Project acronym 2-HIT
Project Genetic interaction networks: From C. elegans to human disease
Researcher (PI) Ben Lehner
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Country Spain
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Summary
Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Max ERC Funding
1 100 000 €
Duration
Start date: 2008-09-01, End date: 2014-04-30
Project acronym 2D-TOPSENSE
Project Tunable optoelectronic devices by strain engineering of 2D semiconductors
Researcher (PI) Andres CASTELLANOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Summary
The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Max ERC Funding
1 930 437 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym 2DNANOPTICA
Project Nano-optics on flatland: from quantum nanotechnology to nano-bio-photonics
Researcher (PI) Pablo Alonso-Gonzalez
Host Institution (HI) UNIVERSIDAD DE OVIEDO
Country Spain
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Summary
Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Max ERC Funding
1 459 219 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym 2DTHERMS
Project Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Researcher (PI) Jose Francisco Rivadulla Fernandez
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Country Spain
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Summary
Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Max ERC Funding
1 427 190 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym 3D-FIREFLUC
Project Taming the particle transport in magnetized plasmas via perturbative fields
Researcher (PI) Eleonora VIEZZER
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Country Spain
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary Wave-particle interactions are ubiquitous in nature and play a fundamental role in astrophysical and fusion plasmas. In solar plasmas, magnetohydrodynamic (MHD) fluctuations are thought to be responsible for the heating of the solar corona and the generation of the solar wind. In magnetically confined fusion (MCF) devices, enhanced particle transport induced by MHD fluctuations can deteriorate the plasma confinement, and also endanger the device integrity. MCF devices are an ideal testbed to verify current models and develop mitigation / protection techniques.
The proposed project paves the way for providing active control techniques to tame the MHD induced particle transport in a fusion plasma. A solid understanding of the interaction between energetic particles and MHD instabilities in the presence of electric fields and plasma currents is required to develop such techniques. I will pursue this goal through innovative diagnosis techniques with unprecedented spatio-temporal resolution. Combined with state-of-the-art hybrid MHD codes, a deep insight into the underlying physics mechanism will be gained. The outcome of this research project will have a major impact for next-step MCF devices as I will provide ground-breaking control techniques for mitigating MHD induced particle transport in magnetized plasmas.
The project consists of 3 research lines which follow a bottom-up approach:
(1) Cutting-edge instrumentation, aiming at the new generation of energetic particle and edge current diagnostics.
(2) Unravel the dynamics of energetic particles, electric fields, edge currents and MHD fluctuations.
(3) From lab to space weather: The developed models will revolutionize our understanding of the observed particle acceleration and transport in the solar corona.
Based on this approach, the project represents a gateway between the fusion, astrophysics and space communities opening new avenues for a common basic understanding.
Summary
Wave-particle interactions are ubiquitous in nature and play a fundamental role in astrophysical and fusion plasmas. In solar plasmas, magnetohydrodynamic (MHD) fluctuations are thought to be responsible for the heating of the solar corona and the generation of the solar wind. In magnetically confined fusion (MCF) devices, enhanced particle transport induced by MHD fluctuations can deteriorate the plasma confinement, and also endanger the device integrity. MCF devices are an ideal testbed to verify current models and develop mitigation / protection techniques.
The proposed project paves the way for providing active control techniques to tame the MHD induced particle transport in a fusion plasma. A solid understanding of the interaction between energetic particles and MHD instabilities in the presence of electric fields and plasma currents is required to develop such techniques. I will pursue this goal through innovative diagnosis techniques with unprecedented spatio-temporal resolution. Combined with state-of-the-art hybrid MHD codes, a deep insight into the underlying physics mechanism will be gained. The outcome of this research project will have a major impact for next-step MCF devices as I will provide ground-breaking control techniques for mitigating MHD induced particle transport in magnetized plasmas.
The project consists of 3 research lines which follow a bottom-up approach:
(1) Cutting-edge instrumentation, aiming at the new generation of energetic particle and edge current diagnostics.
(2) Unravel the dynamics of energetic particles, electric fields, edge currents and MHD fluctuations.
(3) From lab to space weather: The developed models will revolutionize our understanding of the observed particle acceleration and transport in the solar corona.
Based on this approach, the project represents a gateway between the fusion, astrophysics and space communities opening new avenues for a common basic understanding.
Max ERC Funding
1 512 250 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym 3DScavengers
Project Three-dimensional nanoscale design for the all-in-one solution to environmental multisource energy scavenging
Researcher (PI) Ana Isabel BORRAS MARTOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), PE8, ERC-2019-STG
Summary Imagine a technology for powering your smart devices by recovering energy from lights in your office, the random movements of your body while reading these lines or from small changes in temperature when you breathe or go out for a walk. This very technology will provide energy for wireless sensor networks monitoring the air in your city or the structural stability of buildings and large constructions remotely and sustainably, avoiding battery recharging or even replacing them. These are the challenges in micro energy harvesting from (local) ambient sources.
Kinetic, thermal and solar energies are ubiquitous at our surroundings under diverse forms, but their relatively low intensity and intermittent availability limit their potential recovery by microscale devices. These restrictions call for multi-source energy harvesters working under two principles: 1) combining different single-source harvesters in one device, or 2) using multifunctional materials capable of simultaneously converting various energy sources into electricity. In 1), efficiency per unit volume can decrease compared to the individual counterparts; in 2), materials as semiconductors, polymeric and oxide ferroelectrics and hybrid perovskites may act as multisource harvesters but huge advances are required to optimize their functionalities and sustainable fabrication at large scale.
I propose to fill the gap between these approaches offering an all-in-one solution to multisource energy scavenging, based on the nanoscale design of multifunctional three-dimensional materials. The demonstration of an industrially scalable one-reactor plasma/vacuum method will be crucial to integrate hybrid-scavenging components and to provide 3DScavengers materials with tailored microstructure-enhanced performance.
My ultimate goal is to build nanoarchitectures for simultaneous and enhanced individual scavenging applying photovoltaic, piezo- and pyro-electric effects, minimizing the environmental cost of their synthesis
Summary
Imagine a technology for powering your smart devices by recovering energy from lights in your office, the random movements of your body while reading these lines or from small changes in temperature when you breathe or go out for a walk. This very technology will provide energy for wireless sensor networks monitoring the air in your city or the structural stability of buildings and large constructions remotely and sustainably, avoiding battery recharging or even replacing them. These are the challenges in micro energy harvesting from (local) ambient sources.
Kinetic, thermal and solar energies are ubiquitous at our surroundings under diverse forms, but their relatively low intensity and intermittent availability limit their potential recovery by microscale devices. These restrictions call for multi-source energy harvesters working under two principles: 1) combining different single-source harvesters in one device, or 2) using multifunctional materials capable of simultaneously converting various energy sources into electricity. In 1), efficiency per unit volume can decrease compared to the individual counterparts; in 2), materials as semiconductors, polymeric and oxide ferroelectrics and hybrid perovskites may act as multisource harvesters but huge advances are required to optimize their functionalities and sustainable fabrication at large scale.
I propose to fill the gap between these approaches offering an all-in-one solution to multisource energy scavenging, based on the nanoscale design of multifunctional three-dimensional materials. The demonstration of an industrially scalable one-reactor plasma/vacuum method will be crucial to integrate hybrid-scavenging components and to provide 3DScavengers materials with tailored microstructure-enhanced performance.
My ultimate goal is to build nanoarchitectures for simultaneous and enhanced individual scavenging applying photovoltaic, piezo- and pyro-electric effects, minimizing the environmental cost of their synthesis
Max ERC Funding
1 498 414 €
Duration
Start date: 2020-03-01, End date: 2025-02-28
Project acronym 4D-BIOMAP
Project Biomechanical Stimulation based on 4D Printed Magneto-Active Polymers
Researcher (PI) DANIEL GARCIA GONZALEZ
Host Institution (HI) UNIVERSIDAD CARLOS III DE MADRID
Country Spain
Call Details Starting Grant (StG), PE8, ERC-2020-STG
Summary MAPs are polymer-based composites that respond to magnetic fields with large deformation or tuneable mechanical properties. I aim to apply heterogeneous 3D printed MAPs as modifiable substrates to support biological structures which can have their deformation state and stiffness controlled by the external application of magnetic stimuli. Such mechanical stimulation has an important role on biological structures leading to alterations in functional responses, morphological changes and activation of growth or healing processes. Current bottlenecks preventing progress in this field are a lack of: a) appropriate experimental methodologies to enable characterisation of the behaviour of these materials; b) fundamental theoretical underpinnings to support the design and application of these new materials. The first step is to undertake in depth characterisation and assessment of 4D printed MAPs to create a detailed understanding of the underlying physics controlling the interactions between the polymeric matrices and embedded magnetic particles during application of mechanical and/or magnetic loadings. I will then culture biological structures on the novel 4D printed MAPs to create a ‘designed’ biostructure with specified and controllable responses to a given magnetic stimulus. These novel biostructures will be assessed using three applications: a) astrocyte cellular networks, b) neuronal circuits and c) astrocyte-neuronal networks. The evaluation of cellular damage, morphological and physiological alterations will validate the performance of the new biostructures and also contribute new understanding to the effects of deformation and stiffness gradients during glial scarring on physiological functions of central nervous system cells. The resulting deep understanding of magneto-mechanics of MAPs and their further development for controllable stimulation devices, will enable the international consolidation of my research group within the mechanics and bioengineering fields.
Summary
MAPs are polymer-based composites that respond to magnetic fields with large deformation or tuneable mechanical properties. I aim to apply heterogeneous 3D printed MAPs as modifiable substrates to support biological structures which can have their deformation state and stiffness controlled by the external application of magnetic stimuli. Such mechanical stimulation has an important role on biological structures leading to alterations in functional responses, morphological changes and activation of growth or healing processes. Current bottlenecks preventing progress in this field are a lack of: a) appropriate experimental methodologies to enable characterisation of the behaviour of these materials; b) fundamental theoretical underpinnings to support the design and application of these new materials. The first step is to undertake in depth characterisation and assessment of 4D printed MAPs to create a detailed understanding of the underlying physics controlling the interactions between the polymeric matrices and embedded magnetic particles during application of mechanical and/or magnetic loadings. I will then culture biological structures on the novel 4D printed MAPs to create a ‘designed’ biostructure with specified and controllable responses to a given magnetic stimulus. These novel biostructures will be assessed using three applications: a) astrocyte cellular networks, b) neuronal circuits and c) astrocyte-neuronal networks. The evaluation of cellular damage, morphological and physiological alterations will validate the performance of the new biostructures and also contribute new understanding to the effects of deformation and stiffness gradients during glial scarring on physiological functions of central nervous system cells. The resulting deep understanding of magneto-mechanics of MAPs and their further development for controllable stimulation devices, will enable the international consolidation of my research group within the mechanics and bioengineering fields.
Max ERC Funding
1 499 625 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym 4SUNS
Project 4-Colours/2-Junctions of III-V semiconductors on Si to use in electronics devices and solar cells
Researcher (PI) MarIa Nair LOPEZ MARTINEZ
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Country Spain
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Summary
It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Max ERC Funding
1 499 719 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym AMORE
Project A distributional MOdel of Reference to Entities
Researcher (PI) Gemma BOLEDA TORRENT
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Country Spain
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary "When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Summary
"When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Max ERC Funding
1 499 805 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym ANIMETRICS
Project Measurement-Based Modeling and Animation of Complex Mechanical Phenomena
Researcher (PI) Miguel Angel Otaduy Tristan
Host Institution (HI) UNIVERSIDAD REY JUAN CARLOS
Country Spain
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary Computer animation has traditionally been associated with applications in virtual-reality-based training, video games or feature films. However, interactive animation is gaining relevance in a more general scope, as a tool for early-stage analysis, design and planning in many applications in science and engineering. The user can get quick and visual feedback of the results, and then proceed by refining the experiments or designs. Potential applications include nanodesign, e-commerce or tactile telecommunication, but they also reach as far as, e.g., the analysis of ecological, climate, biological or physiological processes.
The application of computer animation is extremely limited in comparison to its potential outreach due to a trade-off between accuracy and computational efficiency. Such trade-off is induced by inherent complexity sources such as nonlinear or anisotropic behaviors, heterogeneous properties, or high dynamic ranges of effects.
The Animetrics project proposes a modeling and animation methodology, which consists of a multi-scale decomposition of complex processes, the description of the process at each scale through combination of simple local models, and fitting the parameters of those local models using large amounts of data from example effects. The modeling and animation methodology will be explored on specific problems arising in complex mechanical phenomena, including viscoelasticity of solids and thin shells, multi-body contact, granular and liquid flow, and fracture of solids.
Summary
Computer animation has traditionally been associated with applications in virtual-reality-based training, video games or feature films. However, interactive animation is gaining relevance in a more general scope, as a tool for early-stage analysis, design and planning in many applications in science and engineering. The user can get quick and visual feedback of the results, and then proceed by refining the experiments or designs. Potential applications include nanodesign, e-commerce or tactile telecommunication, but they also reach as far as, e.g., the analysis of ecological, climate, biological or physiological processes.
The application of computer animation is extremely limited in comparison to its potential outreach due to a trade-off between accuracy and computational efficiency. Such trade-off is induced by inherent complexity sources such as nonlinear or anisotropic behaviors, heterogeneous properties, or high dynamic ranges of effects.
The Animetrics project proposes a modeling and animation methodology, which consists of a multi-scale decomposition of complex processes, the description of the process at each scale through combination of simple local models, and fitting the parameters of those local models using large amounts of data from example effects. The modeling and animation methodology will be explored on specific problems arising in complex mechanical phenomena, including viscoelasticity of solids and thin shells, multi-body contact, granular and liquid flow, and fracture of solids.
Max ERC Funding
1 277 969 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym APACHE
Project Atmospheric Pressure plAsma meets biomaterials for bone Cancer HEaling
Researcher (PI) Cristina CANAL BARNILS
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Country Spain
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Summary
Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Max ERC Funding
1 499 887 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym AQUMET
Project Atomic Quantum Metrology
Researcher (PI) Morgan Wilfred Mitchell
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Country Spain
Call Details Starting Grant (StG), PE2, ERC-2011-StG_20101014
Summary This project aims to detect magnetic fields with high spatial and temporal resolution and unprecedented sensitivity using ultra-cold atoms as interferometric sensors. The project will, on the one hand, test and demonstrate the most advanced concepts in the dynamic field of quantum metrology, and on the other hand, develop measurement techniques with the potential to transform existing fields and open new ones to study.
Quantum metrology is in an exciting phase: on the one hand, a long-held goal of improving gravita- tional wave detection appears near at hand. At the same time, atomic instruments including atomic clocks, atomic gravimeters and atomic magnetometers are setting records in detection of time, ac- celeration, and fields, with revolutionary potential in several areas. This has stimulated new theory, including remarkable proposals suggesting that long-established “ultimate” limits can in fact be sur- passed.
This project will study quantum metrology applied to atomic sensors by developing a versatile and highly sensitive cold atom magnetometer. We set an ambitious goal: to demonstrate record sensi- tivity, and then to improve on that sensitivity using quantum entanglement. This ground-breaking accomplishment will show the way to super-precise measurements in many fields.
Fundamental topics in quantum metrology will be explored using the advanced magnetometry sys- tem. Nonlinear quantum metrology proposes to surpass the Heisenberg limit using inter-particle interactions. Compressed sensing aims to surpass the Nyquist limit, obtaining more information than normally allowed.
Summary
This project aims to detect magnetic fields with high spatial and temporal resolution and unprecedented sensitivity using ultra-cold atoms as interferometric sensors. The project will, on the one hand, test and demonstrate the most advanced concepts in the dynamic field of quantum metrology, and on the other hand, develop measurement techniques with the potential to transform existing fields and open new ones to study.
Quantum metrology is in an exciting phase: on the one hand, a long-held goal of improving gravita- tional wave detection appears near at hand. At the same time, atomic instruments including atomic clocks, atomic gravimeters and atomic magnetometers are setting records in detection of time, ac- celeration, and fields, with revolutionary potential in several areas. This has stimulated new theory, including remarkable proposals suggesting that long-established “ultimate” limits can in fact be sur- passed.
This project will study quantum metrology applied to atomic sensors by developing a versatile and highly sensitive cold atom magnetometer. We set an ambitious goal: to demonstrate record sensi- tivity, and then to improve on that sensitivity using quantum entanglement. This ground-breaking accomplishment will show the way to super-precise measurements in many fields.
Fundamental topics in quantum metrology will be explored using the advanced magnetometry sys- tem. Nonlinear quantum metrology proposes to surpass the Heisenberg limit using inter-particle interactions. Compressed sensing aims to surpass the Nyquist limit, obtaining more information than normally allowed.
Max ERC Funding
1 387 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym ATTOSTRUCTURA
Project Structured attosecond pulses for ultrafast nanoscience
Researcher (PI) Carlos HERNANDEZ-GARCIA
Host Institution (HI) UNIVERSIDAD DE SALAMANCA
Country Spain
Call Details Starting Grant (StG), PE2, ERC-2019-STG
Summary Light is one of today’s most powerful tools for exploriLight is one of today’s most powerful tools for exploring nature at the frontier of the human knowledge. The rapid development of laser technology allow us today to generate ultrashort pulses of coherent structured light: light fields with custom spatial and temporal properties, such as intensity, phase and angular momentum. The later one represents one of the most interesting light properties nowadays, as topological light beams carrying angular momentum interact with matter differently, introducing mechanical motion to micro and nano-structures, and affecting fundamental excitation rules. High-order harmonic generation (HHG) stands as a unique mechanism to provide coherent flashes of light with outstanding properties: its radiation spectrum expands from the vacuum ultraviolet to the soft x-rays; it can be synthesized in pulses as short as several attoseconds (10^-18 seconds): and it can be structured in its angular momentum properties. This proposal represents a timely opportunity to explore the ground-breaking opportunities offered by attosecond structured x-ray sources. It conveys computing light-matter interaction in extreme conditions, which requires an extraordinary effort in the elaboration of new theoretical tools to design, propose and guide future experiments at the frontier of ultrafast science. We shall pioneer the new scenario of angular momenta in structured ultrashort x-rays –the most complex coherent pulses to date–. It is not difficult to envision a new era in ultrafast nanotechnology that makes use of these x-ray sources. In particular we shall pioneer their application to nanoscience and ultrafast magnetism. We aim to establish the grounding principles of attomagnetism, taking advantage of the unique opportunity offered by structured light pulses to induce pure attosecond magnetic fields, which could set the precedents of high-rate magnetic recording through ultrafast magnetization reversal.
Summary
Light is one of today’s most powerful tools for exploriLight is one of today’s most powerful tools for exploring nature at the frontier of the human knowledge. The rapid development of laser technology allow us today to generate ultrashort pulses of coherent structured light: light fields with custom spatial and temporal properties, such as intensity, phase and angular momentum. The later one represents one of the most interesting light properties nowadays, as topological light beams carrying angular momentum interact with matter differently, introducing mechanical motion to micro and nano-structures, and affecting fundamental excitation rules. High-order harmonic generation (HHG) stands as a unique mechanism to provide coherent flashes of light with outstanding properties: its radiation spectrum expands from the vacuum ultraviolet to the soft x-rays; it can be synthesized in pulses as short as several attoseconds (10^-18 seconds): and it can be structured in its angular momentum properties. This proposal represents a timely opportunity to explore the ground-breaking opportunities offered by attosecond structured x-ray sources. It conveys computing light-matter interaction in extreme conditions, which requires an extraordinary effort in the elaboration of new theoretical tools to design, propose and guide future experiments at the frontier of ultrafast science. We shall pioneer the new scenario of angular momenta in structured ultrashort x-rays –the most complex coherent pulses to date–. It is not difficult to envision a new era in ultrafast nanotechnology that makes use of these x-ray sources. In particular we shall pioneer their application to nanoscience and ultrafast magnetism. We aim to establish the grounding principles of attomagnetism, taking advantage of the unique opportunity offered by structured light pulses to induce pure attosecond magnetic fields, which could set the precedents of high-rate magnetic recording through ultrafast magnetization reversal.
Max ERC Funding
1 425 000 €
Duration
Start date: 2020-03-01, End date: 2025-02-28
Project acronym BacBio
Project Mechanistic and functional studies of Bacillus biofilms assembly on plants, and their impact in sustainable agriculture and food safety
Researcher (PI) Diego Francisco Romero Hinojosa
Host Institution (HI) UNIVERSIDAD DE MALAGA
Country Spain
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Sustainable agriculture is an ambitious concept conceived to improve productivity but minimizing side effects. Why the efficiency of a biocontrol agent is so variable? How can different therapies be efficiently exploited in a combined way to combat microbial diseases? These are questions that need investigation to convey with criteria of sustainability. What I present is an integral proposal aim to study the microbial ecology and specifically bacterial biofilms as a central axis of two differential but likely interconnected scenarios in plant health: i) the beneficial interaction of the biocontrol agent (BCA) Bacillus subtilis, and ii) the non-conventional interaction of the food-borne pathogen Bacillus cereus.
I will start working with B. subtilis, and reasons are: 1) Different isolates are promising BCAs and are commercialized for such purpose, 2) There exist vast information of the genetics circuitries that govern important aspects of B. subtilis physiology as antibiotic production, cell differentiation, and biofilm formation. In parallel I propose to study the way B. cereus, a food-borne pathogenic bacterium interacts with vegetables. I am planning to set up a multidisciplinary approach that will combine genetics, biochemistry, proteomics, cell biology and molecular biology to visualize how these bacterial population interacts, communicates with plants and other microorganisms, or how all these factors trigger or inhibit the developmental program ending in biofilm formation. I am also interested on knowing if structural components of the bacterial extracellular matrix (exopolysaccharides or amyloid proteins) are important for bacterial fitness. If this were the case, I will also investigate which external factors affect their expression and assembly in functional biofilms. The insights get on these studies are committed to impulse our knowledge on microbial ecology and their biotechnological applicability to sustainable agriculture and food safety.
Summary
Sustainable agriculture is an ambitious concept conceived to improve productivity but minimizing side effects. Why the efficiency of a biocontrol agent is so variable? How can different therapies be efficiently exploited in a combined way to combat microbial diseases? These are questions that need investigation to convey with criteria of sustainability. What I present is an integral proposal aim to study the microbial ecology and specifically bacterial biofilms as a central axis of two differential but likely interconnected scenarios in plant health: i) the beneficial interaction of the biocontrol agent (BCA) Bacillus subtilis, and ii) the non-conventional interaction of the food-borne pathogen Bacillus cereus.
I will start working with B. subtilis, and reasons are: 1) Different isolates are promising BCAs and are commercialized for such purpose, 2) There exist vast information of the genetics circuitries that govern important aspects of B. subtilis physiology as antibiotic production, cell differentiation, and biofilm formation. In parallel I propose to study the way B. cereus, a food-borne pathogenic bacterium interacts with vegetables. I am planning to set up a multidisciplinary approach that will combine genetics, biochemistry, proteomics, cell biology and molecular biology to visualize how these bacterial population interacts, communicates with plants and other microorganisms, or how all these factors trigger or inhibit the developmental program ending in biofilm formation. I am also interested on knowing if structural components of the bacterial extracellular matrix (exopolysaccharides or amyloid proteins) are important for bacterial fitness. If this were the case, I will also investigate which external factors affect their expression and assembly in functional biofilms. The insights get on these studies are committed to impulse our knowledge on microbial ecology and their biotechnological applicability to sustainable agriculture and food safety.
Max ERC Funding
1 453 563 €
Duration
Start date: 2015-03-01, End date: 2021-02-28
Project acronym BETTERSENSE
Project Nanodevice Engineering for a Better Chemical Gas Sensing Technology
Researcher (PI) Juan Daniel Prades Garcia
Host Institution (HI) UNIVERSITAT DE BARCELONA
Country Spain
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Summary
BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Max ERC Funding
1 498 452 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIOCON
Project Biological origins of linguistic constraints
Researcher (PI) Juan Manuel Toro
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Country Spain
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Summary
The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Max ERC Funding
1 305 973 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym BioInspired_SolarH2
Project Engineering Bio-Inspired Systems for the Conversion of Solar Energy to Hydrogen
Researcher (PI) Elisabet ROMERO MESA
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Country Spain
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary With this proposal, I aim to achieve the efficient conversion of solar energy to hydrogen. The overall objective is to engineer bio-inspired systems able to convert solar energy into a separation of charges and to construct devices by coupling these systems to catalysts in order to drive sustainable and effective water oxidation and hydrogen production.
The global energy crisis requires an urgent solution, we must replace fossil fuels for a renewable energy source: Solar energy. However, the efficient and inexpensive conversion and storage of solar energy into fuel remains a fundamental challenge. Currently, solar-energy conversion devices suffer from energy losses mainly caused by disorder in the materials used. The solution to this problem is to learn from nature. In photosynthesis, the photosystem II reaction centre (PSII RC) is a pigment-protein complex able to overcome disorder and convert solar photons into a separation of charges with near 100% efficiency. Crucially, the generated charges have enough potential to drive water oxidation and hydrogen production.
Previously, I have investigated the charge separation process in the PSII RC by a collection of spectroscopic techniques, which allowed me to formulate the design principles of photosynthetic charge separation, where coherence plays a crucial role. Here I will put these knowledge into action to design efficient and robust chromophore-protein assemblies for the collection and conversion of solar energy, employ organic chemistry and synthetic biology tools to construct these well defined and fully controllable assemblies, and apply a complete set of spectroscopic methods to investigate these engineered systems.
Following the approach Understand, Engineer, Implement, I will create a new generation of bio-inspired devices based on abundant and biodegradable materials that will drive the transformation of solar energy and water into hydrogen, an energy-rich molecule that can be stored and transported.
Summary
With this proposal, I aim to achieve the efficient conversion of solar energy to hydrogen. The overall objective is to engineer bio-inspired systems able to convert solar energy into a separation of charges and to construct devices by coupling these systems to catalysts in order to drive sustainable and effective water oxidation and hydrogen production.
The global energy crisis requires an urgent solution, we must replace fossil fuels for a renewable energy source: Solar energy. However, the efficient and inexpensive conversion and storage of solar energy into fuel remains a fundamental challenge. Currently, solar-energy conversion devices suffer from energy losses mainly caused by disorder in the materials used. The solution to this problem is to learn from nature. In photosynthesis, the photosystem II reaction centre (PSII RC) is a pigment-protein complex able to overcome disorder and convert solar photons into a separation of charges with near 100% efficiency. Crucially, the generated charges have enough potential to drive water oxidation and hydrogen production.
Previously, I have investigated the charge separation process in the PSII RC by a collection of spectroscopic techniques, which allowed me to formulate the design principles of photosynthetic charge separation, where coherence plays a crucial role. Here I will put these knowledge into action to design efficient and robust chromophore-protein assemblies for the collection and conversion of solar energy, employ organic chemistry and synthetic biology tools to construct these well defined and fully controllable assemblies, and apply a complete set of spectroscopic methods to investigate these engineered systems.
Following the approach Understand, Engineer, Implement, I will create a new generation of bio-inspired devices based on abundant and biodegradable materials that will drive the transformation of solar energy and water into hydrogen, an energy-rich molecule that can be stored and transported.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym BLOODCELLSCROSSTALK
Project The Crosstalk Between Red And White Blood Cells: The Case Of Fish
Researcher (PI) Maria del Mar Ortega-Villaizan Romo
Host Institution (HI) UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE
Country Spain
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Fish are the phylogenetically oldest vertebrate group with an immune system with clear similarities to the immune system of mammals. However, it is an actual matter of fact that the current knowledge of the fish immune system seems to lack the key piece to complete the puzzle.
In 1953 Nelson described a new role of human red blood cells (RBCs) which would go beyond the simple transport of O2 to the tissues. This new role, involved in the defence against microbes, described the antibody and complement-dependent binding of microbial immune complexes to RBCs. Regardless of the importance of this finding in the field of microbial infection, this phenomenon has been poorly evaluated. Just recently, a set of biological processes relevant to immunity have been described in the RBCs of a diverse group of organisms, which include: pathogen recognition, pathogen binding and clearance and cytokines production. Furthermore, it has been demonstrated that nucleated erythrocytes from fish and avian species develop specific responses to different pathogen associated molecular patterns and produce soluble factors that modulate leukocyte activity.
In the light of these pieces of evidences, and in an attempt to improve the knowledge of the immune mechanism(s) responsible for fish protection against viral infections, we raised the question: could nucleated fish erythrocytes be the key mediators of the antiviral responses? To answer this question we decided to focus our project on the evaluation of the crosstalk between red and white blood cells in the scenario of fish viral infections and prophylaxis. For that a working model composed of the rainbow trout and the viral haemorrhagic septicaemia virus (VHSV) was chosen, being the objectives of the project to evaluate: i) the implication trout RBCs (tRBCs) in the clearance of VHSV, and ii) the involvement of tRBCs in the blood transportation of the glycoprotein G of VHSV (GVHSV), the antigen encoded by the DNA vaccine.
Summary
Fish are the phylogenetically oldest vertebrate group with an immune system with clear similarities to the immune system of mammals. However, it is an actual matter of fact that the current knowledge of the fish immune system seems to lack the key piece to complete the puzzle.
In 1953 Nelson described a new role of human red blood cells (RBCs) which would go beyond the simple transport of O2 to the tissues. This new role, involved in the defence against microbes, described the antibody and complement-dependent binding of microbial immune complexes to RBCs. Regardless of the importance of this finding in the field of microbial infection, this phenomenon has been poorly evaluated. Just recently, a set of biological processes relevant to immunity have been described in the RBCs of a diverse group of organisms, which include: pathogen recognition, pathogen binding and clearance and cytokines production. Furthermore, it has been demonstrated that nucleated erythrocytes from fish and avian species develop specific responses to different pathogen associated molecular patterns and produce soluble factors that modulate leukocyte activity.
In the light of these pieces of evidences, and in an attempt to improve the knowledge of the immune mechanism(s) responsible for fish protection against viral infections, we raised the question: could nucleated fish erythrocytes be the key mediators of the antiviral responses? To answer this question we decided to focus our project on the evaluation of the crosstalk between red and white blood cells in the scenario of fish viral infections and prophylaxis. For that a working model composed of the rainbow trout and the viral haemorrhagic septicaemia virus (VHSV) was chosen, being the objectives of the project to evaluate: i) the implication trout RBCs (tRBCs) in the clearance of VHSV, and ii) the involvement of tRBCs in the blood transportation of the glycoprotein G of VHSV (GVHSV), the antigen encoded by the DNA vaccine.
Max ERC Funding
1 823 250 €
Duration
Start date: 2015-04-01, End date: 2020-10-31
Project acronym BSMFLEET
Project Challenging the Standard Model using an extended Physics program in LHCb
Researcher (PI) Diego Martinez Santos
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Country Spain
Call Details Starting Grant (StG), PE2, ERC-2014-STG
Summary We know that the Standard Model (SM) of Particle Physics is not the ultimate theory of Nature. It misses a quantum description of gravity, it does not offer any explanation to the composition of Dark Matter, and the matter-antimatter unbalance of the Universe is predicted to be significantly smaller than what we actually see. Those are fundamental questions that still need an answer. Alternative models to SM exist, based on ideas such as SuperSymmetry or extra dimensions, and are currently being tested at the Large Hadron Collider (LHC) at CERN. But after the first run of the LHC the SM is yet unbeaten at accelerators, which imposes severe constraints in Physics beyond the SM (BSM). From this point, I see two further working directions: on one side, we must increase our precision in the previous measurements in order to access smaller BSM effects. On the other hand; we should attack the SM with a new fleet of observables sensitive to different BSM scenarios, and make sure that we are making full use of what the LHC offers to us. I propose to create a team at Universidade de Santiago de Compostela that will expand the use of LHCb beyond its original design, while also reinforcing the core LHCb analyses in which I played a leading role so far. LHCb has up to now collected world-leading samples of decays of b and c quarks. My proposal implies to use LHCb for collecting and analysing also world-leading samples of rare s quarks complementary to those of NA62. In the rare s decays the SM sources of Flavour Violation have a stronger suppression than anywhere else, and therefore those decays are excellent places to search for new Flavour Violating sources that otherwise would be hidden behind the SM contributions. It is very important to do this now, since we may not have a similar opportunity in years. In addition, the team will also exploit LHCb to search for μμ resonances predicted in models like NMSSM, and for which LHCb also offers a unique potential that must be used.
Summary
We know that the Standard Model (SM) of Particle Physics is not the ultimate theory of Nature. It misses a quantum description of gravity, it does not offer any explanation to the composition of Dark Matter, and the matter-antimatter unbalance of the Universe is predicted to be significantly smaller than what we actually see. Those are fundamental questions that still need an answer. Alternative models to SM exist, based on ideas such as SuperSymmetry or extra dimensions, and are currently being tested at the Large Hadron Collider (LHC) at CERN. But after the first run of the LHC the SM is yet unbeaten at accelerators, which imposes severe constraints in Physics beyond the SM (BSM). From this point, I see two further working directions: on one side, we must increase our precision in the previous measurements in order to access smaller BSM effects. On the other hand; we should attack the SM with a new fleet of observables sensitive to different BSM scenarios, and make sure that we are making full use of what the LHC offers to us. I propose to create a team at Universidade de Santiago de Compostela that will expand the use of LHCb beyond its original design, while also reinforcing the core LHCb analyses in which I played a leading role so far. LHCb has up to now collected world-leading samples of decays of b and c quarks. My proposal implies to use LHCb for collecting and analysing also world-leading samples of rare s quarks complementary to those of NA62. In the rare s decays the SM sources of Flavour Violation have a stronger suppression than anywhere else, and therefore those decays are excellent places to search for new Flavour Violating sources that otherwise would be hidden behind the SM contributions. It is very important to do this now, since we may not have a similar opportunity in years. In addition, the team will also exploit LHCb to search for μμ resonances predicted in models like NMSSM, and for which LHCb also offers a unique potential that must be used.
Max ERC Funding
1 499 855 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym CAMBAT
Project Calcium and magnesium metal anode based batteries
Researcher (PI) Alexandre PONROUCH
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Li-ion battery is ubiquitous and has emerged as the major contender to power electric vehicles, yet Li-ion is slowly but surely reaching its limits and controversial debates on lithium supply cannot be ignored. New sustainable battery chemistries must be developed and the most appealing alternatives are to use Ca or Mg metal anodes which would bring a breakthrough in terms of energy density relying on much more abundant elements. Since Mg and Ca do not appear to be plagued by dendrite formation like Li, metal anodes could thus safely be used. While standard electrolytes forming stable passivation layers at the electrode/electrolyte interfaces enabled the success of the Li-ion technology, the migration of divalent cations through a passivation layer was thought to be impossible. Thus, all research efforts to date have been devoted to the formulation of electrolytes that do not form such layer. This approach comes with complex electrolyte, highly corrosive and with narrow electrochemical stability window leading to incompatibility with high voltage cathodes thus penalizing energy density.
The applicant demonstrated that calcium can be reversibly plated and stripped through a stable passivation layer when transport properties within the electrolyte are tuned (decreasing ion pair formation). CAMBAT aims at developing new electrolytes forming stable passivation layers and allowing the migration of Ca2+ and Mg2+. Such a dramatic shift in the methodology would allow considering a completely new family of electrolytes enabling the evaluation of high voltage cathode materials that cannot be tested in the electrolytes available nowadays. 1Ah prototype cells will be assembled as proof of concept, targets for energy density and cost being ca. 300 Wh/kg and 250 $/kWh, respectively, thus doubling the energy density while dividing by at least a factor of 2 the price when compared to state of the art Li-ion batteries and having the potential for being SAFER (absence of dendrite).
Summary
Li-ion battery is ubiquitous and has emerged as the major contender to power electric vehicles, yet Li-ion is slowly but surely reaching its limits and controversial debates on lithium supply cannot be ignored. New sustainable battery chemistries must be developed and the most appealing alternatives are to use Ca or Mg metal anodes which would bring a breakthrough in terms of energy density relying on much more abundant elements. Since Mg and Ca do not appear to be plagued by dendrite formation like Li, metal anodes could thus safely be used. While standard electrolytes forming stable passivation layers at the electrode/electrolyte interfaces enabled the success of the Li-ion technology, the migration of divalent cations through a passivation layer was thought to be impossible. Thus, all research efforts to date have been devoted to the formulation of electrolytes that do not form such layer. This approach comes with complex electrolyte, highly corrosive and with narrow electrochemical stability window leading to incompatibility with high voltage cathodes thus penalizing energy density.
The applicant demonstrated that calcium can be reversibly plated and stripped through a stable passivation layer when transport properties within the electrolyte are tuned (decreasing ion pair formation). CAMBAT aims at developing new electrolytes forming stable passivation layers and allowing the migration of Ca2+ and Mg2+. Such a dramatic shift in the methodology would allow considering a completely new family of electrolytes enabling the evaluation of high voltage cathode materials that cannot be tested in the electrolytes available nowadays. 1Ah prototype cells will be assembled as proof of concept, targets for energy density and cost being ca. 300 Wh/kg and 250 $/kWh, respectively, thus doubling the energy density while dividing by at least a factor of 2 the price when compared to state of the art Li-ion batteries and having the potential for being SAFER (absence of dendrite).
Max ERC Funding
1 688 705 €
Duration
Start date: 2017-01-01, End date: 2022-06-30