Project acronym ABC
Project Targeting Multidrug Resistant Cancer
Researcher (PI) Gergely Szakacs
Host Institution (HI) MAGYAR TUDOMANYOS AKADEMIA TERMESZETTUDOMANYI KUTATOKOZPONT
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Despite considerable advances in drug discovery, resistance to anticancer chemotherapy confounds the effective treatment of patients. Cancer cells can acquire broad cross-resistance to mechanistically and structurally unrelated drugs. P-glycoprotein (Pgp) actively extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. The central tenet of my work is that Pgp, a universally accepted biomarker of drug resistance, should in addition be considered as a molecular target of multidrug-resistant (MDR) cancer cells. Successful targeting of MDR cells would reduce the tumor burden and would also enable the elimination of ABC transporter-overexpressing cancer stem cells that are responsible for the replenishment of tumors. The proposed project is based on the following observations:
- First, by using a pharmacogenomic approach, I have revealed the hidden vulnerability of MDRcells (Szakács et al. 2004, Cancer Cell 6, 129-37);
- Second, I have identified a series of MDR-selective compounds with increased toxicity toPgp-expressing cells
(Turk et al.,Cancer Res, 2009. 69(21));
- Third, I have shown that MDR-selective compounds can be used to prevent theemergence of MDR (Ludwig, Szakács et al. 2006, Cancer Res 66, 4808-15);
- Fourth, we have generated initial pharmacophore models for cytotoxicity and MDR-selectivity (Hall et al. 2009, J Med Chem 52, 3191-3204).
I propose a comprehensive series of studies that will address thefollowing critical questions:
- First, what is the scope of MDR-selective compounds?
- Second, what is their mechanism of action?
- Third, what is the optimal therapeutic modality?
Extensive biological, pharmacological and bioinformatic analyses will be utilized to address four major specific aims. These aims address basic questions concerning the physiology of MDR ABC transporters in determining the mechanism of action of MDR-selective compounds, setting the stage for a fresh therapeutic approach that may eventually translate into improved patient care.
Summary
Despite considerable advances in drug discovery, resistance to anticancer chemotherapy confounds the effective treatment of patients. Cancer cells can acquire broad cross-resistance to mechanistically and structurally unrelated drugs. P-glycoprotein (Pgp) actively extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. The central tenet of my work is that Pgp, a universally accepted biomarker of drug resistance, should in addition be considered as a molecular target of multidrug-resistant (MDR) cancer cells. Successful targeting of MDR cells would reduce the tumor burden and would also enable the elimination of ABC transporter-overexpressing cancer stem cells that are responsible for the replenishment of tumors. The proposed project is based on the following observations:
- First, by using a pharmacogenomic approach, I have revealed the hidden vulnerability of MDRcells (Szakács et al. 2004, Cancer Cell 6, 129-37);
- Second, I have identified a series of MDR-selective compounds with increased toxicity toPgp-expressing cells
(Turk et al.,Cancer Res, 2009. 69(21));
- Third, I have shown that MDR-selective compounds can be used to prevent theemergence of MDR (Ludwig, Szakács et al. 2006, Cancer Res 66, 4808-15);
- Fourth, we have generated initial pharmacophore models for cytotoxicity and MDR-selectivity (Hall et al. 2009, J Med Chem 52, 3191-3204).
I propose a comprehensive series of studies that will address thefollowing critical questions:
- First, what is the scope of MDR-selective compounds?
- Second, what is their mechanism of action?
- Third, what is the optimal therapeutic modality?
Extensive biological, pharmacological and bioinformatic analyses will be utilized to address four major specific aims. These aims address basic questions concerning the physiology of MDR ABC transporters in determining the mechanism of action of MDR-selective compounds, setting the stage for a fresh therapeutic approach that may eventually translate into improved patient care.
Max ERC Funding
1 499 640 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym ALLELECHOKER
Project DNA binding proteins for treatment of gain of function mutations
Researcher (PI) Enrico Maria Surace
Host Institution (HI) FONDAZIONE TELETHON
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary Zinc finger (ZF) and transcription activator-like effector (TALE) based technologies are been allowing the tailored design of “artificial” DNA-binding proteins targeted to specific and unique DNA genomic sequences. Coupling DNA binding proteins to effectors domains enables the constitution of DNA binding factors for genomic directed transcriptional modulation or targeted genomic editing. We have demonstrated that pairing a ZF DNA binding protein to the transcriptional repressor Kruppel-associated box enables in vivo, the transcriptional repression of one of the most abundantly expressed gene in mammals, the human rhodopsin gene (RHO). We propose to generate RHO DNA binding silencers (“AlleleChoker”), which inactivate RHO either by transcriptional repression or targeted genome modification, irrespectively to wild-type or mutated alleles (mutational-independent approach), and combine RHO endogenous silencing to RHO replacement (silencing-replacement strategy). With this strategy in principle a single bimodal bio-therapeutic will enable the correction of any photoreceptor disease associated with RHO mutation. Adeno-associated viral (AAV) vector-based delivery will be used for photoreceptors gene transfer. Specifically our objectives are: 1) Construction of transcriptional repressors and nucleases for RHO silencing. Characterization and comparison of RHO silencing mediated by transcriptional repressors (ZFR/ TALER) or nucleases (ZFN/ TALEN) to generate genomic directed inactivation by non-homologous end-joining (NHEJ), and refer these results to RNA interference (RNAi) targeted to RHO; 2) RHO silencing in photoreceptors. to determine genome-wide DNA binding specificity of silencers, chromatin modifications and expression profile on human retinal explants; 3) Tuning silencing and replacement. To determine the impact of gene silencing-replacement strategy on disease progression in animal models of autosomal dominant retinitis pigmentosa (adRP) associated to RHO mutations
Summary
Zinc finger (ZF) and transcription activator-like effector (TALE) based technologies are been allowing the tailored design of “artificial” DNA-binding proteins targeted to specific and unique DNA genomic sequences. Coupling DNA binding proteins to effectors domains enables the constitution of DNA binding factors for genomic directed transcriptional modulation or targeted genomic editing. We have demonstrated that pairing a ZF DNA binding protein to the transcriptional repressor Kruppel-associated box enables in vivo, the transcriptional repression of one of the most abundantly expressed gene in mammals, the human rhodopsin gene (RHO). We propose to generate RHO DNA binding silencers (“AlleleChoker”), which inactivate RHO either by transcriptional repression or targeted genome modification, irrespectively to wild-type or mutated alleles (mutational-independent approach), and combine RHO endogenous silencing to RHO replacement (silencing-replacement strategy). With this strategy in principle a single bimodal bio-therapeutic will enable the correction of any photoreceptor disease associated with RHO mutation. Adeno-associated viral (AAV) vector-based delivery will be used for photoreceptors gene transfer. Specifically our objectives are: 1) Construction of transcriptional repressors and nucleases for RHO silencing. Characterization and comparison of RHO silencing mediated by transcriptional repressors (ZFR/ TALER) or nucleases (ZFN/ TALEN) to generate genomic directed inactivation by non-homologous end-joining (NHEJ), and refer these results to RNA interference (RNAi) targeted to RHO; 2) RHO silencing in photoreceptors. to determine genome-wide DNA binding specificity of silencers, chromatin modifications and expression profile on human retinal explants; 3) Tuning silencing and replacement. To determine the impact of gene silencing-replacement strategy on disease progression in animal models of autosomal dominant retinitis pigmentosa (adRP) associated to RHO mutations
Max ERC Funding
1 354 840 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym ANGIOPLACE
Project Expression and Methylation Status of Genes Regulating Placental Angiogenesis in Normal, Cloned, IVF and Monoparental Sheep Foetuses
Researcher (PI) Grazyna Ewa Ptak
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TERAMO
Call Details Starting Grant (StG), LS7, ERC-2007-StG
Summary Normal placental angiogenesis is critical for embryonic survival and development. Epigenetic modifications, such as methylation of CpG islands, regulate the expression and imprinting of genes. Epigenetic abnormalities have been observed in embryos from assisted reproductive technologies (ART), which could explain the poor placental vascularisation, embryonic/fetal death, and altered fetal growth in these pregnancies. Both cloned (somatic cell nuclear transfer, or SNCT) and monoparental (parthogenotes, only maternal genes; androgenotes, only paternal genes) embryos provide important models for studying defects in expression and methylation status/imprinting of genes regulating placental function. Our hypothesis is that placental vascular development is compromised during early pregnancy in embryos from ART, in part due to altered expression or imprinting/methylation status of specific genes regulating placental angiogenesis. We will evaluate fetal growth, placental vascular growth, and expression and epigenetic status of genes regulating placental angiogenesis during early pregnancy in 3 Specific Aims: (1) after natural mating; (2) after transfer of biparental embryos from in vitro fertilization, and SCNT; and (3) after transfer of parthenogenetic or androgenetic embryos. These studies will therefore contribute substantially to our understanding of the regulation of placental development and vascularisation during early pregnancy, and could pinpoint the mechanism contributing to embryonic loss and developmental abnormalities in foetuses from ART. Any or all of these observations will contribute to our understanding of and also our ability to successfully employ ART, which are becoming very wide spread and important in human medicine as well as in animal production.
Summary
Normal placental angiogenesis is critical for embryonic survival and development. Epigenetic modifications, such as methylation of CpG islands, regulate the expression and imprinting of genes. Epigenetic abnormalities have been observed in embryos from assisted reproductive technologies (ART), which could explain the poor placental vascularisation, embryonic/fetal death, and altered fetal growth in these pregnancies. Both cloned (somatic cell nuclear transfer, or SNCT) and monoparental (parthogenotes, only maternal genes; androgenotes, only paternal genes) embryos provide important models for studying defects in expression and methylation status/imprinting of genes regulating placental function. Our hypothesis is that placental vascular development is compromised during early pregnancy in embryos from ART, in part due to altered expression or imprinting/methylation status of specific genes regulating placental angiogenesis. We will evaluate fetal growth, placental vascular growth, and expression and epigenetic status of genes regulating placental angiogenesis during early pregnancy in 3 Specific Aims: (1) after natural mating; (2) after transfer of biparental embryos from in vitro fertilization, and SCNT; and (3) after transfer of parthenogenetic or androgenetic embryos. These studies will therefore contribute substantially to our understanding of the regulation of placental development and vascularisation during early pregnancy, and could pinpoint the mechanism contributing to embryonic loss and developmental abnormalities in foetuses from ART. Any or all of these observations will contribute to our understanding of and also our ability to successfully employ ART, which are becoming very wide spread and important in human medicine as well as in animal production.
Max ERC Funding
363 600 €
Duration
Start date: 2008-10-01, End date: 2012-06-30
Project acronym ANOREP
Project Targeting the reproductive biology of the malaria mosquito Anopheles gambiae: from laboratory studies to field applications
Researcher (PI) Flaminia Catteruccia
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Summary
Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ANTEGEFI
Project Analytic Techniques for Geometric and Functional Inequalities
Researcher (PI) Nicola Fusco
Host Institution (HI) UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.
Summary
Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.
Max ERC Funding
600 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym AROMA-CFD
Project Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics
Researcher (PI) Gianluigi Rozza
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Summary
The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Max ERC Funding
1 656 579 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym BEAT
Project The functional interaction of EGFR and beta-catenin signalling in colorectal cancer: Genetics, mechanisms, and therapeutic potential.
Researcher (PI) Andrea BERTOTTI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TORINO
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary Monoclonal antibodies against the EGF receptor (EGFR) provide substantive benefit to colorectal cancer (CRC) patients. However, no genetic lesions that robustly predict ‘addiction’ to the EGFR pathway have been yet identified. Further, even in tumours that regress after EGFR blockade, subsets of drug-tolerant cells often linger and foster ‘minimal residual disease’ (MRD), which portends tumour relapse.
Our preliminary evidence suggests that reliance on EGFR activity, as opposed to MRD persistence, could be assisted by genetically-based variations in transcription factor partnerships and activities, gene expression outputs, and biological fates controlled by the WNT/beta-catenin pathway. On such premises, BEAT (Beta-catenin and EGFR Abrogation Therapy) will elucidate the mechanisms of EGFR dependency, and escape from it, with the goal to identify biomarkers for more efficient clinical management of CRC and develop new therapies for MRD eradication.
A multidisciplinary approach will be pursued spanning from integrative gene regulation analyses to functional genomics in vitro, pharmacological experiments in vivo, and clinical investigation, to address whether: (i) specific genetic alterations of the WNT pathway affect anti-EGFR sensitivity; (ii) combined neutralisation of EGFR and WNT signals fuels MRD deterioration; (iii) data from analysis of this synergy can lead to the discovery of clinically meaningful biomarkers with predictive and prognostic significance.
This proposal capitalises on a unique proprietary platform for high-content studies based on a large biobank of viable CRC samples, which ensures strong analytical power and unprecedented biological flexibility. By providing fresh insight into the mechanisms whereby WNT/beta-catenin signalling differentially sustains EGFR dependency or drug tolerance, the project is expected to put forward an innovative reinterpretation of CRC molecular bases and advance the rational application of more effective therapies.
Summary
Monoclonal antibodies against the EGF receptor (EGFR) provide substantive benefit to colorectal cancer (CRC) patients. However, no genetic lesions that robustly predict ‘addiction’ to the EGFR pathway have been yet identified. Further, even in tumours that regress after EGFR blockade, subsets of drug-tolerant cells often linger and foster ‘minimal residual disease’ (MRD), which portends tumour relapse.
Our preliminary evidence suggests that reliance on EGFR activity, as opposed to MRD persistence, could be assisted by genetically-based variations in transcription factor partnerships and activities, gene expression outputs, and biological fates controlled by the WNT/beta-catenin pathway. On such premises, BEAT (Beta-catenin and EGFR Abrogation Therapy) will elucidate the mechanisms of EGFR dependency, and escape from it, with the goal to identify biomarkers for more efficient clinical management of CRC and develop new therapies for MRD eradication.
A multidisciplinary approach will be pursued spanning from integrative gene regulation analyses to functional genomics in vitro, pharmacological experiments in vivo, and clinical investigation, to address whether: (i) specific genetic alterations of the WNT pathway affect anti-EGFR sensitivity; (ii) combined neutralisation of EGFR and WNT signals fuels MRD deterioration; (iii) data from analysis of this synergy can lead to the discovery of clinically meaningful biomarkers with predictive and prognostic significance.
This proposal capitalises on a unique proprietary platform for high-content studies based on a large biobank of viable CRC samples, which ensures strong analytical power and unprecedented biological flexibility. By providing fresh insight into the mechanisms whereby WNT/beta-catenin signalling differentially sustains EGFR dependency or drug tolerance, the project is expected to put forward an innovative reinterpretation of CRC molecular bases and advance the rational application of more effective therapies.
Max ERC Funding
1 793 421 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym bECOMiNG
Project spontaneous Evolution and Clonal heterOgeneity in MoNoclonal Gammopathies: from mechanisms of progression to clinical management
Researcher (PI) Niccolo Bolli
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Consolidator Grant (CoG), LS7, ERC-2018-COG
Summary As an onco-hematologist with a strong expertise in genomics, I significantly contributed to the understanding of multiple myeloma (MM) heterogeneity and its evolution over time, driven by genotypic and phenotypic features carried by different subpopulations of cells. MM is preceded by prevalent, asymptomatic stages that may evolve with variable frequency, not accurately captured by current clinical prognostic scores. Supported by preliminary data, my hypothesis is that the same heterogeneity is present early on the disease course, and identification of the biological determinants of evolution at this stage will allow better prediction of its evolutionary trajectory, if not its control. In this proposal I will therefore make a sharp change from conventional approaches and move to early stages of MM using unique retrospective sample cohorts and ambitious prospective sampling. To identify clonal MM cells in the elderly before a monoclonal gammopathy can be detected, I will collect bone marrow (BM) from hundreds of hip replacement specimens, and analyze archive peripheral blood samples of thousands of healthy individuals with years of annotated clinical follow-up. This will identify early genomic alterations that are permissive to disease initiation/evolution and may serve as biomarkers for clinical screening. Through innovative, integrated single-cell genotyping and phenotyping of hundreds of asymptomatic MMs, I will functionally dissect heterogeneity and characterize the BM microenvironment to look for determinants of disease progression. Correlation with clinical outcome and mini-invasive serial sampling of circulating cell-free DNA will identify candidate biological markers to better predict evolution. Last, aggressive modelling of candidate early lesions and modifier screens will offer a list of vulnerabilities that could be exploited for rationale therapies. These methodologies will deliver a paradigm for the use of molecularly-driven precision medicine in cancer.
Summary
As an onco-hematologist with a strong expertise in genomics, I significantly contributed to the understanding of multiple myeloma (MM) heterogeneity and its evolution over time, driven by genotypic and phenotypic features carried by different subpopulations of cells. MM is preceded by prevalent, asymptomatic stages that may evolve with variable frequency, not accurately captured by current clinical prognostic scores. Supported by preliminary data, my hypothesis is that the same heterogeneity is present early on the disease course, and identification of the biological determinants of evolution at this stage will allow better prediction of its evolutionary trajectory, if not its control. In this proposal I will therefore make a sharp change from conventional approaches and move to early stages of MM using unique retrospective sample cohorts and ambitious prospective sampling. To identify clonal MM cells in the elderly before a monoclonal gammopathy can be detected, I will collect bone marrow (BM) from hundreds of hip replacement specimens, and analyze archive peripheral blood samples of thousands of healthy individuals with years of annotated clinical follow-up. This will identify early genomic alterations that are permissive to disease initiation/evolution and may serve as biomarkers for clinical screening. Through innovative, integrated single-cell genotyping and phenotyping of hundreds of asymptomatic MMs, I will functionally dissect heterogeneity and characterize the BM microenvironment to look for determinants of disease progression. Correlation with clinical outcome and mini-invasive serial sampling of circulating cell-free DNA will identify candidate biological markers to better predict evolution. Last, aggressive modelling of candidate early lesions and modifier screens will offer a list of vulnerabilities that could be exploited for rationale therapies. These methodologies will deliver a paradigm for the use of molecularly-driven precision medicine in cancer.
Max ERC Funding
1 998 781 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym BioLEAP
Project Biotechnological optimization of light use efficiency in algae photobioreactors
Researcher (PI) Tomas Morosinotto
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PADOVA
Call Details Starting Grant (StG), LS9, ERC-2012-StG_20111109
Summary New renewable energy source are highly needed to compensate exhausting fossil fuels reserves and reduce greenhouse gases emissions. Some species of algae have an interesting potential as feedstock for the production of biodiesel thanks to their ability to accumulate large amount of lipids. Strong research efforts are however needed to fulfil this potential and address many issues involving optimization of cultivation systems, biomass harvesting and algae genetic improvement. This proposal aims to address one of these issues, the optimization of algae light use efficiency. Light, in fact, provides the energy supporting algae growth and must be exploited with the highest possible efficiency to achieve sufficient productivity.
In a photobioreactor algae are highly concentrated and this cause a inhomogeneous light distribution with a large fraction of the cells exposed to very low light or even in the dark. Algae are also actively mixed and they can abruptly move from dark to full illumination and vice versa. This proposal aims to assess how alternation of dark/light cycles affect algae growth and functionality of photosynthetic apparatus both in batch and continuous cultures. In collaboration with the Chemical Engineering department, experimental data will be exploited to build a model describing the photobioreactor, a fundamental tool to improve its design.
The other main scope of this proposal is the isolation of genetically improved strains more suitable to the artificial environment of a photobioreactor. A first part of the work of setting up protocols for transformation will be followed by a second phase for generation and selection of mutants with altered photosynthetic performances. Transcriptome analyses in different light conditions will also be instrumental to identify genes to be targeted by genetic engineering.
Summary
New renewable energy source are highly needed to compensate exhausting fossil fuels reserves and reduce greenhouse gases emissions. Some species of algae have an interesting potential as feedstock for the production of biodiesel thanks to their ability to accumulate large amount of lipids. Strong research efforts are however needed to fulfil this potential and address many issues involving optimization of cultivation systems, biomass harvesting and algae genetic improvement. This proposal aims to address one of these issues, the optimization of algae light use efficiency. Light, in fact, provides the energy supporting algae growth and must be exploited with the highest possible efficiency to achieve sufficient productivity.
In a photobioreactor algae are highly concentrated and this cause a inhomogeneous light distribution with a large fraction of the cells exposed to very low light or even in the dark. Algae are also actively mixed and they can abruptly move from dark to full illumination and vice versa. This proposal aims to assess how alternation of dark/light cycles affect algae growth and functionality of photosynthetic apparatus both in batch and continuous cultures. In collaboration with the Chemical Engineering department, experimental data will be exploited to build a model describing the photobioreactor, a fundamental tool to improve its design.
The other main scope of this proposal is the isolation of genetically improved strains more suitable to the artificial environment of a photobioreactor. A first part of the work of setting up protocols for transformation will be followed by a second phase for generation and selection of mutants with altered photosynthetic performances. Transcriptome analyses in different light conditions will also be instrumental to identify genes to be targeted by genetic engineering.
Max ERC Funding
1 257 600 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym BIOSMA
Project Mathematics for Shape Memory Technologies in Biomechanics
Researcher (PI) Ulisse Stefanelli
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary Shape Memory Alloys (SMAs) are nowadays widely exploited for the realization of innovative devices and have a great impact on the development of a variety of biomedical applications ranging from orthodontic archwires to vascular stents. The design, realization, and optimization of such devices are quite demanding tasks. Mathematics is involved in this process as a major tool in order to let the modeling more accurate, the numerical simulations more reliable, and the design more effective. Many material properties of SMAs such as martensitic reorientation, training, and ferromagnetic behavior, are still to be properly and efficiently addressed. Therefore, new modeling ideas, along with original analytical and numerical techniques, are required. This project is aimed at addressing novel mathematical issues in order to move from experimental materials results toward the solution of real-scale biomechanical Engineering problems. The research focus will be multidisciplinary and include modeling, analytic, numerical, and computational issues. A progress in the macroscopic description of SMAs, the computational simulation of real-scale SMA devices, and the optimization of the production processes will contribute to advance in the direction of innovative applications.
Summary
Shape Memory Alloys (SMAs) are nowadays widely exploited for the realization of innovative devices and have a great impact on the development of a variety of biomedical applications ranging from orthodontic archwires to vascular stents. The design, realization, and optimization of such devices are quite demanding tasks. Mathematics is involved in this process as a major tool in order to let the modeling more accurate, the numerical simulations more reliable, and the design more effective. Many material properties of SMAs such as martensitic reorientation, training, and ferromagnetic behavior, are still to be properly and efficiently addressed. Therefore, new modeling ideas, along with original analytical and numerical techniques, are required. This project is aimed at addressing novel mathematical issues in order to move from experimental materials results toward the solution of real-scale biomechanical Engineering problems. The research focus will be multidisciplinary and include modeling, analytic, numerical, and computational issues. A progress in the macroscopic description of SMAs, the computational simulation of real-scale SMA devices, and the optimization of the production processes will contribute to advance in the direction of innovative applications.
Max ERC Funding
700 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym BONEPHAGY
Project Defining the role of the FGF – autophagy axis in bone physiology
Researcher (PI) Carmine SETTEMBRE
Host Institution (HI) FONDAZIONE TELETHON
Call Details Starting Grant (StG), LS4, ERC-2016-STG
Summary Autophagy is a fundamental cellular catabolic process deputed to the degradation and recycling of a variety of intracellular materials. Autophagy plays a significant role in multiple human physio-pathological processes and is now emerging as a critical regulator of skeletal development and homeostasis. We have discovered that during postnatal development in mice, the growth factor FGF18 induces autophagy in the chondrocyte cells of the growth plate to regulate the secretion of type II collagen, a major component of cartilaginous extracellular matrix. The FGF signaling pathways play crucial roles during skeletal development and maintenance and are deregulated in many skeletal disorders. Hence our findings may offer the unique opportunity to uncover new molecular mechanisms through which FGF pathways regulate skeletal development and maintenance and to identify new targets for the treatment of FGF-related skeletal disorders. In this grant application we propose to study the role played by the different FGF ligands and receptors on autophagy regulation and to investigate the physiological relevance of these findings in the context of skeletal growth, homeostasis and maintenance. We will also investigate the intracellular machinery that links FGF signalling pathways to the regulation of autophagy. In addition, we generated preliminary data showing an impairment of autophagy in chondrocyte models of Achondroplasia (ACH) and Thanathoporic dysplasia, two skeletal disorders caused by mutations in FGFR3. We propose to study the role of autophagy in the pathogenesis of FGFR3-related dwarfisms and explore the pharmacological modulation of autophagy as new therapeutic approach for achondroplasia. This application, which combines cell biology, mouse genetics and pharmacological approaches, has the potential to shed light on new mechanisms involved in organismal development and homeostasis, which could be targeted to treat bone and cartilage diseases.
Summary
Autophagy is a fundamental cellular catabolic process deputed to the degradation and recycling of a variety of intracellular materials. Autophagy plays a significant role in multiple human physio-pathological processes and is now emerging as a critical regulator of skeletal development and homeostasis. We have discovered that during postnatal development in mice, the growth factor FGF18 induces autophagy in the chondrocyte cells of the growth plate to regulate the secretion of type II collagen, a major component of cartilaginous extracellular matrix. The FGF signaling pathways play crucial roles during skeletal development and maintenance and are deregulated in many skeletal disorders. Hence our findings may offer the unique opportunity to uncover new molecular mechanisms through which FGF pathways regulate skeletal development and maintenance and to identify new targets for the treatment of FGF-related skeletal disorders. In this grant application we propose to study the role played by the different FGF ligands and receptors on autophagy regulation and to investigate the physiological relevance of these findings in the context of skeletal growth, homeostasis and maintenance. We will also investigate the intracellular machinery that links FGF signalling pathways to the regulation of autophagy. In addition, we generated preliminary data showing an impairment of autophagy in chondrocyte models of Achondroplasia (ACH) and Thanathoporic dysplasia, two skeletal disorders caused by mutations in FGFR3. We propose to study the role of autophagy in the pathogenesis of FGFR3-related dwarfisms and explore the pharmacological modulation of autophagy as new therapeutic approach for achondroplasia. This application, which combines cell biology, mouse genetics and pharmacological approaches, has the potential to shed light on new mechanisms involved in organismal development and homeostasis, which could be targeted to treat bone and cartilage diseases.
Max ERC Funding
1 586 430 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym BRAINCANNABINOIDS
Project Understanding the molecular blueprint and functional complexity of the endocannabinoid metabolome in the brain
Researcher (PI) István Katona
Host Institution (HI) INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary We and others have recently delineated the molecular architecture of a new feedback pathway in brain synapses, which operates as a synaptic circuit breaker. This pathway is supposed to use a group of lipid messengers as retrograde synaptic signals, the so-called endocannabinoids. Although heterogeneous in their chemical structures, these molecules along with the psychoactive compound in cannabis are thought to target the same effector in the brain, the CB1 receptor. However, the molecular catalog of these bioactive lipids and their metabolic enzymes has been expanding rapidly by recent advances in lipidomics and proteomics raising the possibility that these lipids may also serve novel, yet unidentified physiological functions. Thus, the overall aim of our research program is to define the molecular and anatomical organization of these endocannabinoid-mediated pathways and to determine their functional significance. In the present proposal, we will focus on understanding how these novel pathways regulate synaptic and extrasynaptic signaling in hippocampal neurons. Using combination of lipidomic, genetic and high-resolution anatomical approaches, we will identify distinct chemical species of endocannabinoids and will show how their metabolic enzymes are segregated into different subcellular compartments in cell type- and synapse-specific manner. Subsequently, we will use genetically encoded gain-of-function, loss-of-function and reporter constructs in imaging experiments and electrophysiological recordings to gain insights into the diverse tasks that these new pathways serve in synaptic transmission and extrasynaptic signal processing. Our proposed experiments will reveal fundamental principles of intercellular and intracellular endocannabinoid signaling in the brain.
Summary
We and others have recently delineated the molecular architecture of a new feedback pathway in brain synapses, which operates as a synaptic circuit breaker. This pathway is supposed to use a group of lipid messengers as retrograde synaptic signals, the so-called endocannabinoids. Although heterogeneous in their chemical structures, these molecules along with the psychoactive compound in cannabis are thought to target the same effector in the brain, the CB1 receptor. However, the molecular catalog of these bioactive lipids and their metabolic enzymes has been expanding rapidly by recent advances in lipidomics and proteomics raising the possibility that these lipids may also serve novel, yet unidentified physiological functions. Thus, the overall aim of our research program is to define the molecular and anatomical organization of these endocannabinoid-mediated pathways and to determine their functional significance. In the present proposal, we will focus on understanding how these novel pathways regulate synaptic and extrasynaptic signaling in hippocampal neurons. Using combination of lipidomic, genetic and high-resolution anatomical approaches, we will identify distinct chemical species of endocannabinoids and will show how their metabolic enzymes are segregated into different subcellular compartments in cell type- and synapse-specific manner. Subsequently, we will use genetically encoded gain-of-function, loss-of-function and reporter constructs in imaging experiments and electrophysiological recordings to gain insights into the diverse tasks that these new pathways serve in synaptic transmission and extrasynaptic signal processing. Our proposed experiments will reveal fundamental principles of intercellular and intracellular endocannabinoid signaling in the brain.
Max ERC Funding
1 638 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym CARDIOEPIGEN
Project Epigenetics and microRNAs in Myocardial Function and Disease
Researcher (PI) Gianluigi Condorelli
Host Institution (HI) HUMANITAS MIRASOLE SPA
Call Details Advanced Grant (AdG), LS4, ERC-2011-ADG_20110310
Summary Heart failure (HF) is the ultimate outcome of many cardiovascular diseases. Re-expression of fetal genes in the adult heart contributes to development of HF. Two mechanisms involved in the control of gene expression are epigenetics and microRNAs (miRs). We propose a project on epigenetic and miR-mediated mechanisms leading to HF.
Epigenetics refers to heritable modification of DNA and histones that does not modify the genetic code. Depending on the type of modification and on the site affected, these chemical changes up- or down-regulate transcription of specific genes. Despite it being a major player in gene regulation, epigenetics has been only partly investigated in HF. miRs are regulatory RNAs that target mRNAs for inhibition. Dysregulation of the cardiac miR signature occurs in HF. miR expression may itself be under epigenetic control, constituting a miR-epigenetic regulatory network. To our knowledge, this possibility has not been studied yet.
Our specific hypothesis is that the profile of DNA/histone methylation and the cross-talk between epigenetic enzymes and miRs have fundamental roles in defining the characteristics of cells during cardiac development and that the dysregulation of these processes determines the deleterious nature of the stressed heart’s gene programme. We will test this first through a genome-wide study of DNA/histone methylation to generate maps of the main methylation modifications occurring in the genome of cardiac cells treated with a pro-hypertrophy regulator and of a HF model. We will then investigate the role of epigenetic enzymes deemed important in HF, through the generation and study of knockout mice models. Finally, we will test the possible therapeutic potential of modulating epigenetic genes.
We hope to further understand the pathological mechanisms leading to HF and to generate data instrumental to the development of diagnostic and therapeutic strategies for this disease.
Summary
Heart failure (HF) is the ultimate outcome of many cardiovascular diseases. Re-expression of fetal genes in the adult heart contributes to development of HF. Two mechanisms involved in the control of gene expression are epigenetics and microRNAs (miRs). We propose a project on epigenetic and miR-mediated mechanisms leading to HF.
Epigenetics refers to heritable modification of DNA and histones that does not modify the genetic code. Depending on the type of modification and on the site affected, these chemical changes up- or down-regulate transcription of specific genes. Despite it being a major player in gene regulation, epigenetics has been only partly investigated in HF. miRs are regulatory RNAs that target mRNAs for inhibition. Dysregulation of the cardiac miR signature occurs in HF. miR expression may itself be under epigenetic control, constituting a miR-epigenetic regulatory network. To our knowledge, this possibility has not been studied yet.
Our specific hypothesis is that the profile of DNA/histone methylation and the cross-talk between epigenetic enzymes and miRs have fundamental roles in defining the characteristics of cells during cardiac development and that the dysregulation of these processes determines the deleterious nature of the stressed heart’s gene programme. We will test this first through a genome-wide study of DNA/histone methylation to generate maps of the main methylation modifications occurring in the genome of cardiac cells treated with a pro-hypertrophy regulator and of a HF model. We will then investigate the role of epigenetic enzymes deemed important in HF, through the generation and study of knockout mice models. Finally, we will test the possible therapeutic potential of modulating epigenetic genes.
We hope to further understand the pathological mechanisms leading to HF and to generate data instrumental to the development of diagnostic and therapeutic strategies for this disease.
Max ERC Funding
2 500 000 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym CAVE
Project Challenges and Advancements in Virtual Elements
Researcher (PI) Lourenco Beirao da veiga
Host Institution (HI) UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The Virtual Element Method (VEM) is a novel technology for the discretization of partial differential equations (PDEs), that shares the same variational background as the Finite Element Method. First but not only, the VEM responds to the strongly increasing interest in using general polyhedral and polygonal meshes in the approximation of PDEs without the limit of using tetrahedral or hexahedral grids. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrixes, the VEM acquires very interesting properties and advantages with respect to more standard Galerkin methods, yet still keeping the same coding complexity. For instance, the VEM easily allows for polygonal/polyhedral meshes (even non-conforming) with non-convex elements and possibly with curved faces; it allows for discrete spaces of arbitrary C^k regularity on unstructured meshes.
The main scope of the project is to address the recent theoretical challenges posed by VEM and to assess whether this promising technology can achieve a breakthrough in applications. First, the theoretical and computational foundations of VEM will be made stronger. A deeper theoretical insight, supported by a wider numerical experience on benchmark problems, will be developed to gain a better understanding of the method's potentials and set the foundations for more applicative purposes. Second, we will focus our attention on two tough and up-to-date problems of practical interest: large deformation elasticity (where VEM can yield a dramatically more efficient handling of material inclusions, meshing of the domain and grid adaptivity, plus a much stronger robustness with respect to large grid distortions) and the cardiac bidomain model (where VEM can lead to a more accurate domain approximation through MRI data, a flexible refinement/de-refinement procedure along the propagation front, to an exact satisfaction of conservation laws).
Summary
The Virtual Element Method (VEM) is a novel technology for the discretization of partial differential equations (PDEs), that shares the same variational background as the Finite Element Method. First but not only, the VEM responds to the strongly increasing interest in using general polyhedral and polygonal meshes in the approximation of PDEs without the limit of using tetrahedral or hexahedral grids. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrixes, the VEM acquires very interesting properties and advantages with respect to more standard Galerkin methods, yet still keeping the same coding complexity. For instance, the VEM easily allows for polygonal/polyhedral meshes (even non-conforming) with non-convex elements and possibly with curved faces; it allows for discrete spaces of arbitrary C^k regularity on unstructured meshes.
The main scope of the project is to address the recent theoretical challenges posed by VEM and to assess whether this promising technology can achieve a breakthrough in applications. First, the theoretical and computational foundations of VEM will be made stronger. A deeper theoretical insight, supported by a wider numerical experience on benchmark problems, will be developed to gain a better understanding of the method's potentials and set the foundations for more applicative purposes. Second, we will focus our attention on two tough and up-to-date problems of practical interest: large deformation elasticity (where VEM can yield a dramatically more efficient handling of material inclusions, meshing of the domain and grid adaptivity, plus a much stronger robustness with respect to large grid distortions) and the cardiac bidomain model (where VEM can lead to a more accurate domain approximation through MRI data, a flexible refinement/de-refinement procedure along the propagation front, to an exact satisfaction of conservation laws).
Max ERC Funding
980 634 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym CBCD
Project Understanding the basis of cerebellar and brainstem congenital defects: from clinical and molecular characterisation to the development of a novel neuroembryonic in vitro model
Researcher (PI) Enza Maria Valente
Host Institution (HI) FONDAZIONE SANTA LUCIA
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Cerebellar and brainstem congenital defects (CBCDs) are heterogeneous disorders with high pre-and post-natal mortality and morbidity. Their genetic basis and pathogenetic mechanisms are largely unknown, hampering patients’ diagnosis and management and family counselling. This project aims at improve current understanding of primary CBCDs through a multidisciplinary approach combining innovative clinical, neuroimaging, molecular and functional studies, that will be articulated in four workpackages:
WP1- Clinical and neuroimaging studies: collection of detailed data and biological samples from a large cohort of patients covering a broad spectrum of CBCDs, neuroimaging classification based on magnetic resonance imaging and tractography, genotype-phenotype correlates and follow-up studies.
WP2 - Molecular studies on mendelian CBCDs: high-throughput resequencing of ciliary genes to identify pathogenic mutations and genetic modifiers in patients with ciliopathies, identification of novel disease genes, mutation analysis of genes causative of other mendelian CBCDs.
WP3 - Molecular studies on sporadic CBCDs: identification of cryptic chromosomal rearrangements by high resolution SNP-array analysis, selection and mutation analysis of candidate genes mapping to the rearranged regions.
WP4 - Functional studies: optimisation of a novel neuroembryonic in vitro model derived from mouse embryonic stem cells, to test the role of known and candidate disease genes (from WP2 and 3) on cerebellar and brainstem development, define the pathways in which they are involved and the effect of disease-causative mutations.
This project is expected to improve the current CBCD nosology, identify novel genes and mechanisms involved in cerebellar and brainstem development that are responsible for mendelian or sporadic defects, expand the available tools for pre- and post-natal diagnosis and identify clinical-genetic correlates and prognostic indexes.
Summary
Cerebellar and brainstem congenital defects (CBCDs) are heterogeneous disorders with high pre-and post-natal mortality and morbidity. Their genetic basis and pathogenetic mechanisms are largely unknown, hampering patients’ diagnosis and management and family counselling. This project aims at improve current understanding of primary CBCDs through a multidisciplinary approach combining innovative clinical, neuroimaging, molecular and functional studies, that will be articulated in four workpackages:
WP1- Clinical and neuroimaging studies: collection of detailed data and biological samples from a large cohort of patients covering a broad spectrum of CBCDs, neuroimaging classification based on magnetic resonance imaging and tractography, genotype-phenotype correlates and follow-up studies.
WP2 - Molecular studies on mendelian CBCDs: high-throughput resequencing of ciliary genes to identify pathogenic mutations and genetic modifiers in patients with ciliopathies, identification of novel disease genes, mutation analysis of genes causative of other mendelian CBCDs.
WP3 - Molecular studies on sporadic CBCDs: identification of cryptic chromosomal rearrangements by high resolution SNP-array analysis, selection and mutation analysis of candidate genes mapping to the rearranged regions.
WP4 - Functional studies: optimisation of a novel neuroembryonic in vitro model derived from mouse embryonic stem cells, to test the role of known and candidate disease genes (from WP2 and 3) on cerebellar and brainstem development, define the pathways in which they are involved and the effect of disease-causative mutations.
This project is expected to improve the current CBCD nosology, identify novel genes and mechanisms involved in cerebellar and brainstem development that are responsible for mendelian or sporadic defects, expand the available tools for pre- and post-natal diagnosis and identify clinical-genetic correlates and prognostic indexes.
Max ERC Funding
1 367 960 €
Duration
Start date: 2011-08-01, End date: 2018-03-31
Project acronym CellKarma
Project Dissecting the regulatory logic of cell fate reprogramming through integrative and single cell genomics
Researcher (PI) Davide CACCHIARELLI
Host Institution (HI) FONDAZIONE TELETHON
Call Details Starting Grant (StG), LS2, ERC-2017-STG
Summary The concept that any cell type, upon delivery of the right “cocktail” of transcription factors, can acquire an identity that otherwise it would never achieve, revolutionized the way we approach the study of developmental biology. In light of this, the discovery of induced pluripotent stem cells (IPSCs) and cell fate conversion approaches stimulated new research directions into human regenerative biology. However, the chance to successfully develop patient-tailored therapies is still very limited because reprogramming technologies are applied without a comprehensive understanding of the molecular processes involved.
Here, I propose a multifaceted approach that combines a wide range of cutting-edge integrative genomic strategies to significantly advance our understanding of the regulatory logic driving cell fate decisions during human reprogramming to pluripotency.
To this end, I will utilize single cell transcriptomics to isolate reprogramming intermediates, reconstruct their lineage relationships and define transcriptional regulators responsible for the observed transitions (AIM 1). Then, I will dissect the rules by which transcription factors modulate the activity of promoters and enhancer regions during reprogramming transitions, by applying synthetic biology and genome editing approaches (AIM 2). Then, I will adopt an alternative approach to identify reprogramming modulators by the analysis of reprogramming-induced mutagenesis events (AIM 3). Finally, I will explore my findings in multiple primary reprogramming approaches to pluripotency, with the ultimate goal of improving the quality of IPSC derivation (Aim 4).
In summary, this project will expose novel determinants and yet unidentified molecular barriers of reprogramming to pluripotency and will be essential to unlock the full potential of reprogramming technologies for shaping cellular identity in vitro and to address pressing challenges of regenerative medicine.
Summary
The concept that any cell type, upon delivery of the right “cocktail” of transcription factors, can acquire an identity that otherwise it would never achieve, revolutionized the way we approach the study of developmental biology. In light of this, the discovery of induced pluripotent stem cells (IPSCs) and cell fate conversion approaches stimulated new research directions into human regenerative biology. However, the chance to successfully develop patient-tailored therapies is still very limited because reprogramming technologies are applied without a comprehensive understanding of the molecular processes involved.
Here, I propose a multifaceted approach that combines a wide range of cutting-edge integrative genomic strategies to significantly advance our understanding of the regulatory logic driving cell fate decisions during human reprogramming to pluripotency.
To this end, I will utilize single cell transcriptomics to isolate reprogramming intermediates, reconstruct their lineage relationships and define transcriptional regulators responsible for the observed transitions (AIM 1). Then, I will dissect the rules by which transcription factors modulate the activity of promoters and enhancer regions during reprogramming transitions, by applying synthetic biology and genome editing approaches (AIM 2). Then, I will adopt an alternative approach to identify reprogramming modulators by the analysis of reprogramming-induced mutagenesis events (AIM 3). Finally, I will explore my findings in multiple primary reprogramming approaches to pluripotency, with the ultimate goal of improving the quality of IPSC derivation (Aim 4).
In summary, this project will expose novel determinants and yet unidentified molecular barriers of reprogramming to pluripotency and will be essential to unlock the full potential of reprogramming technologies for shaping cellular identity in vitro and to address pressing challenges of regenerative medicine.
Max ERC Funding
1 497 250 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CGT HEMOPHILIA A
Project Cell and gene therapy based strategies to correct the bleeding phenotype in Hemophilia A
Researcher (PI) Antonia Follenzi
Host Institution (HI) UNIVERSITA DEGLI STUDI DEL PIEMONTE ORIENTALE AMEDEO AVOGADRO
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Currently, haemophilia A cannot be cured. To prevent major bleeding episodes in haemophilia, human Factor VIII (FVIII) protein must be frequently administered as prophylaxis or on demand. This treatment is complicated by its high cost and development of antibodies that neutralize FVIII activity in 20 to 30% of the patients. Therefore, permanent solutions in the form of cell and gene therapy are very attractive for haemophilia A. Recently, we demonstrated in a murine model that liver sinusoidal endothelial cells (LSEC) produce and secrete FVIII, although not exclusively. We have also found that these mice can be treated by reconstitution with wild-type bone marrow, indicating that bone marrow-derived cells, of hematopoietic, mesenchymal or even endothelial origin, can produce and secrete FVIII. Based on these findings in mice, I propose that human LSEC, umbilical cord blood cells, and bone marrow cells might be suitable sources of FVIII to be used for cell replacement therapy for haemophilia A. To advance opportunities for cell and gene therapies in haemophilia A and for identifying additional cell sources of FVIII, I intend to explore whether replacement of liver endothelium and bone marrow in immnocompromised Haemophilia A mice with healthy human cells will provide therapeutic correction. Recently, the possibility of reprogramming mature somatic cells to generate induced pluripotent stem (iPS) cells has enabled the derivation of disease-specific pluripotent cells, thus providing unprecedented experimental platforms to treat human diseases. Therefore, I intend to study whether the generation of patient-specific iPS cells may be applied to cell and gene therapy of coagulation disorders and in particular for the treatment of Haemophilia A. Studies with these novel target cells may impact significantly the future course of Haemophilia A by providing proof-of feasibility of a novel therapy strategies.
Summary
Currently, haemophilia A cannot be cured. To prevent major bleeding episodes in haemophilia, human Factor VIII (FVIII) protein must be frequently administered as prophylaxis or on demand. This treatment is complicated by its high cost and development of antibodies that neutralize FVIII activity in 20 to 30% of the patients. Therefore, permanent solutions in the form of cell and gene therapy are very attractive for haemophilia A. Recently, we demonstrated in a murine model that liver sinusoidal endothelial cells (LSEC) produce and secrete FVIII, although not exclusively. We have also found that these mice can be treated by reconstitution with wild-type bone marrow, indicating that bone marrow-derived cells, of hematopoietic, mesenchymal or even endothelial origin, can produce and secrete FVIII. Based on these findings in mice, I propose that human LSEC, umbilical cord blood cells, and bone marrow cells might be suitable sources of FVIII to be used for cell replacement therapy for haemophilia A. To advance opportunities for cell and gene therapies in haemophilia A and for identifying additional cell sources of FVIII, I intend to explore whether replacement of liver endothelium and bone marrow in immnocompromised Haemophilia A mice with healthy human cells will provide therapeutic correction. Recently, the possibility of reprogramming mature somatic cells to generate induced pluripotent stem (iPS) cells has enabled the derivation of disease-specific pluripotent cells, thus providing unprecedented experimental platforms to treat human diseases. Therefore, I intend to study whether the generation of patient-specific iPS cells may be applied to cell and gene therapy of coagulation disorders and in particular for the treatment of Haemophilia A. Studies with these novel target cells may impact significantly the future course of Haemophilia A by providing proof-of feasibility of a novel therapy strategies.
Max ERC Funding
1 123 000 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym CholAminCo
Project Synergy and antagonism of cholinergic and dopaminergic systems in associative learning
Researcher (PI) Balazs Gyoergy HANGYA
Host Institution (HI) INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary Neuromodulators such as acetylcholine and dopamine are able to rapidly reprogram neuronal information processing and dynamically change brain states. Degeneration or dysfunction of cholinergic and dopaminergic neurons can lead to neuropsychiatric conditions like schizophrenia and addiction or cognitive diseases such as Alzheimer’s. Neuromodulatory systems control overlapping cognitive processes and often have similar modes of action; therefore it is important to reveal cooperation and competition between different systems to understand their unique contributions to cognitive functions like learning, memory and attention. This is only possible by direct comparison, which necessitates monitoring multiple neuromodulatory systems under identical experimental conditions. Moreover, simultaneous recording of different neuromodulatory cell types goes beyond phenomenological description of similarities and differences by revealing the underlying correlation structure at the level of action potential timing. However, such data allowing direct comparison of neuromodulatory actions are still sparse. As a first step to bridge this gap, I propose to elucidate the unique versus complementary roles of two “classical” neuromodulatory systems, the cholinergic and dopaminergic projection system implicated in various cognitive functions including associative learning and plasticity. First, we will record optogenetically identified cholinergic and dopaminergic neurons simultaneously using chronic extracellular recording in mice undergoing classical and operant conditioning. Second, we will determine the postsynaptic impact of cholinergic and dopaminergic neurons by manipulating them both separately and simultaneously while recording consequential changes in cortical neuronal activity and learning behaviour. These experiments will reveal how major neuromodulatory systems interact to mediate similar or different aspects of the same cognitive functions.
Summary
Neuromodulators such as acetylcholine and dopamine are able to rapidly reprogram neuronal information processing and dynamically change brain states. Degeneration or dysfunction of cholinergic and dopaminergic neurons can lead to neuropsychiatric conditions like schizophrenia and addiction or cognitive diseases such as Alzheimer’s. Neuromodulatory systems control overlapping cognitive processes and often have similar modes of action; therefore it is important to reveal cooperation and competition between different systems to understand their unique contributions to cognitive functions like learning, memory and attention. This is only possible by direct comparison, which necessitates monitoring multiple neuromodulatory systems under identical experimental conditions. Moreover, simultaneous recording of different neuromodulatory cell types goes beyond phenomenological description of similarities and differences by revealing the underlying correlation structure at the level of action potential timing. However, such data allowing direct comparison of neuromodulatory actions are still sparse. As a first step to bridge this gap, I propose to elucidate the unique versus complementary roles of two “classical” neuromodulatory systems, the cholinergic and dopaminergic projection system implicated in various cognitive functions including associative learning and plasticity. First, we will record optogenetically identified cholinergic and dopaminergic neurons simultaneously using chronic extracellular recording in mice undergoing classical and operant conditioning. Second, we will determine the postsynaptic impact of cholinergic and dopaminergic neurons by manipulating them both separately and simultaneously while recording consequential changes in cortical neuronal activity and learning behaviour. These experiments will reveal how major neuromodulatory systems interact to mediate similar or different aspects of the same cognitive functions.
Max ERC Funding
1 499 463 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym CLEAR
Project Modulating cellular clearance to cure human disease
Researcher (PI) Andrea Ballabio
Host Institution (HI) FONDAZIONE TELETHON
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Cellular clearance is a fundamental process required by all cells in all species. Important physiological processes, such as aging, and pathological mechanisms, such as neurodegeneration, are strictly dependent on cellular clearance. In eukaryotes, most of the cellular clearing processes occur in a specialized organelle, the lysosome. This project is based on a recent discovery, made in our laboratory, of a gene network, which we have named CLEAR, that controls lysosomal biogenesis and function and regulates cellular clearance. The specific goals of the project are: 1) the comprehensive characterization of the mechanisms underlying the CLEAR network, 2) the thorough understanding of CLEAR physiological function at the cellular and organism levels, 3) the development of strategies and tools to modulate cellular clearance, and 4) the implementation of proof-of-principle therapeutic studies based on the activation of the CLEAR network in murine models of human lysosomal storage disorders and of neurodegenerative diseases, such as Alzheimers s and Huntington s diseases. A combination of genomics, bioinformatics, systems biology, chemical genomics, cell biology, and mouse genetics approaches will be used to achieve these goals. Our goal is to develop tools to modulate cellular clearance and to use such tools to develop therapies to cure human disease. The potential medical relevance of this project is very high, particularly in the field of neurodegenerative disease. Therapies that prevent, ameliorate or delay neurodegeneration in these diseases would have a huge impact on human health.
Summary
Cellular clearance is a fundamental process required by all cells in all species. Important physiological processes, such as aging, and pathological mechanisms, such as neurodegeneration, are strictly dependent on cellular clearance. In eukaryotes, most of the cellular clearing processes occur in a specialized organelle, the lysosome. This project is based on a recent discovery, made in our laboratory, of a gene network, which we have named CLEAR, that controls lysosomal biogenesis and function and regulates cellular clearance. The specific goals of the project are: 1) the comprehensive characterization of the mechanisms underlying the CLEAR network, 2) the thorough understanding of CLEAR physiological function at the cellular and organism levels, 3) the development of strategies and tools to modulate cellular clearance, and 4) the implementation of proof-of-principle therapeutic studies based on the activation of the CLEAR network in murine models of human lysosomal storage disorders and of neurodegenerative diseases, such as Alzheimers s and Huntington s diseases. A combination of genomics, bioinformatics, systems biology, chemical genomics, cell biology, and mouse genetics approaches will be used to achieve these goals. Our goal is to develop tools to modulate cellular clearance and to use such tools to develop therapies to cure human disease. The potential medical relevance of this project is very high, particularly in the field of neurodegenerative disease. Therapies that prevent, ameliorate or delay neurodegeneration in these diseases would have a huge impact on human health.
Max ERC Funding
2 100 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym COGSYSTEMS
Project Understanding actions and intentions of others
Researcher (PI) Giacomo Rizzolatti
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PARMA
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary How do we understand the actions and intentions of others? Hereby we intend to address this issue by using a multidisciplinary approach. Our project is subdivided into four parts. In the first part we investigate the neural organization of monkey area F5, an area deeply involved in motor act understanding. By using a new set of electrodes we will describe the columnar organization of the area F5, establish the temporal relationships between the activity of F5 mirror and motor neurons, and correlate the activity of mirror neurons coding the observed motor acts in peripersonal and extrapersonal space with the activity of motor neurons in the same cortical column. In the second part we will assess the neural mechanism underlying the understanding of the intention of complex actions , i.e. actions formed by a sequence of two (or more) individual actions. The focus will be on the neurons located in ventrolateral prefrontal cortex, an area involved in the organization of high-order motor behavior. The rational of the experiment is that, while the organization of single actions and the understanding of intention behind them is function of parietal neurons, that of complex actions relies on the activity of the prefrontal lobe. In the third and fourth parts of the project we will delimit the cortical areas involved in understanding the goal (the what) and the intention (the why) of the observed actions in individuals with typical development (TD) and in children with autism and will establish the time relation between these two processes. Our hypothesis is that the chained organization of intentional motor acts is impaired in children with autism and this impairment prevents them from organizing normally their actions and from understanding others intentions.
Summary
How do we understand the actions and intentions of others? Hereby we intend to address this issue by using a multidisciplinary approach. Our project is subdivided into four parts. In the first part we investigate the neural organization of monkey area F5, an area deeply involved in motor act understanding. By using a new set of electrodes we will describe the columnar organization of the area F5, establish the temporal relationships between the activity of F5 mirror and motor neurons, and correlate the activity of mirror neurons coding the observed motor acts in peripersonal and extrapersonal space with the activity of motor neurons in the same cortical column. In the second part we will assess the neural mechanism underlying the understanding of the intention of complex actions , i.e. actions formed by a sequence of two (or more) individual actions. The focus will be on the neurons located in ventrolateral prefrontal cortex, an area involved in the organization of high-order motor behavior. The rational of the experiment is that, while the organization of single actions and the understanding of intention behind them is function of parietal neurons, that of complex actions relies on the activity of the prefrontal lobe. In the third and fourth parts of the project we will delimit the cortical areas involved in understanding the goal (the what) and the intention (the why) of the observed actions in individuals with typical development (TD) and in children with autism and will establish the time relation between these two processes. Our hypothesis is that the chained organization of intentional motor acts is impaired in children with autism and this impairment prevents them from organizing normally their actions and from understanding others intentions.
Max ERC Funding
1 992 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30