Project acronym 2-HIT
Project Genetic interaction networks: From C. elegans to human disease
Researcher (PI) Ben Lehner
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Country Spain
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Summary
Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Max ERC Funding
1 100 000 €
Duration
Start date: 2008-09-01, End date: 2014-04-30
Project acronym 2DNANOPTICA
Project Nano-optics on flatland: from quantum nanotechnology to nano-bio-photonics
Researcher (PI) Pablo Alonso-Gonzalez
Host Institution (HI) UNIVERSIDAD DE OVIEDO
Country Spain
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Summary
Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Max ERC Funding
1 459 219 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym 2DTHERMS
Project Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Researcher (PI) Jose Francisco Rivadulla Fernandez
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Country Spain
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Summary
Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Max ERC Funding
1 427 190 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym 3DScavengers
Project Three-dimensional nanoscale design for the all-in-one solution to environmental multisource energy scavenging
Researcher (PI) Ana Isabel BORRAS MARTOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), PE8, ERC-2019-STG
Summary Imagine a technology for powering your smart devices by recovering energy from lights in your office, the random movements of your body while reading these lines or from small changes in temperature when you breathe or go out for a walk. This very technology will provide energy for wireless sensor networks monitoring the air in your city or the structural stability of buildings and large constructions remotely and sustainably, avoiding battery recharging or even replacing them. These are the challenges in micro energy harvesting from (local) ambient sources.
Kinetic, thermal and solar energies are ubiquitous at our surroundings under diverse forms, but their relatively low intensity and intermittent availability limit their potential recovery by microscale devices. These restrictions call for multi-source energy harvesters working under two principles: 1) combining different single-source harvesters in one device, or 2) using multifunctional materials capable of simultaneously converting various energy sources into electricity. In 1), efficiency per unit volume can decrease compared to the individual counterparts; in 2), materials as semiconductors, polymeric and oxide ferroelectrics and hybrid perovskites may act as multisource harvesters but huge advances are required to optimize their functionalities and sustainable fabrication at large scale.
I propose to fill the gap between these approaches offering an all-in-one solution to multisource energy scavenging, based on the nanoscale design of multifunctional three-dimensional materials. The demonstration of an industrially scalable one-reactor plasma/vacuum method will be crucial to integrate hybrid-scavenging components and to provide 3DScavengers materials with tailored microstructure-enhanced performance.
My ultimate goal is to build nanoarchitectures for simultaneous and enhanced individual scavenging applying photovoltaic, piezo- and pyro-electric effects, minimizing the environmental cost of their synthesis
Summary
Imagine a technology for powering your smart devices by recovering energy from lights in your office, the random movements of your body while reading these lines or from small changes in temperature when you breathe or go out for a walk. This very technology will provide energy for wireless sensor networks monitoring the air in your city or the structural stability of buildings and large constructions remotely and sustainably, avoiding battery recharging or even replacing them. These are the challenges in micro energy harvesting from (local) ambient sources.
Kinetic, thermal and solar energies are ubiquitous at our surroundings under diverse forms, but their relatively low intensity and intermittent availability limit their potential recovery by microscale devices. These restrictions call for multi-source energy harvesters working under two principles: 1) combining different single-source harvesters in one device, or 2) using multifunctional materials capable of simultaneously converting various energy sources into electricity. In 1), efficiency per unit volume can decrease compared to the individual counterparts; in 2), materials as semiconductors, polymeric and oxide ferroelectrics and hybrid perovskites may act as multisource harvesters but huge advances are required to optimize their functionalities and sustainable fabrication at large scale.
I propose to fill the gap between these approaches offering an all-in-one solution to multisource energy scavenging, based on the nanoscale design of multifunctional three-dimensional materials. The demonstration of an industrially scalable one-reactor plasma/vacuum method will be crucial to integrate hybrid-scavenging components and to provide 3DScavengers materials with tailored microstructure-enhanced performance.
My ultimate goal is to build nanoarchitectures for simultaneous and enhanced individual scavenging applying photovoltaic, piezo- and pyro-electric effects, minimizing the environmental cost of their synthesis
Max ERC Funding
1 498 414 €
Duration
Start date: 2020-03-01, End date: 2025-02-28
Project acronym 4D-BIOMAP
Project Biomechanical Stimulation based on 4D Printed Magneto-Active Polymers
Researcher (PI) DANIEL GARCIA GONZALEZ
Host Institution (HI) UNIVERSIDAD CARLOS III DE MADRID
Country Spain
Call Details Starting Grant (StG), PE8, ERC-2020-STG
Summary MAPs are polymer-based composites that respond to magnetic fields with large deformation or tuneable mechanical properties. I aim to apply heterogeneous 3D printed MAPs as modifiable substrates to support biological structures which can have their deformation state and stiffness controlled by the external application of magnetic stimuli. Such mechanical stimulation has an important role on biological structures leading to alterations in functional responses, morphological changes and activation of growth or healing processes. Current bottlenecks preventing progress in this field are a lack of: a) appropriate experimental methodologies to enable characterisation of the behaviour of these materials; b) fundamental theoretical underpinnings to support the design and application of these new materials. The first step is to undertake in depth characterisation and assessment of 4D printed MAPs to create a detailed understanding of the underlying physics controlling the interactions between the polymeric matrices and embedded magnetic particles during application of mechanical and/or magnetic loadings. I will then culture biological structures on the novel 4D printed MAPs to create a ‘designed’ biostructure with specified and controllable responses to a given magnetic stimulus. These novel biostructures will be assessed using three applications: a) astrocyte cellular networks, b) neuronal circuits and c) astrocyte-neuronal networks. The evaluation of cellular damage, morphological and physiological alterations will validate the performance of the new biostructures and also contribute new understanding to the effects of deformation and stiffness gradients during glial scarring on physiological functions of central nervous system cells. The resulting deep understanding of magneto-mechanics of MAPs and their further development for controllable stimulation devices, will enable the international consolidation of my research group within the mechanics and bioengineering fields.
Summary
MAPs are polymer-based composites that respond to magnetic fields with large deformation or tuneable mechanical properties. I aim to apply heterogeneous 3D printed MAPs as modifiable substrates to support biological structures which can have their deformation state and stiffness controlled by the external application of magnetic stimuli. Such mechanical stimulation has an important role on biological structures leading to alterations in functional responses, morphological changes and activation of growth or healing processes. Current bottlenecks preventing progress in this field are a lack of: a) appropriate experimental methodologies to enable characterisation of the behaviour of these materials; b) fundamental theoretical underpinnings to support the design and application of these new materials. The first step is to undertake in depth characterisation and assessment of 4D printed MAPs to create a detailed understanding of the underlying physics controlling the interactions between the polymeric matrices and embedded magnetic particles during application of mechanical and/or magnetic loadings. I will then culture biological structures on the novel 4D printed MAPs to create a ‘designed’ biostructure with specified and controllable responses to a given magnetic stimulus. These novel biostructures will be assessed using three applications: a) astrocyte cellular networks, b) neuronal circuits and c) astrocyte-neuronal networks. The evaluation of cellular damage, morphological and physiological alterations will validate the performance of the new biostructures and also contribute new understanding to the effects of deformation and stiffness gradients during glial scarring on physiological functions of central nervous system cells. The resulting deep understanding of magneto-mechanics of MAPs and their further development for controllable stimulation devices, will enable the international consolidation of my research group within the mechanics and bioengineering fields.
Max ERC Funding
1 499 625 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym AMORE
Project A distributional MOdel of Reference to Entities
Researcher (PI) Gemma BOLEDA TORRENT
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Country Spain
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary "When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Summary
"When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Max ERC Funding
1 499 805 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym ANIMETRICS
Project Measurement-Based Modeling and Animation of Complex Mechanical Phenomena
Researcher (PI) Miguel Angel Otaduy Tristan
Host Institution (HI) UNIVERSIDAD REY JUAN CARLOS
Country Spain
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary Computer animation has traditionally been associated with applications in virtual-reality-based training, video games or feature films. However, interactive animation is gaining relevance in a more general scope, as a tool for early-stage analysis, design and planning in many applications in science and engineering. The user can get quick and visual feedback of the results, and then proceed by refining the experiments or designs. Potential applications include nanodesign, e-commerce or tactile telecommunication, but they also reach as far as, e.g., the analysis of ecological, climate, biological or physiological processes.
The application of computer animation is extremely limited in comparison to its potential outreach due to a trade-off between accuracy and computational efficiency. Such trade-off is induced by inherent complexity sources such as nonlinear or anisotropic behaviors, heterogeneous properties, or high dynamic ranges of effects.
The Animetrics project proposes a modeling and animation methodology, which consists of a multi-scale decomposition of complex processes, the description of the process at each scale through combination of simple local models, and fitting the parameters of those local models using large amounts of data from example effects. The modeling and animation methodology will be explored on specific problems arising in complex mechanical phenomena, including viscoelasticity of solids and thin shells, multi-body contact, granular and liquid flow, and fracture of solids.
Summary
Computer animation has traditionally been associated with applications in virtual-reality-based training, video games or feature films. However, interactive animation is gaining relevance in a more general scope, as a tool for early-stage analysis, design and planning in many applications in science and engineering. The user can get quick and visual feedback of the results, and then proceed by refining the experiments or designs. Potential applications include nanodesign, e-commerce or tactile telecommunication, but they also reach as far as, e.g., the analysis of ecological, climate, biological or physiological processes.
The application of computer animation is extremely limited in comparison to its potential outreach due to a trade-off between accuracy and computational efficiency. Such trade-off is induced by inherent complexity sources such as nonlinear or anisotropic behaviors, heterogeneous properties, or high dynamic ranges of effects.
The Animetrics project proposes a modeling and animation methodology, which consists of a multi-scale decomposition of complex processes, the description of the process at each scale through combination of simple local models, and fitting the parameters of those local models using large amounts of data from example effects. The modeling and animation methodology will be explored on specific problems arising in complex mechanical phenomena, including viscoelasticity of solids and thin shells, multi-body contact, granular and liquid flow, and fracture of solids.
Max ERC Funding
1 277 969 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym APACHE
Project Atmospheric Pressure plAsma meets biomaterials for bone Cancer HEaling
Researcher (PI) Cristina CANAL BARNILS
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Country Spain
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Summary
Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Max ERC Funding
1 499 887 €
Duration
Start date: 2017-04-01, End date: 2022-12-31
Project acronym ARCTIC
Project Air Transport as Information and Computation
Researcher (PI) Massimiliano ZANIN
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), SH2, ERC-2019-STG
Summary Air transport has by and large been studied as a transportation process, in which different elements, e.g. aircraft or passengers, move within the system. While intuitive, this approach entails several drawbacks, including the need for large-scale simulations, the reliance on real data, and the difficulty of extracting macro-scale conclusions from large quantities of micro- scale results. The lack of a better approach is in part responsible for our inability to fully understand delay propagation, one of the most important phenomena in air transport. ARCTIC proposes an ambitious program to change the conceptual framework used to analyse air transport, inspired by the way the brain is studied in neuroscience. It is based on understanding air transport as an information processing system, in which the movement of aircraft is merely a vehicle for information transfer. Airports then become computational units, receiving information from their neighbours through inbound flights under the form of delays; processing it in a potentially non-linear way; and redistributing the result to the system as outbound delays. In this proposal I show how, as already common in neuroscience, such computation can be made explicit by using a combination of information sciences and statistical physics techniques: from the detection of information movements through causality metrics, up to the representation of the resulting transfer structures through complex networks and their topological properties. The approach also entails important challenges, e.g. the definition of appropriate metrics or the translation of the obtained insights into implementable policies. In the main text of the proposal I present a number of preliminary results that point towards a radically new way of thinking about the dynamics of air transport. ARCTIC’s methodology will be used over the next five years to characterize and model delay propagation, as well as to limit its societal and economic impact.
Summary
Air transport has by and large been studied as a transportation process, in which different elements, e.g. aircraft or passengers, move within the system. While intuitive, this approach entails several drawbacks, including the need for large-scale simulations, the reliance on real data, and the difficulty of extracting macro-scale conclusions from large quantities of micro- scale results. The lack of a better approach is in part responsible for our inability to fully understand delay propagation, one of the most important phenomena in air transport. ARCTIC proposes an ambitious program to change the conceptual framework used to analyse air transport, inspired by the way the brain is studied in neuroscience. It is based on understanding air transport as an information processing system, in which the movement of aircraft is merely a vehicle for information transfer. Airports then become computational units, receiving information from their neighbours through inbound flights under the form of delays; processing it in a potentially non-linear way; and redistributing the result to the system as outbound delays. In this proposal I show how, as already common in neuroscience, such computation can be made explicit by using a combination of information sciences and statistical physics techniques: from the detection of information movements through causality metrics, up to the representation of the resulting transfer structures through complex networks and their topological properties. The approach also entails important challenges, e.g. the definition of appropriate metrics or the translation of the obtained insights into implementable policies. In the main text of the proposal I present a number of preliminary results that point towards a radically new way of thinking about the dynamics of air transport. ARCTIC’s methodology will be used over the next five years to characterize and model delay propagation, as well as to limit its societal and economic impact.
Max ERC Funding
1 297 024 €
Duration
Start date: 2020-03-01, End date: 2025-02-28
Project acronym BacBio
Project Mechanistic and functional studies of Bacillus biofilms assembly on plants, and their impact in sustainable agriculture and food safety
Researcher (PI) Diego Francisco Romero Hinojosa
Host Institution (HI) UNIVERSIDAD DE MALAGA
Country Spain
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Sustainable agriculture is an ambitious concept conceived to improve productivity but minimizing side effects. Why the efficiency of a biocontrol agent is so variable? How can different therapies be efficiently exploited in a combined way to combat microbial diseases? These are questions that need investigation to convey with criteria of sustainability. What I present is an integral proposal aim to study the microbial ecology and specifically bacterial biofilms as a central axis of two differential but likely interconnected scenarios in plant health: i) the beneficial interaction of the biocontrol agent (BCA) Bacillus subtilis, and ii) the non-conventional interaction of the food-borne pathogen Bacillus cereus.
I will start working with B. subtilis, and reasons are: 1) Different isolates are promising BCAs and are commercialized for such purpose, 2) There exist vast information of the genetics circuitries that govern important aspects of B. subtilis physiology as antibiotic production, cell differentiation, and biofilm formation. In parallel I propose to study the way B. cereus, a food-borne pathogenic bacterium interacts with vegetables. I am planning to set up a multidisciplinary approach that will combine genetics, biochemistry, proteomics, cell biology and molecular biology to visualize how these bacterial population interacts, communicates with plants and other microorganisms, or how all these factors trigger or inhibit the developmental program ending in biofilm formation. I am also interested on knowing if structural components of the bacterial extracellular matrix (exopolysaccharides or amyloid proteins) are important for bacterial fitness. If this were the case, I will also investigate which external factors affect their expression and assembly in functional biofilms. The insights get on these studies are committed to impulse our knowledge on microbial ecology and their biotechnological applicability to sustainable agriculture and food safety.
Summary
Sustainable agriculture is an ambitious concept conceived to improve productivity but minimizing side effects. Why the efficiency of a biocontrol agent is so variable? How can different therapies be efficiently exploited in a combined way to combat microbial diseases? These are questions that need investigation to convey with criteria of sustainability. What I present is an integral proposal aim to study the microbial ecology and specifically bacterial biofilms as a central axis of two differential but likely interconnected scenarios in plant health: i) the beneficial interaction of the biocontrol agent (BCA) Bacillus subtilis, and ii) the non-conventional interaction of the food-borne pathogen Bacillus cereus.
I will start working with B. subtilis, and reasons are: 1) Different isolates are promising BCAs and are commercialized for such purpose, 2) There exist vast information of the genetics circuitries that govern important aspects of B. subtilis physiology as antibiotic production, cell differentiation, and biofilm formation. In parallel I propose to study the way B. cereus, a food-borne pathogenic bacterium interacts with vegetables. I am planning to set up a multidisciplinary approach that will combine genetics, biochemistry, proteomics, cell biology and molecular biology to visualize how these bacterial population interacts, communicates with plants and other microorganisms, or how all these factors trigger or inhibit the developmental program ending in biofilm formation. I am also interested on knowing if structural components of the bacterial extracellular matrix (exopolysaccharides or amyloid proteins) are important for bacterial fitness. If this were the case, I will also investigate which external factors affect their expression and assembly in functional biofilms. The insights get on these studies are committed to impulse our knowledge on microbial ecology and their biotechnological applicability to sustainable agriculture and food safety.
Max ERC Funding
1 453 563 €
Duration
Start date: 2015-03-01, End date: 2021-02-28
Project acronym BacRafts
Project Architecture of bacterial lipid rafts; inhibition of virulence and antibiotic resistance using raft-disassembling small molecules
Researcher (PI) Daniel Lopez Serrano
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), LS6, ERC-2013-StG
Summary Membranes of eukaryotic cells organize signal transduction proteins into microdomains or lipid rafts whose integrity is essential for numerous cellular processes. Lipid rafts has been considered a fundamental step to define the cellular complexity of eukaryotes, assuming that bacteria do not require such a sophisticated organization of their signaling networks. However, I have discovered that bacteria organize many signaling pathways in membrane microdomains similar to the eukaryotic lipid rafts. Perturbation of bacterial lipid rafts leads to a potent and simultaneous impairment of all raft-harbored signaling pathways. Consequently, the disassembly of lipid rafts in pathogens like Staphylococcus aureus generates a simultaneous inhibition of numerous infection-related processes that can be further explored to control bacterial infections. This unexpected sophistication in membrane organization is unprecedented in bacteria and hence, this proposal will explore the molecular basis of the assembly of bacterial lipid rafts and their role in the infection-related processes. These questions will be addressed in three main goals: First, I will elucidate the molecular components and the mechanism of assembly of bacterial lipid rafts using S. aureus as model organism. Second, I will dissect the molecular basis that links the functionality of the infection-related processes to the integrity of bacterial lipid rafts. Third, my collection of anti-raft small molecules that are able to disrupt lipid rafts will be tested as antimicrobial agents to prevent hospital-acquired infections, abrogate pre-existing infections and develop bacteria-free materials that can be used in clinical settings. I will use a number of molecular approaches in combination with cutting-edge techniques in flow cytometry, cell-imaging and transcriptomics to clarify the architecture and functionality of lipid rafts and demonstrate the feasibility of targeting lipid a new strategy for anti-microbial therapy.
Summary
Membranes of eukaryotic cells organize signal transduction proteins into microdomains or lipid rafts whose integrity is essential for numerous cellular processes. Lipid rafts has been considered a fundamental step to define the cellular complexity of eukaryotes, assuming that bacteria do not require such a sophisticated organization of their signaling networks. However, I have discovered that bacteria organize many signaling pathways in membrane microdomains similar to the eukaryotic lipid rafts. Perturbation of bacterial lipid rafts leads to a potent and simultaneous impairment of all raft-harbored signaling pathways. Consequently, the disassembly of lipid rafts in pathogens like Staphylococcus aureus generates a simultaneous inhibition of numerous infection-related processes that can be further explored to control bacterial infections. This unexpected sophistication in membrane organization is unprecedented in bacteria and hence, this proposal will explore the molecular basis of the assembly of bacterial lipid rafts and their role in the infection-related processes. These questions will be addressed in three main goals: First, I will elucidate the molecular components and the mechanism of assembly of bacterial lipid rafts using S. aureus as model organism. Second, I will dissect the molecular basis that links the functionality of the infection-related processes to the integrity of bacterial lipid rafts. Third, my collection of anti-raft small molecules that are able to disrupt lipid rafts will be tested as antimicrobial agents to prevent hospital-acquired infections, abrogate pre-existing infections and develop bacteria-free materials that can be used in clinical settings. I will use a number of molecular approaches in combination with cutting-edge techniques in flow cytometry, cell-imaging and transcriptomics to clarify the architecture and functionality of lipid rafts and demonstrate the feasibility of targeting lipid a new strategy for anti-microbial therapy.
Max ERC Funding
1 493 126 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym BAR2LEGAB
Project Women travelling to seek abortion care in Europe: the impact of barriers to legal abortion on women living in countries with ostensibly liberal abortion laws
Researcher (PI) Silvia De Zordo
Host Institution (HI) UNIVERSITAT DE BARCELONA
Country Spain
Call Details Starting Grant (StG), SH2, ERC-2015-STG
Summary In many European countries with ostensibly liberal abortion laws, women face legal restrictions to abortion beyond the first trimester of pregnancy, as well as other barriers to legal abortion, in particular shortages of providers willing and able to offer abortion due to poor training and to conscientious objection among physicians. The Council of Europe has recognized that conscientious objection can make access to safe abortion more difficult or impossible, particularly in rural areas and for low income women, who are forced to travel far to seek abortion care, including abroad. The WHO also highlights that delaying abortion care increases risks for women’s reproductive health. Despite the relevance of this topic from a public health and human rights perspective, the impact of procedural and social barriers to legal abortion on women in countries with ostensibly liberal abortion laws has not been studied by social scientists in Europe. This five-year research project is envisaged as a ground-breaking multi-disciplinary, mixed-methods investigation that will fill this gap, by capitalizing on previous, pioneer anthropological research of the PI on abortion and conscientious objection. It will contribute to the anthropology of reproduction in Europe, and particularly to the existing literature on abortion, conscientious objection and the medicalization of reproduction, and to the international debate on gender inequalities and citizenship, by exploring how barriers to legal abortion are constructed and how women embody and challenge them in different countries, by travelling or seeking illegal abortion, as well as their conceptualizations of abortion and their self perception as moral/political subjects. The project will be carried out in France, Italy and Spain, where the few existing studies show that women face several barriers to legal abortion as well as in the UK, the Netherlands and Spain, where Italian and French women travel to seek abortion care.
Summary
In many European countries with ostensibly liberal abortion laws, women face legal restrictions to abortion beyond the first trimester of pregnancy, as well as other barriers to legal abortion, in particular shortages of providers willing and able to offer abortion due to poor training and to conscientious objection among physicians. The Council of Europe has recognized that conscientious objection can make access to safe abortion more difficult or impossible, particularly in rural areas and for low income women, who are forced to travel far to seek abortion care, including abroad. The WHO also highlights that delaying abortion care increases risks for women’s reproductive health. Despite the relevance of this topic from a public health and human rights perspective, the impact of procedural and social barriers to legal abortion on women in countries with ostensibly liberal abortion laws has not been studied by social scientists in Europe. This five-year research project is envisaged as a ground-breaking multi-disciplinary, mixed-methods investigation that will fill this gap, by capitalizing on previous, pioneer anthropological research of the PI on abortion and conscientious objection. It will contribute to the anthropology of reproduction in Europe, and particularly to the existing literature on abortion, conscientious objection and the medicalization of reproduction, and to the international debate on gender inequalities and citizenship, by exploring how barriers to legal abortion are constructed and how women embody and challenge them in different countries, by travelling or seeking illegal abortion, as well as their conceptualizations of abortion and their self perception as moral/political subjects. The project will be carried out in France, Italy and Spain, where the few existing studies show that women face several barriers to legal abortion as well as in the UK, the Netherlands and Spain, where Italian and French women travel to seek abortion care.
Max ERC Funding
1 495 753 €
Duration
Start date: 2016-10-01, End date: 2021-12-31
Project acronym BIOCON
Project Biological origins of linguistic constraints
Researcher (PI) Juan Manuel Toro
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Country Spain
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Summary
The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Max ERC Funding
1 305 973 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym BioInspired_SolarH2
Project Engineering Bio-Inspired Systems for the Conversion of Solar Energy to Hydrogen
Researcher (PI) Elisabet ROMERO MESA
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Country Spain
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary With this proposal, I aim to achieve the efficient conversion of solar energy to hydrogen. The overall objective is to engineer bio-inspired systems able to convert solar energy into a separation of charges and to construct devices by coupling these systems to catalysts in order to drive sustainable and effective water oxidation and hydrogen production.
The global energy crisis requires an urgent solution, we must replace fossil fuels for a renewable energy source: Solar energy. However, the efficient and inexpensive conversion and storage of solar energy into fuel remains a fundamental challenge. Currently, solar-energy conversion devices suffer from energy losses mainly caused by disorder in the materials used. The solution to this problem is to learn from nature. In photosynthesis, the photosystem II reaction centre (PSII RC) is a pigment-protein complex able to overcome disorder and convert solar photons into a separation of charges with near 100% efficiency. Crucially, the generated charges have enough potential to drive water oxidation and hydrogen production.
Previously, I have investigated the charge separation process in the PSII RC by a collection of spectroscopic techniques, which allowed me to formulate the design principles of photosynthetic charge separation, where coherence plays a crucial role. Here I will put these knowledge into action to design efficient and robust chromophore-protein assemblies for the collection and conversion of solar energy, employ organic chemistry and synthetic biology tools to construct these well defined and fully controllable assemblies, and apply a complete set of spectroscopic methods to investigate these engineered systems.
Following the approach Understand, Engineer, Implement, I will create a new generation of bio-inspired devices based on abundant and biodegradable materials that will drive the transformation of solar energy and water into hydrogen, an energy-rich molecule that can be stored and transported.
Summary
With this proposal, I aim to achieve the efficient conversion of solar energy to hydrogen. The overall objective is to engineer bio-inspired systems able to convert solar energy into a separation of charges and to construct devices by coupling these systems to catalysts in order to drive sustainable and effective water oxidation and hydrogen production.
The global energy crisis requires an urgent solution, we must replace fossil fuels for a renewable energy source: Solar energy. However, the efficient and inexpensive conversion and storage of solar energy into fuel remains a fundamental challenge. Currently, solar-energy conversion devices suffer from energy losses mainly caused by disorder in the materials used. The solution to this problem is to learn from nature. In photosynthesis, the photosystem II reaction centre (PSII RC) is a pigment-protein complex able to overcome disorder and convert solar photons into a separation of charges with near 100% efficiency. Crucially, the generated charges have enough potential to drive water oxidation and hydrogen production.
Previously, I have investigated the charge separation process in the PSII RC by a collection of spectroscopic techniques, which allowed me to formulate the design principles of photosynthetic charge separation, where coherence plays a crucial role. Here I will put these knowledge into action to design efficient and robust chromophore-protein assemblies for the collection and conversion of solar energy, employ organic chemistry and synthetic biology tools to construct these well defined and fully controllable assemblies, and apply a complete set of spectroscopic methods to investigate these engineered systems.
Following the approach Understand, Engineer, Implement, I will create a new generation of bio-inspired devices based on abundant and biodegradable materials that will drive the transformation of solar energy and water into hydrogen, an energy-rich molecule that can be stored and transported.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym BLOODCELLSCROSSTALK
Project The Crosstalk Between Red And White Blood Cells: The Case Of Fish
Researcher (PI) Maria del Mar Ortega-Villaizan Romo
Host Institution (HI) UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE
Country Spain
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Fish are the phylogenetically oldest vertebrate group with an immune system with clear similarities to the immune system of mammals. However, it is an actual matter of fact that the current knowledge of the fish immune system seems to lack the key piece to complete the puzzle.
In 1953 Nelson described a new role of human red blood cells (RBCs) which would go beyond the simple transport of O2 to the tissues. This new role, involved in the defence against microbes, described the antibody and complement-dependent binding of microbial immune complexes to RBCs. Regardless of the importance of this finding in the field of microbial infection, this phenomenon has been poorly evaluated. Just recently, a set of biological processes relevant to immunity have been described in the RBCs of a diverse group of organisms, which include: pathogen recognition, pathogen binding and clearance and cytokines production. Furthermore, it has been demonstrated that nucleated erythrocytes from fish and avian species develop specific responses to different pathogen associated molecular patterns and produce soluble factors that modulate leukocyte activity.
In the light of these pieces of evidences, and in an attempt to improve the knowledge of the immune mechanism(s) responsible for fish protection against viral infections, we raised the question: could nucleated fish erythrocytes be the key mediators of the antiviral responses? To answer this question we decided to focus our project on the evaluation of the crosstalk between red and white blood cells in the scenario of fish viral infections and prophylaxis. For that a working model composed of the rainbow trout and the viral haemorrhagic septicaemia virus (VHSV) was chosen, being the objectives of the project to evaluate: i) the implication trout RBCs (tRBCs) in the clearance of VHSV, and ii) the involvement of tRBCs in the blood transportation of the glycoprotein G of VHSV (GVHSV), the antigen encoded by the DNA vaccine.
Summary
Fish are the phylogenetically oldest vertebrate group with an immune system with clear similarities to the immune system of mammals. However, it is an actual matter of fact that the current knowledge of the fish immune system seems to lack the key piece to complete the puzzle.
In 1953 Nelson described a new role of human red blood cells (RBCs) which would go beyond the simple transport of O2 to the tissues. This new role, involved in the defence against microbes, described the antibody and complement-dependent binding of microbial immune complexes to RBCs. Regardless of the importance of this finding in the field of microbial infection, this phenomenon has been poorly evaluated. Just recently, a set of biological processes relevant to immunity have been described in the RBCs of a diverse group of organisms, which include: pathogen recognition, pathogen binding and clearance and cytokines production. Furthermore, it has been demonstrated that nucleated erythrocytes from fish and avian species develop specific responses to different pathogen associated molecular patterns and produce soluble factors that modulate leukocyte activity.
In the light of these pieces of evidences, and in an attempt to improve the knowledge of the immune mechanism(s) responsible for fish protection against viral infections, we raised the question: could nucleated fish erythrocytes be the key mediators of the antiviral responses? To answer this question we decided to focus our project on the evaluation of the crosstalk between red and white blood cells in the scenario of fish viral infections and prophylaxis. For that a working model composed of the rainbow trout and the viral haemorrhagic septicaemia virus (VHSV) was chosen, being the objectives of the project to evaluate: i) the implication trout RBCs (tRBCs) in the clearance of VHSV, and ii) the involvement of tRBCs in the blood transportation of the glycoprotein G of VHSV (GVHSV), the antigen encoded by the DNA vaccine.
Max ERC Funding
1 823 250 €
Duration
Start date: 2015-04-01, End date: 2020-10-31
Project acronym CAMBAT
Project Calcium and magnesium metal anode based batteries
Researcher (PI) Alexandre PONROUCH
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Li-ion battery is ubiquitous and has emerged as the major contender to power electric vehicles, yet Li-ion is slowly but surely reaching its limits and controversial debates on lithium supply cannot be ignored. New sustainable battery chemistries must be developed and the most appealing alternatives are to use Ca or Mg metal anodes which would bring a breakthrough in terms of energy density relying on much more abundant elements. Since Mg and Ca do not appear to be plagued by dendrite formation like Li, metal anodes could thus safely be used. While standard electrolytes forming stable passivation layers at the electrode/electrolyte interfaces enabled the success of the Li-ion technology, the migration of divalent cations through a passivation layer was thought to be impossible. Thus, all research efforts to date have been devoted to the formulation of electrolytes that do not form such layer. This approach comes with complex electrolyte, highly corrosive and with narrow electrochemical stability window leading to incompatibility with high voltage cathodes thus penalizing energy density.
The applicant demonstrated that calcium can be reversibly plated and stripped through a stable passivation layer when transport properties within the electrolyte are tuned (decreasing ion pair formation). CAMBAT aims at developing new electrolytes forming stable passivation layers and allowing the migration of Ca2+ and Mg2+. Such a dramatic shift in the methodology would allow considering a completely new family of electrolytes enabling the evaluation of high voltage cathode materials that cannot be tested in the electrolytes available nowadays. 1Ah prototype cells will be assembled as proof of concept, targets for energy density and cost being ca. 300 Wh/kg and 250 $/kWh, respectively, thus doubling the energy density while dividing by at least a factor of 2 the price when compared to state of the art Li-ion batteries and having the potential for being SAFER (absence of dendrite).
Summary
Li-ion battery is ubiquitous and has emerged as the major contender to power electric vehicles, yet Li-ion is slowly but surely reaching its limits and controversial debates on lithium supply cannot be ignored. New sustainable battery chemistries must be developed and the most appealing alternatives are to use Ca or Mg metal anodes which would bring a breakthrough in terms of energy density relying on much more abundant elements. Since Mg and Ca do not appear to be plagued by dendrite formation like Li, metal anodes could thus safely be used. While standard electrolytes forming stable passivation layers at the electrode/electrolyte interfaces enabled the success of the Li-ion technology, the migration of divalent cations through a passivation layer was thought to be impossible. Thus, all research efforts to date have been devoted to the formulation of electrolytes that do not form such layer. This approach comes with complex electrolyte, highly corrosive and with narrow electrochemical stability window leading to incompatibility with high voltage cathodes thus penalizing energy density.
The applicant demonstrated that calcium can be reversibly plated and stripped through a stable passivation layer when transport properties within the electrolyte are tuned (decreasing ion pair formation). CAMBAT aims at developing new electrolytes forming stable passivation layers and allowing the migration of Ca2+ and Mg2+. Such a dramatic shift in the methodology would allow considering a completely new family of electrolytes enabling the evaluation of high voltage cathode materials that cannot be tested in the electrolytes available nowadays. 1Ah prototype cells will be assembled as proof of concept, targets for energy density and cost being ca. 300 Wh/kg and 250 $/kWh, respectively, thus doubling the energy density while dividing by at least a factor of 2 the price when compared to state of the art Li-ion batteries and having the potential for being SAFER (absence of dendrite).
Max ERC Funding
1 688 705 €
Duration
Start date: 2017-01-01, End date: 2022-06-30
Project acronym CAPA
Project Global existence and Computer-Assisted Proofs of singularities in incompressible fluids, with Applications
Researcher (PI) Javier GOMEZ-SERRANO
Host Institution (HI) UNIVERSITAT DE BARCELONA
Country Spain
Call Details Starting Grant (StG), PE1, ERC-2019-STG
Summary The goal of this proposal is twofold: on the one hand to pursue methods and ideas developed in recent work in the search for either singularities or global existence in incompressible fluids with finite energy and on the
other transfer the techniques to solve long-standing open problems in spectral geometry. A key ingredient in its success is to have accurate numerics together with a deep understanding of the regularity theory. Therefore, the interdisciplinary nature of this project, which involves numerical computations, computer-assisted proofs, modern PDE methods and harmonic analysis, is an essential ingredient for the successful outcome.
This proposal is divided in three blocks, the first two involving global existence and/or singularities for: the incompressible Euler and Navier-Stokes equations; the surface quasi-geostrophic (SQG), the generalized-SQG equations and related models; and a third one on applications to spectral geometry. There is a strong analogy between the SQG and the 3D Euler equations, and many results that hold for the former also hold for the latter.
A major theme is the interplay between rigorous computer calculations and traditional mathematics. Interval arithmetics are used as part of a proof whenever they are needed. As an evidence of its capabilities, I have pioneered techniques to show singularities in PDE related to fluid mechanics – even in low regularity settings –, developed a way to treat singular integrals, and solved eigenvalue problems using computer-assisted proofs. This is a completely novel approach that can be blended with more classical ones, resulting in very powerful theorems solving problems that can not be treated currently with pen and paper methods.
Summary
The goal of this proposal is twofold: on the one hand to pursue methods and ideas developed in recent work in the search for either singularities or global existence in incompressible fluids with finite energy and on the
other transfer the techniques to solve long-standing open problems in spectral geometry. A key ingredient in its success is to have accurate numerics together with a deep understanding of the regularity theory. Therefore, the interdisciplinary nature of this project, which involves numerical computations, computer-assisted proofs, modern PDE methods and harmonic analysis, is an essential ingredient for the successful outcome.
This proposal is divided in three blocks, the first two involving global existence and/or singularities for: the incompressible Euler and Navier-Stokes equations; the surface quasi-geostrophic (SQG), the generalized-SQG equations and related models; and a third one on applications to spectral geometry. There is a strong analogy between the SQG and the 3D Euler equations, and many results that hold for the former also hold for the latter.
A major theme is the interplay between rigorous computer calculations and traditional mathematics. Interval arithmetics are used as part of a proof whenever they are needed. As an evidence of its capabilities, I have pioneered techniques to show singularities in PDE related to fluid mechanics – even in low regularity settings –, developed a way to treat singular integrals, and solved eigenvalue problems using computer-assisted proofs. This is a completely novel approach that can be blended with more classical ones, resulting in very powerful theorems solving problems that can not be treated currently with pen and paper methods.
Max ERC Funding
1 483 073 €
Duration
Start date: 2020-07-01, End date: 2025-06-30
Project acronym CARBONLIGHT
Project Tunable light tightly bound to a single sheet of carbon atoms:
graphene as a novel platform for nano-optoelectronics
Researcher (PI) Frank Henricus Louis Koppens
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Country Spain
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary Graphene, a one-atom-thick layer of carbon, has attracted enormous attention in diverse areas of applied and fundamental physics. Due to its unique crystal structure, charge carriers have an effective mass of zero and a very high mobility, even at room temperature. While graphene-based devices have an enormous potential for high-speed electronics, graphene has recently been recognized as a photonic material for novel optoelectronic applications.
Interestingly, graphene is also a promising host material for light that is confined to nanoscale dimensions, more than 100 times below the diffraction limit. Due to its ultra-small thickness and extremely high purity, graphene can support strongly confined propagating light fields coupled to the charge carriers in the material: surface plasmons. The properties of these plasmons are controllable by electrostatic gates, holding promise for in-situ tunability of light-matter interactions at a length scale far below the wavelength.
This project will experimentally investigate the new and virtually unexplored field of graphene surface plasmonics, and combine this with other appealing properties of graphene to demonstrate the unique potential of carbon-based nano-optoelectronics. The aim is to explore the limits of unprecedented light concentration, manipulation and detection at the nanoscale, to dramatically intensify nonlinear interactions between photons towards the quantum regime, and to reveal the subtle effects of cavity quantum electrodynamics on graphene-emitter systems. This research will reveal the far-reaching potential of a single sheet of carbon atoms as a host for light and electrons at the nanoscale, with prospects for novel nanoscale optical circuits and detectors, nano-optomechanical systems and tunable artificial quantum emitters.
Summary
Graphene, a one-atom-thick layer of carbon, has attracted enormous attention in diverse areas of applied and fundamental physics. Due to its unique crystal structure, charge carriers have an effective mass of zero and a very high mobility, even at room temperature. While graphene-based devices have an enormous potential for high-speed electronics, graphene has recently been recognized as a photonic material for novel optoelectronic applications.
Interestingly, graphene is also a promising host material for light that is confined to nanoscale dimensions, more than 100 times below the diffraction limit. Due to its ultra-small thickness and extremely high purity, graphene can support strongly confined propagating light fields coupled to the charge carriers in the material: surface plasmons. The properties of these plasmons are controllable by electrostatic gates, holding promise for in-situ tunability of light-matter interactions at a length scale far below the wavelength.
This project will experimentally investigate the new and virtually unexplored field of graphene surface plasmonics, and combine this with other appealing properties of graphene to demonstrate the unique potential of carbon-based nano-optoelectronics. The aim is to explore the limits of unprecedented light concentration, manipulation and detection at the nanoscale, to dramatically intensify nonlinear interactions between photons towards the quantum regime, and to reveal the subtle effects of cavity quantum electrodynamics on graphene-emitter systems. This research will reveal the far-reaching potential of a single sheet of carbon atoms as a host for light and electrons at the nanoscale, with prospects for novel nanoscale optical circuits and detectors, nano-optomechanical systems and tunable artificial quantum emitters.
Max ERC Funding
1 466 000 €
Duration
Start date: 2012-11-01, End date: 2017-10-31
Project acronym CARBONNEMS
Project NanoElectroMechanical Systems based on Carbon Nanotube and Graphene
Researcher (PI) Adrian Bachtold
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Country Spain
Call Details Starting Grant (StG), PE3, ERC-2011-StG_20101014
Summary Carbon nanotubes and graphene form a class of nanoscale objects with exceptional electrical, mechanical and structural properties. I propose to exploit these unique properties to fabricate and study various nanoelectromechanical systems (NEMS) based on graphene and nanotubes. Specifically, I will address two directions with major scientific interests:
1- I propose to study electromechanical resonators based on an individual nanotube or on a single layer of graphene. My group has a leading position in this recent research field and the idea is to take advantage of our expertise for two sets of experiments, one on inertial mass sensing and one on the exploration of quantum motion. These two topics are generating at present an intense activity in the NEMS community. Experiments are usually carried out using microfabricated silicon resonators but the ultra low mass of nanotubes and graphene has here an enormous asset. It drastically improves the sensitivity of mass sensing and it dramatically enhances the amplitude of the motion in the quantum regime.
2- My team will fabricate and exploit nanomotors based on nanotube and graphene. Only few man-made nanomotors have been demonstrated so far. Reasons are multiple. For instance, the fabrication of nanomotors is technically challenging. In addition, friction forces are often so strong that they hinder motion. Because of their unique properties, nanotubes and graphene represent a material of choice for the development of new nanomotors. We will construct nanomotors with different layouts and address how electrical, thermal or chemical energy can be transformed into mechanical energy in order to drive motion at the nanoscale.
Summary
Carbon nanotubes and graphene form a class of nanoscale objects with exceptional electrical, mechanical and structural properties. I propose to exploit these unique properties to fabricate and study various nanoelectromechanical systems (NEMS) based on graphene and nanotubes. Specifically, I will address two directions with major scientific interests:
1- I propose to study electromechanical resonators based on an individual nanotube or on a single layer of graphene. My group has a leading position in this recent research field and the idea is to take advantage of our expertise for two sets of experiments, one on inertial mass sensing and one on the exploration of quantum motion. These two topics are generating at present an intense activity in the NEMS community. Experiments are usually carried out using microfabricated silicon resonators but the ultra low mass of nanotubes and graphene has here an enormous asset. It drastically improves the sensitivity of mass sensing and it dramatically enhances the amplitude of the motion in the quantum regime.
2- My team will fabricate and exploit nanomotors based on nanotube and graphene. Only few man-made nanomotors have been demonstrated so far. Reasons are multiple. For instance, the fabrication of nanomotors is technically challenging. In addition, friction forces are often so strong that they hinder motion. Because of their unique properties, nanotubes and graphene represent a material of choice for the development of new nanomotors. We will construct nanomotors with different layouts and address how electrical, thermal or chemical energy can be transformed into mechanical energy in order to drive motion at the nanoscale.
Max ERC Funding
1 996 789 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym CDSIF
Project Contour dynamics and singularities in incompressible flows
Researcher (PI) Diego Cordoba
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary The search of singularities in incompressible flows has become a major challenge in the area of non-linear partial differential equations and is relevant in applied mathematics, physics and engineering. The existence of such singularities would have important consequences for the understanding of turbulence. One way to make progress in this direction, is to study plausible scenarios for the singularities supported by experiments or numerical analysis. With the more sophisticated numerical tools now available, the subject has recently gained considerable momentum. The main goal of this project is to study analytically several incompressible fluid models. In particular solutions that involve the possible formation of singularities or quasi-singular structures.
Summary
The search of singularities in incompressible flows has become a major challenge in the area of non-linear partial differential equations and is relevant in applied mathematics, physics and engineering. The existence of such singularities would have important consequences for the understanding of turbulence. One way to make progress in this direction, is to study plausible scenarios for the singularities supported by experiments or numerical analysis. With the more sophisticated numerical tools now available, the subject has recently gained considerable momentum. The main goal of this project is to study analytically several incompressible fluid models. In particular solutions that involve the possible formation of singularities or quasi-singular structures.
Max ERC Funding
650 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31