Project acronym BeyondMoore
Project Pioneering a New Path in Parallel Programming Beyond Moore’s Law
Researcher (PI) Didem UNAT
Host Institution (HI) KOC UNIVERSITY
Country Turkey
Call Details Starting Grant (StG), PE6, ERC-2020-STG
Summary BEYONDMOORE addresses the timely research challenge of solving the software side of the Post Moore crisis. The techno-economical model in computing, known as the Moore’s Law, has led to an exceptionally productive era for humanity and numerous scientific discoveries over the past 50+ years. However, due to the fundamental limits in chip manufacturing we are about to mark the end of Moore’s Law and enter a new era of computing where continued performance improvement will likely emerge from extreme heterogeneity. The new systems are expected to bring a diverse set of hardware accelerators and memory technologies. Current solutions to program such systems are host-centric, where the host processor orchestrates the entire execution. This poses major scalability issues and severely limits the types of parallelism that can be exploited. Unless there is a fundamental change in our approach to heterogeneous parallel programming, we risk substantially underutilizing upcoming systems. BEYONDMOORE offers a way out of this programming crisis and proposes an autonomous execution model that is more scalable, flexible, and accelerator-centric by design. In this model, accelerators have autonomy; they compute, collaborate, and communicate with each other without the involvement of the host. The execution model is powered with a rich set of programming abstractions that enable a program to be modeled as a task graph. To efficiently execute this task graph, BEYONDMOORE will develop a software framework that performs static and dynamic optimizations, issues accelerator-initiated data transfers, and reasons about parallel execution strategies that exploit both processor and memory heterogeneity. To aid the optimizations, a comprehensive cost model that characterizes both target applications and emerging architectures will be devised. Complete success of BEYONDMOORE will enable continued progress in computing which in turn will power science and technology in the life after Moore’s Law.
Summary
BEYONDMOORE addresses the timely research challenge of solving the software side of the Post Moore crisis. The techno-economical model in computing, known as the Moore’s Law, has led to an exceptionally productive era for humanity and numerous scientific discoveries over the past 50+ years. However, due to the fundamental limits in chip manufacturing we are about to mark the end of Moore’s Law and enter a new era of computing where continued performance improvement will likely emerge from extreme heterogeneity. The new systems are expected to bring a diverse set of hardware accelerators and memory technologies. Current solutions to program such systems are host-centric, where the host processor orchestrates the entire execution. This poses major scalability issues and severely limits the types of parallelism that can be exploited. Unless there is a fundamental change in our approach to heterogeneous parallel programming, we risk substantially underutilizing upcoming systems. BEYONDMOORE offers a way out of this programming crisis and proposes an autonomous execution model that is more scalable, flexible, and accelerator-centric by design. In this model, accelerators have autonomy; they compute, collaborate, and communicate with each other without the involvement of the host. The execution model is powered with a rich set of programming abstractions that enable a program to be modeled as a task graph. To efficiently execute this task graph, BEYONDMOORE will develop a software framework that performs static and dynamic optimizations, issues accelerator-initiated data transfers, and reasons about parallel execution strategies that exploit both processor and memory heterogeneity. To aid the optimizations, a comprehensive cost model that characterizes both target applications and emerging architectures will be devised. Complete success of BEYONDMOORE will enable continued progress in computing which in turn will power science and technology in the life after Moore’s Law.
Max ERC Funding
1 500 000 €
Duration
Start date: 2021-08-01, End date: 2026-07-31
Project acronym CentSatRegFunc
Project Dissecting the function and regulation of centriolar satellites: key regulators of the centrosome/cilium complex
Researcher (PI) Elif Nur Firat Karalar
Host Institution (HI) KOC UNIVERSITY
Country Turkey
Call Details Starting Grant (StG), LS3, ERC-2015-STG
Summary Centrosomes are the main microtubule-organizing centers of animal cells. They influence the morphology of the microtubule cytoskeleton and function as the base of primary cilium, a nexus for important signaling pathways. Structural and functional defects in centrosome/cilium complex cause a variety of human diseases including cancer, ciliopathies and microcephaly. To understand the relationship between human diseases and centrosome/cilium abnormalities, it is essential to elucidate the biogenesis of centrosome/cilium complex and the control mechanisms that regulate their structure and function. To tackle these fundamental problems, we will dissect the function and regulation of centriolar satellites, the array of granules that localize around the centrosome/cilium complex in mammalian cells. Only recently interest in the satellites has grown because mutations affecting satellite components were shown to cause ciliopathies, microcephaly and schizophrenia.
Remarkably, many centrosome/cilium proteins localize to these structures and we lack understanding of when, why and how these proteins localize to satellites. The central hypothesis of this grant is that satellites ensure proper centrosome/cilium complex structure and function by acting as transit paths for modification, assembly, storage, stability and trafficking of centrosome/cilium proteins. In Aim 1, we will identify the nature of regulatory and molecular relationship between satellites and the centrosome/cilium complex. In Aim 2, we will elucidate the role of satellites in proteostasis of centrosome/cilium proteins. In Aim 3, we will investigate the functional significance of satellite-localization of centrosome/cilium proteins during processes that go awry in human disease. Using a multidisciplinary approach, the proposed research will expand our knowledge of the spatiotemporal regulation of the centrosome/cilium complex and provide new insights into pathogenesis of ciliopathies and primary microcephaly.
Summary
Centrosomes are the main microtubule-organizing centers of animal cells. They influence the morphology of the microtubule cytoskeleton and function as the base of primary cilium, a nexus for important signaling pathways. Structural and functional defects in centrosome/cilium complex cause a variety of human diseases including cancer, ciliopathies and microcephaly. To understand the relationship between human diseases and centrosome/cilium abnormalities, it is essential to elucidate the biogenesis of centrosome/cilium complex and the control mechanisms that regulate their structure and function. To tackle these fundamental problems, we will dissect the function and regulation of centriolar satellites, the array of granules that localize around the centrosome/cilium complex in mammalian cells. Only recently interest in the satellites has grown because mutations affecting satellite components were shown to cause ciliopathies, microcephaly and schizophrenia.
Remarkably, many centrosome/cilium proteins localize to these structures and we lack understanding of when, why and how these proteins localize to satellites. The central hypothesis of this grant is that satellites ensure proper centrosome/cilium complex structure and function by acting as transit paths for modification, assembly, storage, stability and trafficking of centrosome/cilium proteins. In Aim 1, we will identify the nature of regulatory and molecular relationship between satellites and the centrosome/cilium complex. In Aim 2, we will elucidate the role of satellites in proteostasis of centrosome/cilium proteins. In Aim 3, we will investigate the functional significance of satellite-localization of centrosome/cilium proteins during processes that go awry in human disease. Using a multidisciplinary approach, the proposed research will expand our knowledge of the spatiotemporal regulation of the centrosome/cilium complex and provide new insights into pathogenesis of ciliopathies and primary microcephaly.
Max ERC Funding
1 499 819 €
Duration
Start date: 2016-06-01, End date: 2022-05-31
Project acronym COSMOS
Project Computational Simulations of MOFs for Gas Separations
Researcher (PI) Seda Keskin Avci
Host Institution (HI) KOC UNIVERSITY
Country Turkey
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Metal organic frameworks (MOFs) are recently considered as new fascinating nanoporous materials. MOFs have very large surface areas, high porosities, various pore sizes/shapes, chemical functionalities and good thermal/chemical stabilities. These properties make MOFs highly promising for gas separation applications. Thousands of MOFs have been synthesized in the last decade. The large number of available MOFs creates excellent opportunities to develop energy-efficient gas separation technologies. On the other hand, it is very challenging to identify the best materials for each gas separation of interest. Considering the continuous rapid increase in the number of synthesized materials, it is practically not possible to test each MOF using purely experimental manners. Highly accurate computational methods are required to identify the most promising MOFs to direct experimental efforts, time and resources to those materials. In this project, I will build a complete MOF library and use molecular simulations to assess adsorption and diffusion properties of gas mixtures in MOFs. Results of simulations will be used to predict adsorbent and membrane properties of MOFs for scientifically and technologically important gas separation processes such as CO2/CH4 (natural gas purification), CO2/N2 (flue gas separation), CO2/H2, CH4/H2 and N2/H2 (hydrogen recovery). I will obtain the fundamental, atomic-level insights into the common features of the top-performing MOFs and establish structure-performance relations. These relations will be used as guidelines to computationally design new MOFs with outstanding separation performances for CO2 capture and H2 recovery. These new MOFs will be finally synthesized in the lab scale and tested as adsorbents and membranes under practical operating conditions for each gas separation of interest. Combining a multi-stage computational approach with experiments, this project will lead to novel, efficient gas separation technologies based on MOFs.
Summary
Metal organic frameworks (MOFs) are recently considered as new fascinating nanoporous materials. MOFs have very large surface areas, high porosities, various pore sizes/shapes, chemical functionalities and good thermal/chemical stabilities. These properties make MOFs highly promising for gas separation applications. Thousands of MOFs have been synthesized in the last decade. The large number of available MOFs creates excellent opportunities to develop energy-efficient gas separation technologies. On the other hand, it is very challenging to identify the best materials for each gas separation of interest. Considering the continuous rapid increase in the number of synthesized materials, it is practically not possible to test each MOF using purely experimental manners. Highly accurate computational methods are required to identify the most promising MOFs to direct experimental efforts, time and resources to those materials. In this project, I will build a complete MOF library and use molecular simulations to assess adsorption and diffusion properties of gas mixtures in MOFs. Results of simulations will be used to predict adsorbent and membrane properties of MOFs for scientifically and technologically important gas separation processes such as CO2/CH4 (natural gas purification), CO2/N2 (flue gas separation), CO2/H2, CH4/H2 and N2/H2 (hydrogen recovery). I will obtain the fundamental, atomic-level insights into the common features of the top-performing MOFs and establish structure-performance relations. These relations will be used as guidelines to computationally design new MOFs with outstanding separation performances for CO2 capture and H2 recovery. These new MOFs will be finally synthesized in the lab scale and tested as adsorbents and membranes under practical operating conditions for each gas separation of interest. Combining a multi-stage computational approach with experiments, this project will lead to novel, efficient gas separation technologies based on MOFs.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym EmergingWelfare
Project The New Politics of Welfare: Towards an “Emerging Markets” Welfare State Regime
Researcher (PI) Erdem YORUK
Host Institution (HI) KOC UNIVERSITY
Country Turkey
Call Details Starting Grant (StG), SH3, ERC-2016-STG
Summary This research project aims to identify a new welfare regime in emerging market economies and explain why
it has emerged. The project will compare Brazil, China, India, Indonesia, Mexico, South Africa and Turkey
to test two hypotheses: (i) emerging market economies are forming a new welfare regime that differs from
liberal, corporatist and social democratic welfare regimes of the global north on the basis of extensive and
decommodifying social assistance programmes, (ii) the new welfare regime emerges principally as a
response to the growing political power of the poor as a dual source of threat and support for governments.
Based on a comparative and interdisciplinary perspective, the project follows a multi-method strategy that
combines state-of-the-art computer-based protest event data collection techniques, macro-historical methods,
quantitative data analyses and qualitative content analysis. The project will radically expand the literatures
on welfare regimes, welfare state development and contentious politics, by challenging the existing
paradigms dominated by structuralist perspectives, a myopic focus on Western countries, and limited data
collection and analysis techniques. This project is genuinely innovative, unprecedented, ground-breaking,
ambitious and high-risk/high-gain in three ways: (i) it re-shapes the welfare regimes literatures as the first
study to classify and explain welfare systems of emerging markets as a new welfare regime and (ii) the
project demonstrates a causal link between changes in grassroots politics and welfare policies and challenge
the structuralist preponderance in the existing welfare state development literature (iii) it makes a prodigious
contribution to our empirical knowledge on contentious politics in emerging markets by creating the first
cross-national databases on protest event, employing state-of-the art computer methods, such as natural
language processing and machine learning, on newspaper archives.
Summary
This research project aims to identify a new welfare regime in emerging market economies and explain why
it has emerged. The project will compare Brazil, China, India, Indonesia, Mexico, South Africa and Turkey
to test two hypotheses: (i) emerging market economies are forming a new welfare regime that differs from
liberal, corporatist and social democratic welfare regimes of the global north on the basis of extensive and
decommodifying social assistance programmes, (ii) the new welfare regime emerges principally as a
response to the growing political power of the poor as a dual source of threat and support for governments.
Based on a comparative and interdisciplinary perspective, the project follows a multi-method strategy that
combines state-of-the-art computer-based protest event data collection techniques, macro-historical methods,
quantitative data analyses and qualitative content analysis. The project will radically expand the literatures
on welfare regimes, welfare state development and contentious politics, by challenging the existing
paradigms dominated by structuralist perspectives, a myopic focus on Western countries, and limited data
collection and analysis techniques. This project is genuinely innovative, unprecedented, ground-breaking,
ambitious and high-risk/high-gain in three ways: (i) it re-shapes the welfare regimes literatures as the first
study to classify and explain welfare systems of emerging markets as a new welfare regime and (ii) the
project demonstrates a causal link between changes in grassroots politics and welfare policies and challenge
the structuralist preponderance in the existing welfare state development literature (iii) it makes a prodigious
contribution to our empirical knowledge on contentious politics in emerging markets by creating the first
cross-national databases on protest event, employing state-of-the art computer methods, such as natural
language processing and machine learning, on newspaper archives.
Max ERC Funding
1 494 240 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym FLAMENCO
Project A Fully-Implantable MEMS-Based Autonomous Cochlear Implant
Researcher (PI) Kulah Haluk
Host Institution (HI) MIDDLE EAST TECHNICAL UNIVERSITY
Country Turkey
Call Details Consolidator Grant (CoG), PE7, ERC-2015-CoG
Summary Sensorineural impairment, representing the majority of the profound deafness, can be restored using cochlear implants (CIs), which electrically stimulates the auditory nerve to repair hearing in people with severe-to-profound hearing loss. A conventional CI consists of an external microphone, a sound processor, a battery, an RF transceiver pair, and a cochlear electrode. The major drawback of conventional CIs is that, they replace the entire natural hearing mechanism with electronic hearing, even though most parts of the middle ear are operational. Also, the power hungry units such as microphone and RF transceiver cause limitations in continuous access to sound due to battery problems. Besides, damage risk of external components especially if exposed to water and aesthetic concerns are other critical problems. Limited volume of the middle ear is the main obstacle for developing fully implantable CIs.
FLAMENCO proposes a fully implantable, autonomous, and low-power CI, exploiting the functional parts of the middle ear and mimicking the hair cells via a set of piezoelectric cantilevers to cover the daily acoustic band. FLAMENCO has a groundbreaking nature as it revolutionizes the operation principle of CIs. The implant has five main units: i) piezoelectric transducers for sound detection and energy harvesting, ii) electronics for signal processing and battery charging, iii) an RF coil for tuning the electronics to allow customization, iv) rechargeable battery, and v) cochlear electrode for neural stimulation. The utilization of internal energy harvesting together with the elimination of continuous RF transmission, microphone, and front-end filters makes this system a perfect candidate for next generation autonomous CIs. In this project, a multi-frequency self-powered implant for in vivo operation will be implemented, and the feasibility will be proven through animal tests.
Summary
Sensorineural impairment, representing the majority of the profound deafness, can be restored using cochlear implants (CIs), which electrically stimulates the auditory nerve to repair hearing in people with severe-to-profound hearing loss. A conventional CI consists of an external microphone, a sound processor, a battery, an RF transceiver pair, and a cochlear electrode. The major drawback of conventional CIs is that, they replace the entire natural hearing mechanism with electronic hearing, even though most parts of the middle ear are operational. Also, the power hungry units such as microphone and RF transceiver cause limitations in continuous access to sound due to battery problems. Besides, damage risk of external components especially if exposed to water and aesthetic concerns are other critical problems. Limited volume of the middle ear is the main obstacle for developing fully implantable CIs.
FLAMENCO proposes a fully implantable, autonomous, and low-power CI, exploiting the functional parts of the middle ear and mimicking the hair cells via a set of piezoelectric cantilevers to cover the daily acoustic band. FLAMENCO has a groundbreaking nature as it revolutionizes the operation principle of CIs. The implant has five main units: i) piezoelectric transducers for sound detection and energy harvesting, ii) electronics for signal processing and battery charging, iii) an RF coil for tuning the electronics to allow customization, iv) rechargeable battery, and v) cochlear electrode for neural stimulation. The utilization of internal energy harvesting together with the elimination of continuous RF transmission, microphone, and front-end filters makes this system a perfect candidate for next generation autonomous CIs. In this project, a multi-frequency self-powered implant for in vivo operation will be implemented, and the feasibility will be proven through animal tests.
Max ERC Funding
1 993 750 €
Duration
Start date: 2016-07-01, End date: 2022-06-30
Project acronym INFIBRENANOSTRUCTURE
Project Fabrication and characterization of dielectric encapsulated millions of ordered kilometer-long nanostructures and their applications
Researcher (PI) Mehmet Bayindir
Host Institution (HI) BILKENT UNIVERSITESI VAKIF
Country Turkey
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary The objective of this project is the realization of a radically new nanowire fabrication technique, and exploration of its potential for nanowire based science and technology. The proposed method involves fabrication of unusually long, ordered nanowire and nanotube arrays in macroscopic fibres by means of an iterative thermal co-drawing process. Starting with a macroscopic rod with an annular hole tightly fitted with another rod of another compatible material, by successive thermal drawing we obtain arrays of nanowires embedded in fibres. With the method, wide range of materials, e.g. semiconductors, polymers, metals, can be turned into ordered nanorods, nanowires, nanotubes in various cross-sectional geometries. Main challenges are the thermal drawing steps that require critical matching of the viscoelastic properties of the protective cover with the encapsulated materials, and the liquid instability problems and phase intermixing with higher temperatures and smaller feature sizes that require high thermal and mechanical precision. Initially, fabrication by drawing will begin with soft amorphous semiconductors, phase change materials, polymers of interest in high temperature polymers, followed by a wider range of materials, low melting temperature metals, metals and common semiconductors (Si, Ge) in silica glass matrices. In this way nanowires that are ordered, easily accessible and hermetically sealed in a dielectric encapsulation will be obtained in high volumes. Potentially, these nanowires are advantages over on-chip nanowires in building flexible out of plane geometries, light weight, wearable and disposable devices. Ultimately, attaining ordered arrays of 1-D nanostructures in an extended flexible fibre with high yields will facilitate sought-after but up-to-now difficult applications such as the large area nanowire electronics and photonics, nanowire based scalable phase-change memory, nanowire photovoltaics, and emerging cell-nanowire interfacing.
Summary
The objective of this project is the realization of a radically new nanowire fabrication technique, and exploration of its potential for nanowire based science and technology. The proposed method involves fabrication of unusually long, ordered nanowire and nanotube arrays in macroscopic fibres by means of an iterative thermal co-drawing process. Starting with a macroscopic rod with an annular hole tightly fitted with another rod of another compatible material, by successive thermal drawing we obtain arrays of nanowires embedded in fibres. With the method, wide range of materials, e.g. semiconductors, polymers, metals, can be turned into ordered nanorods, nanowires, nanotubes in various cross-sectional geometries. Main challenges are the thermal drawing steps that require critical matching of the viscoelastic properties of the protective cover with the encapsulated materials, and the liquid instability problems and phase intermixing with higher temperatures and smaller feature sizes that require high thermal and mechanical precision. Initially, fabrication by drawing will begin with soft amorphous semiconductors, phase change materials, polymers of interest in high temperature polymers, followed by a wider range of materials, low melting temperature metals, metals and common semiconductors (Si, Ge) in silica glass matrices. In this way nanowires that are ordered, easily accessible and hermetically sealed in a dielectric encapsulation will be obtained in high volumes. Potentially, these nanowires are advantages over on-chip nanowires in building flexible out of plane geometries, light weight, wearable and disposable devices. Ultimately, attaining ordered arrays of 1-D nanostructures in an extended flexible fibre with high yields will facilitate sought-after but up-to-now difficult applications such as the large area nanowire electronics and photonics, nanowire based scalable phase-change memory, nanowire photovoltaics, and emerging cell-nanowire interfacing.
Max ERC Funding
1 495 400 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym INFRADYNAMICS
Project Overcoming the Barriers of Brain Cancer Treatment: Targeted and Fully NIR Absorbing Photodynamic Therapy Agents with Extremely Low Molecular Weights and Controlled Lipophilicity
Researcher (PI) Gorkem GUNBAS
Host Institution (HI) MIDDLE EAST TECHNICAL UNIVERSITY
Country Turkey
Call Details Starting Grant (StG), PE5, ERC-2019-STG
Summary Cancer is the second leading cause of death worldwide, accounting for a total of 8.8 million deaths in 2015. Research efforts have resulted in significant increase in 5-year survival rates for some cancer types, however this is not the case in brain cancer. Three fundamental issues are at the core of this reality: 1) High percentage of inoperable brain tumours; 2) Limited number of drugs that can pass through the blood-brain barrier and 3) Absence of effective targeted brain cancer therapies. Photodynamic therapy (PDT) has the potential to be a selective, effective and non-invasive alternative to current treatments, however to date it is only applicable to a small group of cancers. Realization of non-toxic, water-soluble and photostable PDT agents, with strong near infrared absorption for deep tissue penetration, that also realizes high singlet oxygen generation efficiency and effective targeting, is the key for widespread use of PDT for majority of cancers. For brain cancer specifically, low molecular weights (Mws) and controlled lipophilicity is needed as well. The ultimate aim of INFRADYNAMICS is to create and validate the first series of advanced PDT agents that meet all these requirements and to demonstrate that a significant impact on brain cancer survival rates could be achieved. First, a series of advanced fluorophores that combine the two contradicting entities – absorption in NIR region (>700 nm) and low Mws – will be realized using novel design approaches which also allow a synthetically-viable pathway to tune lipophilicity. Then, appropriate heavy atom modifications for sensitization will be pursued. Most importantly, these sensitizers will be decorated with known and novel handles towards specific targeting of glioblastoma cells to attain the final PDT agents. Photophysical properties will be investigated, and finally, in-vitro and in-vivo studies will be performed to determine the effectiveness of our agents on brain cancer treatment.
Summary
Cancer is the second leading cause of death worldwide, accounting for a total of 8.8 million deaths in 2015. Research efforts have resulted in significant increase in 5-year survival rates for some cancer types, however this is not the case in brain cancer. Three fundamental issues are at the core of this reality: 1) High percentage of inoperable brain tumours; 2) Limited number of drugs that can pass through the blood-brain barrier and 3) Absence of effective targeted brain cancer therapies. Photodynamic therapy (PDT) has the potential to be a selective, effective and non-invasive alternative to current treatments, however to date it is only applicable to a small group of cancers. Realization of non-toxic, water-soluble and photostable PDT agents, with strong near infrared absorption for deep tissue penetration, that also realizes high singlet oxygen generation efficiency and effective targeting, is the key for widespread use of PDT for majority of cancers. For brain cancer specifically, low molecular weights (Mws) and controlled lipophilicity is needed as well. The ultimate aim of INFRADYNAMICS is to create and validate the first series of advanced PDT agents that meet all these requirements and to demonstrate that a significant impact on brain cancer survival rates could be achieved. First, a series of advanced fluorophores that combine the two contradicting entities – absorption in NIR region (>700 nm) and low Mws – will be realized using novel design approaches which also allow a synthetically-viable pathway to tune lipophilicity. Then, appropriate heavy atom modifications for sensitization will be pursued. Most importantly, these sensitizers will be decorated with known and novel handles towards specific targeting of glioblastoma cells to attain the final PDT agents. Photophysical properties will be investigated, and finally, in-vitro and in-vivo studies will be performed to determine the effectiveness of our agents on brain cancer treatment.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym ISLAM-OPHOB-ISM
Project Nativism, Islamophobism and Islamism in the Age of Populism: Culturalisation and Religionisation of what is Social, Economic and Political in Europe
Researcher (PI) Ayhan KAYA
Host Institution (HI) ISTANBUL BILGI UNIVERSITESI
Country Turkey
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary The main research question of the study is: How and why do some European citizens generate a populist and Islamophobist discourse to express their discontent with the current social, economic and political state of their national and European contexts, while some members of migrant-origin communities with Muslim background generate an essentialist and radical form of Islamist discourse within the same societies? The main premise of this study is that various segments of the European public (radicalizing young members of both native populations and migrant-origin populations with Muslim background), who have been alienated and swept away by the flows of globalization such as deindustrialization, mobility, migration, tourism, social-economic inequalities, international trade, and robotic production, are more inclined to respectively adopt two mainstream political discourses: Islamophobism (for native populations) and Islamism (for Muslim-migrant-origin populations). Both discourses have become pivotal along with the rise of the civilizational rhetoric since the early 1990s. On the one hand, the neo-liberal age seems to be leading to the nativisation of radicalism among some groups of host populations while, on the other hand, it is leading to the islamization of radicalism among some segments of deprived migrant-origin populations. The common denominator of these groups is that they are both downwardly mobile and inclined towards radicalization. Hence, this project aims to scrutinize social, economic, political and psychological sources of the processes of radicalization among native European youth and Muslim-origin youth with migration background, who are both inclined to express their discontent through ethnicity, culture, religion, heritage, homogeneity, authenticity, past, gender and patriarchy. The field research will comprise four migrant receiving countries: Germany, France, Belgium, and the Netherlands, and two migrant sending countries: Turkey and Morocco.
Summary
The main research question of the study is: How and why do some European citizens generate a populist and Islamophobist discourse to express their discontent with the current social, economic and political state of their national and European contexts, while some members of migrant-origin communities with Muslim background generate an essentialist and radical form of Islamist discourse within the same societies? The main premise of this study is that various segments of the European public (radicalizing young members of both native populations and migrant-origin populations with Muslim background), who have been alienated and swept away by the flows of globalization such as deindustrialization, mobility, migration, tourism, social-economic inequalities, international trade, and robotic production, are more inclined to respectively adopt two mainstream political discourses: Islamophobism (for native populations) and Islamism (for Muslim-migrant-origin populations). Both discourses have become pivotal along with the rise of the civilizational rhetoric since the early 1990s. On the one hand, the neo-liberal age seems to be leading to the nativisation of radicalism among some groups of host populations while, on the other hand, it is leading to the islamization of radicalism among some segments of deprived migrant-origin populations. The common denominator of these groups is that they are both downwardly mobile and inclined towards radicalization. Hence, this project aims to scrutinize social, economic, political and psychological sources of the processes of radicalization among native European youth and Muslim-origin youth with migration background, who are both inclined to express their discontent through ethnicity, culture, religion, heritage, homogeneity, authenticity, past, gender and patriarchy. The field research will comprise four migrant receiving countries: Germany, France, Belgium, and the Netherlands, and two migrant sending countries: Turkey and Morocco.
Max ERC Funding
2 276 125 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym METARNAFLAMMATION
Project The RNA bridge between IRE-1 and PKR leading to metaflammation: discovery and intervention in atherosclerosis
Researcher (PI) Ebru Erbay
Host Institution (HI) BILKENT UNIVERSITESI VAKIF
Country Turkey
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary A close functional and molecular integration between metabolic and immune systems is crucial for systemic homeostasis and its’ deregulation is causally linked to obesity and associated diseases including insulin resistance, diabetes and atherosclerosis and known as cardiometabolic syndrome (CMS). Metabolic overload initiates a chronic inflammatory and stress response known as metaflammation and promotes the complications of CMS. The precise molecular mechanisms linking metabolic stress to immune activation and stress responses, however, remain elusive.
Earlier studies demonstrated metabolic overload stresses the endoplasmic reticulum (ER) and activates the unfolded protein response (UPR). ER is a critical intracellular metabolic hub orchestrating protein, lipid and calcium metabolism. These vital functions of ER are maintained by a conserved, adaptive stress response or UPR that emanates from its membranes. ER stress has emerged as a central paradigm in the pathogenesis of CMS and its reduction prevents atherosclerosis and promotes insulin sensitivity. However, a clear understanding of how metabolic stress is sensed and communicated by the ER is fundamental in designing specific and targeted therapy to ER stress in CMS. This application will investigate the ER stress response that can sense excess lipids and couple to inflammatory and stress responses, and whether its unique operation under metabolic stress can be suitable for therapeutic exploitation in CMS. This proposal tackles the unique modes of operation of two important players in the ER stress response that are coupled by metabolic stress, inositol-requiring enzyme-1 (IRE-1) and double-stranded RNA-activated kinase (PKR), by taking advantage of chemical-genetics to specifically modify their activities. When completed the proposed studies will have shed light on a little explored but central question in the field of immunometabolism regarding how nutrients engage inflammatory and stress pathways.
Summary
A close functional and molecular integration between metabolic and immune systems is crucial for systemic homeostasis and its’ deregulation is causally linked to obesity and associated diseases including insulin resistance, diabetes and atherosclerosis and known as cardiometabolic syndrome (CMS). Metabolic overload initiates a chronic inflammatory and stress response known as metaflammation and promotes the complications of CMS. The precise molecular mechanisms linking metabolic stress to immune activation and stress responses, however, remain elusive.
Earlier studies demonstrated metabolic overload stresses the endoplasmic reticulum (ER) and activates the unfolded protein response (UPR). ER is a critical intracellular metabolic hub orchestrating protein, lipid and calcium metabolism. These vital functions of ER are maintained by a conserved, adaptive stress response or UPR that emanates from its membranes. ER stress has emerged as a central paradigm in the pathogenesis of CMS and its reduction prevents atherosclerosis and promotes insulin sensitivity. However, a clear understanding of how metabolic stress is sensed and communicated by the ER is fundamental in designing specific and targeted therapy to ER stress in CMS. This application will investigate the ER stress response that can sense excess lipids and couple to inflammatory and stress responses, and whether its unique operation under metabolic stress can be suitable for therapeutic exploitation in CMS. This proposal tackles the unique modes of operation of two important players in the ER stress response that are coupled by metabolic stress, inositol-requiring enzyme-1 (IRE-1) and double-stranded RNA-activated kinase (PKR), by taking advantage of chemical-genetics to specifically modify their activities. When completed the proposed studies will have shed light on a little explored but central question in the field of immunometabolism regarding how nutrients engage inflammatory and stress pathways.
Max ERC Funding
1 362 921 €
Duration
Start date: 2014-01-01, End date: 2018-06-30
Project acronym NLL
Project Nonlinear Laser Lithography
Researcher (PI) Fatih oemer Ilday
Host Institution (HI) BILKENT UNIVERSITESI VAKIF
Country Turkey
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "Control of matter via light has always fascinated humankind; not surprisingly, laser patterning of materials is as old as the history of the laser. However, this approach has suffered to date from a stubborn lack of long-range order. We have recently discovered a method for regulating self-organised formation of metal-oxide nanostructures at high speed via non-local feedback, thereby achieving unprecedented levels of uniformity over indefinitely large areas by simply scanning the laser beam over the surface.
Here, we propose to develop hitherto unimaginable levels of control over matter through laser light. The total optical field at any point is determined by the incident laser field and scattered light from the surrounding surface, in a mathematical form similar to that of a hologram. Thus, it is only logical to control the self-organised pattern through the laser field using, e.g., a spatial light modulator. A simple wavefront tilt should change the periodicity of the nanostructures, but much more exciting possibilities include creation of patterns without translational symmetry, i.e., quasicrystals, or patterns evolving non-trivially under scanning, akin to cellular automata. Our initial results were obtained in ambient atmosphere, where oxygen is the dominant reactant, forming oxides. We further propose to control the chemistry by using a plasma jet to sputter a chosen reactive species onto the surface, which is activated by the laser. While we will focus on the basic mechanisms with atomic nitrogen as test reactant to generate compounds such as TiN and SiN, in principle, this approach paves the way to synthesis of an endless list of materials.
By bringing these ideas together, the foundations of revolutionary advances, straddling the boundaries of science fiction, can be laid: laser-controlled self-assembly of plethora of 2D patterns, crystals, and quasicrystals alike, eventually assembled layer by layer into the third dimension -- a 3D material synthesiser."
Summary
"Control of matter via light has always fascinated humankind; not surprisingly, laser patterning of materials is as old as the history of the laser. However, this approach has suffered to date from a stubborn lack of long-range order. We have recently discovered a method for regulating self-organised formation of metal-oxide nanostructures at high speed via non-local feedback, thereby achieving unprecedented levels of uniformity over indefinitely large areas by simply scanning the laser beam over the surface.
Here, we propose to develop hitherto unimaginable levels of control over matter through laser light. The total optical field at any point is determined by the incident laser field and scattered light from the surrounding surface, in a mathematical form similar to that of a hologram. Thus, it is only logical to control the self-organised pattern through the laser field using, e.g., a spatial light modulator. A simple wavefront tilt should change the periodicity of the nanostructures, but much more exciting possibilities include creation of patterns without translational symmetry, i.e., quasicrystals, or patterns evolving non-trivially under scanning, akin to cellular automata. Our initial results were obtained in ambient atmosphere, where oxygen is the dominant reactant, forming oxides. We further propose to control the chemistry by using a plasma jet to sputter a chosen reactive species onto the surface, which is activated by the laser. While we will focus on the basic mechanisms with atomic nitrogen as test reactant to generate compounds such as TiN and SiN, in principle, this approach paves the way to synthesis of an endless list of materials.
By bringing these ideas together, the foundations of revolutionary advances, straddling the boundaries of science fiction, can be laid: laser-controlled self-assembly of plethora of 2D patterns, crystals, and quasicrystals alike, eventually assembled layer by layer into the third dimension -- a 3D material synthesiser."
Max ERC Funding
1 999 920 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym NOVELNOBI
Project Novel Nanoengineered Optoelectronic Biointerfaces
Researcher (PI) Sedat Nizamoglu
Host Institution (HI) KOC UNIVERSITY
Country Turkey
Call Details Starting Grant (StG), PE7, ERC-2014-STG
Summary Interfacing with neural tissues is an important scientific goal to understand cellular processes and to combat nervous-system related diseases. Nanotechnology has a significant potential for the development of new neural interfaces. The atomic-level design and control of the nanostructures for neural interfacing can revolutionize the junction between neurons and nanomaterials. In this project, we propose a totally new approach for understanding fundamental requirements and from this knowledge designing customised nanomaterials with optimised characteristics. These will be used to develop and demonstrate unconventional neural interfaces that are ultimately designed, controlled and constructed at the nanoscale. Hence, the key objectives of this proposal are: (1) to use quantum mechanics in a new way to control and explore the neural photostimulation mechanism, (2) to explore, design and synthesize new biocompatible colloidal nanocrystals for neural photostimulation, to overcome the limitations in terms of toxic material contents (e.g., cadmium, lead, mercury, etc.), (3) to demonstrate novel biocompatible neural interfaces with exciton and quantum funnels, and plasmonic nanostructures for enhanced spectral sensitivity and dynamic range. This new approach from quantum mechanical design to nanocrystal assembly will enable exploring, tuning and controlling the underlying physical mechanisms of neural photostimulation. Furthermore, the biocompatible nanomaterials will result in a more reliable nanobiojunction. The funnel and plasmon structures will lead to unprecedented spectral sensitivities and dynamic ranges that are far beyond the state-of-the-art optoelectronic interfaces. The project is therefore expected to have high impact and may herald a new paradigm in neural interfacing. NOVELNOBI is expected to attract significant attention of researchers from diverse fields such as photonics, nanomaterials, photomedicine and neuroscience.
Summary
Interfacing with neural tissues is an important scientific goal to understand cellular processes and to combat nervous-system related diseases. Nanotechnology has a significant potential for the development of new neural interfaces. The atomic-level design and control of the nanostructures for neural interfacing can revolutionize the junction between neurons and nanomaterials. In this project, we propose a totally new approach for understanding fundamental requirements and from this knowledge designing customised nanomaterials with optimised characteristics. These will be used to develop and demonstrate unconventional neural interfaces that are ultimately designed, controlled and constructed at the nanoscale. Hence, the key objectives of this proposal are: (1) to use quantum mechanics in a new way to control and explore the neural photostimulation mechanism, (2) to explore, design and synthesize new biocompatible colloidal nanocrystals for neural photostimulation, to overcome the limitations in terms of toxic material contents (e.g., cadmium, lead, mercury, etc.), (3) to demonstrate novel biocompatible neural interfaces with exciton and quantum funnels, and plasmonic nanostructures for enhanced spectral sensitivity and dynamic range. This new approach from quantum mechanical design to nanocrystal assembly will enable exploring, tuning and controlling the underlying physical mechanisms of neural photostimulation. Furthermore, the biocompatible nanomaterials will result in a more reliable nanobiojunction. The funnel and plasmon structures will lead to unprecedented spectral sensitivities and dynamic ranges that are far beyond the state-of-the-art optoelectronic interfaces. The project is therefore expected to have high impact and may herald a new paradigm in neural interfacing. NOVELNOBI is expected to attract significant attention of researchers from diverse fields such as photonics, nanomaterials, photomedicine and neuroscience.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-07-01, End date: 2021-06-30
Project acronym Ph.D.
Project Phase map of dynamic, adaptive colloidal crystals far from equilibrium
Researcher (PI) Serim KAYACAN ILDAY
Host Institution (HI) BILKENT UNIVERSITESI ULUSAL NANOTEKNOLOJI ARASTIRMA MERKEZI - UNAM
Country Turkey
Call Details Starting Grant (StG), PE3, ERC-2019-STG
Summary We recently reported the first observation of dynamic adaptive colloidal crystals exhibiting characteristics similar to those commonly associated with living organisms: self-replication, self-healing, adaptation, competition, motility. Here, I propose to do the first experiments to clarify precisely how dynamic adaptive behavior arises far from equilibrium and how to control it. The key to both is a fundamental question at the heart of condensed matter, statistical and nonlinear physics: When far from equilibrium, in the presence of fluctuations and faced with multiple steady states with small energy differences, how does a system evolve? Specifically, my objectives are (1) to form crystals with periodic and aperiodic patterns, e.g. 2D Bravais lattices, quasicrystals, using passive identical particles, (2) to quantify their formation energies through the effective temperature of Brownian particles, (3) to identify the conditions for emergence and control of adaptive behavior. Then, I will draw a complete phase map of these dynamic adaptive colloidal crystals using fitness landscapes to characterize each pattern. I will further ask to what extent this control is extendable down to the few-nm scale, where fluctuations are even stronger and if and how these findings change when using nonidentical, in size or shape, but still passive particles. My system comprises quasi-2D-confined pure-polystyrene 500-nm spheres suspended in water. An energy flux to drive the system far from equilibrium and sustain it there is supplied by an ultrafast laser. My method exploits only three physical tenets, nonlinearity, fluctuations and positive/negative feedback mechanisms acting on identical passive particles, yet generates extremely rich emergent dynamics. A full understanding of how such dynamics arise from so few basic ingredients will advance our understanding of complex systems in addition to numerous practical applications to self-assembly, microfluidics, nanoscience and biology.
Summary
We recently reported the first observation of dynamic adaptive colloidal crystals exhibiting characteristics similar to those commonly associated with living organisms: self-replication, self-healing, adaptation, competition, motility. Here, I propose to do the first experiments to clarify precisely how dynamic adaptive behavior arises far from equilibrium and how to control it. The key to both is a fundamental question at the heart of condensed matter, statistical and nonlinear physics: When far from equilibrium, in the presence of fluctuations and faced with multiple steady states with small energy differences, how does a system evolve? Specifically, my objectives are (1) to form crystals with periodic and aperiodic patterns, e.g. 2D Bravais lattices, quasicrystals, using passive identical particles, (2) to quantify their formation energies through the effective temperature of Brownian particles, (3) to identify the conditions for emergence and control of adaptive behavior. Then, I will draw a complete phase map of these dynamic adaptive colloidal crystals using fitness landscapes to characterize each pattern. I will further ask to what extent this control is extendable down to the few-nm scale, where fluctuations are even stronger and if and how these findings change when using nonidentical, in size or shape, but still passive particles. My system comprises quasi-2D-confined pure-polystyrene 500-nm spheres suspended in water. An energy flux to drive the system far from equilibrium and sustain it there is supplied by an ultrafast laser. My method exploits only three physical tenets, nonlinearity, fluctuations and positive/negative feedback mechanisms acting on identical passive particles, yet generates extremely rich emergent dynamics. A full understanding of how such dynamics arise from so few basic ingredients will advance our understanding of complex systems in addition to numerous practical applications to self-assembly, microfluidics, nanoscience and biology.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym REM
Project Resonant Electromagnetic Microscopy: Imaging Cells Electronically
Researcher (PI) Mehmet Selim HANAY
Host Institution (HI) BILKENT UNIVERSITESI VAKIF
Country Turkey
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary Microfluidics technology has been quite successful in fabricating small, low-cost devices with excellent analyte handling capabilities. However, the main detection paradigm in microfluidics has still been optical microscopy — which is a bulky and expensive technique. A chip-scale detection scheme that can provide multidimensional information is much needed for the widespread adoption of lab-on-a-chip technology. So far, successful capacitive and resonant electrical sensors have been deployed in the field; yet the focus of these sensors has been to obtain the electrical volume or location of a particle — which constitutes only a limited piece of information about the analytes. Here we propose to redesign and utilize resonant electrical sensors in a radically different way to obtain images of cells in a microfluidic channel. The technique proposed can also multiplex on-chip cytometry greatly, accomplish low-cost and high-throughput single-cell transit-time characterization, obtain not only the electrical but also the geometrical size of analytes, determine the dielectric permittivity of analytes, in addition to capturing 1D profile or 2D images of cells. At the basic science level, the project will enhance our understanding of the interaction of electromagnetic fields and living matter at the single cell level and may provide new insights on cell motility, growth and mechanics.
Summary
Microfluidics technology has been quite successful in fabricating small, low-cost devices with excellent analyte handling capabilities. However, the main detection paradigm in microfluidics has still been optical microscopy — which is a bulky and expensive technique. A chip-scale detection scheme that can provide multidimensional information is much needed for the widespread adoption of lab-on-a-chip technology. So far, successful capacitive and resonant electrical sensors have been deployed in the field; yet the focus of these sensors has been to obtain the electrical volume or location of a particle — which constitutes only a limited piece of information about the analytes. Here we propose to redesign and utilize resonant electrical sensors in a radically different way to obtain images of cells in a microfluidic channel. The technique proposed can also multiplex on-chip cytometry greatly, accomplish low-cost and high-throughput single-cell transit-time characterization, obtain not only the electrical but also the geometrical size of analytes, determine the dielectric permittivity of analytes, in addition to capturing 1D profile or 2D images of cells. At the basic science level, the project will enhance our understanding of the interaction of electromagnetic fields and living matter at the single cell level and may provide new insights on cell motility, growth and mechanics.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-02-01, End date: 2023-07-31
Project acronym SKYNOLIMIT
Project Ultralow power and ultra-wideband spintronics near thermodynamic limits
Researcher (PI) Mehmet Cengiz Onbasli
Host Institution (HI) KOC UNIVERSITY
Country Turkey
Call Details Starting Grant (StG), PE7, ERC-2020-STG
Summary Moore’s Law drove the technology revolution for more than five decades and left no aspect of our lives untouched. State-of-the-art computation relies on transistors, whose dimensions or power consumption could no longer be reduced. Nevertheless, growing need for information processing, battery-constrained internet-of-things devices and wireless connectivity necessitates discoveries of nanoelectronic building blocks with novel physics. Thus, fundamental breakthroughs are needed in highly power-efficient non-volatile computational elements that meet the speed, bandwidth and scalability requirements of microelectronics industry. Using electronic spins for non-volatile computation could offer very diverse new device physics and architectures to meet these requirements. In SKYNOLIMIT project, I aim to experimentally demonstrate ultra-wideband, ultralow-power and non-volatile logic circuit architectures that operate based on nanoscale spins called magnetic skyrmions. Skyrmions are nanoscale spin structures that allow for room temperature computation and memory functions near thermodynamic limits while being robust against fabrication imperfections and stray magnetic fields. In this project, (1) I first computationally model, fabricate and test the novel functional nanomaterials with giant spin-orbit coupling and low damping to achieve all-electric generation/detection and processing of skyrmions using multilayers of topological insulators and/or 2D transition metal dichalcogenides on insulating rare earth iron garnet films. Second, (2) I plan to experimentally demonstrate skyrmion processors including signal generators, logic gates, registers, and fast Fourier transformers. Third, (3) I plan to experimentally implement neural network hardware using skyrmionics. Thus, high-speed and ultra-wideband 2D skyrmionics could help reduce power consumption, extend mobile battery life by a few orders of magnitude and help spintronics become a part of mainstream electronics.
Summary
Moore’s Law drove the technology revolution for more than five decades and left no aspect of our lives untouched. State-of-the-art computation relies on transistors, whose dimensions or power consumption could no longer be reduced. Nevertheless, growing need for information processing, battery-constrained internet-of-things devices and wireless connectivity necessitates discoveries of nanoelectronic building blocks with novel physics. Thus, fundamental breakthroughs are needed in highly power-efficient non-volatile computational elements that meet the speed, bandwidth and scalability requirements of microelectronics industry. Using electronic spins for non-volatile computation could offer very diverse new device physics and architectures to meet these requirements. In SKYNOLIMIT project, I aim to experimentally demonstrate ultra-wideband, ultralow-power and non-volatile logic circuit architectures that operate based on nanoscale spins called magnetic skyrmions. Skyrmions are nanoscale spin structures that allow for room temperature computation and memory functions near thermodynamic limits while being robust against fabrication imperfections and stray magnetic fields. In this project, (1) I first computationally model, fabricate and test the novel functional nanomaterials with giant spin-orbit coupling and low damping to achieve all-electric generation/detection and processing of skyrmions using multilayers of topological insulators and/or 2D transition metal dichalcogenides on insulating rare earth iron garnet films. Second, (2) I plan to experimentally demonstrate skyrmion processors including signal generators, logic gates, registers, and fast Fourier transformers. Third, (3) I plan to experimentally implement neural network hardware using skyrmionics. Thus, high-speed and ultra-wideband 2D skyrmionics could help reduce power consumption, extend mobile battery life by a few orders of magnitude and help spintronics become a part of mainstream electronics.
Max ERC Funding
2 500 000 €
Duration
Start date: 2021-02-01, End date: 2026-01-31
Project acronym VASCULARGROWTH
Project Bioengineering prediction of three-dimensional vascular growth and remodeling in embryonic great-vessel development
Researcher (PI) Kerem Pekkan
Host Institution (HI) KOC UNIVERSITY
Country Turkey
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary Globally 1 in 100 children are born with significant congenital heart defects (CHD), representing either new genetic mutations or epigenetic insults that alter cardiac morphogenesis in utero. Embryonic CV systems dynamically regulate structure and function over very short time periods throughout morphogenesis and that biomechanical loading conditions within the heart and great-vessels alter morphogenesis and gene expression. This proposal has structured around a common goal of developing a comprehensive and predictive understanding of the biomechanics and regulation of great-vessel development and its plasticity in response to clinically relevant epigenetic changes in loading conditions. Biomechanical regulation of vascular morphogenesis, including potential aortic arch (AA) reversibility or plasticity after epigenetic events relevant to human CHD are investigated using multimodal experiments in the chick embryo that investigate normal AA growth and remodeling, microsurgical instrumentation that alter ventricular and vascular blood flow loading during critical periods in AA morphogenesis. WP 1 establishes our novel optimization framework, incorporates basic input/output in vivo data sets, and validates. In WP 2 and 3 the numerical models for perturbed biomechanical environment and incorporate new objective functions that have in vivo structural data inputs and predict changes in structure and function. WP 4 incorporates candidate genes and pathways during normal and experimentally altered AA morphogenesis. This proposal develops and validates the first in vivo morphomechanics-integrated three-dimensional mathematical models of AA growth and remodeling that can predict normal growth patterns and abnormal vascular adaptations common in CHD. Multidisciplinary application of bioengineering principles to CHD is likely to provide novel insights and paradigms towards our long-term goal of optimizing CHD interventions, outcomes, and the potential for preventive strategies.
Summary
Globally 1 in 100 children are born with significant congenital heart defects (CHD), representing either new genetic mutations or epigenetic insults that alter cardiac morphogenesis in utero. Embryonic CV systems dynamically regulate structure and function over very short time periods throughout morphogenesis and that biomechanical loading conditions within the heart and great-vessels alter morphogenesis and gene expression. This proposal has structured around a common goal of developing a comprehensive and predictive understanding of the biomechanics and regulation of great-vessel development and its plasticity in response to clinically relevant epigenetic changes in loading conditions. Biomechanical regulation of vascular morphogenesis, including potential aortic arch (AA) reversibility or plasticity after epigenetic events relevant to human CHD are investigated using multimodal experiments in the chick embryo that investigate normal AA growth and remodeling, microsurgical instrumentation that alter ventricular and vascular blood flow loading during critical periods in AA morphogenesis. WP 1 establishes our novel optimization framework, incorporates basic input/output in vivo data sets, and validates. In WP 2 and 3 the numerical models for perturbed biomechanical environment and incorporate new objective functions that have in vivo structural data inputs and predict changes in structure and function. WP 4 incorporates candidate genes and pathways during normal and experimentally altered AA morphogenesis. This proposal develops and validates the first in vivo morphomechanics-integrated three-dimensional mathematical models of AA growth and remodeling that can predict normal growth patterns and abnormal vascular adaptations common in CHD. Multidisciplinary application of bioengineering principles to CHD is likely to provide novel insights and paradigms towards our long-term goal of optimizing CHD interventions, outcomes, and the potential for preventive strategies.
Max ERC Funding
1 995 140 €
Duration
Start date: 2013-01-01, End date: 2019-07-31
Project acronym WEAR3D
Project Wearable Augmented Reality 3D Displays
Researcher (PI) Hakan Urey
Host Institution (HI) KOC UNIVERSITY
Country Turkey
Call Details Advanced Grant (AdG), PE7, ERC-2013-ADG
Summary Wearable displays have advanced rapidly over the past few decades but they are limited in field-of-view due to optical constraints. Likewise, 3D displays have several technological and viewing discomfort limitations. These limitations result from the missing 3D depth cues in stereoscopic displays, which are essential for real 3D and for interactive augmented reality (AR) applications. Wear3D proposal aims to overcome the two fundamental scientific challenges of wearable displays and make them as natural as wearing a pair of eyeglasses: (i) Eliminate the relay lenses. We need to overcome the focusing problem of the eyes in order to completely eliminate the large relay lenses. As a result, miniaturization of wearable displays will be possible by taking full advantage of the advancements in micro-technologies; (ii) Provide all the essential 3D depth cues to avoid perceptual errors and viewing discomfort. We need to enable the two eyes to fixate at the correct depth of the objects rather than the display panel without losing resolution. Thereby, eliminating the conflict between the accommodation and convergence. Overcoming these challenges would enable a display which can provide natural looking and interactive 3D and very wide field-of-view (>100deg) in an eyeglasses form factor. Such a display goes far beyond the state-of-the art in wearable displays and open new research directions for intelligent human-computer interfaces and AR.
Summary
Wearable displays have advanced rapidly over the past few decades but they are limited in field-of-view due to optical constraints. Likewise, 3D displays have several technological and viewing discomfort limitations. These limitations result from the missing 3D depth cues in stereoscopic displays, which are essential for real 3D and for interactive augmented reality (AR) applications. Wear3D proposal aims to overcome the two fundamental scientific challenges of wearable displays and make them as natural as wearing a pair of eyeglasses: (i) Eliminate the relay lenses. We need to overcome the focusing problem of the eyes in order to completely eliminate the large relay lenses. As a result, miniaturization of wearable displays will be possible by taking full advantage of the advancements in micro-technologies; (ii) Provide all the essential 3D depth cues to avoid perceptual errors and viewing discomfort. We need to enable the two eyes to fixate at the correct depth of the objects rather than the display panel without losing resolution. Thereby, eliminating the conflict between the accommodation and convergence. Overcoming these challenges would enable a display which can provide natural looking and interactive 3D and very wide field-of-view (>100deg) in an eyeglasses form factor. Such a display goes far beyond the state-of-the art in wearable displays and open new research directions for intelligent human-computer interfaces and AR.
Max ERC Funding
2 496 525 €
Duration
Start date: 2014-01-01, End date: 2018-12-31