Project acronym ARCHADAPT
Project The architecture of adaptation to novel environments
Researcher (PI) Christian Werner Schlötterer
Host Institution (HI) VETERINAERMEDIZINISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary One of the central goals in evolutionary biology is to understand adaptation. Experimental evolution represents a highly promising approach to study adaptation. In this proposal, a freshly collected D. simulans population will be allowed to adapt to laboratory conditions under two different temperature regimes: hot (27°C) and cold (18°C). The trajectories of adaptation to these novel environments will be monitored on three levels: 1) genomic, 2) transcriptomic, 3) phenotypic. Allele frequency changes during the experiment will be measured by next generation sequencing of DNA pools (Pool-Seq) to identify targets of selection. RNA-Seq will be used to trace adaptation on the transcriptomic level during three developmental stages. Eight different phenotypes will be scored to measure the phenotypic consequences of adaptation. Combining the adaptive trajectories on these three levels will provide a picture of adaptation for a multicellular, outcrossing organism that is far more detailed than any previous results.
Furthermore, the proposal addresses the question of how adaptation on these three levels is reversible if the environment reverts to ancestral conditions. The third aspect of adaptation covered in the proposal is the question of repeatability of adaptation. Again, this question will be addressed on the three levels: genomic, transcriptomic and phenotypic. Using replicates with different degrees of genetic similarity, as well as closely related species, we will test how similar the adaptive response is.
This large-scale study will provide new insights into the importance of standing variation for the adaptation to novel environments. Hence, apart from providing significant evolutionary insights on the trajectories of adaptation, the results we will obtain will have important implications for conservation genetics and commercial breeding.
Summary
One of the central goals in evolutionary biology is to understand adaptation. Experimental evolution represents a highly promising approach to study adaptation. In this proposal, a freshly collected D. simulans population will be allowed to adapt to laboratory conditions under two different temperature regimes: hot (27°C) and cold (18°C). The trajectories of adaptation to these novel environments will be monitored on three levels: 1) genomic, 2) transcriptomic, 3) phenotypic. Allele frequency changes during the experiment will be measured by next generation sequencing of DNA pools (Pool-Seq) to identify targets of selection. RNA-Seq will be used to trace adaptation on the transcriptomic level during three developmental stages. Eight different phenotypes will be scored to measure the phenotypic consequences of adaptation. Combining the adaptive trajectories on these three levels will provide a picture of adaptation for a multicellular, outcrossing organism that is far more detailed than any previous results.
Furthermore, the proposal addresses the question of how adaptation on these three levels is reversible if the environment reverts to ancestral conditions. The third aspect of adaptation covered in the proposal is the question of repeatability of adaptation. Again, this question will be addressed on the three levels: genomic, transcriptomic and phenotypic. Using replicates with different degrees of genetic similarity, as well as closely related species, we will test how similar the adaptive response is.
This large-scale study will provide new insights into the importance of standing variation for the adaptation to novel environments. Hence, apart from providing significant evolutionary insights on the trajectories of adaptation, the results we will obtain will have important implications for conservation genetics and commercial breeding.
Max ERC Funding
2 452 084 €
Duration
Start date: 2012-07-01, End date: 2018-06-30
Project acronym CDK6-DrugOpp
Project CDK6 in transcription - turning a foe in a friend
Researcher (PI) Veronika SEXL
Host Institution (HI) VETERINAERMEDIZINISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary "Translational research aims at applying mechanistic understanding in the development of "precision medicine", which depends on precise diagnostic tools and therapeutic approaches. Cancer therapy is experiencing a switch from non-specific, cytotoxic agents towards molecularly targeted and rationally designed compounds with the promise of greater efficacy and fewer side effects.
The two cell-cycle kinases CDK4 and CDK6 normally facilitate cell-cycle progression but are abnormally activated in certain cancers. CDK6 is up-regulated in hematopoietic malignancies, where it is the predominant cell-cycle kinase. The importance of CDK4/6 for tumor development is underscored by the fact that the US FDA selected inhibitors of the kinase activity of CDK4/6 as "breakthrough of the year 2013". Our recent findings suggest that the effects of the inhibitors may be limited as CDK6 is not only involved in cell-cycle progression: ground-breaking research in my group and others has shown that CDK6 is involved in regulation of transcription in a kinase-independent manner thereby driving the proliferation of leukemic stem cells and tumor formation. We have now identified mutations in CDK6 that convert it from a tumor promoter into a tumor suppressor. This unexpected outcome is accompanied by a distinct transcriptional profile. Separating the tumor-promoting from the tumor suppressive functions may open a novel therapeutic avenue for drug development. We aim at understanding which domains and residues of CDK6 are involved in rewiring the transcriptional landscape to pave the way for sophisticated inhibitors. The idea of turning a cancer cell's own most potent weapon against itself is novel and would represent a new paradigm for drug design. Finally, the understanding of CDK6 functions in tumor promotion and maintenance will also result in better patient stratification and improved treatment decisions for a broad spectrum of cancer types."
Summary
"Translational research aims at applying mechanistic understanding in the development of "precision medicine", which depends on precise diagnostic tools and therapeutic approaches. Cancer therapy is experiencing a switch from non-specific, cytotoxic agents towards molecularly targeted and rationally designed compounds with the promise of greater efficacy and fewer side effects.
The two cell-cycle kinases CDK4 and CDK6 normally facilitate cell-cycle progression but are abnormally activated in certain cancers. CDK6 is up-regulated in hematopoietic malignancies, where it is the predominant cell-cycle kinase. The importance of CDK4/6 for tumor development is underscored by the fact that the US FDA selected inhibitors of the kinase activity of CDK4/6 as "breakthrough of the year 2013". Our recent findings suggest that the effects of the inhibitors may be limited as CDK6 is not only involved in cell-cycle progression: ground-breaking research in my group and others has shown that CDK6 is involved in regulation of transcription in a kinase-independent manner thereby driving the proliferation of leukemic stem cells and tumor formation. We have now identified mutations in CDK6 that convert it from a tumor promoter into a tumor suppressor. This unexpected outcome is accompanied by a distinct transcriptional profile. Separating the tumor-promoting from the tumor suppressive functions may open a novel therapeutic avenue for drug development. We aim at understanding which domains and residues of CDK6 are involved in rewiring the transcriptional landscape to pave the way for sophisticated inhibitors. The idea of turning a cancer cell's own most potent weapon against itself is novel and would represent a new paradigm for drug design. Finally, the understanding of CDK6 functions in tumor promotion and maintenance will also result in better patient stratification and improved treatment decisions for a broad spectrum of cancer types."
Max ERC Funding
2 497 520 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym Diversity6continents
Project Ecological determinants of tropical-temperate trends in insect diversity
Researcher (PI) Vojtech Novotny
Host Institution (HI) Biologicke centrum AV CR, v. v. i.
Call Details Advanced Grant (AdG), LS8, ERC-2014-ADG
Summary The study will examine one of the most fundamental, yet poorly understood patterns of global biodiversity distribution: How can so many species coexist in a tropical forest? This key question of current ecology will be studied using quantitative surveys of plant-herbivore-parasitoid food webs within paired sets of tropical and temperate forests from six continents, in Papua New Guinea (PNG), Gabon, Panama, the Czech Republic, Japan, and USA, sampled using canopy cranes, truck-mounted elevated platforms and forest felling. This novel type of data will be analysed using a new rarefaction method, developed to test mechanistic explanations for biodiversity patterns along ecological gradients. It will evaluate competing hypotheses explaining latitudinal trends in insect herbivore diversity by the variation in either phylogenetic or functional diversity of plants, the host specificity of herbivores, or the diversity and specificity of their parasitoids and predators. The study will thus examine the importance of bottom-up (plants) and top-down (enemies) drivers of latitudinal trends in herbivore food webs, central to ecological theory that postulates the role of specialized herbivores as density-dependent agents of mortality involved in maintaining high tropical plant diversity. The project builds upon prior research that produced one of the largest tropical food web data sets to expand it conceptually, methodologically and geographically. It will build a globally important research facility (a canopy crane in PNG) and link researchers and infrastructure from several countries in a major effort to draw together separate lines of tropical and temperate research. Study sites in the ILTER, NEON, CTFS/SIGEO, and Canopy Crane Network will participate. The internationally recognized paraecologist program will be expanded, PhD students from both European and developing countries will be trained, and conservation of rainforests by indigenous rainforest dwellers will be leveraged.
Summary
The study will examine one of the most fundamental, yet poorly understood patterns of global biodiversity distribution: How can so many species coexist in a tropical forest? This key question of current ecology will be studied using quantitative surveys of plant-herbivore-parasitoid food webs within paired sets of tropical and temperate forests from six continents, in Papua New Guinea (PNG), Gabon, Panama, the Czech Republic, Japan, and USA, sampled using canopy cranes, truck-mounted elevated platforms and forest felling. This novel type of data will be analysed using a new rarefaction method, developed to test mechanistic explanations for biodiversity patterns along ecological gradients. It will evaluate competing hypotheses explaining latitudinal trends in insect herbivore diversity by the variation in either phylogenetic or functional diversity of plants, the host specificity of herbivores, or the diversity and specificity of their parasitoids and predators. The study will thus examine the importance of bottom-up (plants) and top-down (enemies) drivers of latitudinal trends in herbivore food webs, central to ecological theory that postulates the role of specialized herbivores as density-dependent agents of mortality involved in maintaining high tropical plant diversity. The project builds upon prior research that produced one of the largest tropical food web data sets to expand it conceptually, methodologically and geographically. It will build a globally important research facility (a canopy crane in PNG) and link researchers and infrastructure from several countries in a major effort to draw together separate lines of tropical and temperate research. Study sites in the ILTER, NEON, CTFS/SIGEO, and Canopy Crane Network will participate. The internationally recognized paraecologist program will be expanded, PhD students from both European and developing countries will be trained, and conservation of rainforests by indigenous rainforest dwellers will be leveraged.
Max ERC Funding
3 349 618 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym EPIC
Project Enabling Precision Immuno-oncology in Colorectal cancer
Researcher (PI) Zlatko TRAJANOSKI
Host Institution (HI) MEDIZINISCHE UNIVERSITAT INNSBRUCK
Call Details Advanced Grant (AdG), LS7, ERC-2017-ADG
Summary Immunotherapy with checkpoints blockers is transforming the treatment of advanced cancers. Colorectal cancer (CRC), a cancer with 1.4 million new cases diagnosed annually worldwide, is refractory to immunotherapy (with the exception of a minority of tumors with microsatellite instability). This is somehow paradoxical as CRC is a cancer for which we have shown that it is under immunological control and that tumor infiltrating lymphocytes represent a strong independent predictor of survival. Thus, there is an urgent need to broaden the clinical benefits of immune checkpoint blockers to CRC by combining agents with synergistic mechanisms of action. An attractive approach to sensitize tumors to immunotherapy is to harness immunogenic effects induced by approved conventional or targeted agents.
Here I propose a new paradigm to identify molecular determinants of resistance to immunotherapy and develop personalized in silico and in vitro models for predicting response to combination therapy in CRC. The EPIC concept is based on three pillars: 1) emphasis on antitumor T cell activity; 2) systematic interrogation of tumor-immune cell interactions using data-driven modeling and knowledge-based mechanistic modeling, and 3) generation of key quantitative data to train and validate algorithms using perturbation experiments with patient-derived tumor organoids and cutting-edge technologies for multidimensional profiling. We will investigate three immunomodulatory processes: 1) immunostimulatory effects of chemotherapeutics, 2) rewiring of signaling networks induced by targeted drugs and their interference with immunity, and 3) metabolic reprogramming of T cells to enhance antitumor immunity.
The anticipated outcome of EPIC is a precision immuno-oncology platform that integrates tumor organoids with high-throughput and high-content data for testing drug combinations, and machine learning for making therapeutic recommendations for individual patients.
Summary
Immunotherapy with checkpoints blockers is transforming the treatment of advanced cancers. Colorectal cancer (CRC), a cancer with 1.4 million new cases diagnosed annually worldwide, is refractory to immunotherapy (with the exception of a minority of tumors with microsatellite instability). This is somehow paradoxical as CRC is a cancer for which we have shown that it is under immunological control and that tumor infiltrating lymphocytes represent a strong independent predictor of survival. Thus, there is an urgent need to broaden the clinical benefits of immune checkpoint blockers to CRC by combining agents with synergistic mechanisms of action. An attractive approach to sensitize tumors to immunotherapy is to harness immunogenic effects induced by approved conventional or targeted agents.
Here I propose a new paradigm to identify molecular determinants of resistance to immunotherapy and develop personalized in silico and in vitro models for predicting response to combination therapy in CRC. The EPIC concept is based on three pillars: 1) emphasis on antitumor T cell activity; 2) systematic interrogation of tumor-immune cell interactions using data-driven modeling and knowledge-based mechanistic modeling, and 3) generation of key quantitative data to train and validate algorithms using perturbation experiments with patient-derived tumor organoids and cutting-edge technologies for multidimensional profiling. We will investigate three immunomodulatory processes: 1) immunostimulatory effects of chemotherapeutics, 2) rewiring of signaling networks induced by targeted drugs and their interference with immunity, and 3) metabolic reprogramming of T cells to enhance antitumor immunity.
The anticipated outcome of EPIC is a precision immuno-oncology platform that integrates tumor organoids with high-throughput and high-content data for testing drug combinations, and machine learning for making therapeutic recommendations for individual patients.
Max ERC Funding
2 460 500 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym EPICLINES
Project Elucidating the causes and consequences of the global pattern of epigenetic variation in Arabidopsis thaliana
Researcher (PI) Lars Magnus Henrik NORDBORG
Host Institution (HI) GREGOR MENDEL INSTITUT FUR MOLEKULARE PFLANZENBIOLOGIE GMBH
Call Details Advanced Grant (AdG), LS8, ERC-2017-ADG
Summary Epigenetics continues to fascinate, especially the notion that it blurs the line between “nature and nurture” and could make Lamarckian adaptation via the inheritance of acquired characteristics possible. That this is in principle possible is clear: in the model plant Arabidopsis thaliana (Thale cress), experimentally induced DNA methylation variation can be inherited and affect important traits. The question is whether this is important in nature. Recent studies of A. thaliana have revealed a pattern of correlation between levels of methylation and climate variables that strongly suggests that methylation is important in adaptation. However, somewhat paradoxically, the experiments also showed that much of the variation for this epigenetic trait appears to have a genetic rather than an epigenetic basis. This suggest that epigenetics may indeed be important for adaptation, but as part of a genetic mechanism that is currently not understood. The goal of this project is to determine whether the global pattern of methylation has a genetic or an epigenetic basis, and to use this information to elucidate the ultimate basis for the global pattern of variation: natural selection.
Summary
Epigenetics continues to fascinate, especially the notion that it blurs the line between “nature and nurture” and could make Lamarckian adaptation via the inheritance of acquired characteristics possible. That this is in principle possible is clear: in the model plant Arabidopsis thaliana (Thale cress), experimentally induced DNA methylation variation can be inherited and affect important traits. The question is whether this is important in nature. Recent studies of A. thaliana have revealed a pattern of correlation between levels of methylation and climate variables that strongly suggests that methylation is important in adaptation. However, somewhat paradoxically, the experiments also showed that much of the variation for this epigenetic trait appears to have a genetic rather than an epigenetic basis. This suggest that epigenetics may indeed be important for adaptation, but as part of a genetic mechanism that is currently not understood. The goal of this project is to determine whether the global pattern of methylation has a genetic or an epigenetic basis, and to use this information to elucidate the ultimate basis for the global pattern of variation: natural selection.
Max ERC Funding
2 498 468 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym FRU CIRCUIT
Project Neural basis of Drosophila mating behaviours
Researcher (PI) Barry Dickson
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Advanced Grant (AdG), LS5, ERC-2008-AdG
Summary How does information processing in neural circuits generate behaviour? Answering this question requires identifying each of the distinct neuronal types that contributes to a behaviour, defining their anatomy and connectivity, and establishing causal relationships between their activity, the activity of other neurons in the circuit, and the behaviour. Here, I propose such an analysis of the neural circuits that guide Drosophila mating behaviours. The distinct mating behaviours of males and females are genetically pre-programmed, yet can also be modified by experience. The set of ~2000 neurons that express the fru gene have been intimately linked to both male and female mating behaviours. This set of neurons includes specific sensory, central, and motor neurons, at least some of which are directly connected. Male-specific fruM isoforms configure this circuit developmentally for male rather than female behaviour. In females, mating triggers a biochemical cascade that reconfigures the circuit for post-mating rather than virgin female behaviour. We estimate that there are ~100 distinct classes of fru neuron. Using genetic and optical tools, we aim to identify each distinct class of fru neuron and to define its anatomy and connectivity. By silencing or activating specific neurons, or changing their genetic sex, we will assess their contributions to male and female behaviours, and how these perturbations impinge on activity patterns in other fru neurons. We also aim to define how a specific experience can modify the physiological properties of these circuits, and how these changes in turn modulate mating behaviour. These studies will define the operating principles of these neural circuits, contributing to a molecules-to-systems explanation of Drosophila s mating behaviours.
Summary
How does information processing in neural circuits generate behaviour? Answering this question requires identifying each of the distinct neuronal types that contributes to a behaviour, defining their anatomy and connectivity, and establishing causal relationships between their activity, the activity of other neurons in the circuit, and the behaviour. Here, I propose such an analysis of the neural circuits that guide Drosophila mating behaviours. The distinct mating behaviours of males and females are genetically pre-programmed, yet can also be modified by experience. The set of ~2000 neurons that express the fru gene have been intimately linked to both male and female mating behaviours. This set of neurons includes specific sensory, central, and motor neurons, at least some of which are directly connected. Male-specific fruM isoforms configure this circuit developmentally for male rather than female behaviour. In females, mating triggers a biochemical cascade that reconfigures the circuit for post-mating rather than virgin female behaviour. We estimate that there are ~100 distinct classes of fru neuron. Using genetic and optical tools, we aim to identify each distinct class of fru neuron and to define its anatomy and connectivity. By silencing or activating specific neurons, or changing their genetic sex, we will assess their contributions to male and female behaviours, and how these perturbations impinge on activity patterns in other fru neurons. We also aim to define how a specific experience can modify the physiological properties of these circuits, and how these changes in turn modulate mating behaviour. These studies will define the operating principles of these neural circuits, contributing to a molecules-to-systems explanation of Drosophila s mating behaviours.
Max ERC Funding
2 492 164 €
Duration
Start date: 2009-07-01, End date: 2013-09-30
Project acronym GIANTSYN
Project Biophysics and circuit function of a giant cortical glutamatergic synapse
Researcher (PI) Peter Jonas
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Advanced Grant (AdG), LS5, ERC-2015-AdG
Summary A fundamental question in neuroscience is how the biophysical properties of synapses shape higher network
computations. The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells
and dendrites of CA3 pyramidal neurons, is the ideal synapse to address this question. This synapse is accessible
to presynaptic recording, due to its large size, allowing a rigorous investigation of the biophysical
mechanisms of transmission and plasticity. Furthermore, this synapse is placed in the center of a memory
circuit, and several hypotheses about its network function have been generated. However, even basic properties
of this key communication element remain enigmatic. The ambitious goal of the current proposal, GIANTSYN,
is to understand the hippocampal mossy fiber synapse at all levels of complexity. At the subcellular
level, we want to elucidate the biophysical mechanisms of transmission and synaptic plasticity in the
same depth as previously achieved at peripheral and brainstem synapses, classical synaptic models. At the
network level, we want to unravel the connectivity rules and the in vivo network function of this synapse,
particularly its role in learning and memory. To reach these objectives, we will combine functional and
structural approaches. For the analysis of synaptic transmission and plasticity, we will combine direct preand
postsynaptic patch-clamp recording and high-pressure freezing electron microscopy. For the analysis of
connectivity and network function, we will use transsynaptic labeling and in vivo electrophysiology. Based
on the proposed interdisciplinary research, the hippocampal mossy fiber synapse could become the first synapse
in the history of neuroscience in which we reach complete insight into both synaptic biophysics and
network function. In the long run, the results may open new perspectives for the diagnosis and treatment of
brain diseases in which mossy fiber transmission, plasticity, or connectivity are impaired.
Summary
A fundamental question in neuroscience is how the biophysical properties of synapses shape higher network
computations. The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells
and dendrites of CA3 pyramidal neurons, is the ideal synapse to address this question. This synapse is accessible
to presynaptic recording, due to its large size, allowing a rigorous investigation of the biophysical
mechanisms of transmission and plasticity. Furthermore, this synapse is placed in the center of a memory
circuit, and several hypotheses about its network function have been generated. However, even basic properties
of this key communication element remain enigmatic. The ambitious goal of the current proposal, GIANTSYN,
is to understand the hippocampal mossy fiber synapse at all levels of complexity. At the subcellular
level, we want to elucidate the biophysical mechanisms of transmission and synaptic plasticity in the
same depth as previously achieved at peripheral and brainstem synapses, classical synaptic models. At the
network level, we want to unravel the connectivity rules and the in vivo network function of this synapse,
particularly its role in learning and memory. To reach these objectives, we will combine functional and
structural approaches. For the analysis of synaptic transmission and plasticity, we will combine direct preand
postsynaptic patch-clamp recording and high-pressure freezing electron microscopy. For the analysis of
connectivity and network function, we will use transsynaptic labeling and in vivo electrophysiology. Based
on the proposed interdisciplinary research, the hippocampal mossy fiber synapse could become the first synapse
in the history of neuroscience in which we reach complete insight into both synaptic biophysics and
network function. In the long run, the results may open new perspectives for the diagnosis and treatment of
brain diseases in which mossy fiber transmission, plasticity, or connectivity are impaired.
Max ERC Funding
2 677 500 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym HOPE
Project Host Protective Engineering of Cancer Immunity by Targeting the Intracellular Immune Checkpoint NR2F6
Researcher (PI) Gottfried BAIER
Host Institution (HI) MEDIZINISCHE UNIVERSITAT INNSBRUCK
Call Details Advanced Grant (AdG), LS7, ERC-2017-ADG
Summary "Because of its biological complexity, cancer is still poorly understood. Chronic inflammation has been shown, both experimentally and epidemiologically, to be a predisposition to, and also an inseparable aspect of clinically prevalent cancer entities. Therefore, a detailed understanding of both tumour and immune cell functions in cancer progression is a prerequisite for more successful therapeutic startegies. My team was the first to reveal the lymphocyte-intrinsic PKC/NR2F6 axis as an essential signalling node at the crossroads between inflammation and cancer. It is the mission of this project to identify molecular signatures that influence the risk of developing tumours employing established research tools and state-of-the-art genetic, biochemical, proteomic and transcriptomic as well as large scale CRISPR/Cas9 perturbation screening-based functional genomic technologies. Defining this as yet poorly elucidated effector pathway with its profoundly relevant role would enable development of preventive and immune-therapeutic strategies against NSCLC lung cancer and potentially also against other entities. Our three-pronged approach to achieve this goal is to: (i) delineate biological and clinical properties of the immunological PKC/NR2F6 network, (ii) validate NR2F6 as an immune-oncology combination target needed to overcome limitations to ""first generation anti-PD-1 checkpoint inhibitors"" rendering T cells capable of rejecting tumours and their metastases at distal organs and (iii) exploit human combinatorial T cell therapy concepts for prevention of immune-related adverse events as well as of tumour recurrence by reducing opportunities for the tumour to develop resistance in the clinic. Insight into the functions of NR2F6 pathway and involved mechanisms is a prerequisite for understanding how the microenvironment at the tumour site either supports tumour growth and spread or prevents tumour initiation and progression, the latter by host-protective cancer immunity."
Summary
"Because of its biological complexity, cancer is still poorly understood. Chronic inflammation has been shown, both experimentally and epidemiologically, to be a predisposition to, and also an inseparable aspect of clinically prevalent cancer entities. Therefore, a detailed understanding of both tumour and immune cell functions in cancer progression is a prerequisite for more successful therapeutic startegies. My team was the first to reveal the lymphocyte-intrinsic PKC/NR2F6 axis as an essential signalling node at the crossroads between inflammation and cancer. It is the mission of this project to identify molecular signatures that influence the risk of developing tumours employing established research tools and state-of-the-art genetic, biochemical, proteomic and transcriptomic as well as large scale CRISPR/Cas9 perturbation screening-based functional genomic technologies. Defining this as yet poorly elucidated effector pathway with its profoundly relevant role would enable development of preventive and immune-therapeutic strategies against NSCLC lung cancer and potentially also against other entities. Our three-pronged approach to achieve this goal is to: (i) delineate biological and clinical properties of the immunological PKC/NR2F6 network, (ii) validate NR2F6 as an immune-oncology combination target needed to overcome limitations to ""first generation anti-PD-1 checkpoint inhibitors"" rendering T cells capable of rejecting tumours and their metastases at distal organs and (iii) exploit human combinatorial T cell therapy concepts for prevention of immune-related adverse events as well as of tumour recurrence by reducing opportunities for the tumour to develop resistance in the clinic. Insight into the functions of NR2F6 pathway and involved mechanisms is a prerequisite for understanding how the microenvironment at the tumour site either supports tumour growth and spread or prevents tumour initiation and progression, the latter by host-protective cancer immunity."
Max ERC Funding
2 484 325 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym MEDEA
Project Microbial Ecology of the DEep Atlantic pelagic realm
Researcher (PI) Gerhard Herndl
Host Institution (HI) UNIVERSITAT WIEN
Call Details Advanced Grant (AdG), LS8, ERC-2010-AdG_20100317
Summary The project aims at elucidating a major enigma in microbial ecology, i.e., the metabolic activity of prokaryotic communities in the deep sea under in situ pressure conditions, rather than under surface pressure conditions, as commonly done. Analysis of the global data set of prokaryotic abundance indicates that about 40% of prokaryotes reside in depth below 1000m depth with a phylogenetic composition different from that in surface waters. Using a recently fabricated high-pressure sampling and incubation system in combination with advanced tools to assess phylogenetic diversity, gene expression and single-cell activity, we will be able to resolve this enigma on a prokaryotic community level as well as on a phylotype level. This detailed knowledge on the distribution of the auto- and heterotrophic activity of deep-sea prokaryotes under in situ pressure conditions is essential to refine our view on the oceanic biogeochemical cycles, and to obtain a mechanistic understanding of the functioning of deep-sea microbial food webs.
Summary
The project aims at elucidating a major enigma in microbial ecology, i.e., the metabolic activity of prokaryotic communities in the deep sea under in situ pressure conditions, rather than under surface pressure conditions, as commonly done. Analysis of the global data set of prokaryotic abundance indicates that about 40% of prokaryotes reside in depth below 1000m depth with a phylogenetic composition different from that in surface waters. Using a recently fabricated high-pressure sampling and incubation system in combination with advanced tools to assess phylogenetic diversity, gene expression and single-cell activity, we will be able to resolve this enigma on a prokaryotic community level as well as on a phylotype level. This detailed knowledge on the distribution of the auto- and heterotrophic activity of deep-sea prokaryotes under in situ pressure conditions is essential to refine our view on the oceanic biogeochemical cycles, and to obtain a mechanistic understanding of the functioning of deep-sea microbial food webs.
Max ERC Funding
2 500 000 €
Duration
Start date: 2011-07-01, End date: 2016-06-30
Project acronym MiniBrain
Project Cerebral Organoids: Using stem cell derived 3D cultures to understand human brain development and neurological disorders
Researcher (PI) Juergen Knoblich
Host Institution (HI) INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
Call Details Advanced Grant (AdG), LS5, ERC-2015-AdG
Summary Most of our knowledge on human development and physiology is derived from experiments done in animal models. While these experiments have led to a comprehensive understanding of the principles of neurogenesis, animal models often fall short of modelling many of the most common neurological disorders. Recent experiments have revealed characteristic striking differences in brain development between rodents and primates and may provide an explanation for this problem.
The goal of this proposal is to use three dimensional organoid cultures derived from pluripotent human stem cells to reveal the human specific aspects of brain development and to analyse neurological disease mechanisms directly in human tissue. We have recently developed a 3D culture method allowing us to recapitulate human brain development during the first trimester of embryogenesis. Using this method, we will define the human specific brain patterning events in order to develop a culture system that can recapitulate essentially any part of the brain. Using a unique combination of cell type specific markers and mutagenic viruses, we will define the transcriptional networks defining specific neuronal subtypes. This will allow us to perform loss-of function genetics in human tissue to define transcription factors necessary for development of individual neuronal subtypes on a genome-wide level. Finally, we will apply the genome wide screening technology to human neurological disorders like microcephaly or schizophrenia to identify factors that can rescue disease phenotypes.
This research proposal will provide fundamental insights into the cellular and molecular mechanisms specifying various neuronal subclasses in the human brain and establish technology that can be applied to a variety of cell types and brain regions. The proposed experiments have the potential to yield fundamental insights into human neurological disease mechanisms that can currently not be derived from animal models.
Summary
Most of our knowledge on human development and physiology is derived from experiments done in animal models. While these experiments have led to a comprehensive understanding of the principles of neurogenesis, animal models often fall short of modelling many of the most common neurological disorders. Recent experiments have revealed characteristic striking differences in brain development between rodents and primates and may provide an explanation for this problem.
The goal of this proposal is to use three dimensional organoid cultures derived from pluripotent human stem cells to reveal the human specific aspects of brain development and to analyse neurological disease mechanisms directly in human tissue. We have recently developed a 3D culture method allowing us to recapitulate human brain development during the first trimester of embryogenesis. Using this method, we will define the human specific brain patterning events in order to develop a culture system that can recapitulate essentially any part of the brain. Using a unique combination of cell type specific markers and mutagenic viruses, we will define the transcriptional networks defining specific neuronal subtypes. This will allow us to perform loss-of function genetics in human tissue to define transcription factors necessary for development of individual neuronal subtypes on a genome-wide level. Finally, we will apply the genome wide screening technology to human neurological disorders like microcephaly or schizophrenia to identify factors that can rescue disease phenotypes.
This research proposal will provide fundamental insights into the cellular and molecular mechanisms specifying various neuronal subclasses in the human brain and establish technology that can be applied to a variety of cell types and brain regions. The proposed experiments have the potential to yield fundamental insights into human neurological disease mechanisms that can currently not be derived from animal models.
Max ERC Funding
2 800 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym NANOPHYS
Project Nanophysiology of fast-spiking, parvalbumin-expressing GABAergic interneurons
Researcher (PI) Peter Jonas
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Advanced Grant (AdG), LS5, ERC-2010-AdG_20100317
Summary In the present proposal, we plan to examine the dendrites, axons, and presynaptic terminals of fast-spiking, parvalbumin-expressing GABAergic interneurons using subcellular patch-clamp methods pioneered by the PI, imaging techniques, and computational approaches.
The goal is to obtain a quantitative nanophysiological picture of signaling in this key type of interneuron. By incorporating realistic BC models into dentate gyrus network models, we will be able to test the contribution of this important type of GABAergic interneuron to complex functions of the dentate gyrus, such as pattern separation, temporal deconvolution, and conversion from grid to place codes. The results may lay the basis for the development of new therapeutic strategies for treatment of diseases of the nervous system, targeting interneurons at subcellularly defined locations.
Summary
In the present proposal, we plan to examine the dendrites, axons, and presynaptic terminals of fast-spiking, parvalbumin-expressing GABAergic interneurons using subcellular patch-clamp methods pioneered by the PI, imaging techniques, and computational approaches.
The goal is to obtain a quantitative nanophysiological picture of signaling in this key type of interneuron. By incorporating realistic BC models into dentate gyrus network models, we will be able to test the contribution of this important type of GABAergic interneuron to complex functions of the dentate gyrus, such as pattern separation, temporal deconvolution, and conversion from grid to place codes. The results may lay the basis for the development of new therapeutic strategies for treatment of diseases of the nervous system, targeting interneurons at subcellularly defined locations.
Max ERC Funding
2 500 000 €
Duration
Start date: 2011-06-01, End date: 2017-02-28
Project acronym NITRICARE
Project Nitrification Reloaded - a Single Cell Approach
Researcher (PI) Michael Wagner
Host Institution (HI) UNIVERSITAT WIEN
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary "Nitrification is a central component of the Earth’s biogeochemical nitrogen cycle. This process is driven by two groups of microorganisms, which oxidize ammonia via nitrite to nitrate. Their activities are of major ecological and economic importance and affect global warming, agriculture, wastewater treatment, and eutrophication. Despite the importance of nitrification for the health of our planet, there are surprisingly large gaps in our fundamental understanding of the microbiology of this process. Nitrifiers are difficult to isolate and thus most of our current knowledge stems from a few cultured model organisms that are hardly representative of the microbes driving nitrification in the environment. The overarching objective of NITRICARE is to close some of these knowledge gaps and obtain a comprehensive basic understanding of the identity, evolution, metabolism and ecological importance of those bacteria and archaea that actually catalyze nitrification in nature. For this purpose innovative single cell technologies like Raman-microspectroscopy, NanoSIMS and single cell genomics will be combined in novel ways and a Raman microfluidic device for high-throughput cell sorting will be developed. Application of these approaches will reveal the evolutionary history and metabolic versatility of uncultured ammonia oxidizing archaea and will provide important insights into their population structure. Furthermore, the proposed experiments will allow us to efficiently search for unknown nitrifiers, evaluate their ecological importance and test the hypothesis that organisms catalyzing both steps of nitrification may exist. For non-model nitrifiers we will develop a unique genetic approach to reveal the genetic basis of key metabolic features. Together, the genomic, metabolic, ecophysiological and genetic data will provide unprecedented insights into the biology of nitrifying microbes and open new conceptual horizons for the study of microbes in their natural environments."
Summary
"Nitrification is a central component of the Earth’s biogeochemical nitrogen cycle. This process is driven by two groups of microorganisms, which oxidize ammonia via nitrite to nitrate. Their activities are of major ecological and economic importance and affect global warming, agriculture, wastewater treatment, and eutrophication. Despite the importance of nitrification for the health of our planet, there are surprisingly large gaps in our fundamental understanding of the microbiology of this process. Nitrifiers are difficult to isolate and thus most of our current knowledge stems from a few cultured model organisms that are hardly representative of the microbes driving nitrification in the environment. The overarching objective of NITRICARE is to close some of these knowledge gaps and obtain a comprehensive basic understanding of the identity, evolution, metabolism and ecological importance of those bacteria and archaea that actually catalyze nitrification in nature. For this purpose innovative single cell technologies like Raman-microspectroscopy, NanoSIMS and single cell genomics will be combined in novel ways and a Raman microfluidic device for high-throughput cell sorting will be developed. Application of these approaches will reveal the evolutionary history and metabolic versatility of uncultured ammonia oxidizing archaea and will provide important insights into their population structure. Furthermore, the proposed experiments will allow us to efficiently search for unknown nitrifiers, evaluate their ecological importance and test the hypothesis that organisms catalyzing both steps of nitrification may exist. For non-model nitrifiers we will develop a unique genetic approach to reveal the genetic basis of key metabolic features. Together, the genomic, metabolic, ecophysiological and genetic data will provide unprecedented insights into the biology of nitrifying microbes and open new conceptual horizons for the study of microbes in their natural environments."
Max ERC Funding
2 499 107 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym SELECTIONINFORMATION
Project Limits to selection in biology and in evolutionary computation
Researcher (PI) Nicholas Hamilton Barton
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Advanced Grant (AdG), LS8, ERC-2009-AdG
Summary Natural selection is the central concept in biology, and selection is widely used to solve hard computational problems. This proposal aims to deepen our understanding of selection, in both evolutionary biology and evolutionary computation, and to help bring these fields together. On the one hand, population genetics can show how to optimise genetic algorithms, and can inspire new algorithms. On the other, the central problem in evolutionary computation is to optimise the "evolvability" of the algorithms - an issue that has only recently become prominent in biology. Also, computer science may give biologists insight into how selection can concentrate information from the environment into complex organisms, and how organisms can develop under the guidance of their surprisingly small genomes. This project will focus on the factors that limit natural selection: lack of recombination, interaction between genes, and spatial subdivision. Novel techniques will be applied: multilocus algebra, branching processes, an analogy with statistical mechanics, and a new model for population structure. This analysis will be applied to biological and computational problems in parallel, focusing on how recombination aids selection; how epistasis may evolve to facilitate adaptation; and how selection acts in populations subject to frequent extinction and recolonisation. A new optimisation algorithm will be developed, which is amenable to mathematical analysis. Some components are straightforward, whilst others need new ideas, drawn from the interface between population genetics and computer science. Perhaps most challenging will be to understand how selection can so effectively gather information from the environment, so as to construct complex organisms.
Summary
Natural selection is the central concept in biology, and selection is widely used to solve hard computational problems. This proposal aims to deepen our understanding of selection, in both evolutionary biology and evolutionary computation, and to help bring these fields together. On the one hand, population genetics can show how to optimise genetic algorithms, and can inspire new algorithms. On the other, the central problem in evolutionary computation is to optimise the "evolvability" of the algorithms - an issue that has only recently become prominent in biology. Also, computer science may give biologists insight into how selection can concentrate information from the environment into complex organisms, and how organisms can develop under the guidance of their surprisingly small genomes. This project will focus on the factors that limit natural selection: lack of recombination, interaction between genes, and spatial subdivision. Novel techniques will be applied: multilocus algebra, branching processes, an analogy with statistical mechanics, and a new model for population structure. This analysis will be applied to biological and computational problems in parallel, focusing on how recombination aids selection; how epistasis may evolve to facilitate adaptation; and how selection acts in populations subject to frequent extinction and recolonisation. A new optimisation algorithm will be developed, which is amenable to mathematical analysis. Some components are straightforward, whilst others need new ideas, drawn from the interface between population genetics and computer science. Perhaps most challenging will be to understand how selection can so effectively gather information from the environment, so as to construct complex organisms.
Max ERC Funding
1 975 640 €
Duration
Start date: 2010-07-01, End date: 2015-06-30
Project acronym SINCHAIS
Project In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behavior
Researcher (PI) Ryuichi Shigemoto
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Advanced Grant (AdG), LS5, ERC-2015-AdG
Summary Ligand-gated and voltage-gated channels are key molecules in transforming chemical signals into electrical ones and electrical signals into chemical ones, respectively. At excitatory synaptic connections in the brain, activation of AMPA- and NMDA-type glutamate receptors elicits inward currents at the postsynaptic sites, and activation of voltage-gated calcium channels triggers vesicle release of glutamate in the presynaptic sites. Plastic changes in their number, location and property can lead to potentiation or depression of synaptic efficacy, alteration in time course, and coupling to effectors at both postsynaptic and presynaptic sites. These channels are all composed of distinct subunits and their compositions affect channel properties, trafficking to the synaptic sites, and interaction with associated molecules, creating a large diversity of synaptic functions. Although channels with different subunit compositions have been investigated using biochemical and electrophysiological detection methods, very little is known about single channel subunit composition in situ because of the lack of high resolution methods for analysis of protein complex in intact tissues. In this project, I will develop novel technologies to visualize subunit composition at the single channel level in individual synapses by electron microscopy, combining new EM tags, freeze-fracture replica labelling, and electron tomography. Synaptic plasticity will be induced by optogenetic stimulation of identified neurons or behavioural paradigms to examine the dynamic changes of subunit composition. Finally, physiological implications of such regulation of subunit composition will be investigated by genetic manipulation of mice combined with electrophysiological and behavioural analyses. This work will demonstrate unprecedented views of the subunit composition in situ and provide new insights into how regulation of subunit composition contributes to synaptic plasticity and animal behaviour.
Summary
Ligand-gated and voltage-gated channels are key molecules in transforming chemical signals into electrical ones and electrical signals into chemical ones, respectively. At excitatory synaptic connections in the brain, activation of AMPA- and NMDA-type glutamate receptors elicits inward currents at the postsynaptic sites, and activation of voltage-gated calcium channels triggers vesicle release of glutamate in the presynaptic sites. Plastic changes in their number, location and property can lead to potentiation or depression of synaptic efficacy, alteration in time course, and coupling to effectors at both postsynaptic and presynaptic sites. These channels are all composed of distinct subunits and their compositions affect channel properties, trafficking to the synaptic sites, and interaction with associated molecules, creating a large diversity of synaptic functions. Although channels with different subunit compositions have been investigated using biochemical and electrophysiological detection methods, very little is known about single channel subunit composition in situ because of the lack of high resolution methods for analysis of protein complex in intact tissues. In this project, I will develop novel technologies to visualize subunit composition at the single channel level in individual synapses by electron microscopy, combining new EM tags, freeze-fracture replica labelling, and electron tomography. Synaptic plasticity will be induced by optogenetic stimulation of identified neurons or behavioural paradigms to examine the dynamic changes of subunit composition. Finally, physiological implications of such regulation of subunit composition will be investigated by genetic manipulation of mice combined with electrophysiological and behavioural analyses. This work will demonstrate unprecedented views of the subunit composition in situ and provide new insights into how regulation of subunit composition contributes to synaptic plasticity and animal behaviour.
Max ERC Funding
2 481 437 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym TACKLE
Project TACK Superphylum and Lokiarchaeota Evolution: Dissecting the Ecology and Evolution of Archaea to Elucidate the Prokaryote to Eukaryote Transition
Researcher (PI) Christa Maria SCHLEPER
Host Institution (HI) UNIVERSITAT WIEN
Call Details Advanced Grant (AdG), LS8, ERC-2015-AdG
Summary The emergence of complex eukaryotic life forms on Earth from prokaryotic cells is one of the most fundamental questions in biology and also one of the least understood transitions in evolution. Phylogenomic studies recently indicated that the eukaryotic line of descent arose from within the TACK+L superphylum of Archaea. This proposal addresses the systematic analysis of two newly discovered, but largely uncharacterized lineages of Archaea from this superphylum that mark crucial evolutionary transitions. Thaumarchaeota harbor unique ‘eukaryotic’ features and represent the sole group of Archaea that has successfully radiated into virtually any moderate habitat on Earth. The Lokiarchaeota lineage found recently in deep marine sediments forms a direct sister group of Eukaryotes and exhibits an unprecedented array of genes that might have been instrumental for the ancestor of eukaryotes to develop its cellular and genomic complexity. Obviously, the molecular and biochemical investigation of both groups is timely and important, yet, it requires easy access and cultivation. We have now discovered Lokiarchaeota in local, accessible environments and were able to successfully cultivate thermophilic Thaumarchaeota. In this proposal, we will characterize the metabolic and structural traits of these two archaeal lineages and reconstruct their evolutionary ancestry in the context of the TACK+L superphylum. Beside the use of cutting edge techniques for cultivation, metagenomics and stable-isotope-based imaging, a novel method will be developed for in situ metatranscriptomic analyses of archaea. This project will give fundamental insights into the ecological success of Archaea in commonplace environments and into the biology of the closest living prokaryotic relatives of Eukaryotes. Reconstructing the ancestral gene repertoire and biological features of lineages of the TACK+L superphylum will help resolve the enigma of the emergence of eukaryotes.
Summary
The emergence of complex eukaryotic life forms on Earth from prokaryotic cells is one of the most fundamental questions in biology and also one of the least understood transitions in evolution. Phylogenomic studies recently indicated that the eukaryotic line of descent arose from within the TACK+L superphylum of Archaea. This proposal addresses the systematic analysis of two newly discovered, but largely uncharacterized lineages of Archaea from this superphylum that mark crucial evolutionary transitions. Thaumarchaeota harbor unique ‘eukaryotic’ features and represent the sole group of Archaea that has successfully radiated into virtually any moderate habitat on Earth. The Lokiarchaeota lineage found recently in deep marine sediments forms a direct sister group of Eukaryotes and exhibits an unprecedented array of genes that might have been instrumental for the ancestor of eukaryotes to develop its cellular and genomic complexity. Obviously, the molecular and biochemical investigation of both groups is timely and important, yet, it requires easy access and cultivation. We have now discovered Lokiarchaeota in local, accessible environments and were able to successfully cultivate thermophilic Thaumarchaeota. In this proposal, we will characterize the metabolic and structural traits of these two archaeal lineages and reconstruct their evolutionary ancestry in the context of the TACK+L superphylum. Beside the use of cutting edge techniques for cultivation, metagenomics and stable-isotope-based imaging, a novel method will be developed for in situ metatranscriptomic analyses of archaea. This project will give fundamental insights into the ecological success of Archaea in commonplace environments and into the biology of the closest living prokaryotic relatives of Eukaryotes. Reconstructing the ancestral gene repertoire and biological features of lineages of the TACK+L superphylum will help resolve the enigma of the emergence of eukaryotes.
Max ERC Funding
2 500 000 €
Duration
Start date: 2016-08-01, End date: 2021-07-31