniques, the project aims at defining the molecular basis of mammalian and fungal IDO activity and a metabolic network linking the metabolic phenotype (metabotype) to immune adaptations and its possible breakdown in experimental and human fungal infections. The project will provide ideal post-graduate training focussed on the development of metabolomics for diagnosis of fungal diseases and optimization of current antifungal therapy and diet that are of relevance to public health care solutions.
Max ERC Funding
2 299 200 €
Duration
Start date: 2012-04-01, End date: 2018-03-31
Project acronym FUNSEL
Project Generation of AAV-based, arrayed genetic libraries for in vivo functional selection: an innovative approach to identify secreted factors and microRNAs against degenerative disorders
Researcher (PI) Mauro Giacca
Host Institution (HI) INTERNATIONAL CENTRE FOR GENETIC ENGINEERING AND BIOTECHNOLOGY
Call Details Advanced Grant (AdG), LS7, ERC-2009-AdG
Summary A foremost health problem stems from the burden of degenerative diseases, including heart failure, neurodegeneration, retinal degeneration and diabetes, essentially linked to the aging of the human population and the incapacity of post-mitotic tissues to undergo efficient repair. This is an ambitious, highly innovative project aimed at developing an in vivo selection procedure, based on gene transfer of two genetic libraries cloned into Adeno-Associated Virus (AAV)-based vectors, for the identification of novel secreted factors or microRNAs providing benefit against various degenerative diseases. Two arrayed libraries will be generated, one coding for ~1,300 cDNAs from the mouse secretome, the other for all known microRNAs (~800 genes). Pools of vectors from each library will be obtained with serotypes suitable for in vivo transduction of different organs. The vectors will be injected in a series of mouse models of degenerative disorders involving damage to cardiomyocytes,, neurodegeneration, retinal degeneration and loss of beta-cells in the pancreas. The degenerative conditions will drive the selection for secreted factors or miRNA putatively preventing cell apoptosis, enhancing residual cell function or, in the best possible scenario, promoting tissue regeneration. This in vivo selection approach, which is supported by very encouraging preliminary results, has never been attempted before and is rendered possible by the property of AAV vectors to be produced at high titers, infect tissues at high multiplicity, persist in the transduced cells for prolonged period of times and efficiently express their transgenes in vivo. In addition to its final goal of identifying novel biotherapeutics, the project entails the successful achievement of several intermediate objectives and is expected to extend both technology and knowledge beyond the state-of-the art.
Summary
A foremost health problem stems from the burden of degenerative diseases, including heart failure, neurodegeneration, retinal degeneration and diabetes, essentially linked to the aging of the human population and the incapacity of post-mitotic tissues to undergo efficient repair. This is an ambitious, highly innovative project aimed at developing an in vivo selection procedure, based on gene transfer of two genetic libraries cloned into Adeno-Associated Virus (AAV)-based vectors, for the identification of novel secreted factors or microRNAs providing benefit against various degenerative diseases. Two arrayed libraries will be generated, one coding for ~1,300 cDNAs from the mouse secretome, the other for all known microRNAs (~800 genes). Pools of vectors from each library will be obtained with serotypes suitable for in vivo transduction of different organs. The vectors will be injected in a series of mouse models of degenerative disorders involving damage to cardiomyocytes,, neurodegeneration, retinal degeneration and loss of beta-cells in the pancreas. The degenerative conditions will drive the selection for secreted factors or miRNA putatively preventing cell apoptosis, enhancing residual cell function or, in the best possible scenario, promoting tissue regeneration. This in vivo selection approach, which is supported by very encouraging preliminary results, has never been attempted before and is rendered possible by the property of AAV vectors to be produced at high titers, infect tissues at high multiplicity, persist in the transduced cells for prolonged period of times and efficiently express their transgenes in vivo. In addition to its final goal of identifying novel biotherapeutics, the project entails the successful achievement of several intermediate objectives and is expected to extend both technology and knowledge beyond the state-of-the art.
Max ERC Funding
1 824 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym HD-DittoGraph
Project HD-DittoGraph: a digital human Embryonic Stem Cell platform for Huntington's repeats
Researcher (PI) Elena CATTANEO
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Advanced Grant (AdG), LS5, ERC-2016-ADG
Summary This proposal is aimed at identifying the molecular mechanisms that have brought the human Huntington Disease-causing Huntingtin (Htt) exon 1, with its pure and unstable CAG repeat, to be shaped the way it is today. Specifically, we intend to screen for genetic elements affecting Htt repeat length instability in dividing and postmitotic neuronal cells. The novelty of our approach relies on the construction of a human embryonic stem (hES) cell platform that couples highly efficient CRISPR/Cas9 technology with genome-wide screenings and third generation sequencing, to test the contribution of thousands of unequivocally barcoded cis and trans modifiers on Htt exon 1 repeats instability.
In Aim 1, we will test the contribution of cis-modifiers to repeat instability during multiple mitotic divisions, by generating a hES cell platform where we will subsequently introduce a barcoded donor library of different Htt exon 1 constructs, with different CAG and flanking sequences, at the Htt locus.
In Aim 2 our hES cell platform will be implemented with inducible Cas9 elements and sgRNAs libraries to perform genome-wide loss and gain of function (LOF, GOF) screenings of trans-acting modifiers of repeat sequence and size. The sgRNAs will act as barcodes for the modifier genes, allowing to test their causative role on repeat size changes.
In Aim 3, we will exploit the neurogenic potential of hES cells in our LOF and GOF platforms to identify Htt exon 1 repeat modifiers in differentiating striatal neurons. Candidate modifier genes will be individually validated and tested for their functional impact on gene networks by transcriptome analysis.
In all approaches, third generation sequencing and ad hoc computational pipelines will allow the simultaneous identification of the repeat changes and their association to the corresponding modifiers. Overall, this research proposal is expected to provide key molecular and genetic insights into the process of Htt repeat expansion in human
Summary
This proposal is aimed at identifying the molecular mechanisms that have brought the human Huntington Disease-causing Huntingtin (Htt) exon 1, with its pure and unstable CAG repeat, to be shaped the way it is today. Specifically, we intend to screen for genetic elements affecting Htt repeat length instability in dividing and postmitotic neuronal cells. The novelty of our approach relies on the construction of a human embryonic stem (hES) cell platform that couples highly efficient CRISPR/Cas9 technology with genome-wide screenings and third generation sequencing, to test the contribution of thousands of unequivocally barcoded cis and trans modifiers on Htt exon 1 repeats instability.
In Aim 1, we will test the contribution of cis-modifiers to repeat instability during multiple mitotic divisions, by generating a hES cell platform where we will subsequently introduce a barcoded donor library of different Htt exon 1 constructs, with different CAG and flanking sequences, at the Htt locus.
In Aim 2 our hES cell platform will be implemented with inducible Cas9 elements and sgRNAs libraries to perform genome-wide loss and gain of function (LOF, GOF) screenings of trans-acting modifiers of repeat sequence and size. The sgRNAs will act as barcodes for the modifier genes, allowing to test their causative role on repeat size changes.
In Aim 3, we will exploit the neurogenic potential of hES cells in our LOF and GOF platforms to identify Htt exon 1 repeat modifiers in differentiating striatal neurons. Candidate modifier genes will be individually validated and tested for their functional impact on gene networks by transcriptome analysis.
In all approaches, third generation sequencing and ad hoc computational pipelines will allow the simultaneous identification of the repeat changes and their association to the corresponding modifiers. Overall, this research proposal is expected to provide key molecular and genetic insights into the process of Htt repeat expansion in human
Max ERC Funding
2 040 943 €
Duration
Start date: 2018-03-01, End date: 2023-02-28