Project acronym 2D-CHEM
Project Two-Dimensional Chemistry towards New Graphene Derivatives
Researcher (PI) Michal Otyepka
Host Institution (HI) UNIVERZITA PALACKEHO V OLOMOUCI
Country Czechia
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Summary
The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Max ERC Funding
1 831 103 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym 321
Project from Cubic To Linear complexity in computational electromagnetics
Researcher (PI) Francesco Paolo ANDRIULLI
Host Institution (HI) POLITECNICO DI TORINO
Country Italy
Call Details Consolidator Grant (CoG), PE7, ERC-2016-COG
Summary Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Summary
Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2023-08-31
Project acronym 3D-CAP
Project 3D micro-supercapacitors for embedded electronics
Researcher (PI) David Sarinn PECH
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE7, ERC-2017-COG
Summary The realization of high-performance micro-supercapacitors is currently a big challenge but the ineluctable applications requiring such miniaturized energy storage devices are continuously emerging, from wearable electronic gadgets to wireless sensor networks. Although they store less energy than micro-batteries, micro-supercapacitors can be charged and discharged very rapidly and exhibit a quasi-unlimited lifetime. The global scientific research is consequently largely focused on the improvement of their capacitance and energetic performances. However, to date, they are still far from being able to power sensors or electronic components.
Here I propose a 3D paradigm shift of micro-supercapacitor design to ensure increased energy storage capacities. Hydrous ruthenium dioxide (RuO2) is a pseudocapacitive material for supercapacitor electrode well-known for its high capacitance. A thin-film of ruthenium will be deposited by atomic layer deposition (ALD), followed by an electrochemical oxidation process, onto a high-surface-area 3D current collector prepared via an ingenious dynamic template built with hydrogen bubbles. The structural features of these 3D architectures will be controllably tailored by the processing methodologies. These electrodes will be combined with an innovative electrolyte in solid form (a protic ionogel) able to operate over an extended cell voltage. In a parallel investigation, we will develop a fundamental understanding of electrochemical reactions occurring at the nanoscale with a FIB-patterned (Focused Ion Beam) RuO2 nano-supercapacitor. The resulting 3D micro-supercapacitors should display extremely high power, long lifetime and – for the first time – energy densities competing or even exceeding that of micro-batteries. As a key achievement, prototypes will be designed using a new concept based on a self-adaptative micro-supercapacitors matrix, which arranges itself according to the global amount of energy stored.
Summary
The realization of high-performance micro-supercapacitors is currently a big challenge but the ineluctable applications requiring such miniaturized energy storage devices are continuously emerging, from wearable electronic gadgets to wireless sensor networks. Although they store less energy than micro-batteries, micro-supercapacitors can be charged and discharged very rapidly and exhibit a quasi-unlimited lifetime. The global scientific research is consequently largely focused on the improvement of their capacitance and energetic performances. However, to date, they are still far from being able to power sensors or electronic components.
Here I propose a 3D paradigm shift of micro-supercapacitor design to ensure increased energy storage capacities. Hydrous ruthenium dioxide (RuO2) is a pseudocapacitive material for supercapacitor electrode well-known for its high capacitance. A thin-film of ruthenium will be deposited by atomic layer deposition (ALD), followed by an electrochemical oxidation process, onto a high-surface-area 3D current collector prepared via an ingenious dynamic template built with hydrogen bubbles. The structural features of these 3D architectures will be controllably tailored by the processing methodologies. These electrodes will be combined with an innovative electrolyte in solid form (a protic ionogel) able to operate over an extended cell voltage. In a parallel investigation, we will develop a fundamental understanding of electrochemical reactions occurring at the nanoscale with a FIB-patterned (Focused Ion Beam) RuO2 nano-supercapacitor. The resulting 3D micro-supercapacitors should display extremely high power, long lifetime and – for the first time – energy densities competing or even exceeding that of micro-batteries. As a key achievement, prototypes will be designed using a new concept based on a self-adaptative micro-supercapacitors matrix, which arranges itself according to the global amount of energy stored.
Max ERC Funding
1 673 438 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym 3D-VIEW
Project Seeing the invisible: Light-based 3D imaging of opaque nanostructures
Researcher (PI) Stefan WITTE
Host Institution (HI) STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTEN
Country Netherlands
Call Details Consolidator Grant (CoG), PE7, ERC-2019-COG
Summary Nanostructures drive the world around us. Every modern electronic device contains integrated circuits and nano-electronics to provide its functionality. Advances in nanotechnology directly impact society by enabling smartphones, autonomous devices, the internet of things, data storage, and essentially all forms of advanced technology. Fabricating such nanostructures crucially depends on having the tools to make them visible without destroying them. Modern nanodevices often have complex three-dimensional architectures with small features in all dimensions. While imaging methods that achieve nanometer-scale resolution exist, there are currently no compact tools that can look inside 3D nanostructures made out of metals and semiconductors without damaging their delicate internal structure. I will address this challenge by developing compact tools to image 3D nanostructures in a non-invasive way. Even though most nanostructures are completely opaque to visible light, I will develop light-based methods, combined with computational imaging techniques developed in my previous ERC project, to look inside them with unprecedented resolution and contrast. Light-based imaging is unparalleled in speed and versatility, and allows contact-free detection. My proposal is to: 1) Use compact laser-produced soft-X-ray sources to image nanostructures with high 3D resolution and element-sensitive contrast; 2) Use laser-induced ultrasound pulses to image complex 3D nanostructures, even through strongly absorbing materials; 3) Employ computational imaging methods to reconstruct high-resolution 3D object images from the resulting complex diffraction signals. I will forge a coordinated research program to bring these concepts to reality. This program provides exciting prospects for fundamental science and industrial metrology. I will go beyond the state-of-the-art in nano-imaging, to extend our vision into the complex interior of the smallest structures found in science and technology.
Summary
Nanostructures drive the world around us. Every modern electronic device contains integrated circuits and nano-electronics to provide its functionality. Advances in nanotechnology directly impact society by enabling smartphones, autonomous devices, the internet of things, data storage, and essentially all forms of advanced technology. Fabricating such nanostructures crucially depends on having the tools to make them visible without destroying them. Modern nanodevices often have complex three-dimensional architectures with small features in all dimensions. While imaging methods that achieve nanometer-scale resolution exist, there are currently no compact tools that can look inside 3D nanostructures made out of metals and semiconductors without damaging their delicate internal structure. I will address this challenge by developing compact tools to image 3D nanostructures in a non-invasive way. Even though most nanostructures are completely opaque to visible light, I will develop light-based methods, combined with computational imaging techniques developed in my previous ERC project, to look inside them with unprecedented resolution and contrast. Light-based imaging is unparalleled in speed and versatility, and allows contact-free detection. My proposal is to: 1) Use compact laser-produced soft-X-ray sources to image nanostructures with high 3D resolution and element-sensitive contrast; 2) Use laser-induced ultrasound pulses to image complex 3D nanostructures, even through strongly absorbing materials; 3) Employ computational imaging methods to reconstruct high-resolution 3D object images from the resulting complex diffraction signals. I will forge a coordinated research program to bring these concepts to reality. This program provides exciting prospects for fundamental science and industrial metrology. I will go beyond the state-of-the-art in nano-imaging, to extend our vision into the complex interior of the smallest structures found in science and technology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym 3DSPIN
Project 3-Dimensional Maps of the Spinning Nucleon
Researcher (PI) Alessandro Bacchetta
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PAVIA
Country Italy
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary How does the inside of the proton look like? What generates its spin?
3DSPIN will deliver essential information to answer these questions at the frontier of subnuclear physics.
At present, we have detailed maps of the distribution of quarks and gluons in the nucleon in 1D (as a function of their momentum in a single direction). We also know that quark spins account for only about 1/3 of the spin of the nucleon.
3DSPIN will lead the way into a new stage of nucleon mapping, explore the distribution of quarks in full 3D momentum space and obtain unprecedented information on orbital angular momentum.
Goals
1. extract from experimental data the 3D distribution of quarks (in momentum space), as described by Transverse-Momentum Distributions (TMDs);
2. obtain from TMDs information on quark Orbital Angular Momentum (OAM).
Methodology
3DSPIN will implement state-of-the-art fitting procedures to analyze relevant experimental data and extract quark TMDs, similarly to global fits of standard parton distribution functions. Information about quark angular momentum will be obtained through assumptions based on theoretical considerations. The next five years represent an ideal time window to accomplish our goals, thanks to the wealth of expected data from deep-inelastic scattering experiments (COMPASS, Jefferson Lab), hadronic colliders (Fermilab, BNL, LHC), and electron-positron colliders (BELLE, BABAR). The PI has a strong reputation in this field. The group will operate in partnership with the Italian National Institute of Nuclear Physics and in close interaction with leading experts and experimental collaborations worldwide.
Impact
Mapping the 3D structure of chemical compounds has revolutionized chemistry. Similarly, mapping the 3D structure of the nucleon will have a deep impact on our understanding of the fundamental constituents of matter. We will open new perspectives on the dynamics of quarks and gluons and sharpen our view of high-energy processes involving nucleons.
Summary
How does the inside of the proton look like? What generates its spin?
3DSPIN will deliver essential information to answer these questions at the frontier of subnuclear physics.
At present, we have detailed maps of the distribution of quarks and gluons in the nucleon in 1D (as a function of their momentum in a single direction). We also know that quark spins account for only about 1/3 of the spin of the nucleon.
3DSPIN will lead the way into a new stage of nucleon mapping, explore the distribution of quarks in full 3D momentum space and obtain unprecedented information on orbital angular momentum.
Goals
1. extract from experimental data the 3D distribution of quarks (in momentum space), as described by Transverse-Momentum Distributions (TMDs);
2. obtain from TMDs information on quark Orbital Angular Momentum (OAM).
Methodology
3DSPIN will implement state-of-the-art fitting procedures to analyze relevant experimental data and extract quark TMDs, similarly to global fits of standard parton distribution functions. Information about quark angular momentum will be obtained through assumptions based on theoretical considerations. The next five years represent an ideal time window to accomplish our goals, thanks to the wealth of expected data from deep-inelastic scattering experiments (COMPASS, Jefferson Lab), hadronic colliders (Fermilab, BNL, LHC), and electron-positron colliders (BELLE, BABAR). The PI has a strong reputation in this field. The group will operate in partnership with the Italian National Institute of Nuclear Physics and in close interaction with leading experts and experimental collaborations worldwide.
Impact
Mapping the 3D structure of chemical compounds has revolutionized chemistry. Similarly, mapping the 3D structure of the nucleon will have a deep impact on our understanding of the fundamental constituents of matter. We will open new perspectives on the dynamics of quarks and gluons and sharpen our view of high-energy processes involving nucleons.
Max ERC Funding
1 509 000 €
Duration
Start date: 2015-07-01, End date: 2020-12-31
Project acronym 3MC
Project 3D Model Catalysts to explore new routes to sustainable fuels
Researcher (PI) Petra Elisabeth De jongh
Host Institution (HI) UNIVERSITEIT UTRECHT
Country Netherlands
Call Details Consolidator Grant (CoG), PE4, ERC-2014-CoG
Summary Currently fuels, plastics, and drugs are predominantly manufactured from oil. A transition towards renewable resources critically depends on new catalysts, for instance to convert small molecules (such as solar or biomass derived hydrogen, carbon monoxide, water and carbon dioxide) into more complex ones (such as oxygenates, containing oxygen atoms in their structure). Catalyst development now often depends on trial and error rather than rational design, as the heterogeneity of these composite systems hampers detailed understanding of the role of each of the components.
I propose 3D model catalysts as a novel enabling tool to overcome this problem. Their well-defined nature allows unprecedented precision in the variation of structural parameters (morphology, spatial distribution) of the individual components, while at the same time they mimic real catalysts closely enough to allow testing under industrially relevant conditions. Using this approach I will address fundamental questions, such as:
* What are the mechanisms (structural, electronic, chemical) by which non-metal promoters influence the functionality of copper-based catalysts?
* Which nanoalloys can be formed, how does their composition influence the surface active sites and catalytic functionality under reaction conditions?
* Which size and interface effects occur, and how can we use them to tune the actitivity and selectivity towards desired products?
Our 3D model catalysts will be assembled from ordered mesoporous silica and carbon support materials and Cu-based promoted and bimetallic nanoparticles. The combination with high resolution characterization and testing under realistic conditions allows detailed insight into the role of the different components; critical for the rational design of novel catalysts for a future more sustainable production of chemicals and fuels from renewable resources.
Summary
Currently fuels, plastics, and drugs are predominantly manufactured from oil. A transition towards renewable resources critically depends on new catalysts, for instance to convert small molecules (such as solar or biomass derived hydrogen, carbon monoxide, water and carbon dioxide) into more complex ones (such as oxygenates, containing oxygen atoms in their structure). Catalyst development now often depends on trial and error rather than rational design, as the heterogeneity of these composite systems hampers detailed understanding of the role of each of the components.
I propose 3D model catalysts as a novel enabling tool to overcome this problem. Their well-defined nature allows unprecedented precision in the variation of structural parameters (morphology, spatial distribution) of the individual components, while at the same time they mimic real catalysts closely enough to allow testing under industrially relevant conditions. Using this approach I will address fundamental questions, such as:
* What are the mechanisms (structural, electronic, chemical) by which non-metal promoters influence the functionality of copper-based catalysts?
* Which nanoalloys can be formed, how does their composition influence the surface active sites and catalytic functionality under reaction conditions?
* Which size and interface effects occur, and how can we use them to tune the actitivity and selectivity towards desired products?
Our 3D model catalysts will be assembled from ordered mesoporous silica and carbon support materials and Cu-based promoted and bimetallic nanoparticles. The combination with high resolution characterization and testing under realistic conditions allows detailed insight into the role of the different components; critical for the rational design of novel catalysts for a future more sustainable production of chemicals and fuels from renewable resources.
Max ERC Funding
1 999 625 €
Duration
Start date: 2015-09-01, End date: 2020-11-30
Project acronym 4DPHOTON
Project Beyond Light Imaging: High-Rate Single-Photon Detection in Four Dimensions
Researcher (PI) Massimiliano FIORINI
Host Institution (HI) ISTITUTO NAZIONALE DI FISICA NUCLEARE
Country Italy
Call Details Consolidator Grant (CoG), PE2, ERC-2018-COG
Summary Goal of the 4DPHOTON project is the development and construction of a photon imaging detector with unprecedented performance. The proposed device will be capable of detecting fluxes of single-photons up to one billion photons per second, over areas of several square centimetres, and will measure - for each photon - position and time simultaneously with resolutions better than ten microns and few tens of picoseconds, respectively. These figures of merit will open many important applications allowing significant advances in particle physics, life sciences or other emerging fields where excellent timing and position resolutions are simultaneously required.
Our goal will be achieved thanks to the use of an application-specific integrated circuit in 65 nm complementary metal-oxide-semiconductor (CMOS) technology, that will deliver a timing resolution of few tens of picoseconds at the pixel level, over few hundred thousand individually-active pixel channels, allowing very high rates of photons to be detected, and the corresponding information digitized and transferred to a processing unit.
As a result of the 4DPHOTON project we will remove the constraints that many light imaging applications have due to the lack of precise single-photon information on four dimensions (4D): the three spatial coordinates and time simultaneously. In particular, we will prove the performance of this detector in the field of particle physics, performing the reconstruction of Cherenkov photon rings with a timing resolution of ten picoseconds. With its excellent granularity, timing resolution, rate capability and compactness, this detector will represent a new paradigm for the realisation of future Ring Imaging Cherenkov detectors, capable of achieving high efficiency particle identification in environments with very high particle multiplicities, exploiting time-association of the photon hits.
Summary
Goal of the 4DPHOTON project is the development and construction of a photon imaging detector with unprecedented performance. The proposed device will be capable of detecting fluxes of single-photons up to one billion photons per second, over areas of several square centimetres, and will measure - for each photon - position and time simultaneously with resolutions better than ten microns and few tens of picoseconds, respectively. These figures of merit will open many important applications allowing significant advances in particle physics, life sciences or other emerging fields where excellent timing and position resolutions are simultaneously required.
Our goal will be achieved thanks to the use of an application-specific integrated circuit in 65 nm complementary metal-oxide-semiconductor (CMOS) technology, that will deliver a timing resolution of few tens of picoseconds at the pixel level, over few hundred thousand individually-active pixel channels, allowing very high rates of photons to be detected, and the corresponding information digitized and transferred to a processing unit.
As a result of the 4DPHOTON project we will remove the constraints that many light imaging applications have due to the lack of precise single-photon information on four dimensions (4D): the three spatial coordinates and time simultaneously. In particular, we will prove the performance of this detector in the field of particle physics, performing the reconstruction of Cherenkov photon rings with a timing resolution of ten picoseconds. With its excellent granularity, timing resolution, rate capability and compactness, this detector will represent a new paradigm for the realisation of future Ring Imaging Cherenkov detectors, capable of achieving high efficiency particle identification in environments with very high particle multiplicities, exploiting time-association of the photon hits.
Max ERC Funding
1 975 000 €
Duration
Start date: 2019-12-01, End date: 2024-11-30
Project acronym 9 SALT
Project Reassessing Ninth Century Philosophy. A Synchronic Approach to the Logical Traditions
Researcher (PI) Christophe Florian Erismann
Host Institution (HI) UNIVERSITAT WIEN
Country Austria
Call Details Consolidator Grant (CoG), SH5, ERC-2014-CoG
Summary This project aims at a better understanding of the philosophical richness of ninth century thought using the unprecedented and highly innovative method of the synchronic approach. The hypothesis directing this synchronic approach is that studying together in parallel the four main philosophical traditions of the century – i.e. Latin, Greek, Syriac and Arabic – will bring results that the traditional enquiry limited to one tradition alone can never reach. This implies pioneering a new methodology to overcome the compartmentalization of research which prevails nowadays. Using this method is only possible because the four conditions of applicability – comparable intellectual environment, common text corpus, similar methodological perspective, commensurable problems – are fulfilled. The ninth century, a time of cultural renewal in the Carolingian, Byzantine and Abbasid empires, possesses the remarkable characteristic – which ensures commensurability – that the same texts, namely the writings of Aristotelian logic (mainly Porphyry’s Isagoge and Aristotle’s Categories) were read and commented upon in Latin, Greek, Syriac and Arabic alike.
Logic is fundamental to philosophical enquiry. The contested question is the human capacity to rationalise, analyse and describe the sensible reality, to understand the ontological structure of the world, and to define the types of entities which exist. The use of this unprecedented synchronic approach will allow us a deeper understanding of the positions, a clear identification of the a priori postulates of the philosophical debates, and a critical evaluation of the arguments used. It provides a unique opportunity to compare the different traditions and highlight the heritage which is common, to stress the specificities of each tradition when tackling philosophical issues and to discover the doctrinal results triggered by their mutual interactions, be they constructive (scholarly exchanges) or polemic (religious controversies).
Summary
This project aims at a better understanding of the philosophical richness of ninth century thought using the unprecedented and highly innovative method of the synchronic approach. The hypothesis directing this synchronic approach is that studying together in parallel the four main philosophical traditions of the century – i.e. Latin, Greek, Syriac and Arabic – will bring results that the traditional enquiry limited to one tradition alone can never reach. This implies pioneering a new methodology to overcome the compartmentalization of research which prevails nowadays. Using this method is only possible because the four conditions of applicability – comparable intellectual environment, common text corpus, similar methodological perspective, commensurable problems – are fulfilled. The ninth century, a time of cultural renewal in the Carolingian, Byzantine and Abbasid empires, possesses the remarkable characteristic – which ensures commensurability – that the same texts, namely the writings of Aristotelian logic (mainly Porphyry’s Isagoge and Aristotle’s Categories) were read and commented upon in Latin, Greek, Syriac and Arabic alike.
Logic is fundamental to philosophical enquiry. The contested question is the human capacity to rationalise, analyse and describe the sensible reality, to understand the ontological structure of the world, and to define the types of entities which exist. The use of this unprecedented synchronic approach will allow us a deeper understanding of the positions, a clear identification of the a priori postulates of the philosophical debates, and a critical evaluation of the arguments used. It provides a unique opportunity to compare the different traditions and highlight the heritage which is common, to stress the specificities of each tradition when tackling philosophical issues and to discover the doctrinal results triggered by their mutual interactions, be they constructive (scholarly exchanges) or polemic (religious controversies).
Max ERC Funding
1 998 566 €
Duration
Start date: 2015-09-01, End date: 2021-02-28
Project acronym ABIONYS
Project Artificial Enzyme Modules as Tools in a Tailor-made Biosynthesis
Researcher (PI) Jan DESKA
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Consolidator Grant (CoG), PE5, ERC-2019-COG
Summary In order to tackle some of the prime societal challenges of this century, science has to urgently provide effective tools addressing the redesign of chemical value chains through the exploitation of novel, bio-based raw materials, and the discovery and implementation of more resource-efficient production platforms. Nature will inevitably play a pivotal role in the imminent transformation of industrial strategies, and the recent bioeconomy approaches can only be regarded as initial step towards a sustainable future. Operating at the interface between chemistry and life sciences, my ABIONYS will fundamentally challenge the widely held distinction separating chemical from biosynthesis, and will deliver the first proof-of-concept where abiotic reactions act as productive puzzle pieces in biosynthetic arrangements. On the basis of our previous ground-breaking discoveries on artificial enzyme functions, I will create a significantly extended toolbox of biocatalysis modules by applying protein-based interpretations of synthetically crucial but non-natural reactions i.e. transformations that are in no way biosynthetically encoded in living organisms. My research will exploit these tools in multi-enzyme cascades for the preparation of complex organic target structures, not only to highlight the great synthetic potential of these approaches, but also to lay the groundwork for in vivo implementations. Eventually, the knowledge gathered from enzyme discovery and cascade design will enable to create an unprecedented class of bioproduction systems, where the genetic incorporation of artificial enzyme functions into recombinant microbial host organisms will yield tailor-made cellular factories. Combining classical organic synthesis strategies with the power of modern biotechnology, ABIONYS is going to transform the way we synthesize complex and functional building blocks by allowing us to encode organic chemistry thinking into living production platforms.
Summary
In order to tackle some of the prime societal challenges of this century, science has to urgently provide effective tools addressing the redesign of chemical value chains through the exploitation of novel, bio-based raw materials, and the discovery and implementation of more resource-efficient production platforms. Nature will inevitably play a pivotal role in the imminent transformation of industrial strategies, and the recent bioeconomy approaches can only be regarded as initial step towards a sustainable future. Operating at the interface between chemistry and life sciences, my ABIONYS will fundamentally challenge the widely held distinction separating chemical from biosynthesis, and will deliver the first proof-of-concept where abiotic reactions act as productive puzzle pieces in biosynthetic arrangements. On the basis of our previous ground-breaking discoveries on artificial enzyme functions, I will create a significantly extended toolbox of biocatalysis modules by applying protein-based interpretations of synthetically crucial but non-natural reactions i.e. transformations that are in no way biosynthetically encoded in living organisms. My research will exploit these tools in multi-enzyme cascades for the preparation of complex organic target structures, not only to highlight the great synthetic potential of these approaches, but also to lay the groundwork for in vivo implementations. Eventually, the knowledge gathered from enzyme discovery and cascade design will enable to create an unprecedented class of bioproduction systems, where the genetic incorporation of artificial enzyme functions into recombinant microbial host organisms will yield tailor-made cellular factories. Combining classical organic synthesis strategies with the power of modern biotechnology, ABIONYS is going to transform the way we synthesize complex and functional building blocks by allowing us to encode organic chemistry thinking into living production platforms.
Max ERC Funding
1 995 707 €
Duration
Start date: 2020-11-01, End date: 2025-10-31
Project acronym ACOPS
Project Advanced Coherent Ultrafast Laser Pulse Stacking
Researcher (PI) Jens Limpert
Host Institution (HI) FRIEDRICH-SCHILLER-UNIVERSITAT JENA
Country Germany
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Summary
"An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Max ERC Funding
1 881 040 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AdOC
Project Advance Optical Clocks
Researcher (PI) Sebastien Andre Marcel Bize
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Summary
"The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Max ERC Funding
1 946 432 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym AdriArchCult
Project Architectural Culture of the Early Modern Eastern Adriatic
Researcher (PI) Jasenka Gudelj
Host Institution (HI) UNIVERSITA CA' FOSCARI VENEZIA
Country Italy
Call Details Consolidator Grant (CoG), SH5, ERC-2019-COG
Summary During the 15th century, the political process of reducing the Eastern Adriatic, here considered as encompassing what is now littoral of Slovenia, Croatia and Montenegro, to a thin strip of border territories substantially separated from the continental massive to which they belong, reached its conclusion. The insularity of its large natural archipelago, i.e. almost exclusive dependence on the maritime communications, became characteristic even of mainland coastal towns, with lasting consequences. The project explores the impact of this change in the area between 15th and 18th c., focusing on architecture as the most evident materialization of a culture and its transformations. The goal is to examine the architectural culture in question in terms of both consumption and production. Factors such as political and economic consolidation of Venetian and Dubrovnik Republics as well as Habsburg Empire in the area, war and commerce with the Ottomans, but also the quick spread of revival of antiquity and the Catholic Revival, all fuelled the need for architectural creation with certain functional and symbolic characteristics, setting the cultural standards. On the other hand, the economics of production of architecture consisted of interrelated systems of the provision of materials (esp. Istrian stone) and organisation of construction sites, which, given the ease of the sea transport, resulted in an active market for architectural goods. This approach will provide an original contribution to the understanding of cultural practices that not only produced specific buildings, the most significant among which are now listed as World Heritage sites but also put into circulation ancient and modern models, techniques and materials for a European-wide audience. Moreover, it will investigate the trans-border and trans-confessional character of the architectural market, thus providing an innovative model for a study of such phenomena across Europe.
Summary
During the 15th century, the political process of reducing the Eastern Adriatic, here considered as encompassing what is now littoral of Slovenia, Croatia and Montenegro, to a thin strip of border territories substantially separated from the continental massive to which they belong, reached its conclusion. The insularity of its large natural archipelago, i.e. almost exclusive dependence on the maritime communications, became characteristic even of mainland coastal towns, with lasting consequences. The project explores the impact of this change in the area between 15th and 18th c., focusing on architecture as the most evident materialization of a culture and its transformations. The goal is to examine the architectural culture in question in terms of both consumption and production. Factors such as political and economic consolidation of Venetian and Dubrovnik Republics as well as Habsburg Empire in the area, war and commerce with the Ottomans, but also the quick spread of revival of antiquity and the Catholic Revival, all fuelled the need for architectural creation with certain functional and symbolic characteristics, setting the cultural standards. On the other hand, the economics of production of architecture consisted of interrelated systems of the provision of materials (esp. Istrian stone) and organisation of construction sites, which, given the ease of the sea transport, resulted in an active market for architectural goods. This approach will provide an original contribution to the understanding of cultural practices that not only produced specific buildings, the most significant among which are now listed as World Heritage sites but also put into circulation ancient and modern models, techniques and materials for a European-wide audience. Moreover, it will investigate the trans-border and trans-confessional character of the architectural market, thus providing an innovative model for a study of such phenomena across Europe.
Max ERC Funding
1 999 750 €
Duration
Start date: 2020-09-01, End date: 2025-08-31
Project acronym AEDMOS
Project Attosecond Electron Dynamics in MOlecular Systems
Researcher (PI) Reinhard Kienberger
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Country Germany
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary Advanced insight into ever smaller structures of matter and their ever faster dynamics hold promise for pushing the frontiers of many fields in science and technology. Time-domain investigations of ultrafast microscopic processes are most successfully carried out by pump/probe experiments. Intense waveform-controlled few-cycle near-infrared laser pulses combined with isolated sub-femtosecond XUV (extreme UV) pulses have made possible direct access to electron motion on the atomic scale. These tools along with the techniques of laser-field-controlled XUV photoemission (“attosecond streaking”) and ultrafast UV-pump/XUV-probe spectroscopy have permitted real-time observation of electronic motion in experiments performed on atoms in the gas phase and of electronic transport processes in solids.
The purpose of this project is to to get insight into intra- and inter-molecular electron dynamics by extending attosecond spectroscopy to these processes. AEDMOS will allow control and real-time observation of a wide range of hyperfast fundamental processes directly on their natural, i.e. attosecond (1 as = EXP-18 s) time scale in molecules and molecular structures. In previous work we have successfully developed attosecond tools and techniques. By combining them with our experience in UHV technology and target preparation in a new beamline to be created in the framework of this project, we aim at investigating charge migration and transport in supramolecular assemblies, ultrafast electron dynamics in photocatalysis and dynamics of electron correlation in high-TC superconductors. These dynamics – of electronic excitation, exciton formation, relaxation, electron correlation and wave packet motion – are of broad scientific interest reaching from biomedicine to chemistry and physics and are pertinent to the development of many modern technologies including molecular electronics, optoelectronics, photovoltaics, light-to-chemical energy conversion and lossless energy transfer.
Summary
Advanced insight into ever smaller structures of matter and their ever faster dynamics hold promise for pushing the frontiers of many fields in science and technology. Time-domain investigations of ultrafast microscopic processes are most successfully carried out by pump/probe experiments. Intense waveform-controlled few-cycle near-infrared laser pulses combined with isolated sub-femtosecond XUV (extreme UV) pulses have made possible direct access to electron motion on the atomic scale. These tools along with the techniques of laser-field-controlled XUV photoemission (“attosecond streaking”) and ultrafast UV-pump/XUV-probe spectroscopy have permitted real-time observation of electronic motion in experiments performed on atoms in the gas phase and of electronic transport processes in solids.
The purpose of this project is to to get insight into intra- and inter-molecular electron dynamics by extending attosecond spectroscopy to these processes. AEDMOS will allow control and real-time observation of a wide range of hyperfast fundamental processes directly on their natural, i.e. attosecond (1 as = EXP-18 s) time scale in molecules and molecular structures. In previous work we have successfully developed attosecond tools and techniques. By combining them with our experience in UHV technology and target preparation in a new beamline to be created in the framework of this project, we aim at investigating charge migration and transport in supramolecular assemblies, ultrafast electron dynamics in photocatalysis and dynamics of electron correlation in high-TC superconductors. These dynamics – of electronic excitation, exciton formation, relaxation, electron correlation and wave packet motion – are of broad scientific interest reaching from biomedicine to chemistry and physics and are pertinent to the development of many modern technologies including molecular electronics, optoelectronics, photovoltaics, light-to-chemical energy conversion and lossless energy transfer.
Max ERC Funding
1 999 375 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym AFRISCREENWORLDS
Project African Screen Worlds: Decolonising Film and Screen Studies
Researcher (PI) Lindiwe Dovey
Host Institution (HI) SCHOOL OF ORIENTAL AND AFRICAN STUDIES ROYAL CHARTER
Country United Kingdom
Call Details Consolidator Grant (CoG), SH5, ERC-2018-COG
Summary A half century since it came into existence, the discipline of Film and Screen Studies remains mostly Eurocentric in its historical, theoretical and critical frameworks. Although “world cinema” and “transnational cinema” scholars have attempted to broaden its canon and frameworks, several major problems persist. Films and scholarship by Africans in particular, and by people of colour in general, are frequently marginalised if not altogether excluded. This prevents exciting exchanges that could help to re-envision Film and Screen Studies for the twenty-first century, in an era in which greater access to the technological means of making films, and circulating them on a range of screens, means that dynamic “screen worlds” are developing at a rapid rate. AFRISCREENWORLDS will study these “screen worlds” (in both their textual forms and industrial structures), with a focus on Africa, as a way of centring the most marginalised regional cinema. We will also elaborate comparative studies of global “screen worlds” – and, in particular, “screen worlds” in the Global South – exploring their similarities, differences, and parallel developments. We will respond to the exclusions of Film and Screen Studies not only in scholarly ways – through conferences and publications – but also in creative and activist ways – through drawing on cutting-edge creative research methodologies (such as audiovisual criticism and filmmaking) and through helping to decolonise Film and Screen Studies (through the production of ‘toolkits’ on how to make curricula, syllabi, and teaching more globally representative and inclusive). On a theoretical level, we will make an intervention through considering how the concept of “screen worlds” is better equipped than “world cinema” or “transnational cinema” to explore the complexities of audiovisual narratives, and their production and circulation in our contemporary moment, in diverse contexts throughout the globe.
Summary
A half century since it came into existence, the discipline of Film and Screen Studies remains mostly Eurocentric in its historical, theoretical and critical frameworks. Although “world cinema” and “transnational cinema” scholars have attempted to broaden its canon and frameworks, several major problems persist. Films and scholarship by Africans in particular, and by people of colour in general, are frequently marginalised if not altogether excluded. This prevents exciting exchanges that could help to re-envision Film and Screen Studies for the twenty-first century, in an era in which greater access to the technological means of making films, and circulating them on a range of screens, means that dynamic “screen worlds” are developing at a rapid rate. AFRISCREENWORLDS will study these “screen worlds” (in both their textual forms and industrial structures), with a focus on Africa, as a way of centring the most marginalised regional cinema. We will also elaborate comparative studies of global “screen worlds” – and, in particular, “screen worlds” in the Global South – exploring their similarities, differences, and parallel developments. We will respond to the exclusions of Film and Screen Studies not only in scholarly ways – through conferences and publications – but also in creative and activist ways – through drawing on cutting-edge creative research methodologies (such as audiovisual criticism and filmmaking) and through helping to decolonise Film and Screen Studies (through the production of ‘toolkits’ on how to make curricula, syllabi, and teaching more globally representative and inclusive). On a theoretical level, we will make an intervention through considering how the concept of “screen worlds” is better equipped than “world cinema” or “transnational cinema” to explore the complexities of audiovisual narratives, and their production and circulation in our contemporary moment, in diverse contexts throughout the globe.
Max ERC Funding
1 985 578 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym AGILEFLIGHT
Project Low-latency Perception and Action for Agile Vision-based Flight
Researcher (PI) Davide SCARAMUZZA
Host Institution (HI) UNIVERSITAT ZURICH
Country Switzerland
Call Details Consolidator Grant (CoG), PE7, ERC-2019-COG
Summary Drones are disrupting industries, such as agriculture, package delivery, inspection, and search and rescue. However, they are still either controlled by a human pilot or heavily rely on GPS for navigating autonomously. The alternative to GPS are onboard sensors, such as cameras: from the raw data, a local 3D map of the environment is built, which is then used to plan a safe trajectory to the goal. While the underlying algorithms are well understood, we are still far from having autonomous drones that can navigate through complex environments as good as human pilots. State-of-the-art perception and control algorithms are mature but not robust: coping with unreliable state estimation, low-latency perception, real-time planning in dynamic environments, and tight coupling of perception and action under severe resource constraints are all still unsolved research problems. Another issue is that, because battery energy density is increasing at a very slow rate, drones need to navigate faster in order to accomplish more within their limited flight time. To obtain more agile robots, we need faster sensors and low-latency processing.
The goal of this project is to develop novel scientific methods that would allow me to demonstrate autonomous, vision-based, agile quadrotor navigation in unknown, GPS-denied, and cluttered environments with possibly moving obstacles, which can be as effective in terms of maneuverability and agility as those of professional drone pilots. The outcome would not only be beneficial for disaster response scenarios, but also for other scenarios, such as aerial delivery or inspection. To achieve this ambitious goal, I will first develop robust, low-latency, multimodal perception algorithms that combine the advantages of standard cameras with event cameras. Then, I will develop novel methods that unify perception and state estimation together with planning and control to enable agile maneuvers through cluttered, unknown, and dynamic environments.
Summary
Drones are disrupting industries, such as agriculture, package delivery, inspection, and search and rescue. However, they are still either controlled by a human pilot or heavily rely on GPS for navigating autonomously. The alternative to GPS are onboard sensors, such as cameras: from the raw data, a local 3D map of the environment is built, which is then used to plan a safe trajectory to the goal. While the underlying algorithms are well understood, we are still far from having autonomous drones that can navigate through complex environments as good as human pilots. State-of-the-art perception and control algorithms are mature but not robust: coping with unreliable state estimation, low-latency perception, real-time planning in dynamic environments, and tight coupling of perception and action under severe resource constraints are all still unsolved research problems. Another issue is that, because battery energy density is increasing at a very slow rate, drones need to navigate faster in order to accomplish more within their limited flight time. To obtain more agile robots, we need faster sensors and low-latency processing.
The goal of this project is to develop novel scientific methods that would allow me to demonstrate autonomous, vision-based, agile quadrotor navigation in unknown, GPS-denied, and cluttered environments with possibly moving obstacles, which can be as effective in terms of maneuverability and agility as those of professional drone pilots. The outcome would not only be beneficial for disaster response scenarios, but also for other scenarios, such as aerial delivery or inspection. To achieve this ambitious goal, I will first develop robust, low-latency, multimodal perception algorithms that combine the advantages of standard cameras with event cameras. Then, I will develop novel methods that unify perception and state estimation together with planning and control to enable agile maneuvers through cluttered, unknown, and dynamic environments.
Max ERC Funding
2 000 000 €
Duration
Start date: 2020-09-01, End date: 2025-08-31
Project acronym AlchemEast
Project Alchemy in the Making: From ancient Babylonia via Graeco-Roman Egypt into the Byzantine, Syriac and Arabic traditions (1500 BCE - 1000 AD)
Researcher (PI) Matteo MARTELLI
Host Institution (HI) ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Country Italy
Call Details Consolidator Grant (CoG), SH5, ERC-2016-COG
Summary "The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a ""pseudo-science"", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly."
Summary
"The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a ""pseudo-science"", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly."
Max ERC Funding
1 997 000 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym ALDof 2DTMDs
Project Atomic layer deposition of two-dimensional transition metal dichalcogenide nanolayers
Researcher (PI) Ageeth Bol
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Country Netherlands
Call Details Consolidator Grant (CoG), PE5, ERC-2014-CoG
Summary Two-dimensional transition metal dichalcogenides (2D-TMDs) are an exciting class of new materials. Their ultrathin body, optical band gap and unusual spin and valley polarization physics make them very promising candidates for a vast new range of (opto-)electronic applications. So far, most experimental work on 2D-TMDs has been performed on exfoliated flakes made by the ‘Scotch tape’ technique. The major next challenge is the large-area synthesis of 2D-TMDs by a technique that ultimately can be used for commercial device fabrication.
Building upon pure 2D-TMDs, even more functionalities can be gained from 2D-TMD alloys and heterostructures. Theoretical work on these derivates reveals exciting new phenomena, but experimentally this field is largely unexplored due to synthesis technique limitations.
The goal of this proposal is to combine atomic layer deposition with plasma chemistry to create a novel surface-controlled, industry-compatible synthesis technique that will make large area 2D-TMDs, 2D-TMD alloys and 2D-TMD heterostructures a reality. This innovative approach will enable systematic layer dependent studies, likely revealing exciting new properties, and provide integration pathways for a multitude of applications.
Atomistic simulations will guide the process development and, together with in- and ex-situ analysis, increase the understanding of the surface chemistry involved. State-of-the-art high resolution transmission electron microscopy will be used to study the alloying process and the formation of heterostructures. Luminescence spectroscopy and electrical characterization will reveal the potential of the synthesized materials for (opto)-electronic applications.
The synergy between the excellent background of the PI in 2D materials for nanoelectronics and the group’s leading expertise in ALD and plasma science is unique and provides an ideal stepping stone to develop the synthesis of large-area 2D-TMDs and derivatives.
Summary
Two-dimensional transition metal dichalcogenides (2D-TMDs) are an exciting class of new materials. Their ultrathin body, optical band gap and unusual spin and valley polarization physics make them very promising candidates for a vast new range of (opto-)electronic applications. So far, most experimental work on 2D-TMDs has been performed on exfoliated flakes made by the ‘Scotch tape’ technique. The major next challenge is the large-area synthesis of 2D-TMDs by a technique that ultimately can be used for commercial device fabrication.
Building upon pure 2D-TMDs, even more functionalities can be gained from 2D-TMD alloys and heterostructures. Theoretical work on these derivates reveals exciting new phenomena, but experimentally this field is largely unexplored due to synthesis technique limitations.
The goal of this proposal is to combine atomic layer deposition with plasma chemistry to create a novel surface-controlled, industry-compatible synthesis technique that will make large area 2D-TMDs, 2D-TMD alloys and 2D-TMD heterostructures a reality. This innovative approach will enable systematic layer dependent studies, likely revealing exciting new properties, and provide integration pathways for a multitude of applications.
Atomistic simulations will guide the process development and, together with in- and ex-situ analysis, increase the understanding of the surface chemistry involved. State-of-the-art high resolution transmission electron microscopy will be used to study the alloying process and the formation of heterostructures. Luminescence spectroscopy and electrical characterization will reveal the potential of the synthesized materials for (opto)-electronic applications.
The synergy between the excellent background of the PI in 2D materials for nanoelectronics and the group’s leading expertise in ALD and plasma science is unique and provides an ideal stepping stone to develop the synthesis of large-area 2D-TMDs and derivatives.
Max ERC Funding
1 968 709 €
Duration
Start date: 2015-08-01, End date: 2020-12-31
Project acronym ALLOWE
Project Highly Reactive Low-valent Aluminium Complexes and their Application in Synthesis and Catalysis
Researcher (PI) Shigeyoshi INOUE
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Country Germany
Call Details Consolidator Grant (CoG), PE5, ERC-2020-COG
Summary This ERC-CoG 2020 proposal, ALLOWE outlines a strategy for the development of low-valent aluminium systems through their synthesis, isolation, and reactivity investigation of neutral, ambiphilic, low-valent aluminium compounds, denoted “alumylenes”. Their dimeric form “dialumenes” featuring an aluminium-aluminium double bond will also be within the scope of the project. These low-valent aluminium species are expected to provide, along with greater understanding of the fundamental behaviour of low-valent aluminium, a varied and deep reactivity profile. These highly reactive compounds will offer a cheap, sustainable and non-toxic alternative to the current transition metal-based industrial chemical processes.
The proposed scheme of work begins with the synthesis of neutral alumylenes and dialumenes, respectively. This will be achieved through the use of donor ligands (i.e. N-heterocyclic carbenes) and substituents with differing electronic and steric properties. With these compounds in hand, the reactivity towards small molecules will be investigated along with development of low-valent aluminium based catalysts. Furthermore, incorporation of transition metals into these aluminium systems will be targeted as these may possess unique and interesting properties.
Established methodologies such as reductive dehalogenation or reductive dehydrohalogenation will provide access to novel low-valent aluminium compounds bearing bulky substituents and donor ligands. The synthetic portion of the work will also be supported by theoretical calculations.
The outcome of ALLOWE will provide (i) in-depth insight and understanding into low-valent aluminium’s bonding nature, particularly emphasis laid on ambiphilic aluminium center (ii) plethora of striking reactivity towards transition metal free stoichiometric and catalytic activation of small molecules, and (iii) various potential applications in aluminium-based material chemistry.
Summary
This ERC-CoG 2020 proposal, ALLOWE outlines a strategy for the development of low-valent aluminium systems through their synthesis, isolation, and reactivity investigation of neutral, ambiphilic, low-valent aluminium compounds, denoted “alumylenes”. Their dimeric form “dialumenes” featuring an aluminium-aluminium double bond will also be within the scope of the project. These low-valent aluminium species are expected to provide, along with greater understanding of the fundamental behaviour of low-valent aluminium, a varied and deep reactivity profile. These highly reactive compounds will offer a cheap, sustainable and non-toxic alternative to the current transition metal-based industrial chemical processes.
The proposed scheme of work begins with the synthesis of neutral alumylenes and dialumenes, respectively. This will be achieved through the use of donor ligands (i.e. N-heterocyclic carbenes) and substituents with differing electronic and steric properties. With these compounds in hand, the reactivity towards small molecules will be investigated along with development of low-valent aluminium based catalysts. Furthermore, incorporation of transition metals into these aluminium systems will be targeted as these may possess unique and interesting properties.
Established methodologies such as reductive dehalogenation or reductive dehydrohalogenation will provide access to novel low-valent aluminium compounds bearing bulky substituents and donor ligands. The synthetic portion of the work will also be supported by theoretical calculations.
The outcome of ALLOWE will provide (i) in-depth insight and understanding into low-valent aluminium’s bonding nature, particularly emphasis laid on ambiphilic aluminium center (ii) plethora of striking reactivity towards transition metal free stoichiometric and catalytic activation of small molecules, and (iii) various potential applications in aluminium-based material chemistry.
Max ERC Funding
1 997 750 €
Duration
Start date: 2021-06-01, End date: 2026-05-31
Project acronym ALTER-brain
Project Metastasis-associated altered molecular patterns in the brain
Researcher (PI) Manuel VALIENTE
Host Institution (HI) FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III
Country Spain
Call Details Consolidator Grant (CoG), LS4, ERC-2019-COG
Summary Organ colonization is the most inefficient step of metastasis. However, once a few cancer cells manage to re-initiate their growth in the brain, the initial naïve microenvironment, which was not favouring and even actively limiting the number of potential metastasis initiating cells, is slowly rewired into a different ecosystem with pro-metastatic properties. In this project (ALTER-brain), we will study the biology of microenvironment reprogramming to explore innovative ways of treating metastasis.
Microenvironment reprogramming relies on altered molecular patterns that emerge in specific brain cell types simultaneously to the outgrowth of metastases. Dissecting the biology of these emerging patterns and their functional consequences could provide the basis to prevent metastasis but also to treat advances lesions. A key objective of ALTER-brain is the identification of newly established functional networks among previously non-connected components of the microenvironment that are critical to nurture tumour growth.
This research proposal focuses on metastasis in the brain given its rising incidence, poor therapeutic options and short survival rates upon diagnosis. ALTER-brain will use novel (i.e. spontaneous metastasis) and clinically relevant (i.e. relapse after therapy) experimental mouse models of brain metastasis combined with genetically engineered mice in which we will target specific components of the microenvironment. In addition, we will apply novel lineage tracing technologies to understand the origin and emerging heterogeneity of the reprogrammed microenvironment. Given the clinical relevance of our research, human brain metastasis provided by our clinical network will be used to validate key findings.
ALTER-brain will identify key principles underlying the unknown biology of the brain under a specific pathological pressure that might be translated to other highly prevalent disorders affecting this organ in the future.
Summary
Organ colonization is the most inefficient step of metastasis. However, once a few cancer cells manage to re-initiate their growth in the brain, the initial naïve microenvironment, which was not favouring and even actively limiting the number of potential metastasis initiating cells, is slowly rewired into a different ecosystem with pro-metastatic properties. In this project (ALTER-brain), we will study the biology of microenvironment reprogramming to explore innovative ways of treating metastasis.
Microenvironment reprogramming relies on altered molecular patterns that emerge in specific brain cell types simultaneously to the outgrowth of metastases. Dissecting the biology of these emerging patterns and their functional consequences could provide the basis to prevent metastasis but also to treat advances lesions. A key objective of ALTER-brain is the identification of newly established functional networks among previously non-connected components of the microenvironment that are critical to nurture tumour growth.
This research proposal focuses on metastasis in the brain given its rising incidence, poor therapeutic options and short survival rates upon diagnosis. ALTER-brain will use novel (i.e. spontaneous metastasis) and clinically relevant (i.e. relapse after therapy) experimental mouse models of brain metastasis combined with genetically engineered mice in which we will target specific components of the microenvironment. In addition, we will apply novel lineage tracing technologies to understand the origin and emerging heterogeneity of the reprogrammed microenvironment. Given the clinical relevance of our research, human brain metastasis provided by our clinical network will be used to validate key findings.
ALTER-brain will identify key principles underlying the unknown biology of the brain under a specific pathological pressure that might be translated to other highly prevalent disorders affecting this organ in the future.
Max ERC Funding
1 897 437 €
Duration
Start date: 2020-07-01, End date: 2025-06-30
Project acronym ALTERUMMA
Project Creating an Alternative umma: Clerical Authority and Religio-political Mobilisation in Transnational Shii Islam
Researcher (PI) Oliver Paul SCHARBRODT
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Country United Kingdom
Call Details Consolidator Grant (CoG), SH5, ERC-2016-COG
Summary This interdisciplinary project investigates the transformation of Shii Islam in the Middle East and Europe since the 1950s. The project examines the formation of modern Shii communal identities and the role Shii clerical authorities and their transnational networks have played in their religio-political mobilisation. The volatile situation post-Arab Spring, the rise of militant movements such as ISIS and the sectarianisation of geopolitical conflicts in the Middle East have intensified efforts to forge distinct Shii communal identities and to conceive Shii Muslims as part of an alternative umma (Islamic community). The project focusses on Iran, Iraq and significant but unexplored diasporic links to Syria, Kuwait and Britain. In response to the rise of modern nation-states in the Middle East, Shii clerical authorities resorted to a wide range of activities: (a) articulating intellectual responses to the ideologies underpinning modern Middle Eastern nation-states, (b) forming political parties and other platforms of socio-political activism and (c) using various forms of cultural production by systematising and promoting Shii ritual practices and utilising visual art, poetry and new media.
The project yields a perspectival shift on the factors that led to Shii communal mobilisation by:
- Analysing unacknowledged intellectual responses of Shii clerical authorities to the secular or sectarian ideologies of post-colonial nation-states and to the current sectarianisation of geopolitics in the Middle East.
- Emphasising the central role of diasporic networks in the Middle East and Europe in mobilising Shii communities and in influencing discourses and agendas of clerical authorities based in Iraq and Iran.
- Exploring new modes of cultural production in the form of a modern Shii aesthetics articulated in ritual practices, visual art, poetry and new media and thus creating a more holistic narrative on Shii religio-political mobilisation.
Summary
This interdisciplinary project investigates the transformation of Shii Islam in the Middle East and Europe since the 1950s. The project examines the formation of modern Shii communal identities and the role Shii clerical authorities and their transnational networks have played in their religio-political mobilisation. The volatile situation post-Arab Spring, the rise of militant movements such as ISIS and the sectarianisation of geopolitical conflicts in the Middle East have intensified efforts to forge distinct Shii communal identities and to conceive Shii Muslims as part of an alternative umma (Islamic community). The project focusses on Iran, Iraq and significant but unexplored diasporic links to Syria, Kuwait and Britain. In response to the rise of modern nation-states in the Middle East, Shii clerical authorities resorted to a wide range of activities: (a) articulating intellectual responses to the ideologies underpinning modern Middle Eastern nation-states, (b) forming political parties and other platforms of socio-political activism and (c) using various forms of cultural production by systematising and promoting Shii ritual practices and utilising visual art, poetry and new media.
The project yields a perspectival shift on the factors that led to Shii communal mobilisation by:
- Analysing unacknowledged intellectual responses of Shii clerical authorities to the secular or sectarian ideologies of post-colonial nation-states and to the current sectarianisation of geopolitics in the Middle East.
- Emphasising the central role of diasporic networks in the Middle East and Europe in mobilising Shii communities and in influencing discourses and agendas of clerical authorities based in Iraq and Iran.
- Exploring new modes of cultural production in the form of a modern Shii aesthetics articulated in ritual practices, visual art, poetry and new media and thus creating a more holistic narrative on Shii religio-political mobilisation.
Max ERC Funding
1 952 374 €
Duration
Start date: 2018-01-01, End date: 2022-12-31