Project acronym ApeGenomeDiversity
Project Great ape genome variation now and then: current diversity and genomic relics of extinct primates
Researcher (PI) Tomas MARQUES BONET
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Country Spain
Call Details Consolidator Grant (CoG), LS2, ERC-2019-COG
Summary In our quest to fully understand the processes that shape the genomic variation of species, describing variation of the past is a fundamental objective. However, the origins and the extent of great ape variation, the genomic description of extinct primate species and the genomic footprints of introgression events all remain unknown. Even today, and in contraposition to human evolutionary biology, the almost null presence of ancient great ape samples has precluded a comprehensive exploration of such diversity.
Here, I present two approaches that will expose great ape diversity throughout time and will allow me to compare the genomic impact of introgression events across lineages. First, I would like to take advantage of ancient ape samples that will provide us with a direct view of the genomes of extinct populations. Second, I would like to exploit current and recent diversity to indirectly access the parts of extinct ape genomes that became hybridized with current species in the past. For the latter, we will analyse hundreds of non-invasive samples taken from present-day great apes as well as historical specimens. Altogether, this information will enable me to decipher novel genomes that until now have been lost in time. In this way, I will be able to properly understand the origins and dynamics of genomic variants and to study how admixture has contributed to today´s adaptive landscape.
By completing this proposal and performing analogies to the human lineage, fundamental insights will be revealed about (i) the spatial-temporal history of our closest species and (ii) the functional consequences of introgressed events. On top of that, these results will help to annotate functional consequences of novel mutations in the human genome. In so doing, a fundamental insight will be provided into the evolutionary history of these regions and into human mutations with multiple repercussions in the understanding of evolution and human biology.
Summary
In our quest to fully understand the processes that shape the genomic variation of species, describing variation of the past is a fundamental objective. However, the origins and the extent of great ape variation, the genomic description of extinct primate species and the genomic footprints of introgression events all remain unknown. Even today, and in contraposition to human evolutionary biology, the almost null presence of ancient great ape samples has precluded a comprehensive exploration of such diversity.
Here, I present two approaches that will expose great ape diversity throughout time and will allow me to compare the genomic impact of introgression events across lineages. First, I would like to take advantage of ancient ape samples that will provide us with a direct view of the genomes of extinct populations. Second, I would like to exploit current and recent diversity to indirectly access the parts of extinct ape genomes that became hybridized with current species in the past. For the latter, we will analyse hundreds of non-invasive samples taken from present-day great apes as well as historical specimens. Altogether, this information will enable me to decipher novel genomes that until now have been lost in time. In this way, I will be able to properly understand the origins and dynamics of genomic variants and to study how admixture has contributed to today´s adaptive landscape.
By completing this proposal and performing analogies to the human lineage, fundamental insights will be revealed about (i) the spatial-temporal history of our closest species and (ii) the functional consequences of introgressed events. On top of that, these results will help to annotate functional consequences of novel mutations in the human genome. In so doing, a fundamental insight will be provided into the evolutionary history of these regions and into human mutations with multiple repercussions in the understanding of evolution and human biology.
Max ERC Funding
1 896 875 €
Duration
Start date: 2020-06-01, End date: 2025-05-31
Project acronym AUTAR
Project A Unified Theory of Algorithmic Relaxations
Researcher (PI) Albert Atserias Peri
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Country Spain
Call Details Consolidator Grant (CoG), PE6, ERC-2014-CoG
Summary For a large family of computational problems collectively known as constrained optimization and satisfaction problems (CSPs), four decades of research in algorithms and computational complexity have led to a theory that tries to classify them as algorithmically tractable vs. intractable, i.e. polynomial-time solvable vs. NP-hard. However, there remains an important gap in our knowledge in that many CSPs of interest resist classification by this theory. Some such problems of practical relevance include fundamental partition problems in graph theory, isomorphism problems in combinatorics, and strategy-design problems in mathematical game theory. To tackle this gap in our knowledge, the research of the last decade has been driven either by finding hard instances for algorithms that solve tighter and tighter relaxations of the original problem, or by formulating new hardness-hypotheses that are stronger but admittedly less robust than NP-hardness.
The ultimate goal of this project is closing the gap between the partial progress that these approaches represent and the original classification project into tractable vs. intractable problems. Our thesis is that the field has reached a point where, in many cases of interest, the analysis of the current candidate algorithms that appear to solve all instances could suffice to classify the problem one way or the other, without the need for alternative hardness-hypotheses. The novelty in our approach is a program to develop our recent discovery that, in some cases of interest, two methods from different areas match in strength: indistinguishability pebble games from mathematical logic, and hierarchies of convex relaxations from mathematical programming. Thus, we aim at making significant advances in the status of important algorithmic problems by looking for a general theory that unifies and goes beyond the current understanding of its components.
Summary
For a large family of computational problems collectively known as constrained optimization and satisfaction problems (CSPs), four decades of research in algorithms and computational complexity have led to a theory that tries to classify them as algorithmically tractable vs. intractable, i.e. polynomial-time solvable vs. NP-hard. However, there remains an important gap in our knowledge in that many CSPs of interest resist classification by this theory. Some such problems of practical relevance include fundamental partition problems in graph theory, isomorphism problems in combinatorics, and strategy-design problems in mathematical game theory. To tackle this gap in our knowledge, the research of the last decade has been driven either by finding hard instances for algorithms that solve tighter and tighter relaxations of the original problem, or by formulating new hardness-hypotheses that are stronger but admittedly less robust than NP-hardness.
The ultimate goal of this project is closing the gap between the partial progress that these approaches represent and the original classification project into tractable vs. intractable problems. Our thesis is that the field has reached a point where, in many cases of interest, the analysis of the current candidate algorithms that appear to solve all instances could suffice to classify the problem one way or the other, without the need for alternative hardness-hypotheses. The novelty in our approach is a program to develop our recent discovery that, in some cases of interest, two methods from different areas match in strength: indistinguishability pebble games from mathematical logic, and hierarchies of convex relaxations from mathematical programming. Thus, we aim at making significant advances in the status of important algorithmic problems by looking for a general theory that unifies and goes beyond the current understanding of its components.
Max ERC Funding
1 725 656 €
Duration
Start date: 2015-06-01, End date: 2020-09-30
Project acronym BECAME
Project Bimetallic Catalysis for Diverse Methane Functionalization
Researcher (PI) MartIn FAnANaS-MASTRAL
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Country Spain
Call Details Consolidator Grant (CoG), PE5, ERC-2019-COG
Summary One of the remaining primary challenges in modern chemistry is the development of clean, energy- and cost-efficient catalytic processes that can allow to convert simple and abundant chemical feedstocks into high value-added products. Given the vast reserves of methane from natural gas, available worldwide, the direct use of the simplest alkane as source of fuels and chemicals could have a great impact in our society. However, methane´s low intrinsic reactivity has rendered its use extremely difficult for purposes beyond aerobic combustion and the production of syngas. Despite some recent advances in the field, a general strategy for a diverse and versatile use of methane is elusive.
The overall aim of this proposal is the development of a new paradigm in catalysis which can provide new catalytic processes that allow direct methane functionalization by using it as a methylating reagent in a variety of C-C bond forming reactions.
The approach described in this proposal is based on a cooperative interaction between two transition metal complexes in which an early transition metal is responsible for the methane C-H activation and a late transition metal is the actual catalyst of the methylation process. The link between these two processes is a transmetalation step and will be used to transfer the mechanism of typical cross-coupling reactions to the field of methane functionalization.
New pathways for the direct use of methane in reactions such as allylic alkylation, conjugate addition, cross-coupling, C-H methylation and alkene hydromethylation will be developed based on this novel bimetallic catalytic strategy.
It is envisioned that the proposed research will lead to a new concept at the interface of catalytic cross coupling reactions and C-H activation. It will contribute to the fundamental understanding of these two reactions and will provide the basis for a new technology for energy efficient and environmentally friendly, thus sustainable, methane conversion.
Summary
One of the remaining primary challenges in modern chemistry is the development of clean, energy- and cost-efficient catalytic processes that can allow to convert simple and abundant chemical feedstocks into high value-added products. Given the vast reserves of methane from natural gas, available worldwide, the direct use of the simplest alkane as source of fuels and chemicals could have a great impact in our society. However, methane´s low intrinsic reactivity has rendered its use extremely difficult for purposes beyond aerobic combustion and the production of syngas. Despite some recent advances in the field, a general strategy for a diverse and versatile use of methane is elusive.
The overall aim of this proposal is the development of a new paradigm in catalysis which can provide new catalytic processes that allow direct methane functionalization by using it as a methylating reagent in a variety of C-C bond forming reactions.
The approach described in this proposal is based on a cooperative interaction between two transition metal complexes in which an early transition metal is responsible for the methane C-H activation and a late transition metal is the actual catalyst of the methylation process. The link between these two processes is a transmetalation step and will be used to transfer the mechanism of typical cross-coupling reactions to the field of methane functionalization.
New pathways for the direct use of methane in reactions such as allylic alkylation, conjugate addition, cross-coupling, C-H methylation and alkene hydromethylation will be developed based on this novel bimetallic catalytic strategy.
It is envisioned that the proposed research will lead to a new concept at the interface of catalytic cross coupling reactions and C-H activation. It will contribute to the fundamental understanding of these two reactions and will provide the basis for a new technology for energy efficient and environmentally friendly, thus sustainable, methane conversion.
Max ERC Funding
1 999 679 €
Duration
Start date: 2020-09-01, End date: 2025-08-31
Project acronym BePreSysE
Project Beyond Precision Cosmology: dealing with Systematic Errors
Researcher (PI) Licia VERDE
Host Institution (HI) UNIVERSITAT DE BARCELONA
Country Spain
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary Over the past 20 years cosmology has made the transition to a precision science: the standard cosmological model has been established and its parameters are now measured with unprecedented precision. But precision is not enough: accuracy is also crucial. Accuracy accounts for systematic errors which can be both on the observational and on the theory/modelling side (and everywhere in between). While there is a well-defined and developed framework for treating statistical errors, there is no established approach for systematic errors. The next decade will see the era of large surveys; a large coordinated effort of the scientific community in the field is on-going to map the cosmos producing an exponentially growing amount of data. This will shrink the statistical errors, making mitigation and control of systematics of the utmost importance. While there are isolated and targeted efforts to quantify systematic errors and propagate them through all the way to the final results, there is no well-established, self-consistent methodology. To go beyond precision cosmology and reap the benefits of the forthcoming observational program, a systematic approach to systematics is needed. Systematics should be interpreted in the most general sense as shifts between the recovered measured values and true values of physical quantities. I propose to develop a comprehensive approach to tackle systematic errors with the goal to uncover and quantify otherwise unknown differences between the interpretation of a measurement and reality. This will require to fully develop, combine and systematize all approaches proposed so far (many pioneered by the PI), develop new ones to fill the gaps, study and explore their interplay and finally test and validate the procedure. Beyond Precision Cosmology: Dealing with Systematic Errors (BePreSysE) will develop a framework to deal with systematics in forthcoming Cosmological surveys which, could, in principle, be applied beyond Cosmology.
Summary
Over the past 20 years cosmology has made the transition to a precision science: the standard cosmological model has been established and its parameters are now measured with unprecedented precision. But precision is not enough: accuracy is also crucial. Accuracy accounts for systematic errors which can be both on the observational and on the theory/modelling side (and everywhere in between). While there is a well-defined and developed framework for treating statistical errors, there is no established approach for systematic errors. The next decade will see the era of large surveys; a large coordinated effort of the scientific community in the field is on-going to map the cosmos producing an exponentially growing amount of data. This will shrink the statistical errors, making mitigation and control of systematics of the utmost importance. While there are isolated and targeted efforts to quantify systematic errors and propagate them through all the way to the final results, there is no well-established, self-consistent methodology. To go beyond precision cosmology and reap the benefits of the forthcoming observational program, a systematic approach to systematics is needed. Systematics should be interpreted in the most general sense as shifts between the recovered measured values and true values of physical quantities. I propose to develop a comprehensive approach to tackle systematic errors with the goal to uncover and quantify otherwise unknown differences between the interpretation of a measurement and reality. This will require to fully develop, combine and systematize all approaches proposed so far (many pioneered by the PI), develop new ones to fill the gaps, study and explore their interplay and finally test and validate the procedure. Beyond Precision Cosmology: Dealing with Systematic Errors (BePreSysE) will develop a framework to deal with systematics in forthcoming Cosmological surveys which, could, in principle, be applied beyond Cosmology.
Max ERC Funding
1 835 220 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym BIGSEA
Project Biogeochemical and ecosystem interactions with socio-economic activity in the global ocean
Researcher (PI) Eric Douglas Galbraith
Host Institution (HI) UNIVERSIDAD AUTONOMA DE BARCELONA
Country Spain
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary The global marine ecosystem is being deeply altered by human activity. On the one hand, rising concentrations of atmospheric greenhouse gases are changing the physical and chemical state of the ocean, exerting pressure from the bottom up. Meanwhile, the global fishery has provided large economic benefits, but in so doing has restructured ecosystems by removing most of the large animal biomass, a major top-down change. Although there has been a tremendous amount of research into isolated aspects of these impacts, the development of a holistic understanding of the full interactions between physics, chemistry, ecology and economic activity might appear impossible, given the myriad complexities. This proposal lays out a strategy to assemble a team of trans-disciplinary expertise, that will develop a unified, data-constrained, grid-based modeling framework to represent the most important interactions of the global human-ocean system. Building this framework requires solving a series of fundamental problems that currently hinder the development of the full model. If these problems can be solved, the resulting model will reveal novel emergent properties and open the doors to a range of previously unexplored questions of high impact across a range of disciplines. Key questions include the ways in which animals interact with oxygen minimum zones with implications for fisheries, the impacts fish harvesting may have on nutrient recycling, spatio-temporal interactions between managed and unmanaged fisheries, and fundamental questions about the relationships between fish price, fishing cost, and multiple markets in a changing world. Just as the first coupled ocean-atmosphere models revealed a wealth of new behaviours, the coupled human-ocean model proposed here has the potential to launch multiple new fields of enquiry. It is hoped that the novel approach will contribute to a paradigm shift that treats human activity as one component within the framework of the Earth System.
Summary
The global marine ecosystem is being deeply altered by human activity. On the one hand, rising concentrations of atmospheric greenhouse gases are changing the physical and chemical state of the ocean, exerting pressure from the bottom up. Meanwhile, the global fishery has provided large economic benefits, but in so doing has restructured ecosystems by removing most of the large animal biomass, a major top-down change. Although there has been a tremendous amount of research into isolated aspects of these impacts, the development of a holistic understanding of the full interactions between physics, chemistry, ecology and economic activity might appear impossible, given the myriad complexities. This proposal lays out a strategy to assemble a team of trans-disciplinary expertise, that will develop a unified, data-constrained, grid-based modeling framework to represent the most important interactions of the global human-ocean system. Building this framework requires solving a series of fundamental problems that currently hinder the development of the full model. If these problems can be solved, the resulting model will reveal novel emergent properties and open the doors to a range of previously unexplored questions of high impact across a range of disciplines. Key questions include the ways in which animals interact with oxygen minimum zones with implications for fisheries, the impacts fish harvesting may have on nutrient recycling, spatio-temporal interactions between managed and unmanaged fisheries, and fundamental questions about the relationships between fish price, fishing cost, and multiple markets in a changing world. Just as the first coupled ocean-atmosphere models revealed a wealth of new behaviours, the coupled human-ocean model proposed here has the potential to launch multiple new fields of enquiry. It is hoped that the novel approach will contribute to a paradigm shift that treats human activity as one component within the framework of the Earth System.
Max ERC Funding
1 600 000 €
Duration
Start date: 2016-07-01, End date: 2021-12-31
Project acronym BSD
Project Euler systems and the conjectures of Birch and Swinnerton-Dyer, Bloch and Kato
Researcher (PI) Victor Rotger cerda
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Country Spain
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary In order to celebrate mathematics in the new millennium, the Clay Mathematics Institute established seven $1.000.000 Prize Problems. One of these is the conjecture of Birch and Swinnerton-Dyer (BSD), widely open since the 1960's. The main object of this proposal is developing innovative and unconventional strategies for proving groundbreaking results towards the resolution of this problem and their generalizations by Bloch and Kato (BK).
Breakthroughs on BSD were achieved by Coates-Wiles, Gross, Zagier and Kolyvagin, and Kato. Since then, there have been nearly no new ideas on how to tackle BSD. Only very recently, three independent revolutionary approaches have seen the light: the works of (1) the Fields medalist Bhargava, (2) Skinner and Urban, and (3) myself and my collaborators. In spite of that, our knowledge of BSD is rather poor. In my proposal I suggest innovating strategies for approaching new horizons in BSD and BK that I aim to develop with the team of PhD and postdoctoral researchers that the CoG may allow me to consolidate. The results I plan to prove represent a departure from the achievements obtained with my coauthors during the past years:
I. BSD over totally real number fields. I plan to prove new ground-breaking instances of BSD in rank 0 for elliptic curves over totally real number fields, generalizing the theorem of Kato (by providing a new proof) and covering many new scenarios that have never been considered before.
II. BSD in rank r=2. Most of the literature on BSD applies when r=0 or 1. I expect to prove p-adic versions of the theorems of Gross-Zagier and Kolyvagin in rank 2.
III. Darmon's 2000 conjecture on Stark-Heegner points. I plan to prove Darmon’s striking conjecture announced at the ICM2000 by recasting it in terms of special values of p-adic L-functions.
Summary
In order to celebrate mathematics in the new millennium, the Clay Mathematics Institute established seven $1.000.000 Prize Problems. One of these is the conjecture of Birch and Swinnerton-Dyer (BSD), widely open since the 1960's. The main object of this proposal is developing innovative and unconventional strategies for proving groundbreaking results towards the resolution of this problem and their generalizations by Bloch and Kato (BK).
Breakthroughs on BSD were achieved by Coates-Wiles, Gross, Zagier and Kolyvagin, and Kato. Since then, there have been nearly no new ideas on how to tackle BSD. Only very recently, three independent revolutionary approaches have seen the light: the works of (1) the Fields medalist Bhargava, (2) Skinner and Urban, and (3) myself and my collaborators. In spite of that, our knowledge of BSD is rather poor. In my proposal I suggest innovating strategies for approaching new horizons in BSD and BK that I aim to develop with the team of PhD and postdoctoral researchers that the CoG may allow me to consolidate. The results I plan to prove represent a departure from the achievements obtained with my coauthors during the past years:
I. BSD over totally real number fields. I plan to prove new ground-breaking instances of BSD in rank 0 for elliptic curves over totally real number fields, generalizing the theorem of Kato (by providing a new proof) and covering many new scenarios that have never been considered before.
II. BSD in rank r=2. Most of the literature on BSD applies when r=0 or 1. I expect to prove p-adic versions of the theorems of Gross-Zagier and Kolyvagin in rank 2.
III. Darmon's 2000 conjecture on Stark-Heegner points. I plan to prove Darmon’s striking conjecture announced at the ICM2000 by recasting it in terms of special values of p-adic L-functions.
Max ERC Funding
1 428 588 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CARBYNE
Project New carbon reactivity rules for molecular editing
Researcher (PI) Marcos GARCIA SUERO
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Country Spain
Call Details Consolidator Grant (CoG), PE5, ERC-2019-COG
Summary The major goal of this application is to develop the catalytic generation of conceptually-novel carbyne equivalents and related species, and to study their reactivity towards organic matter. The catalytic activation of designed sources will reveal new reactivity rules at carbon that have been missing, not only in the design and discovery of new chemical reactions, but also in their use to build molecular complexity. Our approach will rely on novel activation modes that unlock elusive and useful tools for molecular editing.
Summary
The major goal of this application is to develop the catalytic generation of conceptually-novel carbyne equivalents and related species, and to study their reactivity towards organic matter. The catalytic activation of designed sources will reveal new reactivity rules at carbon that have been missing, not only in the design and discovery of new chemical reactions, but also in their use to build molecular complexity. Our approach will rely on novel activation modes that unlock elusive and useful tools for molecular editing.
Max ERC Funding
2 000 000 €
Duration
Start date: 2020-09-01, End date: 2025-08-31
Project acronym CATA-LUX
Project Light-Driven Asymmetric Organocatalysis
Researcher (PI) Paolo Melchiorre
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Country Spain
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary Visible light photocatalysis and metal-free organocatalytic processes are powerful strategies of modern chemical research with extraordinary potential for the sustainable preparation of organic molecules. However, these environmentally respectful approaches have to date remained largely unrelated. The proposed research seeks to merge these fields of molecule activation to redefine their synthetic potential.
Light-driven processes considerably enrich the modern synthetic repertoire, offering a potent way to build complex organic frameworks. In contrast, it is extremely challenging to develop asymmetric catalytic photoreactions that can create chiral molecules with a well-defined three-dimensional arrangement. By developing innovative methodologies to effectively address this issue, I will provide a novel reactivity framework for conceiving light-driven enantioselective organocatalytic processes.
I will translate the effective tools governing the success of ground state asymmetric organocatalysis into the realm of photochemical reactivity, exploiting the potential of key organocatalytic intermediates to directly participate in the photoexcitation of substrates. At the same time, the chiral organocatalyst will ensure effective stereochemical control. This single catalyst system, where stereoinduction and photoactivation merge in a sole organocatalyst, will serve for developing novel enantioselective photoreactions. In a complementary dual catalytic approach, the synergistic activities of an organocatalyst and a metal-free photosensitiser will combine to realise asymmetric variants of venerable photochemical processes, which have never before succumbed to a stereocontrolled approach.
This proposal challenges the current perception that photochemistry is too unselective to parallel the impressive levels of efficiency reached by the asymmetric catalysis of thermal reactions, expanding the way chemists think about making chiral molecules
Summary
Visible light photocatalysis and metal-free organocatalytic processes are powerful strategies of modern chemical research with extraordinary potential for the sustainable preparation of organic molecules. However, these environmentally respectful approaches have to date remained largely unrelated. The proposed research seeks to merge these fields of molecule activation to redefine their synthetic potential.
Light-driven processes considerably enrich the modern synthetic repertoire, offering a potent way to build complex organic frameworks. In contrast, it is extremely challenging to develop asymmetric catalytic photoreactions that can create chiral molecules with a well-defined three-dimensional arrangement. By developing innovative methodologies to effectively address this issue, I will provide a novel reactivity framework for conceiving light-driven enantioselective organocatalytic processes.
I will translate the effective tools governing the success of ground state asymmetric organocatalysis into the realm of photochemical reactivity, exploiting the potential of key organocatalytic intermediates to directly participate in the photoexcitation of substrates. At the same time, the chiral organocatalyst will ensure effective stereochemical control. This single catalyst system, where stereoinduction and photoactivation merge in a sole organocatalyst, will serve for developing novel enantioselective photoreactions. In a complementary dual catalytic approach, the synergistic activities of an organocatalyst and a metal-free photosensitiser will combine to realise asymmetric variants of venerable photochemical processes, which have never before succumbed to a stereocontrolled approach.
This proposal challenges the current perception that photochemistry is too unselective to parallel the impressive levels of efficiency reached by the asymmetric catalysis of thermal reactions, expanding the way chemists think about making chiral molecules
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym CHAMELEON
Project Intuitive editing of visual appearance from real-world datasets
Researcher (PI) Diego Gutierrez Perez
Host Institution (HI) UNIVERSIDAD DE ZARAGOZA
Country Spain
Call Details Consolidator Grant (CoG), PE6, ERC-2015-CoG
Summary Computer-generated imagery is now ubiquitous in our society, spanning fields such as games and movies, architecture, engineering, or virtual prototyping, while also helping create novel ones such as computational materials. With the increase in computational power and the improvement of acquisition techniques, there has been a paradigm shift in the field towards data-driven techniques, which has yielded an unprecedented level of realism in visual appearance. Unfortunately, this leads to a series of problems, identified in this proposal: First, there is a disconnect between the mathematical representation of the data and any meaningful parameters that humans understand; the captured data is machine-friendly, but not human friendly. Second, the many different acquisition systems lead to heterogeneous formats and very large datasets. And third, real-world appearance functions are usually nonlinear and high-dimensional. As a result, visual appearance datasets are increasingly unfit to editing operations, which limits the creative process for scientists, engineers, artists and practitioners in general. There is an immense gap between the complexity, realism and richness of the captured data, and the flexibility to edit such data.
We believe that the current research path leads to a fragmented space of isolated solutions, each tailored to a particular dataset and problem. We propose a research plan at the theoretical, algorithmic and application levels, putting the user at the core. We will learn key relevant appearance features in terms humans understand, from which intuitive, predictable editing spaces, algorithms, and workflows will be defined. In order to ensure usability and foster creativity, we will also extend our research to efficient simulation of visual appearance, exploiting the extra dimensionality of the captured datasets. Achieving our goals will finally enable us to reach the true potential of real-world captured datasets in many aspects of society.
Summary
Computer-generated imagery is now ubiquitous in our society, spanning fields such as games and movies, architecture, engineering, or virtual prototyping, while also helping create novel ones such as computational materials. With the increase in computational power and the improvement of acquisition techniques, there has been a paradigm shift in the field towards data-driven techniques, which has yielded an unprecedented level of realism in visual appearance. Unfortunately, this leads to a series of problems, identified in this proposal: First, there is a disconnect between the mathematical representation of the data and any meaningful parameters that humans understand; the captured data is machine-friendly, but not human friendly. Second, the many different acquisition systems lead to heterogeneous formats and very large datasets. And third, real-world appearance functions are usually nonlinear and high-dimensional. As a result, visual appearance datasets are increasingly unfit to editing operations, which limits the creative process for scientists, engineers, artists and practitioners in general. There is an immense gap between the complexity, realism and richness of the captured data, and the flexibility to edit such data.
We believe that the current research path leads to a fragmented space of isolated solutions, each tailored to a particular dataset and problem. We propose a research plan at the theoretical, algorithmic and application levels, putting the user at the core. We will learn key relevant appearance features in terms humans understand, from which intuitive, predictable editing spaces, algorithms, and workflows will be defined. In order to ensure usability and foster creativity, we will also extend our research to efficient simulation of visual appearance, exploiting the extra dimensionality of the captured datasets. Achieving our goals will finally enable us to reach the true potential of real-world captured datasets in many aspects of society.
Max ERC Funding
1 629 519 €
Duration
Start date: 2016-11-01, End date: 2023-04-30
Project acronym CLIMAHAL
Project Climate dimension of natural halogens in the Earth system: Past, present, future
Researcher (PI) Alfonso SAIZ LOPEZ
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Consolidator Grant (CoG), PE10, ERC-2016-COG
Summary Naturally-emitted very short-lived halogens (VSLH) have a profound impact on the chemistry and composition of the atmosphere, destroying greenhouse gases and altering aerosol production, which together can change the Earth´s radiative balance. Therefore, natural halogens possess leverage to influence climate, although their contribution to climate change is not well established and most climate models have yet to consider their effects. Also, there is increasing evidence that natural halogens i) impact on the air quality of coastal cities, ii) accelerates the atmospheric deposition of mercury (a toxic heavy metal) and iii) that their natural ocean and ice emissions are controlled by biological and photochemical mechanisms that may respond to climate changes. Motivated by the above, this project aims to quantify the so far unrecognized natural halogen-climate feedbacks and the impact of these feedbacks on global atmospheric oxidizing capacity (AOC) and radiative forcing (RF) across pre-industrial, present and future climates. Answering these questions is essential to predict if these climate-mediated feedbacks can reduce or amplify future climate change. To this end we will develop a multidisciplinary research approach using laboratory and field observations and models interactively that will allow us to peel apart the detailed physical processes behind the contribution of natural halogens to global climate change. Furthermore, the work plan also involves examining past-future climate impacts of natural halogens within a holistic Earth System model, where we will develop the multidirectional halogen interactions in the land-ocean-ice-biosphere-atmosphere coupled system. This will provide a breakthrough in our understanding of the importance of these natural processes for the composition and oxidation capacity of the Earth´s atmosphere and climate, both in the presence and absence of human influence.
Summary
Naturally-emitted very short-lived halogens (VSLH) have a profound impact on the chemistry and composition of the atmosphere, destroying greenhouse gases and altering aerosol production, which together can change the Earth´s radiative balance. Therefore, natural halogens possess leverage to influence climate, although their contribution to climate change is not well established and most climate models have yet to consider their effects. Also, there is increasing evidence that natural halogens i) impact on the air quality of coastal cities, ii) accelerates the atmospheric deposition of mercury (a toxic heavy metal) and iii) that their natural ocean and ice emissions are controlled by biological and photochemical mechanisms that may respond to climate changes. Motivated by the above, this project aims to quantify the so far unrecognized natural halogen-climate feedbacks and the impact of these feedbacks on global atmospheric oxidizing capacity (AOC) and radiative forcing (RF) across pre-industrial, present and future climates. Answering these questions is essential to predict if these climate-mediated feedbacks can reduce or amplify future climate change. To this end we will develop a multidisciplinary research approach using laboratory and field observations and models interactively that will allow us to peel apart the detailed physical processes behind the contribution of natural halogens to global climate change. Furthermore, the work plan also involves examining past-future climate impacts of natural halogens within a holistic Earth System model, where we will develop the multidirectional halogen interactions in the land-ocean-ice-biosphere-atmosphere coupled system. This will provide a breakthrough in our understanding of the importance of these natural processes for the composition and oxidation capacity of the Earth´s atmosphere and climate, both in the presence and absence of human influence.
Max ERC Funding
1 979 112 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym COMIET
Project Engineering Complex Intestinal Epithelial Tissue Models
Researcher (PI) Elena MartInez Fraiz
Host Institution (HI) FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYA
Country Spain
Call Details Consolidator Grant (CoG), PE8, ERC-2014-CoG
Summary Epithelial barriers protect the body against physical, chemical, and microbial insults. Intestinal epithelium is one of the most actively renewing tissues in the body and a major site of carcinogenesis. Functional in vitro models of intestinal epithelium have been pursued for a long time. They are key elements in basic research, disease modelling, drug discovery, and tissue replacing and have become prime models for adult stem cell research. By taking advantage of the self-organizing properties of intestinal stem cells, intestinal organoids have been recently established, showing cell renewal’s kinetics resembling to the one found in vivo. However, the development of in vitro 3D tissue equivalents accounting for the dimensions, architecture and access to the luminal contents of the in vivo human intestinal tissue together with its self-renewal properties and cell complexity, remains a challenge. The goal of this project is to engineer intestinal epithelial tissue models that mimic physiological characteristics found in in vivo human intestinal tissue, to open up new areas of research on human intestinal diseases. The proposed models will address the in vivo intestinal epithelial cell renewal and migration, the multicell-type differentiation and the epithelial cell interactions with the underlying basement membrane while providing access to the luminal content to go beyond the state-of-the-art organoid models. To do this, we propose to develop an experimental setup that combines microfabrication techniques, tissue engineering components and recent advances in intestinal stem cell research, exploiting stem cell self-organizing characteristics. We anticipate this setup to recapitulate the 3D morphology, the spatio-chemical gradients and the dynamic microenvironment of the living tissue. We expect the new device to prove useful in understanding cell physiology, adult stem cell behaviour, and organ development as well as in modelling human intestinal diseases.
Summary
Epithelial barriers protect the body against physical, chemical, and microbial insults. Intestinal epithelium is one of the most actively renewing tissues in the body and a major site of carcinogenesis. Functional in vitro models of intestinal epithelium have been pursued for a long time. They are key elements in basic research, disease modelling, drug discovery, and tissue replacing and have become prime models for adult stem cell research. By taking advantage of the self-organizing properties of intestinal stem cells, intestinal organoids have been recently established, showing cell renewal’s kinetics resembling to the one found in vivo. However, the development of in vitro 3D tissue equivalents accounting for the dimensions, architecture and access to the luminal contents of the in vivo human intestinal tissue together with its self-renewal properties and cell complexity, remains a challenge. The goal of this project is to engineer intestinal epithelial tissue models that mimic physiological characteristics found in in vivo human intestinal tissue, to open up new areas of research on human intestinal diseases. The proposed models will address the in vivo intestinal epithelial cell renewal and migration, the multicell-type differentiation and the epithelial cell interactions with the underlying basement membrane while providing access to the luminal content to go beyond the state-of-the-art organoid models. To do this, we propose to develop an experimental setup that combines microfabrication techniques, tissue engineering components and recent advances in intestinal stem cell research, exploiting stem cell self-organizing characteristics. We anticipate this setup to recapitulate the 3D morphology, the spatio-chemical gradients and the dynamic microenvironment of the living tissue. We expect the new device to prove useful in understanding cell physiology, adult stem cell behaviour, and organ development as well as in modelling human intestinal diseases.
Max ERC Funding
1 997 190 €
Duration
Start date: 2015-12-01, End date: 2021-05-31
Project acronym CONCERT
Project Description of information transfer across macromolecules by concerted conformational changes
Researcher (PI) Xavier Salvatella Giralt
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Country Spain
Call Details Consolidator Grant (CoG), PE4, ERC-2014-CoG
Summary Signal transduction in biology relies on the transfer of information across biomolecules by concerted conformational changes that cannot currently be characterized experimentally at high resolution. In CONCERT we will develop a method based on the use of nuclear magnetic resonance spectroscopy in solution that will provide very detailed descriptions of such changes by using the information about structural heterogeneity contained in a parameter that is exquisitely sensitive to molecular shape called residual dipolar coupling measured in steric alignment. To show how this new method will allow the study of information transfer we will determine conformational ensembles that will report on the intra and inter-domain concerted conformational changes that activate the androgen receptor, a large allosteric multi-domain protein that regulates the male phenotype and is a therapeutic target for castration resistant prostate cancer, the condition suffered by prostate cancer patients that have become refractory to hormone therapy, the first line of treatment for this disease. To complement the structural information obtained by nuclear magnetic resonance and, especially, measure the rate of information transfer across the androgen receptor we will carry out in a collaborative fashion high precision single molecule Förster resonance energy transfer and fluorescence correlation spectroscopy experiments on AR constructs labelled with fluorescent dyes. In summary we will develop a method that will make it possible to describe some of the most fascinating biological phenomena, such as allostery and signal transduction, and will, in the long term, be an instrument for the discovery of drugs to treat castration resistant prostate cancer, a late stage of prostate cancer that is incurable and kills ca. 70.000 European men every year.
Summary
Signal transduction in biology relies on the transfer of information across biomolecules by concerted conformational changes that cannot currently be characterized experimentally at high resolution. In CONCERT we will develop a method based on the use of nuclear magnetic resonance spectroscopy in solution that will provide very detailed descriptions of such changes by using the information about structural heterogeneity contained in a parameter that is exquisitely sensitive to molecular shape called residual dipolar coupling measured in steric alignment. To show how this new method will allow the study of information transfer we will determine conformational ensembles that will report on the intra and inter-domain concerted conformational changes that activate the androgen receptor, a large allosteric multi-domain protein that regulates the male phenotype and is a therapeutic target for castration resistant prostate cancer, the condition suffered by prostate cancer patients that have become refractory to hormone therapy, the first line of treatment for this disease. To complement the structural information obtained by nuclear magnetic resonance and, especially, measure the rate of information transfer across the androgen receptor we will carry out in a collaborative fashion high precision single molecule Förster resonance energy transfer and fluorescence correlation spectroscopy experiments on AR constructs labelled with fluorescent dyes. In summary we will develop a method that will make it possible to describe some of the most fascinating biological phenomena, such as allostery and signal transduction, and will, in the long term, be an instrument for the discovery of drugs to treat castration resistant prostate cancer, a late stage of prostate cancer that is incurable and kills ca. 70.000 European men every year.
Max ERC Funding
1 950 000 €
Duration
Start date: 2015-07-01, End date: 2020-12-31
Project acronym DECRESIM
Project A Chemical Approach to Molecular Spin Qubits: Decoherence and Organisation of Rare Earth Single Ion Magnets
Researcher (PI) Alejandro Gaita Arino
Host Institution (HI) UNIVERSITAT DE VALENCIA
Country Spain
Call Details Consolidator Grant (CoG), PE5, ERC-2014-CoG
Summary "Coordination Chemistry and Molecular Magnetism are in an ideal position for the rational design of Single-Molecule Magnets which can be used as molecular spin qubits, the irreducible components of any quantum technology. Indeed, a major advantage of molecular spin qubits over other candidates stems from the power of Chemistry for a tailored and inexpensive synthesis of systems for their experimental study. In particular, the so-called Lanthanoid-based Single-Ion Magnets, which are currently the hottest topic in Molecular Magnetism, have the potential to be chemically designed, tuning both their single-molecule properties and their crystalline environment. This will allow the independent study of the different quantum processes that cause the loss of quantum information, collectively known as decoherence. The study of quantum decoherence processes in the solid state is necessary both to lay the foundations for next-generation quantum technologies and to answer some fundamental questions.
The goals of this project are:
#1 To unravel the mechanistic details of decoherence in molecular spin qubits based on mononuclear lanthanoid complexes. This study will stablish criteria for the rational design of single spin qubits.
#2 To extend this study to the coupling between two or more spin qubits. This will allow us to explore the use of polynuclear lanthanoid complexes to achieve quantum gates or simple algorithms.
#3 To extrapolate to infinite systems formed by the complex organization of spin qubits. This exploratory goal will permit us to move beyond zero-dimensional systems, thus facilitating the advance towards complex quantum functions.
"
Summary
"Coordination Chemistry and Molecular Magnetism are in an ideal position for the rational design of Single-Molecule Magnets which can be used as molecular spin qubits, the irreducible components of any quantum technology. Indeed, a major advantage of molecular spin qubits over other candidates stems from the power of Chemistry for a tailored and inexpensive synthesis of systems for their experimental study. In particular, the so-called Lanthanoid-based Single-Ion Magnets, which are currently the hottest topic in Molecular Magnetism, have the potential to be chemically designed, tuning both their single-molecule properties and their crystalline environment. This will allow the independent study of the different quantum processes that cause the loss of quantum information, collectively known as decoherence. The study of quantum decoherence processes in the solid state is necessary both to lay the foundations for next-generation quantum technologies and to answer some fundamental questions.
The goals of this project are:
#1 To unravel the mechanistic details of decoherence in molecular spin qubits based on mononuclear lanthanoid complexes. This study will stablish criteria for the rational design of single spin qubits.
#2 To extend this study to the coupling between two or more spin qubits. This will allow us to explore the use of polynuclear lanthanoid complexes to achieve quantum gates or simple algorithms.
#3 To extrapolate to infinite systems formed by the complex organization of spin qubits. This exploratory goal will permit us to move beyond zero-dimensional systems, thus facilitating the advance towards complex quantum functions.
"
Max ERC Funding
1 827 375 €
Duration
Start date: 2015-08-01, End date: 2021-01-31
Project acronym e-Sequence
Project e-Sequence: a sequential approach to engineer heteroatom doped graphene nanoribbons for electronic applications
Researcher (PI) Aurelio MATEO ALONSO
Host Institution (HI) UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
Country Spain
Call Details Consolidator Grant (CoG), PE5, ERC-2016-COG
Summary Graphene nanoribbons (NR) are quasi-1D nanostructures with discrete band gaps, ballistic conduction, and one-atom thickness. Such properties make them ideal candidates to develop low-dimensional semiconductors, which are essential components in nanoelectronics. Atomically-precise control over the structure of NR (width, length, edge, doping) is crucial to fully exploit their potential. However, current approaches for the synthesis of NR suffer from several drawbacks that do not allow attaining such level of precision, therefore alternative methods need to be sought.
e-Sequence will develop an unprecedented approach that assembles stepwise small molecular building blocks into NR to specifically target the most important challenges in NR synthesis. Such approach will enable the preparation of an unlimited number of NR with atomically-precise control over their structure and with almost no synthetic and purification effort, exceeding the limits of existing methods.
The impact of e-Sequence will not be limited to NR synthesis but it will also extend to other disciplines, since NR are promising candidates to develop new technologies with applications in electronics, sensing, photonics, energy storage and conversion, spintronics, etc.
e-Sequence ambitious research programme will be orchestrated by an independent scientist with an excellent track record of achievements in low-dimensional carbon nanostructures, and who has already established a fledgling and internationally competitive research group. Building on this and on his recent permanent appointment as Research Professor, the award of this ERC project will enable him to consolidate his group, build a portfolio of excellent research, and produce results that compete on the world stage.
Summary
Graphene nanoribbons (NR) are quasi-1D nanostructures with discrete band gaps, ballistic conduction, and one-atom thickness. Such properties make them ideal candidates to develop low-dimensional semiconductors, which are essential components in nanoelectronics. Atomically-precise control over the structure of NR (width, length, edge, doping) is crucial to fully exploit their potential. However, current approaches for the synthesis of NR suffer from several drawbacks that do not allow attaining such level of precision, therefore alternative methods need to be sought.
e-Sequence will develop an unprecedented approach that assembles stepwise small molecular building blocks into NR to specifically target the most important challenges in NR synthesis. Such approach will enable the preparation of an unlimited number of NR with atomically-precise control over their structure and with almost no synthetic and purification effort, exceeding the limits of existing methods.
The impact of e-Sequence will not be limited to NR synthesis but it will also extend to other disciplines, since NR are promising candidates to develop new technologies with applications in electronics, sensing, photonics, energy storage and conversion, spintronics, etc.
e-Sequence ambitious research programme will be orchestrated by an independent scientist with an excellent track record of achievements in low-dimensional carbon nanostructures, and who has already established a fledgling and internationally competitive research group. Building on this and on his recent permanent appointment as Research Professor, the award of this ERC project will enable him to consolidate his group, build a portfolio of excellent research, and produce results that compete on the world stage.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-11-01, End date: 2023-10-31
Project acronym eAXON
Project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents
Researcher (PI) Antonio IVORRA Cano
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Country Spain
Call Details Consolidator Grant (CoG), PE7, ERC-2016-COG
Summary To build interfaces between the electronic domain and the human nervous system is one of the most demanding challenges of nowadays engineering. Fascinating developments have already been performed such as visual cortical implants for the blind and cochlear implants for the deaf. Yet implantation of most electrical stimulation systems requires complex surgeries which hamper their use for the development of so-called electroceuticals. More importantly, previously developed systems based on central stimulation units are not adequate for applications in which a large number of sites must be individually stimulated over large and mobile body parts, thus hindering neuroprosthetic solutions for patients suffering paralysis due to spinal cord injury or other neurological disorders. A solution to these challenges could consist in developing addressable single-channel wireless microstimulators which could be implanted with simple procedures such as injection. And, indeed, such solution was proposed and tried in the past. However, previous attempts did not achieve satisfactory success because the developed implants were stiff and too large. Further miniaturization was prevented because of the use of inductive coupling and batteries as energy sources. Here I propose to explore an innovative method for performing electrical stimulation in which the implanted microstimulators will operate as rectifiers of bursts of innocuous high frequency current supplied through skin electrodes shaped as garments. This approach has the potential to reduce the diameter of the implants to one-fifth the diameter of current microstimulators and, more significantly, to allow that most of the implants’ volume consists of materials whose density and flexibility match those of neighbouring living tissues for minimizing invasiveness. In fact, implants based on the proposed method will look like short pieces of flexible thread.
Summary
To build interfaces between the electronic domain and the human nervous system is one of the most demanding challenges of nowadays engineering. Fascinating developments have already been performed such as visual cortical implants for the blind and cochlear implants for the deaf. Yet implantation of most electrical stimulation systems requires complex surgeries which hamper their use for the development of so-called electroceuticals. More importantly, previously developed systems based on central stimulation units are not adequate for applications in which a large number of sites must be individually stimulated over large and mobile body parts, thus hindering neuroprosthetic solutions for patients suffering paralysis due to spinal cord injury or other neurological disorders. A solution to these challenges could consist in developing addressable single-channel wireless microstimulators which could be implanted with simple procedures such as injection. And, indeed, such solution was proposed and tried in the past. However, previous attempts did not achieve satisfactory success because the developed implants were stiff and too large. Further miniaturization was prevented because of the use of inductive coupling and batteries as energy sources. Here I propose to explore an innovative method for performing electrical stimulation in which the implanted microstimulators will operate as rectifiers of bursts of innocuous high frequency current supplied through skin electrodes shaped as garments. This approach has the potential to reduce the diameter of the implants to one-fifth the diameter of current microstimulators and, more significantly, to allow that most of the implants’ volume consists of materials whose density and flexibility match those of neighbouring living tissues for minimizing invasiveness. In fact, implants based on the proposed method will look like short pieces of flexible thread.
Max ERC Funding
1 999 813 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym ECHO
Project Extending Coherence for Hardware-Driven Optimizations in Multicore Architectures
Researcher (PI) Alberto ROS BARDISA
Host Institution (HI) UNIVERSIDAD DE MURCIA
Country Spain
Call Details Consolidator Grant (CoG), PE6, ERC-2018-COG
Summary Multicore processors are present nowadays in most digital devices, from smartphones to high-performance
servers. The increasing computational power of these processors is essential for enabling many important
emerging application domains such as big-data, media, medical, or scientific modeling. A fundamental
technique to improve performance is speculation, a technique that consists in executing work before it is
known if it is actually needed. In hardware, speculation significantly increases energy consumption by
performing unnecessary operations, while speculation in software (e.g., compilers) is not the default thus
preventing performance optimizations. Since performance in current multicores is limited by their power
budget, it is imperative to make multicores as energy-efficient as possible to increase performance even
further.
In a multicore architecture, the cache coherence protocol is an essential component since its unique but
challenging role is to offer a simple and unified view of the memory hierarchy. This project envisions that
extending the role of the coherence protocol to simplify other system components will be the key to
overcome the performance and energy limitations of current multicores. In particular, ECHO proposes to
add simple but effective extensions to the cache coherence protocol in order to (i) reduce and even
eliminate misspeculations at the processing cores and synchronization mechanisms and to (ii) enable
speculative optimizations at compile time. The goal of this innovative approach is to improve the
performance and energy efficiency of future multicore architectures. To accomplish the objectives
proposed in this project, I will build on my 14 years expertise in cache coherence, documented in over 40
publications of high impact.
Summary
Multicore processors are present nowadays in most digital devices, from smartphones to high-performance
servers. The increasing computational power of these processors is essential for enabling many important
emerging application domains such as big-data, media, medical, or scientific modeling. A fundamental
technique to improve performance is speculation, a technique that consists in executing work before it is
known if it is actually needed. In hardware, speculation significantly increases energy consumption by
performing unnecessary operations, while speculation in software (e.g., compilers) is not the default thus
preventing performance optimizations. Since performance in current multicores is limited by their power
budget, it is imperative to make multicores as energy-efficient as possible to increase performance even
further.
In a multicore architecture, the cache coherence protocol is an essential component since its unique but
challenging role is to offer a simple and unified view of the memory hierarchy. This project envisions that
extending the role of the coherence protocol to simplify other system components will be the key to
overcome the performance and energy limitations of current multicores. In particular, ECHO proposes to
add simple but effective extensions to the cache coherence protocol in order to (i) reduce and even
eliminate misspeculations at the processing cores and synchronization mechanisms and to (ii) enable
speculative optimizations at compile time. The goal of this innovative approach is to improve the
performance and energy efficiency of future multicore architectures. To accomplish the objectives
proposed in this project, I will build on my 14 years expertise in cache coherence, documented in over 40
publications of high impact.
Max ERC Funding
1 999 955 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym ELECNANO
Project Electrically Tunable Functional Lanthanide Nanoarchitectures on Surfaces
Researcher (PI) DAVID ECIJA FERNANDEZ
Host Institution (HI) FUNDACION IMDEA NANOCIENCIA
Country Spain
Call Details Consolidator Grant (CoG), PE4, ERC-2017-COG
Summary Lanthanide metals are ubiquitous nowadays, finding use in luminescent materials, optical amplifiers and waveguides, lasers, photovoltaics, rechargeable batteries, catalysts, alloys, magnets, bio-probes, and therapeutic agents. In addition, they bear potential for high temperature superconductivity, magnetic refrigeration, molecular magnetic storage, spintronics and quantum information.
Surprisingly, the study of lanthanide physico-chemical properties on surfaces is at its infancy, particularly at the nanoscale. To address this extraordinary scientific opportunity, I will research the foundations and prospects of lanthanide elements to design functional nanoarchitectures on surfaces and I will study their inherent physico-chemical phenomena in distinct coordination environments, targeting novel approaches for sensing, nanomagnetism and electroluminescence. Importantly, our studies will encompass both metal substrates and decoupling surfaces including ultra-thin film insulators and graphene. Nurturing from these studies and in parallel, we will focus on graphene voltage back-gated supports, thus surpassing the seminal knowledge on electrically-inert substrates and enhancing the scope of our research to address the overarching objective of the proposal, i.e., the design of electrically tunable functional lanthanide nanomaterials.
The culmination of ELECNANO project will provide strategies for:
1.-Design of functional nanomaterials on high-technological supports.
2.-Development of advanced coordination chemistry on surfaces.
3.-Rationale of the physico-chemical properties of lanthanide-coordination environments.
4.-Engineering of lanthanide nanoarchitectures for ultimate sensing, nanomagnetism and electroluminescence.
5.-In-situ atomistic views of electrically tunable materials and unprecedented fundamental studies of charge-molecule/metal physics on devices.
Summary
Lanthanide metals are ubiquitous nowadays, finding use in luminescent materials, optical amplifiers and waveguides, lasers, photovoltaics, rechargeable batteries, catalysts, alloys, magnets, bio-probes, and therapeutic agents. In addition, they bear potential for high temperature superconductivity, magnetic refrigeration, molecular magnetic storage, spintronics and quantum information.
Surprisingly, the study of lanthanide physico-chemical properties on surfaces is at its infancy, particularly at the nanoscale. To address this extraordinary scientific opportunity, I will research the foundations and prospects of lanthanide elements to design functional nanoarchitectures on surfaces and I will study their inherent physico-chemical phenomena in distinct coordination environments, targeting novel approaches for sensing, nanomagnetism and electroluminescence. Importantly, our studies will encompass both metal substrates and decoupling surfaces including ultra-thin film insulators and graphene. Nurturing from these studies and in parallel, we will focus on graphene voltage back-gated supports, thus surpassing the seminal knowledge on electrically-inert substrates and enhancing the scope of our research to address the overarching objective of the proposal, i.e., the design of electrically tunable functional lanthanide nanomaterials.
The culmination of ELECNANO project will provide strategies for:
1.-Design of functional nanomaterials on high-technological supports.
2.-Development of advanced coordination chemistry on surfaces.
3.-Rationale of the physico-chemical properties of lanthanide-coordination environments.
4.-Engineering of lanthanide nanoarchitectures for ultimate sensing, nanomagnetism and electroluminescence.
5.-In-situ atomistic views of electrically tunable materials and unprecedented fundamental studies of charge-molecule/metal physics on devices.
Max ERC Funding
1 994 713 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym eLightning
Project Lightning propagation and high-energy emissions within coupled multi-model simulations
Researcher (PI) Alejandro Luque Estepa
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary More than 250 years after establishing the electrical nature of the lightning flash, we still do not understand how a lightning channel advances. Most of these channels progress not continuously but in a series of sudden jumps and, as they jump, they emit bursts of energetic radiation. Despite increasingly accurate observations, there is no accepted explanation for this stepped progression.
This proposal addresses this open question. First, we propose a methodological breakthrough that will allow us to tackle the main bottleneck in the theoretical understanding of lightning: the wide disparity between length-scales within a lightning flash. We plan to apply techniques that have succeeded in other fields, such as multi-model coupled simulations and moving-mesh finite elements methods. Acting as a computational microscope, these techniques will reveal the small-scale electrodynamics around a lightning channel.
We will then apply these techniques to elucidate the intertwined problems of lightning channel stepping and thunderstorm-related high-energy emissions. The main hypothesis that we will test is that stepping is due to the formation of low-conductivity spots within the filamentary-discharge region that surrounds a lightning channel. This idea is motivated by observations from high-altitude atmospheric discharges. By resolving the small-scale dynamics, with our numerical method, we will also test hypothesis for high-energy emissions from the lighting channel, which crucially depend on the microscopic distribution of electric fields.
This interdisciplinary proposal, straddling between geophysics and gas discharge physics, seeks a double breakthrough: the methodological one of building multi-scale lightning simulations and the hypothesis-driven one of finding out the reason for stepping. If it succeeds, it will achieve a leap forward in our knowledge of lightning, undoubtedly one of the greatest spectacles in our planet's repertoire.
Summary
More than 250 years after establishing the electrical nature of the lightning flash, we still do not understand how a lightning channel advances. Most of these channels progress not continuously but in a series of sudden jumps and, as they jump, they emit bursts of energetic radiation. Despite increasingly accurate observations, there is no accepted explanation for this stepped progression.
This proposal addresses this open question. First, we propose a methodological breakthrough that will allow us to tackle the main bottleneck in the theoretical understanding of lightning: the wide disparity between length-scales within a lightning flash. We plan to apply techniques that have succeeded in other fields, such as multi-model coupled simulations and moving-mesh finite elements methods. Acting as a computational microscope, these techniques will reveal the small-scale electrodynamics around a lightning channel.
We will then apply these techniques to elucidate the intertwined problems of lightning channel stepping and thunderstorm-related high-energy emissions. The main hypothesis that we will test is that stepping is due to the formation of low-conductivity spots within the filamentary-discharge region that surrounds a lightning channel. This idea is motivated by observations from high-altitude atmospheric discharges. By resolving the small-scale dynamics, with our numerical method, we will also test hypothesis for high-energy emissions from the lighting channel, which crucially depend on the microscopic distribution of electric fields.
This interdisciplinary proposal, straddling between geophysics and gas discharge physics, seeks a double breakthrough: the methodological one of building multi-scale lightning simulations and the hypothesis-driven one of finding out the reason for stepping. If it succeeds, it will achieve a leap forward in our knowledge of lightning, undoubtedly one of the greatest spectacles in our planet's repertoire.
Max ERC Funding
1 960 826 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym ENFORCE
Project ENgineering FrustratiOn in aRtificial Colloidal icEs:degeneracy, exotic lattices and 3D states
Researcher (PI) pietro TIERNO
Host Institution (HI) UNIVERSITAT DE BARCELONA
Country Spain
Call Details Consolidator Grant (CoG), PE3, ERC-2018-COG
Summary Geometric frustration, namely the impossibility of satisfying competing interactions on a lattice, has recently
become a topic of considerable interest as it engenders emergent, fundamentally new phenomena and holds
the exciting promise of delivering a new class of nanoscale devices based on the motion of magnetic charges.
With ENFORCE, I propose to realize two and three dimensional artificial colloidal ices and investigate the
fascinating manybody physics of geometric frustration in these mesoscopic structures. I will use these soft
matter systems to engineer novel frustrated states through independent control of the single particle
positions, lattice topology and collective magnetic coupling. The three project work packages (WPs) will
present increasing levels of complexity, challenge and ambition:
(i) In WP1, I will demonstrate a way to restore the residual entropy in the square ice, a fundamental longstanding
problem in the field. Furthermore, I will miniaturize the square and the honeycomb geometries and investigate the dynamics of thermally excited topological defects and the formation of grain boundaries.
(ii) In WP2, I will decimate both lattices and realize mixed coordination geometries, where the similarity
between the colloidal and spin ice systems breaks down. I will then develop a novel annealing protocol based
on the simultaneous system visualization and magnetic actuation control.
(iii) In WP3, I will realize a three dimensional artificial colloidal ice, in which interacting ferromagnetic
inclusions will be located in the voids of an inverse opal, and arranged to form the FCC or the pyrochlore
lattices. External fields will be used to align, bias and stir these magnetic inclusions while monitoring in situ
their orientation and dynamics via laser scanning confocal microscopy.
ENFORCE will exploit the accessible time and length scales of the colloidal ice to shed new light on the
exciting and interdisciplinary field of geometric frustration.
Summary
Geometric frustration, namely the impossibility of satisfying competing interactions on a lattice, has recently
become a topic of considerable interest as it engenders emergent, fundamentally new phenomena and holds
the exciting promise of delivering a new class of nanoscale devices based on the motion of magnetic charges.
With ENFORCE, I propose to realize two and three dimensional artificial colloidal ices and investigate the
fascinating manybody physics of geometric frustration in these mesoscopic structures. I will use these soft
matter systems to engineer novel frustrated states through independent control of the single particle
positions, lattice topology and collective magnetic coupling. The three project work packages (WPs) will
present increasing levels of complexity, challenge and ambition:
(i) In WP1, I will demonstrate a way to restore the residual entropy in the square ice, a fundamental longstanding
problem in the field. Furthermore, I will miniaturize the square and the honeycomb geometries and investigate the dynamics of thermally excited topological defects and the formation of grain boundaries.
(ii) In WP2, I will decimate both lattices and realize mixed coordination geometries, where the similarity
between the colloidal and spin ice systems breaks down. I will then develop a novel annealing protocol based
on the simultaneous system visualization and magnetic actuation control.
(iii) In WP3, I will realize a three dimensional artificial colloidal ice, in which interacting ferromagnetic
inclusions will be located in the voids of an inverse opal, and arranged to form the FCC or the pyrochlore
lattices. External fields will be used to align, bias and stir these magnetic inclusions while monitoring in situ
their orientation and dynamics via laser scanning confocal microscopy.
ENFORCE will exploit the accessible time and length scales of the colloidal ice to shed new light on the
exciting and interdisciplinary field of geometric frustration.
Max ERC Funding
1 850 298 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym EpiMech
Project Epithelial cell sheets as engineering materials: mechanics, resilience and malleability
Researcher (PI) Marino Arroyo Balaguer
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Country Spain
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary The epithelium is a cohesive two-dimensional layer of cells attached to a fluid-filled fibrous matrix, which lines most free surfaces and cavities of the body. It serves as a protective barrier with tunable permeability, which must retain integrity in a mechanically active environment. Paradoxically, it must also be malleable enough to self-heal and remodel into functional 3D structures such as villi in our guts or tubular networks. Intrigued by these conflicting material properties, the main idea of this proposal is to view epithelial monolayers as living engineering materials. Unlike lipid bilayers or hydrogels, widely used in biotechnology, cultured epithelia are only starting to be integrated in organ-on-chip microdevices. As for any complex inert material, this program requires a fundamental understanding of the structure-property relationships. (1) Regarding their effective in-plane rheology, at short time-scales epithelia exhibit solid-like behavior while at longer times they flow as a consequence of the only qualitatively understood dynamics of the cell-cell junctional network. (2) As for material failure, excessive tension can lead to epithelial fracture, but as we have recently shown, matrix poroelasticity can also cause hydraulic fracture under stretch. However, it is largely unknown how adhesion molecules, membrane, cytoskeleton and matrix interact to give epithelia their robust and flaw-tolerant resilience. (3) Regarding shaping 3D epithelial structures, besides the classical view of chemical patterning, mechanical buckling is emerging as a major morphogenetic driving force, suggesting that it may be possible design 3D epithelial structures in vitro by mechanical self-assembly. Towards understanding (1,2,3), we will combine a broad range of theoretical, computational and experimental methods. Besides providing fundamental mechanobiological understanding, this project will provide a framework to manipulate epithelia in bioinspired technologies.
Summary
The epithelium is a cohesive two-dimensional layer of cells attached to a fluid-filled fibrous matrix, which lines most free surfaces and cavities of the body. It serves as a protective barrier with tunable permeability, which must retain integrity in a mechanically active environment. Paradoxically, it must also be malleable enough to self-heal and remodel into functional 3D structures such as villi in our guts or tubular networks. Intrigued by these conflicting material properties, the main idea of this proposal is to view epithelial monolayers as living engineering materials. Unlike lipid bilayers or hydrogels, widely used in biotechnology, cultured epithelia are only starting to be integrated in organ-on-chip microdevices. As for any complex inert material, this program requires a fundamental understanding of the structure-property relationships. (1) Regarding their effective in-plane rheology, at short time-scales epithelia exhibit solid-like behavior while at longer times they flow as a consequence of the only qualitatively understood dynamics of the cell-cell junctional network. (2) As for material failure, excessive tension can lead to epithelial fracture, but as we have recently shown, matrix poroelasticity can also cause hydraulic fracture under stretch. However, it is largely unknown how adhesion molecules, membrane, cytoskeleton and matrix interact to give epithelia their robust and flaw-tolerant resilience. (3) Regarding shaping 3D epithelial structures, besides the classical view of chemical patterning, mechanical buckling is emerging as a major morphogenetic driving force, suggesting that it may be possible design 3D epithelial structures in vitro by mechanical self-assembly. Towards understanding (1,2,3), we will combine a broad range of theoretical, computational and experimental methods. Besides providing fundamental mechanobiological understanding, this project will provide a framework to manipulate epithelia in bioinspired technologies.
Max ERC Funding
1 989 875 €
Duration
Start date: 2016-09-01, End date: 2022-08-31