Project acronym 2-HIT
Project Genetic interaction networks: From C. elegans to human disease
Researcher (PI) Ben Lehner
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Country Spain
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Summary
Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Max ERC Funding
1 100 000 €
Duration
Start date: 2008-09-01, End date: 2014-04-30
Project acronym 2D-TOPSENSE
Project Tunable optoelectronic devices by strain engineering of 2D semiconductors
Researcher (PI) Andres CASTELLANOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Summary
The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Max ERC Funding
1 930 437 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym 3DScavengers
Project Three-dimensional nanoscale design for the all-in-one solution to environmental multisource energy scavenging
Researcher (PI) Ana Isabel BORRAS MARTOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), PE8, ERC-2019-STG
Summary Imagine a technology for powering your smart devices by recovering energy from lights in your office, the random movements of your body while reading these lines or from small changes in temperature when you breathe or go out for a walk. This very technology will provide energy for wireless sensor networks monitoring the air in your city or the structural stability of buildings and large constructions remotely and sustainably, avoiding battery recharging or even replacing them. These are the challenges in micro energy harvesting from (local) ambient sources.
Kinetic, thermal and solar energies are ubiquitous at our surroundings under diverse forms, but their relatively low intensity and intermittent availability limit their potential recovery by microscale devices. These restrictions call for multi-source energy harvesters working under two principles: 1) combining different single-source harvesters in one device, or 2) using multifunctional materials capable of simultaneously converting various energy sources into electricity. In 1), efficiency per unit volume can decrease compared to the individual counterparts; in 2), materials as semiconductors, polymeric and oxide ferroelectrics and hybrid perovskites may act as multisource harvesters but huge advances are required to optimize their functionalities and sustainable fabrication at large scale.
I propose to fill the gap between these approaches offering an all-in-one solution to multisource energy scavenging, based on the nanoscale design of multifunctional three-dimensional materials. The demonstration of an industrially scalable one-reactor plasma/vacuum method will be crucial to integrate hybrid-scavenging components and to provide 3DScavengers materials with tailored microstructure-enhanced performance.
My ultimate goal is to build nanoarchitectures for simultaneous and enhanced individual scavenging applying photovoltaic, piezo- and pyro-electric effects, minimizing the environmental cost of their synthesis
Summary
Imagine a technology for powering your smart devices by recovering energy from lights in your office, the random movements of your body while reading these lines or from small changes in temperature when you breathe or go out for a walk. This very technology will provide energy for wireless sensor networks monitoring the air in your city or the structural stability of buildings and large constructions remotely and sustainably, avoiding battery recharging or even replacing them. These are the challenges in micro energy harvesting from (local) ambient sources.
Kinetic, thermal and solar energies are ubiquitous at our surroundings under diverse forms, but their relatively low intensity and intermittent availability limit their potential recovery by microscale devices. These restrictions call for multi-source energy harvesters working under two principles: 1) combining different single-source harvesters in one device, or 2) using multifunctional materials capable of simultaneously converting various energy sources into electricity. In 1), efficiency per unit volume can decrease compared to the individual counterparts; in 2), materials as semiconductors, polymeric and oxide ferroelectrics and hybrid perovskites may act as multisource harvesters but huge advances are required to optimize their functionalities and sustainable fabrication at large scale.
I propose to fill the gap between these approaches offering an all-in-one solution to multisource energy scavenging, based on the nanoscale design of multifunctional three-dimensional materials. The demonstration of an industrially scalable one-reactor plasma/vacuum method will be crucial to integrate hybrid-scavenging components and to provide 3DScavengers materials with tailored microstructure-enhanced performance.
My ultimate goal is to build nanoarchitectures for simultaneous and enhanced individual scavenging applying photovoltaic, piezo- and pyro-electric effects, minimizing the environmental cost of their synthesis
Max ERC Funding
1 498 414 €
Duration
Start date: 2020-03-01, End date: 2025-02-28
Project acronym 4D-BIOMAP
Project Biomechanical Stimulation based on 4D Printed Magneto-Active Polymers
Researcher (PI) DANIEL GARCIA GONZALEZ
Host Institution (HI) UNIVERSIDAD CARLOS III DE MADRID
Country Spain
Call Details Starting Grant (StG), PE8, ERC-2020-STG
Summary MAPs are polymer-based composites that respond to magnetic fields with large deformation or tuneable mechanical properties. I aim to apply heterogeneous 3D printed MAPs as modifiable substrates to support biological structures which can have their deformation state and stiffness controlled by the external application of magnetic stimuli. Such mechanical stimulation has an important role on biological structures leading to alterations in functional responses, morphological changes and activation of growth or healing processes. Current bottlenecks preventing progress in this field are a lack of: a) appropriate experimental methodologies to enable characterisation of the behaviour of these materials; b) fundamental theoretical underpinnings to support the design and application of these new materials. The first step is to undertake in depth characterisation and assessment of 4D printed MAPs to create a detailed understanding of the underlying physics controlling the interactions between the polymeric matrices and embedded magnetic particles during application of mechanical and/or magnetic loadings. I will then culture biological structures on the novel 4D printed MAPs to create a ‘designed’ biostructure with specified and controllable responses to a given magnetic stimulus. These novel biostructures will be assessed using three applications: a) astrocyte cellular networks, b) neuronal circuits and c) astrocyte-neuronal networks. The evaluation of cellular damage, morphological and physiological alterations will validate the performance of the new biostructures and also contribute new understanding to the effects of deformation and stiffness gradients during glial scarring on physiological functions of central nervous system cells. The resulting deep understanding of magneto-mechanics of MAPs and their further development for controllable stimulation devices, will enable the international consolidation of my research group within the mechanics and bioengineering fields.
Summary
MAPs are polymer-based composites that respond to magnetic fields with large deformation or tuneable mechanical properties. I aim to apply heterogeneous 3D printed MAPs as modifiable substrates to support biological structures which can have their deformation state and stiffness controlled by the external application of magnetic stimuli. Such mechanical stimulation has an important role on biological structures leading to alterations in functional responses, morphological changes and activation of growth or healing processes. Current bottlenecks preventing progress in this field are a lack of: a) appropriate experimental methodologies to enable characterisation of the behaviour of these materials; b) fundamental theoretical underpinnings to support the design and application of these new materials. The first step is to undertake in depth characterisation and assessment of 4D printed MAPs to create a detailed understanding of the underlying physics controlling the interactions between the polymeric matrices and embedded magnetic particles during application of mechanical and/or magnetic loadings. I will then culture biological structures on the novel 4D printed MAPs to create a ‘designed’ biostructure with specified and controllable responses to a given magnetic stimulus. These novel biostructures will be assessed using three applications: a) astrocyte cellular networks, b) neuronal circuits and c) astrocyte-neuronal networks. The evaluation of cellular damage, morphological and physiological alterations will validate the performance of the new biostructures and also contribute new understanding to the effects of deformation and stiffness gradients during glial scarring on physiological functions of central nervous system cells. The resulting deep understanding of magneto-mechanics of MAPs and their further development for controllable stimulation devices, will enable the international consolidation of my research group within the mechanics and bioengineering fields.
Max ERC Funding
1 499 625 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym 4SUNS
Project 4-Colours/2-Junctions of III-V semiconductors on Si to use in electronics devices and solar cells
Researcher (PI) MarIa Nair LOPEZ MARTINEZ
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Country Spain
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Summary
It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Max ERC Funding
1 499 719 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym AMORE
Project A distributional MOdel of Reference to Entities
Researcher (PI) Gemma BOLEDA TORRENT
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Country Spain
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary "When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Summary
"When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Max ERC Funding
1 499 805 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym ANGEOM
Project Geometric analysis in the Euclidean space
Researcher (PI) Xavier Tolsa Domenech
Host Institution (HI) UNIVERSIDAD AUTONOMA DE BARCELONA
Country Spain
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary "We propose to study different questions in the area of the so called geometric analysis. Most of the topics we are interested in deal with the connection between the behavior of singular integrals and the geometry of sets and measures. The study of this connection has been shown to be extremely helpful in the solution of certain long standing problems in the last years, such as the solution of the Painlev\'e problem or the obtaining of the optimal distortion bounds for quasiconformal mappings by Astala.
More specifically, we would like to study the relationship between the L^2 boundedness of singular integrals associated with Riesz and other related kernels, and rectifiability and other geometric notions. The so called David-Semmes problem is probably the main open problem in this area. Up to now, the techniques used to deal with this problem come from multiscale analysis and involve ideas from Littlewood-Paley theory and quantitative techniques of rectifiability. We propose to apply new ideas that combine variational arguments with other techniques which have connections with mass transportation. Further, we think that it is worth to explore in more detail the connection among mass transportation, singular integrals, and uniform rectifiability.
We are also interested in the field of quasiconformal mappings. We plan to study a problem regarding the quasiconformal distortion of quasicircles. This problem consists in proving that the bounds obtained recently by S. Smirnov on the dimension of K-quasicircles are optimal. We want to apply techniques from quantitative geometric measure theory to deal with this question.
Another question that we intend to explore lies in the interplay of harmonic analysis, geometric measure theory and partial differential equations. This concerns an old problem on the unique continuation of harmonic functions at the boundary open C^1 or Lipschitz domain. All the results known by now deal with smoother Dini domains."
Summary
"We propose to study different questions in the area of the so called geometric analysis. Most of the topics we are interested in deal with the connection between the behavior of singular integrals and the geometry of sets and measures. The study of this connection has been shown to be extremely helpful in the solution of certain long standing problems in the last years, such as the solution of the Painlev\'e problem or the obtaining of the optimal distortion bounds for quasiconformal mappings by Astala.
More specifically, we would like to study the relationship between the L^2 boundedness of singular integrals associated with Riesz and other related kernels, and rectifiability and other geometric notions. The so called David-Semmes problem is probably the main open problem in this area. Up to now, the techniques used to deal with this problem come from multiscale analysis and involve ideas from Littlewood-Paley theory and quantitative techniques of rectifiability. We propose to apply new ideas that combine variational arguments with other techniques which have connections with mass transportation. Further, we think that it is worth to explore in more detail the connection among mass transportation, singular integrals, and uniform rectifiability.
We are also interested in the field of quasiconformal mappings. We plan to study a problem regarding the quasiconformal distortion of quasicircles. This problem consists in proving that the bounds obtained recently by S. Smirnov on the dimension of K-quasicircles are optimal. We want to apply techniques from quantitative geometric measure theory to deal with this question.
Another question that we intend to explore lies in the interplay of harmonic analysis, geometric measure theory and partial differential equations. This concerns an old problem on the unique continuation of harmonic functions at the boundary open C^1 or Lipschitz domain. All the results known by now deal with smoother Dini domains."
Max ERC Funding
1 105 930 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym ANIMETRICS
Project Measurement-Based Modeling and Animation of Complex Mechanical Phenomena
Researcher (PI) Miguel Angel Otaduy Tristan
Host Institution (HI) UNIVERSIDAD REY JUAN CARLOS
Country Spain
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary Computer animation has traditionally been associated with applications in virtual-reality-based training, video games or feature films. However, interactive animation is gaining relevance in a more general scope, as a tool for early-stage analysis, design and planning in many applications in science and engineering. The user can get quick and visual feedback of the results, and then proceed by refining the experiments or designs. Potential applications include nanodesign, e-commerce or tactile telecommunication, but they also reach as far as, e.g., the analysis of ecological, climate, biological or physiological processes.
The application of computer animation is extremely limited in comparison to its potential outreach due to a trade-off between accuracy and computational efficiency. Such trade-off is induced by inherent complexity sources such as nonlinear or anisotropic behaviors, heterogeneous properties, or high dynamic ranges of effects.
The Animetrics project proposes a modeling and animation methodology, which consists of a multi-scale decomposition of complex processes, the description of the process at each scale through combination of simple local models, and fitting the parameters of those local models using large amounts of data from example effects. The modeling and animation methodology will be explored on specific problems arising in complex mechanical phenomena, including viscoelasticity of solids and thin shells, multi-body contact, granular and liquid flow, and fracture of solids.
Summary
Computer animation has traditionally been associated with applications in virtual-reality-based training, video games or feature films. However, interactive animation is gaining relevance in a more general scope, as a tool for early-stage analysis, design and planning in many applications in science and engineering. The user can get quick and visual feedback of the results, and then proceed by refining the experiments or designs. Potential applications include nanodesign, e-commerce or tactile telecommunication, but they also reach as far as, e.g., the analysis of ecological, climate, biological or physiological processes.
The application of computer animation is extremely limited in comparison to its potential outreach due to a trade-off between accuracy and computational efficiency. Such trade-off is induced by inherent complexity sources such as nonlinear or anisotropic behaviors, heterogeneous properties, or high dynamic ranges of effects.
The Animetrics project proposes a modeling and animation methodology, which consists of a multi-scale decomposition of complex processes, the description of the process at each scale through combination of simple local models, and fitting the parameters of those local models using large amounts of data from example effects. The modeling and animation methodology will be explored on specific problems arising in complex mechanical phenomena, including viscoelasticity of solids and thin shells, multi-body contact, granular and liquid flow, and fracture of solids.
Max ERC Funding
1 277 969 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym APACHE
Project Atmospheric Pressure plAsma meets biomaterials for bone Cancer HEaling
Researcher (PI) Cristina CANAL BARNILS
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Country Spain
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Summary
Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Max ERC Funding
1 499 887 €
Duration
Start date: 2017-04-01, End date: 2022-12-31
Project acronym ApeGenomeDiversity
Project Great ape genome variation now and then: current diversity and genomic relics of extinct primates
Researcher (PI) Tomas MARQUES BONET
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Country Spain
Call Details Consolidator Grant (CoG), LS2, ERC-2019-COG
Summary In our quest to fully understand the processes that shape the genomic variation of species, describing variation of the past is a fundamental objective. However, the origins and the extent of great ape variation, the genomic description of extinct primate species and the genomic footprints of introgression events all remain unknown. Even today, and in contraposition to human evolutionary biology, the almost null presence of ancient great ape samples has precluded a comprehensive exploration of such diversity.
Here, I present two approaches that will expose great ape diversity throughout time and will allow me to compare the genomic impact of introgression events across lineages. First, I would like to take advantage of ancient ape samples that will provide us with a direct view of the genomes of extinct populations. Second, I would like to exploit current and recent diversity to indirectly access the parts of extinct ape genomes that became hybridized with current species in the past. For the latter, we will analyse hundreds of non-invasive samples taken from present-day great apes as well as historical specimens. Altogether, this information will enable me to decipher novel genomes that until now have been lost in time. In this way, I will be able to properly understand the origins and dynamics of genomic variants and to study how admixture has contributed to today´s adaptive landscape.
By completing this proposal and performing analogies to the human lineage, fundamental insights will be revealed about (i) the spatial-temporal history of our closest species and (ii) the functional consequences of introgressed events. On top of that, these results will help to annotate functional consequences of novel mutations in the human genome. In so doing, a fundamental insight will be provided into the evolutionary history of these regions and into human mutations with multiple repercussions in the understanding of evolution and human biology.
Summary
In our quest to fully understand the processes that shape the genomic variation of species, describing variation of the past is a fundamental objective. However, the origins and the extent of great ape variation, the genomic description of extinct primate species and the genomic footprints of introgression events all remain unknown. Even today, and in contraposition to human evolutionary biology, the almost null presence of ancient great ape samples has precluded a comprehensive exploration of such diversity.
Here, I present two approaches that will expose great ape diversity throughout time and will allow me to compare the genomic impact of introgression events across lineages. First, I would like to take advantage of ancient ape samples that will provide us with a direct view of the genomes of extinct populations. Second, I would like to exploit current and recent diversity to indirectly access the parts of extinct ape genomes that became hybridized with current species in the past. For the latter, we will analyse hundreds of non-invasive samples taken from present-day great apes as well as historical specimens. Altogether, this information will enable me to decipher novel genomes that until now have been lost in time. In this way, I will be able to properly understand the origins and dynamics of genomic variants and to study how admixture has contributed to today´s adaptive landscape.
By completing this proposal and performing analogies to the human lineage, fundamental insights will be revealed about (i) the spatial-temporal history of our closest species and (ii) the functional consequences of introgressed events. On top of that, these results will help to annotate functional consequences of novel mutations in the human genome. In so doing, a fundamental insight will be provided into the evolutionary history of these regions and into human mutations with multiple repercussions in the understanding of evolution and human biology.
Max ERC Funding
1 896 875 €
Duration
Start date: 2020-06-01, End date: 2025-05-31
Project acronym ARISYS
Project Engineering an artificial immune system with functional components assembled from prokaryotic parts and modules
Researcher (PI) VIctor De Lorenzo Prieto
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), LS9, ERC-2012-ADG_20120314
Summary The objective of this project is to overcome current limitations for antibody production that are inherent to the extant immune system of vertebrates. This will be done by creating an all-in-one artificial/synthetic counterpart based exclusively on prokaryotic parts, devices and modules. To this end, ARISYS will exploit design concepts, construction hierarchies and standardization notions that stem from contemporary Synthetic Biology for the assembly and validation of (what we believe is) the most complex artificial biological system ventured thus far. This all-bacterial immune-like system will not only simplify and make affordable the manipulations necessary for antibody generation, but will also permit the application of such binders by themselves or displayed on bacterial cells to biotechnological challenges well beyond therapeutic and health-related uses. The work plan involves the assembly and validation of autonomous functional modules for [i] displaying antibody/affibody (AB) scaffolds attached to the surface of bacterial cells, [ii] conditional diversification of target-binding sequences of the ABs, [iii] contact-dependent activation of gene expression, [iv] reversible bi-stable switches, and [v] clonal selection and amplification of improved binders. These modules composed of stand-alone parts and bearing well defined input/output functions, will be assembled in the genomic chassis of streamlined Escherichia coli and Pseudomonas putida strains. The resulting molecular network will make the ABs expressed and displayed on the cell surface to proceed spontaneously (or at the user's decision) through subsequent cycles of affinity and specificity maturation towards antigens or other targets presented to the bacterial population. In this way, a single, easy-to-handle (albeit heavily engineered) strain will govern all operations that are typically scattered in a multitude of separate methods and apparatuses for AB production.
Summary
The objective of this project is to overcome current limitations for antibody production that are inherent to the extant immune system of vertebrates. This will be done by creating an all-in-one artificial/synthetic counterpart based exclusively on prokaryotic parts, devices and modules. To this end, ARISYS will exploit design concepts, construction hierarchies and standardization notions that stem from contemporary Synthetic Biology for the assembly and validation of (what we believe is) the most complex artificial biological system ventured thus far. This all-bacterial immune-like system will not only simplify and make affordable the manipulations necessary for antibody generation, but will also permit the application of such binders by themselves or displayed on bacterial cells to biotechnological challenges well beyond therapeutic and health-related uses. The work plan involves the assembly and validation of autonomous functional modules for [i] displaying antibody/affibody (AB) scaffolds attached to the surface of bacterial cells, [ii] conditional diversification of target-binding sequences of the ABs, [iii] contact-dependent activation of gene expression, [iv] reversible bi-stable switches, and [v] clonal selection and amplification of improved binders. These modules composed of stand-alone parts and bearing well defined input/output functions, will be assembled in the genomic chassis of streamlined Escherichia coli and Pseudomonas putida strains. The resulting molecular network will make the ABs expressed and displayed on the cell surface to proceed spontaneously (or at the user's decision) through subsequent cycles of affinity and specificity maturation towards antigens or other targets presented to the bacterial population. In this way, a single, easy-to-handle (albeit heavily engineered) strain will govern all operations that are typically scattered in a multitude of separate methods and apparatuses for AB production.
Max ERC Funding
2 422 271 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym AUTAR
Project A Unified Theory of Algorithmic Relaxations
Researcher (PI) Albert Atserias Peri
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Country Spain
Call Details Consolidator Grant (CoG), PE6, ERC-2014-CoG
Summary For a large family of computational problems collectively known as constrained optimization and satisfaction problems (CSPs), four decades of research in algorithms and computational complexity have led to a theory that tries to classify them as algorithmically tractable vs. intractable, i.e. polynomial-time solvable vs. NP-hard. However, there remains an important gap in our knowledge in that many CSPs of interest resist classification by this theory. Some such problems of practical relevance include fundamental partition problems in graph theory, isomorphism problems in combinatorics, and strategy-design problems in mathematical game theory. To tackle this gap in our knowledge, the research of the last decade has been driven either by finding hard instances for algorithms that solve tighter and tighter relaxations of the original problem, or by formulating new hardness-hypotheses that are stronger but admittedly less robust than NP-hardness.
The ultimate goal of this project is closing the gap between the partial progress that these approaches represent and the original classification project into tractable vs. intractable problems. Our thesis is that the field has reached a point where, in many cases of interest, the analysis of the current candidate algorithms that appear to solve all instances could suffice to classify the problem one way or the other, without the need for alternative hardness-hypotheses. The novelty in our approach is a program to develop our recent discovery that, in some cases of interest, two methods from different areas match in strength: indistinguishability pebble games from mathematical logic, and hierarchies of convex relaxations from mathematical programming. Thus, we aim at making significant advances in the status of important algorithmic problems by looking for a general theory that unifies and goes beyond the current understanding of its components.
Summary
For a large family of computational problems collectively known as constrained optimization and satisfaction problems (CSPs), four decades of research in algorithms and computational complexity have led to a theory that tries to classify them as algorithmically tractable vs. intractable, i.e. polynomial-time solvable vs. NP-hard. However, there remains an important gap in our knowledge in that many CSPs of interest resist classification by this theory. Some such problems of practical relevance include fundamental partition problems in graph theory, isomorphism problems in combinatorics, and strategy-design problems in mathematical game theory. To tackle this gap in our knowledge, the research of the last decade has been driven either by finding hard instances for algorithms that solve tighter and tighter relaxations of the original problem, or by formulating new hardness-hypotheses that are stronger but admittedly less robust than NP-hardness.
The ultimate goal of this project is closing the gap between the partial progress that these approaches represent and the original classification project into tractable vs. intractable problems. Our thesis is that the field has reached a point where, in many cases of interest, the analysis of the current candidate algorithms that appear to solve all instances could suffice to classify the problem one way or the other, without the need for alternative hardness-hypotheses. The novelty in our approach is a program to develop our recent discovery that, in some cases of interest, two methods from different areas match in strength: indistinguishability pebble games from mathematical logic, and hierarchies of convex relaxations from mathematical programming. Thus, we aim at making significant advances in the status of important algorithmic problems by looking for a general theory that unifies and goes beyond the current understanding of its components.
Max ERC Funding
1 725 656 €
Duration
Start date: 2015-06-01, End date: 2020-09-30
Project acronym BacBio
Project Mechanistic and functional studies of Bacillus biofilms assembly on plants, and their impact in sustainable agriculture and food safety
Researcher (PI) Diego Francisco Romero Hinojosa
Host Institution (HI) UNIVERSIDAD DE MALAGA
Country Spain
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Sustainable agriculture is an ambitious concept conceived to improve productivity but minimizing side effects. Why the efficiency of a biocontrol agent is so variable? How can different therapies be efficiently exploited in a combined way to combat microbial diseases? These are questions that need investigation to convey with criteria of sustainability. What I present is an integral proposal aim to study the microbial ecology and specifically bacterial biofilms as a central axis of two differential but likely interconnected scenarios in plant health: i) the beneficial interaction of the biocontrol agent (BCA) Bacillus subtilis, and ii) the non-conventional interaction of the food-borne pathogen Bacillus cereus.
I will start working with B. subtilis, and reasons are: 1) Different isolates are promising BCAs and are commercialized for such purpose, 2) There exist vast information of the genetics circuitries that govern important aspects of B. subtilis physiology as antibiotic production, cell differentiation, and biofilm formation. In parallel I propose to study the way B. cereus, a food-borne pathogenic bacterium interacts with vegetables. I am planning to set up a multidisciplinary approach that will combine genetics, biochemistry, proteomics, cell biology and molecular biology to visualize how these bacterial population interacts, communicates with plants and other microorganisms, or how all these factors trigger or inhibit the developmental program ending in biofilm formation. I am also interested on knowing if structural components of the bacterial extracellular matrix (exopolysaccharides or amyloid proteins) are important for bacterial fitness. If this were the case, I will also investigate which external factors affect their expression and assembly in functional biofilms. The insights get on these studies are committed to impulse our knowledge on microbial ecology and their biotechnological applicability to sustainable agriculture and food safety.
Summary
Sustainable agriculture is an ambitious concept conceived to improve productivity but minimizing side effects. Why the efficiency of a biocontrol agent is so variable? How can different therapies be efficiently exploited in a combined way to combat microbial diseases? These are questions that need investigation to convey with criteria of sustainability. What I present is an integral proposal aim to study the microbial ecology and specifically bacterial biofilms as a central axis of two differential but likely interconnected scenarios in plant health: i) the beneficial interaction of the biocontrol agent (BCA) Bacillus subtilis, and ii) the non-conventional interaction of the food-borne pathogen Bacillus cereus.
I will start working with B. subtilis, and reasons are: 1) Different isolates are promising BCAs and are commercialized for such purpose, 2) There exist vast information of the genetics circuitries that govern important aspects of B. subtilis physiology as antibiotic production, cell differentiation, and biofilm formation. In parallel I propose to study the way B. cereus, a food-borne pathogenic bacterium interacts with vegetables. I am planning to set up a multidisciplinary approach that will combine genetics, biochemistry, proteomics, cell biology and molecular biology to visualize how these bacterial population interacts, communicates with plants and other microorganisms, or how all these factors trigger or inhibit the developmental program ending in biofilm formation. I am also interested on knowing if structural components of the bacterial extracellular matrix (exopolysaccharides or amyloid proteins) are important for bacterial fitness. If this were the case, I will also investigate which external factors affect their expression and assembly in functional biofilms. The insights get on these studies are committed to impulse our knowledge on microbial ecology and their biotechnological applicability to sustainable agriculture and food safety.
Max ERC Funding
1 453 563 €
Duration
Start date: 2015-03-01, End date: 2021-02-28
Project acronym BEMOTHER
Project Becoming a mother: An integrative model of adaptations for motherhood during pregnancy and the postpartum period.
Researcher (PI) Oscar VILARROYA
Host Institution (HI) UNIVERSIDAD AUTONOMA DE BARCELONA
Country Spain
Call Details Advanced Grant (AdG), SH4, ERC-2019-ADG
Summary Pregnancy involves biological adaptations that are necessary for the onset, maintenance and regulation of maternal behavior. We were the first group to find (1, 2) that pregnancy is associated with consistent, pronounced and long-lasting reductions in cerebral gray matter (GM) volume in areas of the social-cognition network. The aim of BEMOTHER is to develop an integrative model of the adaptations for motherhood that occur during pregnancy and the postpartum period by: i) establishing when the brain of pregnant women begins to change and how it evolves; ii) characterizing the dynamics of cognitive performance, theory-of-mind, maternal-infant bonding and psychiatric measures; iii) assessing the effect of environmental and/or psychological factors in the maternal adaptations, iv) identifying the metabolomics biomarkers associated with maternal adaptations, and v) integrating the previous findings within the Research Domain Criteria framework (RDoC) (3). We will use a prospective longitudinal design at 5 time points (1 pre-pregnancy session, 2 intra-pregnancy sessions and 2 postpartum sessions) during which neuroimaging, psychological, behavioral and metabolomics data will be acquired in 3 groups of women: a group of nulliparous women who will be undergoing a full-term pregnancy, another group of nulliparous women whose same-sex partners will undergo a full-term pregnancy, and a group of control nulliparous women. We will provide the longitudinal RDoC-based model at the end of the study, but we will also deliver intermediate longitudinal evaluations after the postpartum session, as well as cross-sectional analyses after the first intra-pregnancy session and the postpartum session. BEMOTHER is timely and innovative. It adopts the translational RDoC framework in order to provide a pioneering, comprehensive and dynamic characterization of the adaptations for motherhood, addressing the interaction among different functional domains at different levels of analysis.
Summary
Pregnancy involves biological adaptations that are necessary for the onset, maintenance and regulation of maternal behavior. We were the first group to find (1, 2) that pregnancy is associated with consistent, pronounced and long-lasting reductions in cerebral gray matter (GM) volume in areas of the social-cognition network. The aim of BEMOTHER is to develop an integrative model of the adaptations for motherhood that occur during pregnancy and the postpartum period by: i) establishing when the brain of pregnant women begins to change and how it evolves; ii) characterizing the dynamics of cognitive performance, theory-of-mind, maternal-infant bonding and psychiatric measures; iii) assessing the effect of environmental and/or psychological factors in the maternal adaptations, iv) identifying the metabolomics biomarkers associated with maternal adaptations, and v) integrating the previous findings within the Research Domain Criteria framework (RDoC) (3). We will use a prospective longitudinal design at 5 time points (1 pre-pregnancy session, 2 intra-pregnancy sessions and 2 postpartum sessions) during which neuroimaging, psychological, behavioral and metabolomics data will be acquired in 3 groups of women: a group of nulliparous women who will be undergoing a full-term pregnancy, another group of nulliparous women whose same-sex partners will undergo a full-term pregnancy, and a group of control nulliparous women. We will provide the longitudinal RDoC-based model at the end of the study, but we will also deliver intermediate longitudinal evaluations after the postpartum session, as well as cross-sectional analyses after the first intra-pregnancy session and the postpartum session. BEMOTHER is timely and innovative. It adopts the translational RDoC framework in order to provide a pioneering, comprehensive and dynamic characterization of the adaptations for motherhood, addressing the interaction among different functional domains at different levels of analysis.
Max ERC Funding
2 465 131 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym BETTERSENSE
Project Nanodevice Engineering for a Better Chemical Gas Sensing Technology
Researcher (PI) Juan Daniel Prades Garcia
Host Institution (HI) UNIVERSITAT DE BARCELONA
Country Spain
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Summary
BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Max ERC Funding
1 498 452 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIGSEA
Project Biogeochemical and ecosystem interactions with socio-economic activity in the global ocean
Researcher (PI) Eric Douglas Galbraith
Host Institution (HI) UNIVERSIDAD AUTONOMA DE BARCELONA
Country Spain
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary The global marine ecosystem is being deeply altered by human activity. On the one hand, rising concentrations of atmospheric greenhouse gases are changing the physical and chemical state of the ocean, exerting pressure from the bottom up. Meanwhile, the global fishery has provided large economic benefits, but in so doing has restructured ecosystems by removing most of the large animal biomass, a major top-down change. Although there has been a tremendous amount of research into isolated aspects of these impacts, the development of a holistic understanding of the full interactions between physics, chemistry, ecology and economic activity might appear impossible, given the myriad complexities. This proposal lays out a strategy to assemble a team of trans-disciplinary expertise, that will develop a unified, data-constrained, grid-based modeling framework to represent the most important interactions of the global human-ocean system. Building this framework requires solving a series of fundamental problems that currently hinder the development of the full model. If these problems can be solved, the resulting model will reveal novel emergent properties and open the doors to a range of previously unexplored questions of high impact across a range of disciplines. Key questions include the ways in which animals interact with oxygen minimum zones with implications for fisheries, the impacts fish harvesting may have on nutrient recycling, spatio-temporal interactions between managed and unmanaged fisheries, and fundamental questions about the relationships between fish price, fishing cost, and multiple markets in a changing world. Just as the first coupled ocean-atmosphere models revealed a wealth of new behaviours, the coupled human-ocean model proposed here has the potential to launch multiple new fields of enquiry. It is hoped that the novel approach will contribute to a paradigm shift that treats human activity as one component within the framework of the Earth System.
Summary
The global marine ecosystem is being deeply altered by human activity. On the one hand, rising concentrations of atmospheric greenhouse gases are changing the physical and chemical state of the ocean, exerting pressure from the bottom up. Meanwhile, the global fishery has provided large economic benefits, but in so doing has restructured ecosystems by removing most of the large animal biomass, a major top-down change. Although there has been a tremendous amount of research into isolated aspects of these impacts, the development of a holistic understanding of the full interactions between physics, chemistry, ecology and economic activity might appear impossible, given the myriad complexities. This proposal lays out a strategy to assemble a team of trans-disciplinary expertise, that will develop a unified, data-constrained, grid-based modeling framework to represent the most important interactions of the global human-ocean system. Building this framework requires solving a series of fundamental problems that currently hinder the development of the full model. If these problems can be solved, the resulting model will reveal novel emergent properties and open the doors to a range of previously unexplored questions of high impact across a range of disciplines. Key questions include the ways in which animals interact with oxygen minimum zones with implications for fisheries, the impacts fish harvesting may have on nutrient recycling, spatio-temporal interactions between managed and unmanaged fisheries, and fundamental questions about the relationships between fish price, fishing cost, and multiple markets in a changing world. Just as the first coupled ocean-atmosphere models revealed a wealth of new behaviours, the coupled human-ocean model proposed here has the potential to launch multiple new fields of enquiry. It is hoped that the novel approach will contribute to a paradigm shift that treats human activity as one component within the framework of the Earth System.
Max ERC Funding
1 600 000 €
Duration
Start date: 2016-07-01, End date: 2021-12-31
Project acronym BILITERACY
Project Bi-literacy: Learning to read in L1 and in L2
Researcher (PI) Manuel Francisco Carreiras Valina
Host Institution (HI) BCBL BASQUE CENTER ON COGNITION BRAIN AND LANGUAGE
Country Spain
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary Learning to read is probably one of the most exciting discoveries in our life. Using a longitudinal approach, the research proposed examines how the human brain responds to two major challenges: (a) the instantiation a complex cognitive function for which there is no genetic blueprint (learning to read in a first language, L1), and (b) the accommodation to new statistical regularities when learning to read in a second language (L2). The aim of the present research project is to identify the neural substrates of the reading process and its constituent cognitive components, with specific attention to individual differences and reading disabilities; as well as to investigate the relationship between specific cognitive functions and the changes in neural activity that take place in the course of learning to read in L1 and in L2. The project will employ a longitudinal design. We will recruit children before they learn to read in L1 and in L2 and track reading development with both cognitive and neuroimaging measures over 24 months. The findings from this project will provide a deeper understanding of (a) how general neurocognitive factors and language specific factors underlie individual differences – and reading disabilities– in reading acquisition in L1 and in L2; (b) how the neuro-cognitive circuitry changes and brain mechanisms synchronize while instantiating reading in L1 and in L2; (c) what the limitations and the extent of brain plasticity are in young readers. An interdisciplinary and multi-methodological approach is one of the keys to success of the present project, along with strong theory-driven investigation. By combining both we will generate breakthroughs to advance our understanding of how literacy in L1 and in L2 is acquired and mastered. The research proposed will also lay the foundations for more applied investigations of best practice in teaching reading in first and subsequent languages, and devising intervention methods for reading disabilities.
Summary
Learning to read is probably one of the most exciting discoveries in our life. Using a longitudinal approach, the research proposed examines how the human brain responds to two major challenges: (a) the instantiation a complex cognitive function for which there is no genetic blueprint (learning to read in a first language, L1), and (b) the accommodation to new statistical regularities when learning to read in a second language (L2). The aim of the present research project is to identify the neural substrates of the reading process and its constituent cognitive components, with specific attention to individual differences and reading disabilities; as well as to investigate the relationship between specific cognitive functions and the changes in neural activity that take place in the course of learning to read in L1 and in L2. The project will employ a longitudinal design. We will recruit children before they learn to read in L1 and in L2 and track reading development with both cognitive and neuroimaging measures over 24 months. The findings from this project will provide a deeper understanding of (a) how general neurocognitive factors and language specific factors underlie individual differences – and reading disabilities– in reading acquisition in L1 and in L2; (b) how the neuro-cognitive circuitry changes and brain mechanisms synchronize while instantiating reading in L1 and in L2; (c) what the limitations and the extent of brain plasticity are in young readers. An interdisciplinary and multi-methodological approach is one of the keys to success of the present project, along with strong theory-driven investigation. By combining both we will generate breakthroughs to advance our understanding of how literacy in L1 and in L2 is acquired and mastered. The research proposed will also lay the foundations for more applied investigations of best practice in teaching reading in first and subsequent languages, and devising intervention methods for reading disabilities.
Max ERC Funding
2 487 000 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym BIOCON
Project Biological origins of linguistic constraints
Researcher (PI) Juan Manuel Toro
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Country Spain
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Summary
The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Max ERC Funding
1 305 973 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym BIOFORCE
Project Simultaneous multi-pathway engineering in crop plants through combinatorial genetic transformation: Creating nutritionally biofortified cereal grains for food security
Researcher (PI) Paul Christou
Host Institution (HI) UNIVERSIDAD DE LLEIDA
Country Spain
Call Details Advanced Grant (AdG), LS9, ERC-2008-AdG
Summary BIOFORCE has a highly ambitious applied objective: to create transgenic cereal plants that will provide a near-complete micronutrient complement (vitamins A, C, E, folate and essential minerals Ca, Fe, Se and Zn) for malnourished people in the developing world, as well as built-in resistance to insects and parasitic weeds. This in itself represents a striking advance over current efforts to address food insecurity using applied biotechnology in the developing world. We will also address fundamental mechanistic aspects of multi-gene/pathway engineering through transcriptome and metabolome profiling. Fundamental science and applied objectives will be achieved through the application of an exciting novel technology (combinatorial genetic transformation) developed and patented by my research group. This allows the simultaneous transfer of an unlimited number of transgenes into plants followed by library-based selection of plants with appropriate genotypes and phenotypes. All transgenes integrate into one locus ensuring expression stability over multiple generations. This proposal represents a new line of research in my laboratory, founded on incremental advances in the elucidation of transgene integration mechanisms in plants over the past two and a half decades. In addition to scientific issues, BIOFORCE address challenges such as intellectual property, regulatory and biosafety issues and crucially how the fruits of our work will be taken up through philanthropic initiatives in the developing world while creating exploitable opportunities elsewhere. BIOFORCE is comprehensive and it provides a complete package that stands to make an unprecedented contribution to food security in the developing world, while at the same time generating new knowledge to streamline and simplify multiplex gene transfer and the simultaneous modification of multiple complex plant metabolic pathways
Summary
BIOFORCE has a highly ambitious applied objective: to create transgenic cereal plants that will provide a near-complete micronutrient complement (vitamins A, C, E, folate and essential minerals Ca, Fe, Se and Zn) for malnourished people in the developing world, as well as built-in resistance to insects and parasitic weeds. This in itself represents a striking advance over current efforts to address food insecurity using applied biotechnology in the developing world. We will also address fundamental mechanistic aspects of multi-gene/pathway engineering through transcriptome and metabolome profiling. Fundamental science and applied objectives will be achieved through the application of an exciting novel technology (combinatorial genetic transformation) developed and patented by my research group. This allows the simultaneous transfer of an unlimited number of transgenes into plants followed by library-based selection of plants with appropriate genotypes and phenotypes. All transgenes integrate into one locus ensuring expression stability over multiple generations. This proposal represents a new line of research in my laboratory, founded on incremental advances in the elucidation of transgene integration mechanisms in plants over the past two and a half decades. In addition to scientific issues, BIOFORCE address challenges such as intellectual property, regulatory and biosafety issues and crucially how the fruits of our work will be taken up through philanthropic initiatives in the developing world while creating exploitable opportunities elsewhere. BIOFORCE is comprehensive and it provides a complete package that stands to make an unprecedented contribution to food security in the developing world, while at the same time generating new knowledge to streamline and simplify multiplex gene transfer and the simultaneous modification of multiple complex plant metabolic pathways
Max ERC Funding
2 290 046 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym BLOODCELLSCROSSTALK
Project The Crosstalk Between Red And White Blood Cells: The Case Of Fish
Researcher (PI) Maria del Mar Ortega-Villaizan Romo
Host Institution (HI) UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE
Country Spain
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Fish are the phylogenetically oldest vertebrate group with an immune system with clear similarities to the immune system of mammals. However, it is an actual matter of fact that the current knowledge of the fish immune system seems to lack the key piece to complete the puzzle.
In 1953 Nelson described a new role of human red blood cells (RBCs) which would go beyond the simple transport of O2 to the tissues. This new role, involved in the defence against microbes, described the antibody and complement-dependent binding of microbial immune complexes to RBCs. Regardless of the importance of this finding in the field of microbial infection, this phenomenon has been poorly evaluated. Just recently, a set of biological processes relevant to immunity have been described in the RBCs of a diverse group of organisms, which include: pathogen recognition, pathogen binding and clearance and cytokines production. Furthermore, it has been demonstrated that nucleated erythrocytes from fish and avian species develop specific responses to different pathogen associated molecular patterns and produce soluble factors that modulate leukocyte activity.
In the light of these pieces of evidences, and in an attempt to improve the knowledge of the immune mechanism(s) responsible for fish protection against viral infections, we raised the question: could nucleated fish erythrocytes be the key mediators of the antiviral responses? To answer this question we decided to focus our project on the evaluation of the crosstalk between red and white blood cells in the scenario of fish viral infections and prophylaxis. For that a working model composed of the rainbow trout and the viral haemorrhagic septicaemia virus (VHSV) was chosen, being the objectives of the project to evaluate: i) the implication trout RBCs (tRBCs) in the clearance of VHSV, and ii) the involvement of tRBCs in the blood transportation of the glycoprotein G of VHSV (GVHSV), the antigen encoded by the DNA vaccine.
Summary
Fish are the phylogenetically oldest vertebrate group with an immune system with clear similarities to the immune system of mammals. However, it is an actual matter of fact that the current knowledge of the fish immune system seems to lack the key piece to complete the puzzle.
In 1953 Nelson described a new role of human red blood cells (RBCs) which would go beyond the simple transport of O2 to the tissues. This new role, involved in the defence against microbes, described the antibody and complement-dependent binding of microbial immune complexes to RBCs. Regardless of the importance of this finding in the field of microbial infection, this phenomenon has been poorly evaluated. Just recently, a set of biological processes relevant to immunity have been described in the RBCs of a diverse group of organisms, which include: pathogen recognition, pathogen binding and clearance and cytokines production. Furthermore, it has been demonstrated that nucleated erythrocytes from fish and avian species develop specific responses to different pathogen associated molecular patterns and produce soluble factors that modulate leukocyte activity.
In the light of these pieces of evidences, and in an attempt to improve the knowledge of the immune mechanism(s) responsible for fish protection against viral infections, we raised the question: could nucleated fish erythrocytes be the key mediators of the antiviral responses? To answer this question we decided to focus our project on the evaluation of the crosstalk between red and white blood cells in the scenario of fish viral infections and prophylaxis. For that a working model composed of the rainbow trout and the viral haemorrhagic septicaemia virus (VHSV) was chosen, being the objectives of the project to evaluate: i) the implication trout RBCs (tRBCs) in the clearance of VHSV, and ii) the involvement of tRBCs in the blood transportation of the glycoprotein G of VHSV (GVHSV), the antigen encoded by the DNA vaccine.
Max ERC Funding
1 823 250 €
Duration
Start date: 2015-04-01, End date: 2020-10-31