Project acronym EPLORE
Project EPidemiological Left ventriclar Outcomes Research in Europe
Researcher (PI) Jan Albert Hendrik Staessen
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), LS7, ERC-2011-ADG_20110310
Summary Heart failure (HF) affects 15 million Europeans and entails higher mortality and health care costs than cancer. EPLORE addresses this issue by prospective epidemiological research in 4 European countries and by a proof-of-concept clinical trial. WP1 will for the first time at the population level document the incidence and progression of subclinical LV dysfunction and clarify whether asymptomatic LV dysfunction, as picked up by the newest echocardiographic techniques, predicts cardiovascular (CV) outcomes, including HF. WP2 will investigate the contribution of ventricular-arterial coupling disease and mechanical LV dyssynchrony to subclinical LV dysfunction. WP3 will identify a set of urinary polypeptides that signify early LV dysfunction and validate these biomarkers by showing that they predict deterioration of LV function, progression to HF and the incidence of CV complications over and beyond established risk factors. WP3 will also search for novel panels of circulating biomarkers, of which combined measurement will add information (accuracy, sensitivity and specificity) to established biomarkers (e.g., NT-proBNP) and identify genetic variants involved in the progression of LV dysfunction, either causally or as biomarker. WP4 consists of a randomised clinical trial to translate in a high-risk high-gain setting the results of WPs 1-3 into clinical practice and to identify a new treatment modality that potentially slows progression of diastolic LV dysfunction. Dissemination in WP5 will contribute to new guidelines for the prevention and treatment of HF. WP6 includes governance, monitoring research strategies and output, and protection of IPR. In conclusion, EPLORE will advance risk stratification and the early diagnosis of subclinical HF. The project will potentially result into specific treatments for diastolic LV dysfunction and inform guidelines for prevention and treatment of HF. It will benefit 20% of Europeans who currently have subclinical LV dysfunction.
Summary
Heart failure (HF) affects 15 million Europeans and entails higher mortality and health care costs than cancer. EPLORE addresses this issue by prospective epidemiological research in 4 European countries and by a proof-of-concept clinical trial. WP1 will for the first time at the population level document the incidence and progression of subclinical LV dysfunction and clarify whether asymptomatic LV dysfunction, as picked up by the newest echocardiographic techniques, predicts cardiovascular (CV) outcomes, including HF. WP2 will investigate the contribution of ventricular-arterial coupling disease and mechanical LV dyssynchrony to subclinical LV dysfunction. WP3 will identify a set of urinary polypeptides that signify early LV dysfunction and validate these biomarkers by showing that they predict deterioration of LV function, progression to HF and the incidence of CV complications over and beyond established risk factors. WP3 will also search for novel panels of circulating biomarkers, of which combined measurement will add information (accuracy, sensitivity and specificity) to established biomarkers (e.g., NT-proBNP) and identify genetic variants involved in the progression of LV dysfunction, either causally or as biomarker. WP4 consists of a randomised clinical trial to translate in a high-risk high-gain setting the results of WPs 1-3 into clinical practice and to identify a new treatment modality that potentially slows progression of diastolic LV dysfunction. Dissemination in WP5 will contribute to new guidelines for the prevention and treatment of HF. WP6 includes governance, monitoring research strategies and output, and protection of IPR. In conclusion, EPLORE will advance risk stratification and the early diagnosis of subclinical HF. The project will potentially result into specific treatments for diastolic LV dysfunction and inform guidelines for prevention and treatment of HF. It will benefit 20% of Europeans who currently have subclinical LV dysfunction.
Max ERC Funding
2 391 440 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym FAST
Project Investigating new therapeutic approaches to Friedreich's Ataxia
Researcher (PI) Roberto Testi
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Call Details Advanced Grant (AdG), LS7, ERC-2011-ADG_20110310
Summary Friedreich’s Ataxia (FRDA) is a devastating degenerative disease with no specific therapy. It is passed by autosomal recessive inheritance and affects 1:30,000 individuals in Caucasian populations. Symptoms appear in the first decade of life and include progressive and unremitting lack of movement coordination, leading to complete inability, and dilated cardiomyopathy leading to congestive heart failure, the most common cause of premature death. FRDA is due to the insufficient transcription of the gene coding for the mitochondrial protein frataxin. Reduced cellular levels of frataxin cause impaired mitochondrial function and increased sensitivity to oxidative stress, leading to accelerated cell death in critical tissues.
Severity of the disease critically depends on residual frataxin levels. Therapeutic efforts are mostly focused on increasing cellular frataxin . We found that frataxin is normally degraded by the ubiquitin-proteasome system. We identified the lysine responsible for the ubiquitination of frataxin and, by computational screening followed by experimental validation, we identified and validated a series of small molecules, called ubiquitin-competing molecules (UCM), that prevent frataxin ubiquitination and induce frataxin accumulation in cells derived from FRDA patients. Moreover, treatment with UCM partially rescues aconitase and ATP production defects in cells derived from FRDA patients.
Our goal is two fold: 1) submit a set of leads we already identified, as well as their new and more complex derivatives, to preclinical testing in FRDA mice 2) identify the E3 ligase that is responsible for frataxin ubiquitination, and investigate the possibility to use it as a druggable target for small molecules to prevent frataxin degradation.
Summary
Friedreich’s Ataxia (FRDA) is a devastating degenerative disease with no specific therapy. It is passed by autosomal recessive inheritance and affects 1:30,000 individuals in Caucasian populations. Symptoms appear in the first decade of life and include progressive and unremitting lack of movement coordination, leading to complete inability, and dilated cardiomyopathy leading to congestive heart failure, the most common cause of premature death. FRDA is due to the insufficient transcription of the gene coding for the mitochondrial protein frataxin. Reduced cellular levels of frataxin cause impaired mitochondrial function and increased sensitivity to oxidative stress, leading to accelerated cell death in critical tissues.
Severity of the disease critically depends on residual frataxin levels. Therapeutic efforts are mostly focused on increasing cellular frataxin . We found that frataxin is normally degraded by the ubiquitin-proteasome system. We identified the lysine responsible for the ubiquitination of frataxin and, by computational screening followed by experimental validation, we identified and validated a series of small molecules, called ubiquitin-competing molecules (UCM), that prevent frataxin ubiquitination and induce frataxin accumulation in cells derived from FRDA patients. Moreover, treatment with UCM partially rescues aconitase and ATP production defects in cells derived from FRDA patients.
Our goal is two fold: 1) submit a set of leads we already identified, as well as their new and more complex derivatives, to preclinical testing in FRDA mice 2) identify the E3 ligase that is responsible for frataxin ubiquitination, and investigate the possibility to use it as a druggable target for small molecules to prevent frataxin degradation.
Max ERC Funding
1 496 200 €
Duration
Start date: 2012-03-01, End date: 2015-02-28
Project acronym FUNMETA
Project Metabolomics of fungal diseases: a systems biology approach for biomarkers discovery and therapy
Researcher (PI) Luigina Romani
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Advanced Grant (AdG), LS7, ERC-2011-ADG_20110310
Summary Humans have evolved intimate symbiotic relationships with a consortium of gut microbes (including fungi) and individual variations in the microbiome influence host health and disease. The fact that fungi are capable of colonizing almost every niche within the human body suggests that they must possess particular immune adaptation mechanisms, the breakdown of which may result in fatal fungal infections and severe fungal diseases. Traditional reductionist approaches of the past have not been sufficient to address these new challenges in the pathogenesis of fungal diseases. Here, I propose an integrated, systems biology approach to understand the role of L-tryptophan (trp) metabolic pathways in multilevel host−fungus interactions. Present in mammals as well as in fungi, pathways of trp metabolic pathways are exploited by the host and the fungal biota for survival and immune adaptation. A variety of indole derivatives, generated through conversion from dietary trp by symbiotic bacteria, activate the aryl hydrocarbon receptor/IL-22 pathway that provides antifungal resistance and tissue repair. Harmful inflammatory responses to fungi are instead tamed by kynurenines generated via the enzyme indoleamine 2,3–dioxygenase (IDO) of the trp pathway. Through high-throughput wet-lab ‘omics’ techniques combined with computational techniques, the project aims at defining the molecular basis of mammalian and fungal IDO activity and a metabolic network linking the metabolic phenotype (metabotype) to immune adaptations and its possible breakdown in experimental and human fungal infections. The project will provide ideal post-graduate training focussed on the development of metabolomics for diagnosis of fungal diseases and optimization of current antifungal therapy and diet that are of relevance to public health care solutions.
Summary
Humans have evolved intimate symbiotic relationships with a consortium of gut microbes (including fungi) and individual variations in the microbiome influence host health and disease. The fact that fungi are capable of colonizing almost every niche within the human body suggests that they must possess particular immune adaptation mechanisms, the breakdown of which may result in fatal fungal infections and severe fungal diseases. Traditional reductionist approaches of the past have not been sufficient to address these new challenges in the pathogenesis of fungal diseases. Here, I propose an integrated, systems biology approach to understand the role of L-tryptophan (trp) metabolic pathways in multilevel host−fungus interactions. Present in mammals as well as in fungi, pathways of trp metabolic pathways are exploited by the host and the fungal biota for survival and immune adaptation. A variety of indole derivatives, generated through conversion from dietary trp by symbiotic bacteria, activate the aryl hydrocarbon receptor/IL-22 pathway that provides antifungal resistance and tissue repair. Harmful inflammatory responses to fungi are instead tamed by kynurenines generated via the enzyme indoleamine 2,3–dioxygenase (IDO) of the trp pathway. Through high-throughput wet-lab ‘omics’ techniques combined with computational techniques, the project aims at defining the molecular basis of mammalian and fungal IDO activity and a metabolic network linking the metabolic phenotype (metabotype) to immune adaptations and its possible breakdown in experimental and human fungal infections. The project will provide ideal post-graduate training focussed on the development of metabolomics for diagnosis of fungal diseases and optimization of current antifungal therapy and diet that are of relevance to public health care solutions.
Max ERC Funding
2 299 200 €
Duration
Start date: 2012-04-01, End date: 2018-03-31
Project acronym HEARTMAPAS
Project Single Heart beat MApping of myocardial Performance, Activation, and Scar by ultrasound
Researcher (PI) Jan Robert Michel D'hooge
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), LS7, ERC-2011-StG_20101109
Summary Heart failure affects about 2% of the European population with an annual mortality rate of 10%. Cardiac Resynchronization Therapy (CRT) has been proven to reduce morbidity and mortality and has become a recommended treatment. Optimal lead placement for CRT not only requires exact anatomically mapped information on the mechanical activation sequence to be corrected but also tissue viability and performance maps. Unfortunately, to date, no imaging technique allows building such maps non-invasively in a single examination in CRT patients.
In this project, a new ultrasound imaging approach is proposed that will not only allow mapping all of these characteristics in a single examination but that will actually do this in a single heart beat.
Hereto, real-time segmentation of the left ventricle will be used to limit the data acquisition to the spatial regions that contain myocardium. In this way unnecessary spatial sampling can be avoided which combined with new beam forming strategies will allow imaging the entire left ventricle at frame rates above 1000Hz. This very high temporal resolution will be used to accurately measure the onset of local deformation of the left ventricle in order to construct a mechanical activation map. Subsequently, cardiac motion estimates will be used to track anatomical regions throughout the cardiac cycle in order to construct a temporally averaged backscatter intensity map. As scar tissue is known to be more reflective than normal myocardium, this should allow mapping of scar. Finally, the automatic segmentation process will allow to locally measure wall thickness and curvature from which the mechanical load distribution within the ventricle can be derived. This, combined with estimates of regional myocardial deformation will produce a map of myocardial performance.
The proposed system will thus provide important new diagnostic and therapeutic information and will therefore allow better CRT planning for the individual heart failure patient.
Summary
Heart failure affects about 2% of the European population with an annual mortality rate of 10%. Cardiac Resynchronization Therapy (CRT) has been proven to reduce morbidity and mortality and has become a recommended treatment. Optimal lead placement for CRT not only requires exact anatomically mapped information on the mechanical activation sequence to be corrected but also tissue viability and performance maps. Unfortunately, to date, no imaging technique allows building such maps non-invasively in a single examination in CRT patients.
In this project, a new ultrasound imaging approach is proposed that will not only allow mapping all of these characteristics in a single examination but that will actually do this in a single heart beat.
Hereto, real-time segmentation of the left ventricle will be used to limit the data acquisition to the spatial regions that contain myocardium. In this way unnecessary spatial sampling can be avoided which combined with new beam forming strategies will allow imaging the entire left ventricle at frame rates above 1000Hz. This very high temporal resolution will be used to accurately measure the onset of local deformation of the left ventricle in order to construct a mechanical activation map. Subsequently, cardiac motion estimates will be used to track anatomical regions throughout the cardiac cycle in order to construct a temporally averaged backscatter intensity map. As scar tissue is known to be more reflective than normal myocardium, this should allow mapping of scar. Finally, the automatic segmentation process will allow to locally measure wall thickness and curvature from which the mechanical load distribution within the ventricle can be derived. This, combined with estimates of regional myocardial deformation will produce a map of myocardial performance.
The proposed system will thus provide important new diagnostic and therapeutic information and will therefore allow better CRT planning for the individual heart failure patient.
Max ERC Funding
1 602 401 €
Duration
Start date: 2012-02-01, End date: 2018-01-31
Project acronym RegeneratioNfix
Project Role of the transcription factor Nfix in muscle regeneration and muscular dystrophies
Researcher (PI) Graziella Messina
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Starting Grant (StG), LS7, ERC-2011-StG_20101109
Summary I will study the role of the transcription factor Nfix, in post-natal skeletal muscle growth and regeneration, and in the pathogenesis of muscular dystrophies. I have recently demonstrated the role of the transcription factor Nuclear Factor IX, Nfix, in driving the transcriptional switch from embryonic to fetal myogenesis, characterized by a switch from slow to fast twitching and more mature fibers. Current data show that Nfix is also strongly expressed in satellite cells (SCs), the muscle adult stem cells responsible for post-natal muscle growth and regeneration. Therefore, I will investigate: 1. The gene expression profile of the muscle specific Nfix null SCs in vitro in comparison with wt SCs. 2. The ability of Nfix deficient SCs to repair muscle damage in comparison with wt SCs. Moreover, I will study the possible use of Nfix in muscular dystrophies. Muscular dystrophies are characterized by primary wasting of skeletal muscle and currently lack a therapy. Among the different approaches, many efforts are directed to induce hypertrophy in dystrophic to counteract progressive degeneration. This is achieved by enhancing regeneration at the expense of the satellite cell pool. Interestingly, fast muscle fibers are preferentially affected in different muscular dystrophies. As Nfix regulates slow myosin expression, I propose that a slower twitching muscle may escape muscle degeneration in a dystrophic mouse model. In this perspective, the possible interference of Nfix with the pathogenesis of muscular dystrophy will be studied by crossing muscle-specific Nfix null mice alpha sarcoglycan null mice ( a model for Limb Girdle 2D muscular dystrophy) (Aim 3). The results of this study will have important implications for the understanding of the mechanisms regulating post-natal muscle growth and regeneration and potentially as a novel therapy for muscular dystrophy.
Summary
I will study the role of the transcription factor Nfix, in post-natal skeletal muscle growth and regeneration, and in the pathogenesis of muscular dystrophies. I have recently demonstrated the role of the transcription factor Nuclear Factor IX, Nfix, in driving the transcriptional switch from embryonic to fetal myogenesis, characterized by a switch from slow to fast twitching and more mature fibers. Current data show that Nfix is also strongly expressed in satellite cells (SCs), the muscle adult stem cells responsible for post-natal muscle growth and regeneration. Therefore, I will investigate: 1. The gene expression profile of the muscle specific Nfix null SCs in vitro in comparison with wt SCs. 2. The ability of Nfix deficient SCs to repair muscle damage in comparison with wt SCs. Moreover, I will study the possible use of Nfix in muscular dystrophies. Muscular dystrophies are characterized by primary wasting of skeletal muscle and currently lack a therapy. Among the different approaches, many efforts are directed to induce hypertrophy in dystrophic to counteract progressive degeneration. This is achieved by enhancing regeneration at the expense of the satellite cell pool. Interestingly, fast muscle fibers are preferentially affected in different muscular dystrophies. As Nfix regulates slow myosin expression, I propose that a slower twitching muscle may escape muscle degeneration in a dystrophic mouse model. In this perspective, the possible interference of Nfix with the pathogenesis of muscular dystrophy will be studied by crossing muscle-specific Nfix null mice alpha sarcoglycan null mice ( a model for Limb Girdle 2D muscular dystrophy) (Aim 3). The results of this study will have important implications for the understanding of the mechanisms regulating post-natal muscle growth and regeneration and potentially as a novel therapy for muscular dystrophy.
Max ERC Funding
1 386 945 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym REJOIND
Project The manufacturing of a biological tissue: REgeneration of the JOINt by Developmental engineering
Researcher (PI) Frank Prosper J Luyten
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), LS7, ERC-2011-ADG_20110310
Summary "The general aim of REJOIND is to provide proof-of-principle for the in vitro manufacturing of a growing bone, with a bioartificial growth plate as a “driving engine” at its core. To achieve this, we propose a developmental engineering approach, based on the modular design of in vitro processes consisting of sequential units corresponding to in vivo developmental stages. These processes follow a gradual and coordinated progression of tissue growth and cell differentiation that leads to organization of cells into intermediate tissue forms. At every step of the developmental engineering process, computational models will be applied, in order to form a quantitative foundation for every process and to optimize these. After establishment of a manufacturing process of a growth plate, REJOIND will combine this tissue with osteoblasts or articular chondrocytes to build osteochondral tissues or bioartificial joints. Ultimately, REJOIND aims to achieve an autonomous process of in vitro tissue growth allowing guided size expansion. A close interaction between biologists and engineers will make this possible. Pre-clinical applications that will be explored in animal models range from the repair of deep osteochondral defects in a joint surface, to a total joint replacement for small arthritic joints. We expect that a number of these implants will provide a cartilaginous template for bone formation, therefore some will be tested in vivo in appropriate models for healing of long bone defects. In conclusion, REJOIND aims to provide evidence that through the use of developmental engineering, we can build a tissue in vitro, moving the boundary from manufacturing and control at the cellular level to tissue organization and function. This methodology will result in a more reliable in vivo outcome of tissue engineered products, and thus a more predictable and sustainable clinical outcome in the patient."
Summary
"The general aim of REJOIND is to provide proof-of-principle for the in vitro manufacturing of a growing bone, with a bioartificial growth plate as a “driving engine” at its core. To achieve this, we propose a developmental engineering approach, based on the modular design of in vitro processes consisting of sequential units corresponding to in vivo developmental stages. These processes follow a gradual and coordinated progression of tissue growth and cell differentiation that leads to organization of cells into intermediate tissue forms. At every step of the developmental engineering process, computational models will be applied, in order to form a quantitative foundation for every process and to optimize these. After establishment of a manufacturing process of a growth plate, REJOIND will combine this tissue with osteoblasts or articular chondrocytes to build osteochondral tissues or bioartificial joints. Ultimately, REJOIND aims to achieve an autonomous process of in vitro tissue growth allowing guided size expansion. A close interaction between biologists and engineers will make this possible. Pre-clinical applications that will be explored in animal models range from the repair of deep osteochondral defects in a joint surface, to a total joint replacement for small arthritic joints. We expect that a number of these implants will provide a cartilaginous template for bone formation, therefore some will be tested in vivo in appropriate models for healing of long bone defects. In conclusion, REJOIND aims to provide evidence that through the use of developmental engineering, we can build a tissue in vitro, moving the boundary from manufacturing and control at the cellular level to tissue organization and function. This methodology will result in a more reliable in vivo outcome of tissue engineered products, and thus a more predictable and sustainable clinical outcome in the patient."
Max ERC Funding
3 057 673 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym RETGENTX
Project Overcoming the challenge of large gene transfer for the therapy of inherited retinal diseases
Researcher (PI) Alberto Auricchio
Host Institution (HI) FONDAZIONE TELETHON
Call Details Starting Grant (StG), LS7, ERC-2011-StG_20101109
Summary Inherited retinal diseases (IRDs) cause blindness in over 200,000 individuals in Europe. The majority are due to mutations in genes expressed in photoreceptors (PR) in the retina. We have recently demonstrated the safety and efficacy of gene therapy for IRDs in patients with Leber congenital amaurosis (LCA). One of the major limitations to extend this clinical success to other blinding conditions is that many are caused by mutations in genes with large coding sequences that exceed the cargo capacity of the most efficient gene transfer vector for PR, the adeno-associated virus (AAV). Conversely, vectors for large gene delivery like lentiviral (LV) or high-capacity adenoviral (HC-Ad) vectors have poor PR tropism.
This project aims at overcoming the challenge of large gene delivery to the retina. We propose to either expand AAV cargo capacity or to identify/modify LV and HD-Ad vectors with improved PR transduction ability. We plan to expand AAV cargo capacity by either producing AAV vectors from single plasmid containing large genes or by generating 2-split AAV vectors each containing one of 2 halves of a large gene which is reconstituted upon AAV intermolecular concatemerization in the nucleus of target cells. In parallel, we will screen a series of existing LV pseudotypes and Ad serotypes for their ability to transduce PR. Alternatively, we propose to modify the Ad capsid or LV envelope using epitopes identified by in vivo biopanning that bind to PR and. We will compare the efficiency of the three vector platforms to transduce murine and porcine PR. The platform with highest PR transduction efficiency will then be used to correct the retinal phenotype of murine models of common severe IRDs due to mutations in large genes.
Overcoming the challenge of large gene transfer will allow to cure photoreceptor-specific diseases which are currently untreatable and will provide important therapeutic tools for those diseases targeting tissues other than the retina.
Summary
Inherited retinal diseases (IRDs) cause blindness in over 200,000 individuals in Europe. The majority are due to mutations in genes expressed in photoreceptors (PR) in the retina. We have recently demonstrated the safety and efficacy of gene therapy for IRDs in patients with Leber congenital amaurosis (LCA). One of the major limitations to extend this clinical success to other blinding conditions is that many are caused by mutations in genes with large coding sequences that exceed the cargo capacity of the most efficient gene transfer vector for PR, the adeno-associated virus (AAV). Conversely, vectors for large gene delivery like lentiviral (LV) or high-capacity adenoviral (HC-Ad) vectors have poor PR tropism.
This project aims at overcoming the challenge of large gene delivery to the retina. We propose to either expand AAV cargo capacity or to identify/modify LV and HD-Ad vectors with improved PR transduction ability. We plan to expand AAV cargo capacity by either producing AAV vectors from single plasmid containing large genes or by generating 2-split AAV vectors each containing one of 2 halves of a large gene which is reconstituted upon AAV intermolecular concatemerization in the nucleus of target cells. In parallel, we will screen a series of existing LV pseudotypes and Ad serotypes for their ability to transduce PR. Alternatively, we propose to modify the Ad capsid or LV envelope using epitopes identified by in vivo biopanning that bind to PR and. We will compare the efficiency of the three vector platforms to transduce murine and porcine PR. The platform with highest PR transduction efficiency will then be used to correct the retinal phenotype of murine models of common severe IRDs due to mutations in large genes.
Overcoming the challenge of large gene transfer will allow to cure photoreceptor-specific diseases which are currently untreatable and will provide important therapeutic tools for those diseases targeting tissues other than the retina.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym SPHERE
Project SPHERE: Susceptibility to Particle Health Effects,
miRNAs and Exosomes
Researcher (PI) Valentina Bollati
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Starting Grant (StG), LS7, ERC-2011-StG_20101109
Summary In spite of more than two decades of mechanistic research, the recent statement of air pollution and Cardiovascular Diseases (CVD) from the American Heart Association remarked that at front of high degree of consistency of the epidemiology findings showing increased air pollution related CVD risk, the evidence on intermediate mechanisms remains moderate or weak. Exosomes might be the ideal candidate to mediate the effects of air pollution, since potentially they could be produced by the respiratory system, reach the systemic circulation and lead to the development of endothelial dysfunction.
The main object of our proposal is to determine whether exposure to air particles and PM-associated metals can modify exosomes (as quantity, size, membrane molecules, procoagulant activity and miRNAs content) in plasma of human subjects and to investigate whether these alterations may be linked to CVD risk factors and outcomes. The study population will include 2000 overweighed/obese subjects presenting at the Center for Obesity and Weight Control, Milan. Obese subjects have been shown to be particularly susceptible to the effects of air pollution. Exposure to air pollutants will be assessed using: a) ambient concentrations of particulate and gaseous air pollutants; b) geographical information and modelling; c) road density and traffic intensity data; d) Metals determination in urine and hair; e) Personal passive samplers (to measure PM), on a subgroup of subjects (n=200). To identify altered exosome-associated miRNAs , we will follow a two-stage, split sample study design: a discovery stage involving OpenArray miRNA expression profiling (on 1000 subjects) and a replication stage involving a real time analysis of the top 10 miRNAs. We will integrate the human study with an in-vitro model using a system made of paired cell cultures (A549 lung/ granulocytes and endothelial cells) to clarify if exosomes produced by lung/granulocytes can directly interact with endothelial cells.
Summary
In spite of more than two decades of mechanistic research, the recent statement of air pollution and Cardiovascular Diseases (CVD) from the American Heart Association remarked that at front of high degree of consistency of the epidemiology findings showing increased air pollution related CVD risk, the evidence on intermediate mechanisms remains moderate or weak. Exosomes might be the ideal candidate to mediate the effects of air pollution, since potentially they could be produced by the respiratory system, reach the systemic circulation and lead to the development of endothelial dysfunction.
The main object of our proposal is to determine whether exposure to air particles and PM-associated metals can modify exosomes (as quantity, size, membrane molecules, procoagulant activity and miRNAs content) in plasma of human subjects and to investigate whether these alterations may be linked to CVD risk factors and outcomes. The study population will include 2000 overweighed/obese subjects presenting at the Center for Obesity and Weight Control, Milan. Obese subjects have been shown to be particularly susceptible to the effects of air pollution. Exposure to air pollutants will be assessed using: a) ambient concentrations of particulate and gaseous air pollutants; b) geographical information and modelling; c) road density and traffic intensity data; d) Metals determination in urine and hair; e) Personal passive samplers (to measure PM), on a subgroup of subjects (n=200). To identify altered exosome-associated miRNAs , we will follow a two-stage, split sample study design: a discovery stage involving OpenArray miRNA expression profiling (on 1000 subjects) and a replication stage involving a real time analysis of the top 10 miRNAs. We will integrate the human study with an in-vitro model using a system made of paired cell cultures (A549 lung/ granulocytes and endothelial cells) to clarify if exosomes produced by lung/granulocytes can directly interact with endothelial cells.
Max ERC Funding
1 444 742 €
Duration
Start date: 2011-12-01, End date: 2016-11-30