Project acronym CELLNAIVETY
Project Deciphering the Molecular Foundations and Functional Competence of Alternative Human Naïve Pluripotent Stem Cells
Researcher (PI) Yaqub HANNA
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary An important goal of stem cell therapy is to create “customized” cells that are genetically identical to the patient, which upon transplantation can restore damaged tissues. Such cells can be obtained by in vitro direct reprogramming of somatic cells into embryonic stem (ES)-like cells, termed induced pluripotent stem cells (iPSC). This approach also opens possibilities for modelling human diseases in vitro. However, major hurdles remain that restrain fulfilling conventional human iPSC/ESC potential, as they reside in an advanced primed pluripotent state. Such hurdles include limited differentiation capacity and functional variability. Further, in vitro iPSC based research platforms are simplistic and iPSC based “humanized” chimeric mouse models may be of great benefit.
The recent isolation of distinct and new “mouse-like” naive pluripotent states in humans that correspond to earlier embryonic developmental state(s), constitutes a paradigm shift and may alleviate limitations of conventional primed iPSCs/ESCs. Thus, our proposal aims at dissecting the human naïve pluripotent state(s) and to unveil pathways that facilitate their unique identity and flexible programming.
Specific goals: 1) Transcriptional and Epigenetic Design Principles of Human Naïve Pluripotency 2) Signalling Principles Governing Human Naïve Pluripotency Maintenance and Differentiation 3) Defining Functional Competence and Safety of Human Naïve Pluripotent Stem Cells in vitro 4) Novel human naïve iPSC based cross-species chimeric mice for studying human differentiation and disease modelling in vivo. These aims will be conducted by utilizing engineered human iPSC/ESC models, CRISPR/Cas9 genome-wide screening, advanced microscopy and ex-vivo whole embryo culture methods. Our goals will synergistically lead to the design of strategies that will accelerate the safe medical application of human naive pluripotent stem cells and their use in disease specific modelling and applied stem cell research.
Summary
An important goal of stem cell therapy is to create “customized” cells that are genetically identical to the patient, which upon transplantation can restore damaged tissues. Such cells can be obtained by in vitro direct reprogramming of somatic cells into embryonic stem (ES)-like cells, termed induced pluripotent stem cells (iPSC). This approach also opens possibilities for modelling human diseases in vitro. However, major hurdles remain that restrain fulfilling conventional human iPSC/ESC potential, as they reside in an advanced primed pluripotent state. Such hurdles include limited differentiation capacity and functional variability. Further, in vitro iPSC based research platforms are simplistic and iPSC based “humanized” chimeric mouse models may be of great benefit.
The recent isolation of distinct and new “mouse-like” naive pluripotent states in humans that correspond to earlier embryonic developmental state(s), constitutes a paradigm shift and may alleviate limitations of conventional primed iPSCs/ESCs. Thus, our proposal aims at dissecting the human naïve pluripotent state(s) and to unveil pathways that facilitate their unique identity and flexible programming.
Specific goals: 1) Transcriptional and Epigenetic Design Principles of Human Naïve Pluripotency 2) Signalling Principles Governing Human Naïve Pluripotency Maintenance and Differentiation 3) Defining Functional Competence and Safety of Human Naïve Pluripotent Stem Cells in vitro 4) Novel human naïve iPSC based cross-species chimeric mice for studying human differentiation and disease modelling in vivo. These aims will be conducted by utilizing engineered human iPSC/ESC models, CRISPR/Cas9 genome-wide screening, advanced microscopy and ex-vivo whole embryo culture methods. Our goals will synergistically lead to the design of strategies that will accelerate the safe medical application of human naive pluripotent stem cells and their use in disease specific modelling and applied stem cell research.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym COMPCON
Project Competition under (niche) construction
Researcher (PI) Sara NEWBERY RAPOSO DE MAGALHÃES
Host Institution (HI) FCIENCIAS.ID - ASSOCIACAO PARA A INVESTIGACAO E DESENVOLVIMENTO DE CIENCIAS
Call Details Consolidator Grant (CoG), LS8, ERC-2016-COG
Summary Interspecific competition is arguably the best interaction to address how individual trait variation and eco-evolutionary feedbacks shape species distributions and trait evolution, due to its indirect effects via the shared resource. However, a clear understanding of such feedbacks is only possible if each contributing factor can be manipulated independently. With COMPCON, we will address how individual variation, niche width, niche construction and the presence of competitors shape species distributions and trait evolution, using a system amenable to manipulation of all these variables. The system is composed of two spider mite species, Tetranychus urticae and T. ludeni, that up- and down-regulate plant defences (i.e., negative and positive niche construction, respectively). Tomato mutant plants with low defences will be used as an environment in which niche construction is not expressed. Furthermore, tomato plants will be grown under different cadmium concentrations, allowing quantitative variation of available niches. Using isogenic lines, we will measure individual variation in niche width, niche construction and competitive ability. Different combinations of lines will then be used to test key predictions of recent theory on how such variation affects coexistence with competitors. Subsequently, mite populations will evolve in environments with either one or more potential niches, in plants where niche construction is possible or not, and in presence or absence of competitors (coevolving or not). We will test how these selection pressures affect niche width, niche construction and competitive ability, as well as plant damage. Finally, we will re-derive isogenic lines from these treatments, to test how evolution under different scenarios affects individual variation in niche width.
COMPCON will shed new light on the role of competition in shaping eco-evolutionary communities, with bearings on disciplines ranging from macro-ecology to evolutionary genetics
Summary
Interspecific competition is arguably the best interaction to address how individual trait variation and eco-evolutionary feedbacks shape species distributions and trait evolution, due to its indirect effects via the shared resource. However, a clear understanding of such feedbacks is only possible if each contributing factor can be manipulated independently. With COMPCON, we will address how individual variation, niche width, niche construction and the presence of competitors shape species distributions and trait evolution, using a system amenable to manipulation of all these variables. The system is composed of two spider mite species, Tetranychus urticae and T. ludeni, that up- and down-regulate plant defences (i.e., negative and positive niche construction, respectively). Tomato mutant plants with low defences will be used as an environment in which niche construction is not expressed. Furthermore, tomato plants will be grown under different cadmium concentrations, allowing quantitative variation of available niches. Using isogenic lines, we will measure individual variation in niche width, niche construction and competitive ability. Different combinations of lines will then be used to test key predictions of recent theory on how such variation affects coexistence with competitors. Subsequently, mite populations will evolve in environments with either one or more potential niches, in plants where niche construction is possible or not, and in presence or absence of competitors (coevolving or not). We will test how these selection pressures affect niche width, niche construction and competitive ability, as well as plant damage. Finally, we will re-derive isogenic lines from these treatments, to test how evolution under different scenarios affects individual variation in niche width.
COMPCON will shed new light on the role of competition in shaping eco-evolutionary communities, with bearings on disciplines ranging from macro-ecology to evolutionary genetics
Max ERC Funding
1 999 275 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym CRYOMATH
Project Cryo-electron microscopy: mathematical foundations and algorithms
Researcher (PI) Yoel SHKOLNISKY
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Consolidator Grant (CoG), PE1, ERC-2016-COG
Summary The importance of understanding the functions of the basic building blocks of life, such as proteins, cannot be overstated (as asserted by two recent Nobel prizes in Chemistry), as this understanding unravels the mechanisms that control all organisms. The critical step towards such an understanding is to reveal the structures of these building blocks. A leading method for resolving such structures is cryo-electron microscopy (cryo-EM), in which the structure of a molecule is recovered from its images taken by an electron microscope, by using sophisticated mathematical algorithms (to which my group has made several key mathematical and algorithmic contributions). Due to hardware breakthroughs in the past three years, cryo-EM has made a giant leap forward, introducing capabilities that until recently were unimaginable, opening an opportunity to revolutionize our biological understanding. As extracting information from cryo-EM experiments completely relies on mathematical algorithms, the method’s deep mathematical challenges that have emerged must be solved as soon as possible. Only then cryo-EM could realize its nearly inconceivable potential. These challenges, for which no adequate solutions exist (or none at all), focus on integrating information from huge sets of extremely noisy images reliability and efficiently. Based on the experience of my research group in developing algorithms for cryo-EM data processing, gained during the past eight years, we will address the three key open challenges of the field – a) deriving reliable and robust reconstruction algorithms from cryo-EM data, b) developing tools to process heterogeneous cryo-EM data sets, and c) devising validation and quality measures for structures determined from cryo-EM data. The fourth goal of the project, which ties all goals together and promotes the broad interdisciplinary impact of the project, is to merge all our algorithms into a software platform for state-of-the-art processing of cryo-EM data.
Summary
The importance of understanding the functions of the basic building blocks of life, such as proteins, cannot be overstated (as asserted by two recent Nobel prizes in Chemistry), as this understanding unravels the mechanisms that control all organisms. The critical step towards such an understanding is to reveal the structures of these building blocks. A leading method for resolving such structures is cryo-electron microscopy (cryo-EM), in which the structure of a molecule is recovered from its images taken by an electron microscope, by using sophisticated mathematical algorithms (to which my group has made several key mathematical and algorithmic contributions). Due to hardware breakthroughs in the past three years, cryo-EM has made a giant leap forward, introducing capabilities that until recently were unimaginable, opening an opportunity to revolutionize our biological understanding. As extracting information from cryo-EM experiments completely relies on mathematical algorithms, the method’s deep mathematical challenges that have emerged must be solved as soon as possible. Only then cryo-EM could realize its nearly inconceivable potential. These challenges, for which no adequate solutions exist (or none at all), focus on integrating information from huge sets of extremely noisy images reliability and efficiently. Based on the experience of my research group in developing algorithms for cryo-EM data processing, gained during the past eight years, we will address the three key open challenges of the field – a) deriving reliable and robust reconstruction algorithms from cryo-EM data, b) developing tools to process heterogeneous cryo-EM data sets, and c) devising validation and quality measures for structures determined from cryo-EM data. The fourth goal of the project, which ties all goals together and promotes the broad interdisciplinary impact of the project, is to merge all our algorithms into a software platform for state-of-the-art processing of cryo-EM data.
Max ERC Funding
1 751 250 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym DeepFace
Project Understanding Deep Face Recognition
Researcher (PI) Lior Wolf
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Consolidator Grant (CoG), PE6, ERC-2016-COG
Summary Face recognition is a fascinating domain: no other domain seems to present as much value when analysing casual photos; it is one of the few domains in machine learning in which millions of classes are routinely learned; and the trade-off between subtle inter-identity variations and pronounced intra-identity variations forms a unique challenge.
The advent of deep learning has brought machines to what is considered a human level of performance. However, there are many research questions that are left open. At the top most level, we ask two questions: what is unique about faces in comparison to other recognition tasks that also employ deep networks and how can we make the next leap in performance of automatic face recognition?
We consider three domains of research. The first is the study of methods that promote effective transfer learning. This is crucial since all state of the art face recognition methods rely on transfer learning. The second domain is the study of the tradeoffs that govern the optimal utilization of the training data and how the properties of the training data affect the optimal network design. The third domain is the post transfer utilization of the learned deep networks, where given the representations of a pair of face images, we seek to compare them in the most accurate way.
Throughout this proposal, we put an emphasis on theoretical reasoning. I aim to support the developed methods by a theoretical framework that would both justify their usage as well as provide concrete guidelines for using them. My goal of achieving a leap forward in performance through a level of theoretical analysis that is unparalleled in object recognition, makes our research agenda truly high-risk/ high-gains. I have been in the forefront of face recognition for the last 8 years and my lab's recent achievements in deep learning suggest that we will be able to carry out this research. To further support its feasibility, we present very promising initial results.
Summary
Face recognition is a fascinating domain: no other domain seems to present as much value when analysing casual photos; it is one of the few domains in machine learning in which millions of classes are routinely learned; and the trade-off between subtle inter-identity variations and pronounced intra-identity variations forms a unique challenge.
The advent of deep learning has brought machines to what is considered a human level of performance. However, there are many research questions that are left open. At the top most level, we ask two questions: what is unique about faces in comparison to other recognition tasks that also employ deep networks and how can we make the next leap in performance of automatic face recognition?
We consider three domains of research. The first is the study of methods that promote effective transfer learning. This is crucial since all state of the art face recognition methods rely on transfer learning. The second domain is the study of the tradeoffs that govern the optimal utilization of the training data and how the properties of the training data affect the optimal network design. The third domain is the post transfer utilization of the learned deep networks, where given the representations of a pair of face images, we seek to compare them in the most accurate way.
Throughout this proposal, we put an emphasis on theoretical reasoning. I aim to support the developed methods by a theoretical framework that would both justify their usage as well as provide concrete guidelines for using them. My goal of achieving a leap forward in performance through a level of theoretical analysis that is unparalleled in object recognition, makes our research agenda truly high-risk/ high-gains. I have been in the forefront of face recognition for the last 8 years and my lab's recent achievements in deep learning suggest that we will be able to carry out this research. To further support its feasibility, we present very promising initial results.
Max ERC Funding
1 696 888 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym Des.solve
Project When solids become liquids: natural deep eutectic solvents for chemical process engineering
Researcher (PI) Ana Rita CRUZ DUARTE
Host Institution (HI) NOVA ID FCT - ASSOCIACAO PARA A INOVACAO E DESENVOLVIMENTO DA FCT
Call Details Consolidator Grant (CoG), PE8, ERC-2016-COG
Summary Sugars, aminoacids or organic acids are typically solid at room temperature. Nonetheless when combined at a particular molar fraction they present a high melting point depression, becoming liquids at room temperature. These are called Natural Deep Eutectic Solvents – NADES. NADES are envisaged to play a major role on different chemical engineering processes in the future. Nonetheless, there is a significant lack of knowledge on fundamental and basic research on NADES, which is hindering their industrial applications. For this reason it is important to extend the knowledge on these systems, boosting their application development. NADES applications go beyond chemical or materials engineering and cover a wide range of fields from biocatalysis, extraction, electrochemistry, carbon dioxide capture or biomedical applications. Des.solve encompasses four major themes of research: 1 – Development of NADES and therapeutic deep eutectic solvents – THEDES; 2 – Characterization of the obtained mixtures and computer simulation of NADES/THEDES properties; 3 – Phase behaviour of binary/ternary systems NADES/THEDES + carbon dioxide and thermodynamic modelling 4 – Application development. Starting from the development of novel NADES/THEDES which, by different characterization techniques, will be deeply studied and characterized, the essential raw-materials will be produced for the subsequent research activities. The envisaged research involves modelling and molecular simulations. Des.solve will be deeply engaged in application development, particularly in extraction, biocatalysis and pharmaceutical/biomedical applications. The knowledge that will be created in this proposal is expected not only to have a major impact in the scientific community, but also in society, economy and industry.
Summary
Sugars, aminoacids or organic acids are typically solid at room temperature. Nonetheless when combined at a particular molar fraction they present a high melting point depression, becoming liquids at room temperature. These are called Natural Deep Eutectic Solvents – NADES. NADES are envisaged to play a major role on different chemical engineering processes in the future. Nonetheless, there is a significant lack of knowledge on fundamental and basic research on NADES, which is hindering their industrial applications. For this reason it is important to extend the knowledge on these systems, boosting their application development. NADES applications go beyond chemical or materials engineering and cover a wide range of fields from biocatalysis, extraction, electrochemistry, carbon dioxide capture or biomedical applications. Des.solve encompasses four major themes of research: 1 – Development of NADES and therapeutic deep eutectic solvents – THEDES; 2 – Characterization of the obtained mixtures and computer simulation of NADES/THEDES properties; 3 – Phase behaviour of binary/ternary systems NADES/THEDES + carbon dioxide and thermodynamic modelling 4 – Application development. Starting from the development of novel NADES/THEDES which, by different characterization techniques, will be deeply studied and characterized, the essential raw-materials will be produced for the subsequent research activities. The envisaged research involves modelling and molecular simulations. Des.solve will be deeply engaged in application development, particularly in extraction, biocatalysis and pharmaceutical/biomedical applications. The knowledge that will be created in this proposal is expected not only to have a major impact in the scientific community, but also in society, economy and industry.
Max ERC Funding
1 877 006 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym ECM_INK
Project Cells-self Extracellular Matrices-based Bioinks to create accurate 3D diseased skin tissue models
Researcher (PI) Alexandra Margarida PINTO MARQUES
Host Institution (HI) UNIVERSIDADE DO MINHO
Call Details Consolidator Grant (CoG), PE8, ERC-2016-COG
Summary It has been recognized that growing cells within 3D structures reduces the gap between 2D in vitro cell cultures and native tissue physiology. This has been paving the way for the development of reliable 3D in vitro cell-based platforms with major impact in the reduction/elimination of animal experimentation, diseases modelling and drug development. So far, the many strategies that have been followed to bioengineer in vitro 3D human tissue models mostly rely on the random culture of cells within a 3D structure without reflecting the compositional and structural complexity of the native tissues. Recently proposed bioprinting technologies that allow accurate and high speed deposition of various cells and matrices at high resolution, have therefore great potential in the development of physiologically reliable 3D in vitro tissue models by recreating the different microenvironments/microfunctionalities found in each tissue. Nonetheless, among the components required for bioprinting, bioinks in particular have demanding requirements and much has still to be done regarding their intrinsic formulation to lead cell behaviour and support specific functionalities.
ECM_INK intends to tackle this issue by developing cells-self extracellular matrices-based bioinks to create accurate and pathophysiological relevant 3D in vitro diseased skin tissue models. The development of cell phenotype-driven bioinks will generate complex microenvironments comprising varied cell types within matrices that were specifically designed to attain a particular response from each one of those cell types. The use of cells from patients suffering from chronic, genetic and neoplastic skin diseases represents a major advantage that will be reflected in the accuracy and functionality of the respective 3D in vitro models. The ultimate confirmation of their potential will be complete after validation using animal-free approaches reinforcing the intrinsic relationship of ECM_INK with the 3Rs policy.
Summary
It has been recognized that growing cells within 3D structures reduces the gap between 2D in vitro cell cultures and native tissue physiology. This has been paving the way for the development of reliable 3D in vitro cell-based platforms with major impact in the reduction/elimination of animal experimentation, diseases modelling and drug development. So far, the many strategies that have been followed to bioengineer in vitro 3D human tissue models mostly rely on the random culture of cells within a 3D structure without reflecting the compositional and structural complexity of the native tissues. Recently proposed bioprinting technologies that allow accurate and high speed deposition of various cells and matrices at high resolution, have therefore great potential in the development of physiologically reliable 3D in vitro tissue models by recreating the different microenvironments/microfunctionalities found in each tissue. Nonetheless, among the components required for bioprinting, bioinks in particular have demanding requirements and much has still to be done regarding their intrinsic formulation to lead cell behaviour and support specific functionalities.
ECM_INK intends to tackle this issue by developing cells-self extracellular matrices-based bioinks to create accurate and pathophysiological relevant 3D in vitro diseased skin tissue models. The development of cell phenotype-driven bioinks will generate complex microenvironments comprising varied cell types within matrices that were specifically designed to attain a particular response from each one of those cell types. The use of cells from patients suffering from chronic, genetic and neoplastic skin diseases represents a major advantage that will be reflected in the accuracy and functionality of the respective 3D in vitro models. The ultimate confirmation of their potential will be complete after validation using animal-free approaches reinforcing the intrinsic relationship of ECM_INK with the 3Rs policy.
Max ERC Funding
1 998 939 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym Fireworks
Project Celestial fireworks: revealing the physics of the time-variable sky
Researcher (PI) Avishay Gal-Yam
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary Experimental time-domain astrophysics is on the verge of a new era as technological, computational, and operational progress combine to revolutionise the manner in which we study the time-variable sky. This proposal consolidates previous breakthrough work on wide-field surveys into a coherent program to advance our study of the variable sky on ever decreasing time-scales: from days, through hours, to minutes. We will watch how stars explode in real time in order to study the complex physics of stellar death, build new tools to handle and analyse the uniquely new data sets we are collecting, and shed light on some of the most fundamental questions in modern astrophysics: from the origin of the elements, via the explosions mechanism of supernova explosions, to the feedback processes that drive star formation and galaxy evolution.
Summary
Experimental time-domain astrophysics is on the verge of a new era as technological, computational, and operational progress combine to revolutionise the manner in which we study the time-variable sky. This proposal consolidates previous breakthrough work on wide-field surveys into a coherent program to advance our study of the variable sky on ever decreasing time-scales: from days, through hours, to minutes. We will watch how stars explode in real time in order to study the complex physics of stellar death, build new tools to handle and analyse the uniquely new data sets we are collecting, and shed light on some of the most fundamental questions in modern astrophysics: from the origin of the elements, via the explosions mechanism of supernova explosions, to the feedback processes that drive star formation and galaxy evolution.
Max ERC Funding
2 461 111 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym HemTree2.0
Project Single cell genomic analysis and perturbations of hematopoietic progenitors: Towards a refined model of hematopoiesis
Researcher (PI) Ido AMIT
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS2, ERC-2016-COG
Summary Hematopoiesis is an important model for stem cell differentiation with great medical significance.
Heterogeneity within hematopoietic progenitor populations has considerably limited characterization and
molecular understanding of lineage commitment in both health and disease. Advances in single-cell genomic
technologies provide an extraordinary opportunity for unbiased and high resolution mapping of biological
function and regulation. Recently we have developed an experimental and analytical method, termed
massively parallel single-cell RNA-Seq (MARS-Seq), for unbiased classification of individual cells from
their native context and successfully applied it for characterization of immune and hematopoietic
progenitors.
Here, we propose to uncover the hierarchy and regulatory mechanisms controlling hematopoiesis by
combining comprehensive single-cell RNA-Seq analyses, modelling approaches, advanced functional assays,
single-cell CRISPR screens, knockout models and epigenetic profiling. Exciting preliminary result show that
indeed our approach is starting to uncover the complexity of hematopoietic progenitors and the regulatory
circuits driving hematopoietic decisions. We will pursue the following aims: (i) Generate a refined model of
hematopoiesis by comprehensive single-cell RNA-Seq profiling of hematopoietic progenitors, (ii) validate
the predicted model by in vivo functional developmental assays and then (iii) test candidate transcription and
chromatin factors uncovered by our model for their role in controlling progression towards various lineages
using single-cell measurements combined with CRISPR screens. Together, our study is expected to generate
a revised and high-resolution hematopoietic model and decipher the regulatory networks that control
hematopoiesis. Our methods and models may provide a platform for future medical advancements including
a large-scale European collaborative project to discover a comprehensive human hematopoietic tree.
Summary
Hematopoiesis is an important model for stem cell differentiation with great medical significance.
Heterogeneity within hematopoietic progenitor populations has considerably limited characterization and
molecular understanding of lineage commitment in both health and disease. Advances in single-cell genomic
technologies provide an extraordinary opportunity for unbiased and high resolution mapping of biological
function and regulation. Recently we have developed an experimental and analytical method, termed
massively parallel single-cell RNA-Seq (MARS-Seq), for unbiased classification of individual cells from
their native context and successfully applied it for characterization of immune and hematopoietic
progenitors.
Here, we propose to uncover the hierarchy and regulatory mechanisms controlling hematopoiesis by
combining comprehensive single-cell RNA-Seq analyses, modelling approaches, advanced functional assays,
single-cell CRISPR screens, knockout models and epigenetic profiling. Exciting preliminary result show that
indeed our approach is starting to uncover the complexity of hematopoietic progenitors and the regulatory
circuits driving hematopoietic decisions. We will pursue the following aims: (i) Generate a refined model of
hematopoiesis by comprehensive single-cell RNA-Seq profiling of hematopoietic progenitors, (ii) validate
the predicted model by in vivo functional developmental assays and then (iii) test candidate transcription and
chromatin factors uncovered by our model for their role in controlling progression towards various lineages
using single-cell measurements combined with CRISPR screens. Together, our study is expected to generate
a revised and high-resolution hematopoietic model and decipher the regulatory networks that control
hematopoiesis. Our methods and models may provide a platform for future medical advancements including
a large-scale European collaborative project to discover a comprehensive human hematopoietic tree.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym LearnAnx_CircAmyg
Project Learning and Anxiety in Amygdala-based Neural Circuits
Researcher (PI) Rony PAZ
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS5, ERC-2016-COG
Summary Major advances were made in understanding circuits that underlie aversive emotional learning. The majority gained by using classical associative models, mainly tone/context-shock conditioning. Failure to extinguish the response or to discriminate from other safe stimuli (generalization), form two main animal models for human anxiety-disorders and post-traumatic-stress. These simple yet powerful approaches enabled cutting-edge techniques in rodents to unveil amygdala circuitry and its connectivity with the medial-prefrontal-cortex. Yet, we have less understanding of the mechanisms that underlie elaborated behavioural models of mal-adaptive behaviour, as well as less understanding of neural codes and computations in the evolutionary-expanded primate amygdala. Our lab recently embarked on exploring these venues by pioneering physiological studies of generalization and extinction protocols in primates. The goal of the current project is to develop behavioural models of complex learning and maladaptive behaviour, and then examine and shed light on the underlying computations in primate amygdala-PFC circuit. We design a novel rule-based learning task, and examine its acquisition, extinction, generalization and exploration-exploitation trade-off in dangerous environments. Specifically, the concepts of rule learning and exploration-exploitation tradeoff form novel insights and aspects of [mal-]adaptive behaviours, and will suggest new animal models of learned anxiety. We record dozens of neurons in the amygdala and prefrontal-cortex simultaneously using deep multi-contact arrays, supplemented by stimulation to address functional connectivity, and development of modelling approaches for the behaviour and neural codes. We posit that the development of more [complex] models is crucial and the next logical step in achieving translation of animal models of anxiety disorders, as well as in understanding basic mechanisms behind the rich repertoire of emotional behaviours.
Summary
Major advances were made in understanding circuits that underlie aversive emotional learning. The majority gained by using classical associative models, mainly tone/context-shock conditioning. Failure to extinguish the response or to discriminate from other safe stimuli (generalization), form two main animal models for human anxiety-disorders and post-traumatic-stress. These simple yet powerful approaches enabled cutting-edge techniques in rodents to unveil amygdala circuitry and its connectivity with the medial-prefrontal-cortex. Yet, we have less understanding of the mechanisms that underlie elaborated behavioural models of mal-adaptive behaviour, as well as less understanding of neural codes and computations in the evolutionary-expanded primate amygdala. Our lab recently embarked on exploring these venues by pioneering physiological studies of generalization and extinction protocols in primates. The goal of the current project is to develop behavioural models of complex learning and maladaptive behaviour, and then examine and shed light on the underlying computations in primate amygdala-PFC circuit. We design a novel rule-based learning task, and examine its acquisition, extinction, generalization and exploration-exploitation trade-off in dangerous environments. Specifically, the concepts of rule learning and exploration-exploitation tradeoff form novel insights and aspects of [mal-]adaptive behaviours, and will suggest new animal models of learned anxiety. We record dozens of neurons in the amygdala and prefrontal-cortex simultaneously using deep multi-contact arrays, supplemented by stimulation to address functional connectivity, and development of modelling approaches for the behaviour and neural codes. We posit that the development of more [complex] models is crucial and the next logical step in achieving translation of animal models of anxiety disorders, as well as in understanding basic mechanisms behind the rich repertoire of emotional behaviours.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym MacroStability
Project Stability and dynamics at different spatial scales: From physiology to Alzheimer's degeneration
Researcher (PI) Inna Slutsky
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Consolidator Grant (CoG), LS5, ERC-2016-COG
Summary How neuronal circuits maintain the balance between stability and plasticity in a constantly changing environment remains one of the most fundamental questions in neuroscience. Empirical and theoretical studies suggest that homeostatic negative feedback mechanisms operate to stabilize the function of a system at a set point level of activity. While extensive research uncovered diverse homeostatic mechanisms that maintain activity of neural circuits at extended timescales, several key questions remain open. First, what are the basic principles and the molecular machinery underlying invariant population dynamics of neural circuits, composed from intrinsically unstable activity patterns of individual neurons? Second, is homeostatic regulation compromised in Alzheimer's disease (AD) and do homeostatic failures lead to aberrant brain activity and memory decline, the overlapping phenotypes of AD and many other distinct neurodegenerative disorders? And finally, how do homeostatic systems operate in vivo under experience-dependent changes in firing rates and patterns?
To target these questions, we have developed an integrative approach to study the relationships between ongoing spiking activity of individual neurons and neuronal populations, signaling processes at the level of single synapses and neuronal meta-plasticity. We will focus on hippocampal circuitry and combine ex vivo electrophysiology, single- and two-photon excitation imaging, time-resolved fluorescence microscopy and molecular biology, together with longitudinal monitoring of activity from large populations of hippocampal neurons in freely behaving mice. Utilizing these state-of-the-art approaches, we will determine how firing stability is maintained at different spatial scales and what are the mechanisms leading to destabilization of firing patterns in AD-related context. The proposed research will elucidate fundamental principles of neuronal function and offer conceptual insights into AD pathophysiology.
Summary
How neuronal circuits maintain the balance between stability and plasticity in a constantly changing environment remains one of the most fundamental questions in neuroscience. Empirical and theoretical studies suggest that homeostatic negative feedback mechanisms operate to stabilize the function of a system at a set point level of activity. While extensive research uncovered diverse homeostatic mechanisms that maintain activity of neural circuits at extended timescales, several key questions remain open. First, what are the basic principles and the molecular machinery underlying invariant population dynamics of neural circuits, composed from intrinsically unstable activity patterns of individual neurons? Second, is homeostatic regulation compromised in Alzheimer's disease (AD) and do homeostatic failures lead to aberrant brain activity and memory decline, the overlapping phenotypes of AD and many other distinct neurodegenerative disorders? And finally, how do homeostatic systems operate in vivo under experience-dependent changes in firing rates and patterns?
To target these questions, we have developed an integrative approach to study the relationships between ongoing spiking activity of individual neurons and neuronal populations, signaling processes at the level of single synapses and neuronal meta-plasticity. We will focus on hippocampal circuitry and combine ex vivo electrophysiology, single- and two-photon excitation imaging, time-resolved fluorescence microscopy and molecular biology, together with longitudinal monitoring of activity from large populations of hippocampal neurons in freely behaving mice. Utilizing these state-of-the-art approaches, we will determine how firing stability is maintained at different spatial scales and what are the mechanisms leading to destabilization of firing patterns in AD-related context. The proposed research will elucidate fundamental principles of neuronal function and offer conceptual insights into AD pathophysiology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym Mideast Med
Project A regional history of medicine in the modern Middle East, 1830-1960
Researcher (PI) Liat KOZMA
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary The purpose of this project is to write a long-term regional history of medicine in the Middle East and North Africa from a transnational and multi-layered perspective. A regional approach will enable tracing both global influences and local specificities, while a long-term perspective (1830-1960) will allow tracing continuity and change from the late Ottoman Middle East through the colonial to the post-colonial periods. Combining archival and published sources in Arabic, French, English, Hebrew, English, German and Ottoman Turkish, it will offer a unique perspective into the formation of the modern Middle East.
Research for this project will revolve around five main cores: First, the global context: global vectors of disease transmission, alongside the transmission of medical knowledge and expertise. Second, the international aspect: how international conventions and international bodies affected the region and were affected by it. Third, the regional flow of both health challenges and proposed solutions, the regional spread of epidemics and the formation of regional epistemic communities. Fourth, the colonial aspect, noting both inter- and intra-colonial influences, and the encounter between colonial bodies of knowledge and locally produced ones. Fifth, the role played by doctors in various national projects: the nahda, namely the Arabic literary revival from the mid-nineteenth century onwards; the Zionist project; Egyptian and Syrian interwar nationalism and, later, Arab nationalism.
This project will portray an intersection between the corporal, the social, the cultural and the technological and trace these interconnections across time and space. Health, medicine and hygiene will be a prism through which to explore large processes, such as colonization and decolonization, national identity and state-building. The scientific development of medicine and the globalization of health-risks and medical knowledge in this period make medicine an ideal case study.
Summary
The purpose of this project is to write a long-term regional history of medicine in the Middle East and North Africa from a transnational and multi-layered perspective. A regional approach will enable tracing both global influences and local specificities, while a long-term perspective (1830-1960) will allow tracing continuity and change from the late Ottoman Middle East through the colonial to the post-colonial periods. Combining archival and published sources in Arabic, French, English, Hebrew, English, German and Ottoman Turkish, it will offer a unique perspective into the formation of the modern Middle East.
Research for this project will revolve around five main cores: First, the global context: global vectors of disease transmission, alongside the transmission of medical knowledge and expertise. Second, the international aspect: how international conventions and international bodies affected the region and were affected by it. Third, the regional flow of both health challenges and proposed solutions, the regional spread of epidemics and the formation of regional epistemic communities. Fourth, the colonial aspect, noting both inter- and intra-colonial influences, and the encounter between colonial bodies of knowledge and locally produced ones. Fifth, the role played by doctors in various national projects: the nahda, namely the Arabic literary revival from the mid-nineteenth century onwards; the Zionist project; Egyptian and Syrian interwar nationalism and, later, Arab nationalism.
This project will portray an intersection between the corporal, the social, the cultural and the technological and trace these interconnections across time and space. Health, medicine and hygiene will be a prism through which to explore large processes, such as colonization and decolonization, national identity and state-building. The scientific development of medicine and the globalization of health-risks and medical knowledge in this period make medicine an ideal case study.
Max ERC Funding
1 867 181 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym MultiLevelLandscape
Project Multilevel Selection for Specificity and Divergence in Bacteria
Researcher (PI) Avigdor Eldar
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Consolidator Grant (CoG), LS8, ERC-2016-COG
Summary The evolution of specificity between interacting biological molecules underlies the diversification and expansion of biological pathways. A shift in specificity poses a serious theoretical problem; it requires coordinated mutations in the interacting partners, but mutation in one partner may lead to loss of interaction and functional failure. While some theoretical suggestions were proposed to solve this 'specificity valley crossing' problem, it remains a challenge to study this problem empirically at the molecular level. In bacteria, there are numerous divergent evolving pathways. Many of these pathways are involved in mediating conflicts between selfish genes, cells and populations. We and others have speculated that such multilevel selection can facilitate pathway divergence. Here we propose to study this link using the Rap-Phr cell-cell communication system, which has diversified to ~100 specific systems in the B. subtilis lineage. These systems consist of a receptor (Rap) and its cognate peptide pheromone (Phr) that influence multiple levels of selection. They promote their own horizontal transfer, modulate core cellular pathways, and manipulate cooperation between cells. Combining modelling with deep mutational scanning, competition assays and time-lapse microscopy we will quantitatively study all these levels of selection and their implication for diversification on a large fitness landscape. Specifically, we will (1) map the Rap-Phr interaction landscape at unprecedented resolution, constructing and screening libraries of ~106 Phr peptide variants and ~104 Rap variants. (2) Quantify the fitness effects of these systems at multiple levels of selection in biofilms. (3) Theoretically generate and experimentally verify predictions about how Rap-Phr co-evolve and diversify. Our work will pioneer the study of fitness landscapes under multilevel selection and provide a direct, quantitative, and predictive framework for understanding the evolution of specificity.
Summary
The evolution of specificity between interacting biological molecules underlies the diversification and expansion of biological pathways. A shift in specificity poses a serious theoretical problem; it requires coordinated mutations in the interacting partners, but mutation in one partner may lead to loss of interaction and functional failure. While some theoretical suggestions were proposed to solve this 'specificity valley crossing' problem, it remains a challenge to study this problem empirically at the molecular level. In bacteria, there are numerous divergent evolving pathways. Many of these pathways are involved in mediating conflicts between selfish genes, cells and populations. We and others have speculated that such multilevel selection can facilitate pathway divergence. Here we propose to study this link using the Rap-Phr cell-cell communication system, which has diversified to ~100 specific systems in the B. subtilis lineage. These systems consist of a receptor (Rap) and its cognate peptide pheromone (Phr) that influence multiple levels of selection. They promote their own horizontal transfer, modulate core cellular pathways, and manipulate cooperation between cells. Combining modelling with deep mutational scanning, competition assays and time-lapse microscopy we will quantitatively study all these levels of selection and their implication for diversification on a large fitness landscape. Specifically, we will (1) map the Rap-Phr interaction landscape at unprecedented resolution, constructing and screening libraries of ~106 Phr peptide variants and ~104 Rap variants. (2) Quantify the fitness effects of these systems at multiple levels of selection in biofilms. (3) Theoretically generate and experimentally verify predictions about how Rap-Phr co-evolve and diversify. Our work will pioneer the study of fitness landscapes under multilevel selection and provide a direct, quantitative, and predictive framework for understanding the evolution of specificity.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym ONCOmetENHANCERS
Project Elucidating the Role of Enhancer Methylation Variation in Cancer and Developing Enhancer-based Markers and Targets for Precision Medicine
Researcher (PI) Asaf Hellman
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), LS4, ERC-2016-COG
Summary Cancer is a growing medical problem which genetic and environmental basis is not clearly understood. Massive efforts over the last decade have identified differences in cancer gene expression that cannot be explained by coding sequences or promoter variations, whereas the effect of transcriptional enhancers remains unclear due to the lack of an effective way to link enhancers with their controlled genes. Recently, we discovered a class of inter-tumor, inter-patient DNA methylation variations in putative enhancers that predict changes in gene expression levels with much greater power than promoter or sequence analyses. The overall goal of this proposal is to determine if changes in enhancer methylation form part of the genomic basis of cancer. Our aim is to elucidate methylation-influenced disease regulatory circuits that affect cancer driver and risk genes and may ultimately serve as markers for disease progression and drug response. Utilizing a new genomic methodology, which allows systematic prediction and verification of gene-enhancer pairing, I will test the above hypothesis in two disease models: breast cancer and glioblastoma. I will methodologically assess numerous potential enhancers across the disease genomes and explore the effects of genetic and epigenetic mutations and variations at these sites. Informative sites will then be evaluated as markers of gene expression level in tumor biopsies. Ultimately, I will apply novel tools to manipulate selected enhancers genetically and epigenetically, thus investigating the causal relationships between enhancer methylation and gene expression, and assessing the potential for tuning gene expression levels by enhancer methylation modification. This study may transform our understanding of the mechanisms underlying disease predisposition, determine the regulatory circuits of key disease genes, lead to improved diagnosis and predictive abilities, and may pave the way for precision epigenetic therapy.
Summary
Cancer is a growing medical problem which genetic and environmental basis is not clearly understood. Massive efforts over the last decade have identified differences in cancer gene expression that cannot be explained by coding sequences or promoter variations, whereas the effect of transcriptional enhancers remains unclear due to the lack of an effective way to link enhancers with their controlled genes. Recently, we discovered a class of inter-tumor, inter-patient DNA methylation variations in putative enhancers that predict changes in gene expression levels with much greater power than promoter or sequence analyses. The overall goal of this proposal is to determine if changes in enhancer methylation form part of the genomic basis of cancer. Our aim is to elucidate methylation-influenced disease regulatory circuits that affect cancer driver and risk genes and may ultimately serve as markers for disease progression and drug response. Utilizing a new genomic methodology, which allows systematic prediction and verification of gene-enhancer pairing, I will test the above hypothesis in two disease models: breast cancer and glioblastoma. I will methodologically assess numerous potential enhancers across the disease genomes and explore the effects of genetic and epigenetic mutations and variations at these sites. Informative sites will then be evaluated as markers of gene expression level in tumor biopsies. Ultimately, I will apply novel tools to manipulate selected enhancers genetically and epigenetically, thus investigating the causal relationships between enhancer methylation and gene expression, and assessing the potential for tuning gene expression levels by enhancer methylation modification. This study may transform our understanding of the mechanisms underlying disease predisposition, determine the regulatory circuits of key disease genes, lead to improved diagnosis and predictive abilities, and may pave the way for precision epigenetic therapy.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym POLITICS
Project The politics of anti-racism in Europe and Latin America: knowledge production, decision-making and collective struggles
Researcher (PI) Silvia RODRIGUEZ MAESO
Host Institution (HI) CENTRO DE ESTUDOS SOCIAIS
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary The main objective of POLITICS is to innovate knowledge on anti-racism that brings about a greater understanding of how historically rooted injustices are being challenged by institutions and grassroots movements. Considering the centrality and mutual influence of Europe and Latin America in the global processes of racial formation, POLITICS will develop an inter-disciplinary and comprehensive approach towards two core goals: (a) the analysis of processes of knowledge production about ‘race’ and (anti-)racism in the spheres of (inter)national governmental politics, State universities and grassroots movements; (b) the examination of diverse paths of denunciation and collective mobilisation against everyday racism concerning police practice and representations in the mass media.
POLITICS embraces a multilevel analysis and information-oriented selection of case-studies in three interrelated research streams: (i) Global, regional and state-sponsored political frameworks and public policies; (ii) Cultures of scholarship and the study of racism and (post)colonialism at State universities; (iii) Tackling everyday racism: processes of denunciation, political mobilisation and case-law concerning police practice, and racist representations in the media and mass media. The research challenges the shortcomings of evaluative comparisons and the selection of research contexts enables interrogating the relations between the global, national and local levels. They include the Organisation of American States, the European Union and national and local politics in Brazil, Peru, Portugal and Spain. Qualitative research and data collection engage with race critical theories, critical discourse analysis and participatory methods that consider power/knowledge at their core.
POLITICS will unravel the configuration of different notions of dignity, justice and equality resulting from anti-racist struggles and policy interventions and their significance for envisaging decolonial horizons.
Summary
The main objective of POLITICS is to innovate knowledge on anti-racism that brings about a greater understanding of how historically rooted injustices are being challenged by institutions and grassroots movements. Considering the centrality and mutual influence of Europe and Latin America in the global processes of racial formation, POLITICS will develop an inter-disciplinary and comprehensive approach towards two core goals: (a) the analysis of processes of knowledge production about ‘race’ and (anti-)racism in the spheres of (inter)national governmental politics, State universities and grassroots movements; (b) the examination of diverse paths of denunciation and collective mobilisation against everyday racism concerning police practice and representations in the mass media.
POLITICS embraces a multilevel analysis and information-oriented selection of case-studies in three interrelated research streams: (i) Global, regional and state-sponsored political frameworks and public policies; (ii) Cultures of scholarship and the study of racism and (post)colonialism at State universities; (iii) Tackling everyday racism: processes of denunciation, political mobilisation and case-law concerning police practice, and racist representations in the media and mass media. The research challenges the shortcomings of evaluative comparisons and the selection of research contexts enables interrogating the relations between the global, national and local levels. They include the Organisation of American States, the European Union and national and local politics in Brazil, Peru, Portugal and Spain. Qualitative research and data collection engage with race critical theories, critical discourse analysis and participatory methods that consider power/knowledge at their core.
POLITICS will unravel the configuration of different notions of dignity, justice and equality resulting from anti-racist struggles and policy interventions and their significance for envisaging decolonial horizons.
Max ERC Funding
1 915 381 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym QGP tomography
Project A novel Quark-Gluon Plasma tomography tool: from jet quenching to exploring the extreme medium properties
Researcher (PI) Magdalena DJORDJEVIC
Host Institution (HI) INSTITUT ZA FIZIKU
Call Details Consolidator Grant (CoG), PE2, ERC-2016-COG
Summary Quark-Gluon Plasma (QGP) is a primordial state of matter, which consists of interacting free quarks and gluons. QGP likely existed immediately after the Big-Bang, and this extreme form of matter is today created in Little Bangs, which are ultra-relativistic collisions of heavy nuclei at the LHC and RHIC experiments. Based on the deconfinement ideas, a gas-like behaviour of QGP was anticipated. Unexpectedly, predictions of relativistic hydrodynamics - applicable to low momentum hadron data - indicated that QGP behaves as nearly perfect fluid, thus bringing exciting connections between the hottest (QGP) and the coldest (perfect Fermi gas) matter on Earth. However, predictions of hydrodynamical simulations are often weakly sensitive to changes of the bulk QGP parameters. In particular, even a large increase of viscosity not far from the phase transition does not notably change the low momentum predictions; in addition, the origin of the surprisingly low viscosity remains unclear. To understand the QGP properties, and to challenge the perfect fluid paradigm, we will develop a novel precision tomographic tool based on: i) state of the art, no free parameters, energy loss model of high momentum parton interactions with evolving QGP, ii) simulations of QGP evolution, in which the medium parameters will be systematically varied, and the resulting temperature profiles used as inputs for the energy loss model. In a substantially novel approach, this will allow using the data of rare high momentum particles to constrain the properties of the bulk medium. We will use this tool to: i) test our “soft-to-hard” medium hypothesis, i.e. if the bulk behaves as a nearly perfect fluid near critical temperature Tc, and as a weakly coupled system at higher temperatures, ii) map “soft-to-hard” boundary for QGP, iii) understand the origin of the low viscosity near Tc, and iv) test if QGP is formed in small (p+p or p(d)+A) systems.
Summary
Quark-Gluon Plasma (QGP) is a primordial state of matter, which consists of interacting free quarks and gluons. QGP likely existed immediately after the Big-Bang, and this extreme form of matter is today created in Little Bangs, which are ultra-relativistic collisions of heavy nuclei at the LHC and RHIC experiments. Based on the deconfinement ideas, a gas-like behaviour of QGP was anticipated. Unexpectedly, predictions of relativistic hydrodynamics - applicable to low momentum hadron data - indicated that QGP behaves as nearly perfect fluid, thus bringing exciting connections between the hottest (QGP) and the coldest (perfect Fermi gas) matter on Earth. However, predictions of hydrodynamical simulations are often weakly sensitive to changes of the bulk QGP parameters. In particular, even a large increase of viscosity not far from the phase transition does not notably change the low momentum predictions; in addition, the origin of the surprisingly low viscosity remains unclear. To understand the QGP properties, and to challenge the perfect fluid paradigm, we will develop a novel precision tomographic tool based on: i) state of the art, no free parameters, energy loss model of high momentum parton interactions with evolving QGP, ii) simulations of QGP evolution, in which the medium parameters will be systematically varied, and the resulting temperature profiles used as inputs for the energy loss model. In a substantially novel approach, this will allow using the data of rare high momentum particles to constrain the properties of the bulk medium. We will use this tool to: i) test our “soft-to-hard” medium hypothesis, i.e. if the bulk behaves as a nearly perfect fluid near critical temperature Tc, and as a weakly coupled system at higher temperatures, ii) map “soft-to-hard” boundary for QGP, iii) understand the origin of the low viscosity near Tc, and iv) test if QGP is formed in small (p+p or p(d)+A) systems.
Max ERC Funding
1 356 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym scAssembly
Project Algorithms and experimental tools for integrating very large-scale single cell genomics data
Researcher (PI) Amos TANAY
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS2, ERC-2016-COG
Summary Robust and flexible tissue- and cell-type specific gene regulation is a definitive prerequisite for complex function in any multi-cellular organism. Modern genomics and epigenomics provide us with catalogues of gene regulatory elements and maps illustrating their activity in different tissues. Nevertheless, we are far from being able to explain emergence and maintenance of cellular states from such data, partly because we so far lacked characterization of individual molecular states and genome control mechanisms at their native resolution - the single cell. Recently, new approaches developed by the single cell genomics community, with several contributions from our group, allow massive acquisition of data on the transcriptional, epigenomic and chromosomal conformation states in large cohorts of single cells. In this research program, we aim to move forward rapidly to bridge a major gap between these experimental breakthroughs and models of genome regulation in complex tissues. We will develop algorithms and models for representing data the transcriptional profiles, DNA methylation landscapes and Hi-C maps of literally millions of cells. Our tools will be designed specifically to leverage on new single cell RNA-seq, single cell Hi-C, single cell capture-pBat and higher order 4C-seq that we will continue to develop experimentally. Furthermore, we shall enhance and optimize our interdisciplinary framework hand in hand with a working model aiming at unprecedentedly comprehensive single cell analysis of E8-E10 mouse embryos. This will provide us with hundreds of worked-out cases of tissue specific gene regulation. The techniques and insights from these studies will then be used to characterize cell type aberrations and epigenetic reprogramming in tumors. The open algorithms, techniques and methodology we shall develop can accelerate research in multiple groups that will utilize single cell genomics to study numerous questions on gene regulation in the coming years.
Summary
Robust and flexible tissue- and cell-type specific gene regulation is a definitive prerequisite for complex function in any multi-cellular organism. Modern genomics and epigenomics provide us with catalogues of gene regulatory elements and maps illustrating their activity in different tissues. Nevertheless, we are far from being able to explain emergence and maintenance of cellular states from such data, partly because we so far lacked characterization of individual molecular states and genome control mechanisms at their native resolution - the single cell. Recently, new approaches developed by the single cell genomics community, with several contributions from our group, allow massive acquisition of data on the transcriptional, epigenomic and chromosomal conformation states in large cohorts of single cells. In this research program, we aim to move forward rapidly to bridge a major gap between these experimental breakthroughs and models of genome regulation in complex tissues. We will develop algorithms and models for representing data the transcriptional profiles, DNA methylation landscapes and Hi-C maps of literally millions of cells. Our tools will be designed specifically to leverage on new single cell RNA-seq, single cell Hi-C, single cell capture-pBat and higher order 4C-seq that we will continue to develop experimentally. Furthermore, we shall enhance and optimize our interdisciplinary framework hand in hand with a working model aiming at unprecedentedly comprehensive single cell analysis of E8-E10 mouse embryos. This will provide us with hundreds of worked-out cases of tissue specific gene regulation. The techniques and insights from these studies will then be used to characterize cell type aberrations and epigenetic reprogramming in tumors. The open algorithms, techniques and methodology we shall develop can accelerate research in multiple groups that will utilize single cell genomics to study numerous questions on gene regulation in the coming years.
Max ERC Funding
2 437 500 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym SPADE
Project Speleothems paleoclimate: accounting for isotopic disequilibrium
Researcher (PI) Hagit Pnina AFFEK
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), PE10, ERC-2016-COG
Summary Understanding and quantifying the impacts of climate change at the regional and hemispheric scales are particularly difficult with respect to changes in rainfall and temperature patterns that lead to extended droughts and flooding events. Isotopic records in speleothems are increasingly used to determine climate variability on land and for data-model comparisons. However, transferring speleothem records into quantitative climate parameters suffers from a major limitation: speleothem formation processes result in geochemical disequilibrium and there is currently no way to correct for it in paleoclimate data. SPADE will shift the treatment of paleoclimate archives from regarding them as recorders of slow geological processes to consideration of geological material as recording much faster chemical reactions. As such, they cannot be assumed to form at equilibrium. SPADE will create a new framework, based on one classic and two novel isotopic tracers in carbonates (δ18O-Δ17O-Δ47) to quantify disequilibrium in cave records and overcome this underlying limitation. SPADE’s unique approach is based first on laboratory experiments that isolate chemical processes of speleothem formation, to test their respective effects on isotopic disequilibrium. Then speleothem analog experiments and modern cave material are combined to create speleothem specific calibrations for these isotopic proxies. These SPADE results will then be applied to classic paleoclimate records of dryland hydrology, such as Soreq Cave (Israel) and Devils Hole (Nevada). SPADE will address long standing climatic hypotheses regarding the interplay between temperature, amount of rainfall, surface evaporation, moisture sources, and regional climate connections in these drought vulnerable regions, and will make these records much more useful. A detailed understanding of disequilibrium will enable the use of these innovative geochemical tools in speleothems and more broadly, in other paleoclimate carbonate archives.
Summary
Understanding and quantifying the impacts of climate change at the regional and hemispheric scales are particularly difficult with respect to changes in rainfall and temperature patterns that lead to extended droughts and flooding events. Isotopic records in speleothems are increasingly used to determine climate variability on land and for data-model comparisons. However, transferring speleothem records into quantitative climate parameters suffers from a major limitation: speleothem formation processes result in geochemical disequilibrium and there is currently no way to correct for it in paleoclimate data. SPADE will shift the treatment of paleoclimate archives from regarding them as recorders of slow geological processes to consideration of geological material as recording much faster chemical reactions. As such, they cannot be assumed to form at equilibrium. SPADE will create a new framework, based on one classic and two novel isotopic tracers in carbonates (δ18O-Δ17O-Δ47) to quantify disequilibrium in cave records and overcome this underlying limitation. SPADE’s unique approach is based first on laboratory experiments that isolate chemical processes of speleothem formation, to test their respective effects on isotopic disequilibrium. Then speleothem analog experiments and modern cave material are combined to create speleothem specific calibrations for these isotopic proxies. These SPADE results will then be applied to classic paleoclimate records of dryland hydrology, such as Soreq Cave (Israel) and Devils Hole (Nevada). SPADE will address long standing climatic hypotheses regarding the interplay between temperature, amount of rainfall, surface evaporation, moisture sources, and regional climate connections in these drought vulnerable regions, and will make these records much more useful. A detailed understanding of disequilibrium will enable the use of these innovative geochemical tools in speleothems and more broadly, in other paleoclimate carbonate archives.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym Struct. vs. Individ
Project The ‘Declining Significance of Gender’ Reexamined: Cross-Country Comparison of Individual and Structural Aspects of Gender Inequality
Researcher (PI) Hadas Mandel Levy
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary The comparative research of long-term trends largely neglects structural mechanisms of gender inequality, i.e. the gender bias in which jobs and activities are evaluated and rewarded. I argue that as more women become integrated in positions of power, the stronger the role of structural elements is likely to become. However, because these are less visible and amenable to empirical assessment, they are under-researched compared to individual aspects, and are commonly assumed to be gender-neutral. The implication is that the importance of gender as a determinant of economic inequality in the labour market becomes insufficiently acknowledged, and thus difficult to track and eradicate.
My empirical objective is to track structural vs. individual processes of gender inequality over a period of 40 years, using the case of occupations. My aim is to uncover the countervailing processes of women’s (individual) upward occupational mobility versus women’s (collective) effect on occupational pay. I argue that the effects of structural aspects of gender inequality increase over time, but are concealed by women’s (individual) upward mobility.
I expect the dynamic of the two processes to vary between countries and also by class. I thus seek to examine the processes in four representative countries – Sweden, Germany, Spain and the United States – that differ in many of the institutional aspects that affect gender inequality, including the provision of welfare, gender ideology, wage structure, and political economy factors. Therefore, gender in/equality processes in these countries are expected to take different forms in both structural and individual appearances. That said, in all countries I expect gender equality processes to be more pronounced and rapid for advantaged women. At the structural level, however, the rapid upward occupational mobility of skilled and educated women may expose highly rewarded occupations to devaluation and pay reduction more than others.
Summary
The comparative research of long-term trends largely neglects structural mechanisms of gender inequality, i.e. the gender bias in which jobs and activities are evaluated and rewarded. I argue that as more women become integrated in positions of power, the stronger the role of structural elements is likely to become. However, because these are less visible and amenable to empirical assessment, they are under-researched compared to individual aspects, and are commonly assumed to be gender-neutral. The implication is that the importance of gender as a determinant of economic inequality in the labour market becomes insufficiently acknowledged, and thus difficult to track and eradicate.
My empirical objective is to track structural vs. individual processes of gender inequality over a period of 40 years, using the case of occupations. My aim is to uncover the countervailing processes of women’s (individual) upward occupational mobility versus women’s (collective) effect on occupational pay. I argue that the effects of structural aspects of gender inequality increase over time, but are concealed by women’s (individual) upward mobility.
I expect the dynamic of the two processes to vary between countries and also by class. I thus seek to examine the processes in four representative countries – Sweden, Germany, Spain and the United States – that differ in many of the institutional aspects that affect gender inequality, including the provision of welfare, gender ideology, wage structure, and political economy factors. Therefore, gender in/equality processes in these countries are expected to take different forms in both structural and individual appearances. That said, in all countries I expect gender equality processes to be more pronounced and rapid for advantaged women. At the structural level, however, the rapid upward occupational mobility of skilled and educated women may expose highly rewarded occupations to devaluation and pay reduction more than others.
Max ERC Funding
1 395 000 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym ThymusTolerance
Project Delineation of molecular mechanisms underlying the establishment and breakdown of immunological tolerance in the thymus
Researcher (PI) Jakub ABRAMSON
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS6, ERC-2016-COG
Summary Central tolerance is shaped in the thymus, a primary lymphoid organ, where immature T lymphocytes are “educated” into mature cells, capable of recognizing foreign antigens, while tolerating the body’s own components. This process is driven mainly by two separate lineages of thymic epithelial cells (TECs), the cortical (cTEC) and the medullary (mTEC). While cTECs are critical at the early stages of T cell development, mTECs play a pivotal role in negative selection of self-reactive thymocytes and the generation of Foxp3+ regulatory T (Treg) cells. Crucial to the key role of mTECs in the screening of self-reactive T cell clones, is their unique capacity to promiscuously express and present almost all self-antigens, including thousands of tissue-specific antigen (TSA) genes. Strikingly, the expression of most of this TSA repertoire in mTECs is regulated by a single transcriptional regulator called Aire. Indeed, Aire deficiency in mice and human patients results to multi-organ autoimmunity. Although there has been dramatic progress in our understanding of how thymic epithelial cells shape and govern the establishment of adaptive immunity and of immunological self-tolerance, there are still several outstanding questions with no comprehensive answers. Therefore, in the research proposed herein, we wish to provide more comprehensive answers to these still elusive, but very fundamental questions. Specifically we will aim at: 1.) Delineation of molecular mechanisms controlling TEC development and thymus organogenesis; 2.) Delineation of molecular mechanisms underlying promiscuous gene expression in the thymus; 3.) Identification and characterization of molecular determinants responsible for the breakdown of thymus-dependent self-tolerance. To this end, we will build upon our recently published data, as well as unpublished preliminary data and utilize several state-of-the-art and interdisciplinary approaches, which have become an integral part of our lab’s toolbox.
Summary
Central tolerance is shaped in the thymus, a primary lymphoid organ, where immature T lymphocytes are “educated” into mature cells, capable of recognizing foreign antigens, while tolerating the body’s own components. This process is driven mainly by two separate lineages of thymic epithelial cells (TECs), the cortical (cTEC) and the medullary (mTEC). While cTECs are critical at the early stages of T cell development, mTECs play a pivotal role in negative selection of self-reactive thymocytes and the generation of Foxp3+ regulatory T (Treg) cells. Crucial to the key role of mTECs in the screening of self-reactive T cell clones, is their unique capacity to promiscuously express and present almost all self-antigens, including thousands of tissue-specific antigen (TSA) genes. Strikingly, the expression of most of this TSA repertoire in mTECs is regulated by a single transcriptional regulator called Aire. Indeed, Aire deficiency in mice and human patients results to multi-organ autoimmunity. Although there has been dramatic progress in our understanding of how thymic epithelial cells shape and govern the establishment of adaptive immunity and of immunological self-tolerance, there are still several outstanding questions with no comprehensive answers. Therefore, in the research proposed herein, we wish to provide more comprehensive answers to these still elusive, but very fundamental questions. Specifically we will aim at: 1.) Delineation of molecular mechanisms controlling TEC development and thymus organogenesis; 2.) Delineation of molecular mechanisms underlying promiscuous gene expression in the thymus; 3.) Identification and characterization of molecular determinants responsible for the breakdown of thymus-dependent self-tolerance. To this end, we will build upon our recently published data, as well as unpublished preliminary data and utilize several state-of-the-art and interdisciplinary approaches, which have become an integral part of our lab’s toolbox.
Max ERC Funding
2 220 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym UVdynamicsProtection
Project Aligning pigmentation and repair: a holistic approach for UV protection dynamics
Researcher (PI) Karmit Levy
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Consolidator Grant (CoG), LS4, ERC-2016-COG
Summary The human body takes different measures in order to protect itself against the results of UV exposure and its accompanied hazards, such as skin cancer. Despite extensive studies regarding the molecular regulation of the two main UV protection mechanisms, namely, the DNA repair system and the pigmentation system, a comprehensive theory that simultaneously accounts for the two systems is still missing. Hence, the ground-breaking goal of this proposal is to elucidate, for the first time, the dynamic control used to schedule and synchronize the UV protection subsystems.
Since these two systems serve the same physiological purpose, but on different time scales (DNA repair takes minutes, while pigmentation lasts hours to days), I propose to take the novel approach of focusing on their timing as an opportunity to uncover their regulation. As a first step, we exposed human and mouse skin to UV and found that UV exposure at 48hr intervals resulted in higher skin pigmentation than did exposure at 24hr intervals, even after controlling for total UV dosage. Furthermore, we found that the expression level of the melanocyte central regulator, MITF, exhibits damped oscillatory behaviour during this 48hr interval. I therefore hypothesize that the dynamic behaviour of the central regulator dictates the UV–response timing of the two protection systems. In the proposed research, I will take a holistic approach and address this issue from three complementary perspectives: (1) transcriptional dynamics, (2) temporal effects on cellular output, and (3) DNA repair after UV. This will be achieved by utilizing and developing new experimental and analytical tools that will allow us to correlate the temporal behaviours of a wide set of molecular markers. Reaching our goals will provide a breakthrough in our understanding of skin protection from UV and the underlying mechanisms that control it. These findings may offer exciting new avenues for future skin cancer prevention.
Summary
The human body takes different measures in order to protect itself against the results of UV exposure and its accompanied hazards, such as skin cancer. Despite extensive studies regarding the molecular regulation of the two main UV protection mechanisms, namely, the DNA repair system and the pigmentation system, a comprehensive theory that simultaneously accounts for the two systems is still missing. Hence, the ground-breaking goal of this proposal is to elucidate, for the first time, the dynamic control used to schedule and synchronize the UV protection subsystems.
Since these two systems serve the same physiological purpose, but on different time scales (DNA repair takes minutes, while pigmentation lasts hours to days), I propose to take the novel approach of focusing on their timing as an opportunity to uncover their regulation. As a first step, we exposed human and mouse skin to UV and found that UV exposure at 48hr intervals resulted in higher skin pigmentation than did exposure at 24hr intervals, even after controlling for total UV dosage. Furthermore, we found that the expression level of the melanocyte central regulator, MITF, exhibits damped oscillatory behaviour during this 48hr interval. I therefore hypothesize that the dynamic behaviour of the central regulator dictates the UV–response timing of the two protection systems. In the proposed research, I will take a holistic approach and address this issue from three complementary perspectives: (1) transcriptional dynamics, (2) temporal effects on cellular output, and (3) DNA repair after UV. This will be achieved by utilizing and developing new experimental and analytical tools that will allow us to correlate the temporal behaviours of a wide set of molecular markers. Reaching our goals will provide a breakthrough in our understanding of skin protection from UV and the underlying mechanisms that control it. These findings may offer exciting new avenues for future skin cancer prevention.
Max ERC Funding
1 971 875 €
Duration
Start date: 2017-04-01, End date: 2022-03-31