Project acronym 3SPIN
Project Three Dimensional Spintronics
Researcher (PI) Russell Paul Cowburn
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary Spintronics, in which both the spin and the charge of the electron are used, is one of the most exciting new disciplines to emerge from nanoscience. The 3SPIN project seeks to open a new research front within spintronics: namely 3-dimensional spintronics, in which magnetic nanostructures are formed into a 3-dimensional interacting network of unrivalled density and hence technological benefit. 3SPIN will explore early-stage science that could underpin 3-dimensional metallic spintronics. The thesis of the project is: that by careful control of the constituent nanostructure properties, a 3-dimensional medium can be created in which a large number of topological solitons can exist. Although hardly studied at all to date, these solitons should be stable at room temperature, extremely compact and easy to manipulate and propagate. This makes them potentially ideal candidates to form the basis of a new spintronics in which the soliton is the basic transport vector instead of electrical current. ¬3.5M of funding is requested to form a new team of 5 researchers who, over a period of 60 months, will perform computer simulations and experimental studies of solitons in 3-dimensional networks of magnetic nanostructures and develop a laboratory demonstrator 3-dimensional memory device using solitons to represent and store data. A high performance electron beam lithography system (cost 1M¬) will be purchased to allow state-of-the-art magnetic nanostructures to be fabricated with perfect control over their magnetic properties, thus allowing the ideal conditions for solitons to be created and controllably manipulated. Outputs from the project will be a complete understanding of the properties of these new objects and a road map charting the next steps for research in the field.
Summary
Spintronics, in which both the spin and the charge of the electron are used, is one of the most exciting new disciplines to emerge from nanoscience. The 3SPIN project seeks to open a new research front within spintronics: namely 3-dimensional spintronics, in which magnetic nanostructures are formed into a 3-dimensional interacting network of unrivalled density and hence technological benefit. 3SPIN will explore early-stage science that could underpin 3-dimensional metallic spintronics. The thesis of the project is: that by careful control of the constituent nanostructure properties, a 3-dimensional medium can be created in which a large number of topological solitons can exist. Although hardly studied at all to date, these solitons should be stable at room temperature, extremely compact and easy to manipulate and propagate. This makes them potentially ideal candidates to form the basis of a new spintronics in which the soliton is the basic transport vector instead of electrical current. ¬3.5M of funding is requested to form a new team of 5 researchers who, over a period of 60 months, will perform computer simulations and experimental studies of solitons in 3-dimensional networks of magnetic nanostructures and develop a laboratory demonstrator 3-dimensional memory device using solitons to represent and store data. A high performance electron beam lithography system (cost 1M¬) will be purchased to allow state-of-the-art magnetic nanostructures to be fabricated with perfect control over their magnetic properties, thus allowing the ideal conditions for solitons to be created and controllably manipulated. Outputs from the project will be a complete understanding of the properties of these new objects and a road map charting the next steps for research in the field.
Max ERC Funding
2 799 996 €
Duration
Start date: 2010-03-01, End date: 2016-02-29
Project acronym ACTIVE_NEUROGENESIS
Project Activity-dependent signaling in radial glial cells and their neuronal progeny
Researcher (PI) Colin Akerman
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Summary
A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Max ERC Funding
1 284 808 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym AFFINITY
Project Actuation of Ferromagnetic Fibre Networks to improve Implant Longevity
Researcher (PI) Athina Markaki
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2009-StG
Summary This proposal is for an exploratory study into a radical new approach to the problem of orthopaedic implant loosening. Such loosening commonly occurs because the joint between the implant and the surrounding bone is insufficiently strong and durable. It is a serious problem both for implants cemented to the bone and for those dependent on bone in-growth into a rough/porous implant surface. In the latter case, the main problem is commonly that bone in-growth is insufficiently rapid or deep for a strong bond to be established. The idea proposed in this work is that the implant should have a highly porous surface layer, made by bonding ferromagnetic fibres together, into which bone tissue growth would occur. During the post-operative period, application of a magnetic field will cause the fibre network to deform elastically, as individual fibres tend to align with the field. This will impose strains on the bone tissue as it grows into the fibre network. Such mechanical deformation is known to be highly beneficial in promoting bone growth, providing the associated strain lies in a certain range (~0.1%). Preliminary work, involving both model development and experimental studies on the effect of magnetic fields on fibre networks, has suggested that beneficial therapeutic effects can be induced using field strengths no greater than those already employed for diagnostic purposes. A comprehensive 5-year, highly inter-disciplinary programme is planned, encompassing processing, network architecture characterisation, magneto-mechanical response investigations, various modelling activities and systematic in vitro experimentation to establish whether magneto-mechanical Actuation of Ferromagnetic Fibre Networks shows promise as a new therapeutic approach to improve implant longevity.
Summary
This proposal is for an exploratory study into a radical new approach to the problem of orthopaedic implant loosening. Such loosening commonly occurs because the joint between the implant and the surrounding bone is insufficiently strong and durable. It is a serious problem both for implants cemented to the bone and for those dependent on bone in-growth into a rough/porous implant surface. In the latter case, the main problem is commonly that bone in-growth is insufficiently rapid or deep for a strong bond to be established. The idea proposed in this work is that the implant should have a highly porous surface layer, made by bonding ferromagnetic fibres together, into which bone tissue growth would occur. During the post-operative period, application of a magnetic field will cause the fibre network to deform elastically, as individual fibres tend to align with the field. This will impose strains on the bone tissue as it grows into the fibre network. Such mechanical deformation is known to be highly beneficial in promoting bone growth, providing the associated strain lies in a certain range (~0.1%). Preliminary work, involving both model development and experimental studies on the effect of magnetic fields on fibre networks, has suggested that beneficial therapeutic effects can be induced using field strengths no greater than those already employed for diagnostic purposes. A comprehensive 5-year, highly inter-disciplinary programme is planned, encompassing processing, network architecture characterisation, magneto-mechanical response investigations, various modelling activities and systematic in vitro experimentation to establish whether magneto-mechanical Actuation of Ferromagnetic Fibre Networks shows promise as a new therapeutic approach to improve implant longevity.
Max ERC Funding
1 442 756 €
Duration
Start date: 2010-01-01, End date: 2015-11-30
Project acronym AFRIVAL
Project African river basins: catchment-scale carbon fluxes and transformations
Researcher (PI) Steven Bouillon
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE10, ERC-2009-StG
Summary This proposal wishes to fundamentally improve our understanding of the role of tropical freshwater ecosystems in carbon (C) cycling on the catchment scale. It uses an unprecedented combination of state-of-the-art proxies such as stable isotope, 14C and biomarker signatures to characterize organic matter, radiogenic isotope signatures to determine particle residence times, as well as field measurements of relevant biogeochemical processes. We focus on tropical systems since there is a striking lack of data on such systems, even though riverine C transport is thought to be disproportionately high in tropical areas. Furthermore, the presence of landscape-scale contrasts in vegetation (in particular, C3 vs. C4 plants) are an important asset in the use of stable isotopes as natural tracers of C cycling processes on this scale. Freshwater ecosystems are an important component in the global C cycle, and the primary link between terrestrial and marine ecosystems. Recent estimates indicate that ~2 Pg C y-1 (Pg=Petagram) enter freshwater systems, i.e., about twice the estimated global terrestrial C sink. More than half of this is thought to be remineralized before it reaches the coastal zone, and for the Amazon basin this has even been suggested to be ~90% of the lateral C inputs. The question how general these patterns are is a matter of debate, and assessing the mechanisms determining the degree of processing versus transport of organic carbon in lakes and river systems is critical to further constrain their role in the global C cycle. This proposal provides an interdisciplinary approach to describe and quantify catchment-scale C transport and cycling in tropical river basins. Besides conceptual and methodological advances, and a significant expansion of our dataset on C processes in such systems, new data gathered in this project are likely to provide exciting and novel hypotheses on the functioning of freshwater systems and their linkage to the terrestrial C budget.
Summary
This proposal wishes to fundamentally improve our understanding of the role of tropical freshwater ecosystems in carbon (C) cycling on the catchment scale. It uses an unprecedented combination of state-of-the-art proxies such as stable isotope, 14C and biomarker signatures to characterize organic matter, radiogenic isotope signatures to determine particle residence times, as well as field measurements of relevant biogeochemical processes. We focus on tropical systems since there is a striking lack of data on such systems, even though riverine C transport is thought to be disproportionately high in tropical areas. Furthermore, the presence of landscape-scale contrasts in vegetation (in particular, C3 vs. C4 plants) are an important asset in the use of stable isotopes as natural tracers of C cycling processes on this scale. Freshwater ecosystems are an important component in the global C cycle, and the primary link between terrestrial and marine ecosystems. Recent estimates indicate that ~2 Pg C y-1 (Pg=Petagram) enter freshwater systems, i.e., about twice the estimated global terrestrial C sink. More than half of this is thought to be remineralized before it reaches the coastal zone, and for the Amazon basin this has even been suggested to be ~90% of the lateral C inputs. The question how general these patterns are is a matter of debate, and assessing the mechanisms determining the degree of processing versus transport of organic carbon in lakes and river systems is critical to further constrain their role in the global C cycle. This proposal provides an interdisciplinary approach to describe and quantify catchment-scale C transport and cycling in tropical river basins. Besides conceptual and methodological advances, and a significant expansion of our dataset on C processes in such systems, new data gathered in this project are likely to provide exciting and novel hypotheses on the functioning of freshwater systems and their linkage to the terrestrial C budget.
Max ERC Funding
1 745 262 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym ALIGN
Project Ab-initio computational modelling of photovoltaic interfaces
Researcher (PI) Feliciano Giustino
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary The aim of the ALIGN project is to understand, predict, and optimize the photovoltaic energy conversion in third-generation solar cells, starting from an atomic-scale quantum-mechanical modelling of the photovoltaic interface. The quest for photovoltaic materials suitable for low-cost synthesis, large-area production, and functional architecture has driven substantial research efforts towards third-generation photovoltaic devices such as plastic solar cells, organic-inorganic cells, and photo-electrochemical cells. The physical and chemical processes involved in the harvesting of sunlight, the transport of electrical charge, and the build-up of the photo-voltage in these devices are fundamentally different from those encountered in traditional semiconductor heterojunction solar cells. A detailed atomic-scale quantum-mechanical description of such processes will lay down the basis for a rational approach to the modelling, optimization, and design of new photovoltaic materials. The short name of the proposal hints at one of the key materials parameters in the area of photovoltaic interfaces: the alignment of the quantum energy levels between the light-absorbing material and the electron acceptor. The level alignment drives the separation of the electron-hole pairs formed upon absorption of sunlight, and determines the open circuit voltage of the solar cell. The energy level alignment not only represents a key parameter for the design of photovoltaic devices, but also constitutes one of the grand challenges of modern computational materials science. Within this project we will develop and apply new ground-breaking computational methods to understand, predict, and optimize the energy level alignment and other design parameters of third-generation photovoltaic devices.
Summary
The aim of the ALIGN project is to understand, predict, and optimize the photovoltaic energy conversion in third-generation solar cells, starting from an atomic-scale quantum-mechanical modelling of the photovoltaic interface. The quest for photovoltaic materials suitable for low-cost synthesis, large-area production, and functional architecture has driven substantial research efforts towards third-generation photovoltaic devices such as plastic solar cells, organic-inorganic cells, and photo-electrochemical cells. The physical and chemical processes involved in the harvesting of sunlight, the transport of electrical charge, and the build-up of the photo-voltage in these devices are fundamentally different from those encountered in traditional semiconductor heterojunction solar cells. A detailed atomic-scale quantum-mechanical description of such processes will lay down the basis for a rational approach to the modelling, optimization, and design of new photovoltaic materials. The short name of the proposal hints at one of the key materials parameters in the area of photovoltaic interfaces: the alignment of the quantum energy levels between the light-absorbing material and the electron acceptor. The level alignment drives the separation of the electron-hole pairs formed upon absorption of sunlight, and determines the open circuit voltage of the solar cell. The energy level alignment not only represents a key parameter for the design of photovoltaic devices, but also constitutes one of the grand challenges of modern computational materials science. Within this project we will develop and apply new ground-breaking computational methods to understand, predict, and optimize the energy level alignment and other design parameters of third-generation photovoltaic devices.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-03-01, End date: 2016-02-29
Project acronym ARCHGLASS
Project Archaeometry and Archaeology of Ancient Glass Production as a Source for Ancient Technology and Trade of Raw Materials
Researcher (PI) Patrick Degryse
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), SH6, ERC-2009-StG
Summary In this project, innovative techniques to reconstruct ancient economies are developed and new insights in the trade and processing of mineral raw materials are gained based on interdisciplinary archaeological and archaeometrical research. An innovative methodology for and a practical provenance database of the primary origin of natron glass from the Hellenistic-Roman world will be established. The project investigates both production and consumer sites of glass raw materials using both typo-chronological and archaeometrical (isotope geochemical) study of finished glass artefacts at consumer sites as well as mineralogical and chemical characterisation of raw glass and mineral resources at primary production sites. Suitable sand resources in the locations described by ancient authors will be identified through geological prospecting on the basis of literature review and field work. Sand and flux (natron) deposits will be mineralogically and geochemically characterised and compared to the results of the archaeological and geochemical investigations of the glass. Through integrated typo-chronological and archaeometrical analysis, the possible occurrence of primary production centres of raw glass outside the known locations in Syro-Palestine and Egypt, particularly in North-Africa, Italy, Spain and Gaul will be critically studied. In this way, historical, archaeological and archaeometrical data are combined, developing new interdisciplinary techniques for innovative archaeological interpretation of glass trade in the Hellenistic-Roman world.
Summary
In this project, innovative techniques to reconstruct ancient economies are developed and new insights in the trade and processing of mineral raw materials are gained based on interdisciplinary archaeological and archaeometrical research. An innovative methodology for and a practical provenance database of the primary origin of natron glass from the Hellenistic-Roman world will be established. The project investigates both production and consumer sites of glass raw materials using both typo-chronological and archaeometrical (isotope geochemical) study of finished glass artefacts at consumer sites as well as mineralogical and chemical characterisation of raw glass and mineral resources at primary production sites. Suitable sand resources in the locations described by ancient authors will be identified through geological prospecting on the basis of literature review and field work. Sand and flux (natron) deposits will be mineralogically and geochemically characterised and compared to the results of the archaeological and geochemical investigations of the glass. Through integrated typo-chronological and archaeometrical analysis, the possible occurrence of primary production centres of raw glass outside the known locations in Syro-Palestine and Egypt, particularly in North-Africa, Italy, Spain and Gaul will be critically studied. In this way, historical, archaeological and archaeometrical data are combined, developing new interdisciplinary techniques for innovative archaeological interpretation of glass trade in the Hellenistic-Roman world.
Max ERC Funding
954 960 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym ASPIRE
Project Aqueous Supramolecular Polymers and Peptide Conjugates in Reversible Systems
Researcher (PI) Oren Alexander Scherman
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary Supramolecular polymers are of major interest in the field of self assembly with a promising outlook in areas of viscosity modification, compartmentalized architectures, bio-conjugates and drug-delivery applications. They are dynamic macromolecular materials prepared by simple mixing of relatively small components bearing complementary or self-complementary recognition motifs. A major limitation in the field, however, has been access to synthetic systems capable of undergoing self assembly in an aqueous environment. This research proposal develops well-defined, self-organizing macromolecular structures that will overcome this limitation by focusing on systems that rely on several non-covalent interactions occurring in concert rather than on single interactions alone. The envisioned supramolecular polymers and bio-conjugates are designed as dynamic water-soluble smart materials, whose architectures can be controlled and exhibit reversibility upon exposure to external stimuli such as electrochemical, temperature or pH changes. Molecular recognition events occurring between functional handles on both synthetic and bio-polymers will be investigated in order to control the formation of desired functional architectures through stoichiometrically controlled complexation. Preparation of synthetic core motifs to assemble discrete peptide aggregates such as the dimeric through hexameric oligomers of amyloid-beta(40/42) will lead to structural elucidation and insight into several peptide misfolding pathologies like Alzheimer's or Parkinson's disease.
Summary
Supramolecular polymers are of major interest in the field of self assembly with a promising outlook in areas of viscosity modification, compartmentalized architectures, bio-conjugates and drug-delivery applications. They are dynamic macromolecular materials prepared by simple mixing of relatively small components bearing complementary or self-complementary recognition motifs. A major limitation in the field, however, has been access to synthetic systems capable of undergoing self assembly in an aqueous environment. This research proposal develops well-defined, self-organizing macromolecular structures that will overcome this limitation by focusing on systems that rely on several non-covalent interactions occurring in concert rather than on single interactions alone. The envisioned supramolecular polymers and bio-conjugates are designed as dynamic water-soluble smart materials, whose architectures can be controlled and exhibit reversibility upon exposure to external stimuli such as electrochemical, temperature or pH changes. Molecular recognition events occurring between functional handles on both synthetic and bio-polymers will be investigated in order to control the formation of desired functional architectures through stoichiometrically controlled complexation. Preparation of synthetic core motifs to assemble discrete peptide aggregates such as the dimeric through hexameric oligomers of amyloid-beta(40/42) will lead to structural elucidation and insight into several peptide misfolding pathologies like Alzheimer's or Parkinson's disease.
Max ERC Funding
1 700 000 €
Duration
Start date: 2009-11-01, End date: 2015-10-31
Project acronym BBSG
Project Bosnian Bones, Spanish Ghosts: 'Transitional Justice' and the Legal Shaping of Memory after Two Modern Conflicts
Researcher (PI) Sarah Lynn Wastell (Born Haller)
Host Institution (HI) GOLDSMITHS' COLLEGE
Call Details Starting Grant (StG), SH2, ERC-2009-StG
Summary The proposed research entails an ethnographic study of two contemporary cases of post-conflict reconciliation: one, the Bosnian case, where international intervention ended conflict in a stalemate and went on to instigate a decade-long process of transition; and the other, the Spanish case, where a nationally-contrived pact of silence introduced an overnight transition after Franco's death a pact now being broken nearly seventy years after the country's civil war concluded. Both societies witnessed massive violations of international humanitarian law. Both societies are presently exhuming, identifying and re-burying their dead. But their trajectories of transitional justice could not have been more different. This project will investigate how Law shapes cultural memories of wartime atrocity in these contrasting scenarios. How do criminal prosecutions, constitutional reforms, and international rights mechanisms, provide or obfuscate the scales into which histories of violent conflict are framed? Does the systematic re-structuring of legislative and judicial infrastructure stifle recognition of past abuses or does it create the conditions through which such pasts can be confronted? How does Law shape or inflect the cultural politics of memory and memorialisation? And most importantly, how should legal activity be weighted, prioritised and sequenced with other, extra-legal components of peace-building initiatives? The ultimate goal of this project will be to mobilise the findings from the two field-sites to suggest a more nuanced assessment of Law s place in transitional justice. Arguing that disparate historical, cultural and legal contexts require equally distinct approaches towards social healing, the research aims to produce a Post-Conflict Action Framework an architecture of questions and concerns, which, once answered, would point towards context-specific designs for transitional justice programmes in the future.
Summary
The proposed research entails an ethnographic study of two contemporary cases of post-conflict reconciliation: one, the Bosnian case, where international intervention ended conflict in a stalemate and went on to instigate a decade-long process of transition; and the other, the Spanish case, where a nationally-contrived pact of silence introduced an overnight transition after Franco's death a pact now being broken nearly seventy years after the country's civil war concluded. Both societies witnessed massive violations of international humanitarian law. Both societies are presently exhuming, identifying and re-burying their dead. But their trajectories of transitional justice could not have been more different. This project will investigate how Law shapes cultural memories of wartime atrocity in these contrasting scenarios. How do criminal prosecutions, constitutional reforms, and international rights mechanisms, provide or obfuscate the scales into which histories of violent conflict are framed? Does the systematic re-structuring of legislative and judicial infrastructure stifle recognition of past abuses or does it create the conditions through which such pasts can be confronted? How does Law shape or inflect the cultural politics of memory and memorialisation? And most importantly, how should legal activity be weighted, prioritised and sequenced with other, extra-legal components of peace-building initiatives? The ultimate goal of this project will be to mobilise the findings from the two field-sites to suggest a more nuanced assessment of Law s place in transitional justice. Arguing that disparate historical, cultural and legal contexts require equally distinct approaches towards social healing, the research aims to produce a Post-Conflict Action Framework an architecture of questions and concerns, which, once answered, would point towards context-specific designs for transitional justice programmes in the future.
Max ERC Funding
1 420 000 €
Duration
Start date: 2009-09-01, End date: 2013-08-31
Project acronym BIOCOMPLEX
Project Physical Aspects of the Evolution of Biological Complexity
Researcher (PI) Raymond Ethan Goldstein
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary One of the most fundamental issues in evolutionary biology is the nature of transitions from single cell organisms to multicellular ones, with accompanying cellular differentiation and specialization. Not surprisingly for microscopic life in fluid environments, many of the relevant physical considerations involve diffusion, mixing, and sensing, for the efficient exchange of nutrients and metabolites with the environment is one of the most basic features of life. This proposal describes a combination of experimental and theoretical research aimed at some of the key mysteries surrounding transport and sensing by and in complex, multicellular organisms, and the implications of those findings for the explanation of driving forces behind transitions to multicellularity. There are two main components of the research. The first involves studies of single and multicellular algae which serves as model systems for allometric scaling laws in evolution. Of particular importance are the synchronization dynamics of the eukaryotic flagella that provide motility, enhance nutrient transport, and allow phototaxis in these organisms. The second thrust involves investigation of the ubiquitous phenomenon of cytoplasmic streaming in aquatic and terrestrial plants. Despite decades of research, there is no clear consensus on the metabolic role of this persistent circulation of the fluid contents of cell. Building on recent theoretical developmnts we will study its implications for internal transport and mixing, homeostasis, and development in large cells. In each case, state-of-the art experimental methods from physics, fluid dynamics, and cell biology will be used in combination with advanced theoretical methods for the study of the stochastic nonlinear PDEs that form the natural description of these systems.
Summary
One of the most fundamental issues in evolutionary biology is the nature of transitions from single cell organisms to multicellular ones, with accompanying cellular differentiation and specialization. Not surprisingly for microscopic life in fluid environments, many of the relevant physical considerations involve diffusion, mixing, and sensing, for the efficient exchange of nutrients and metabolites with the environment is one of the most basic features of life. This proposal describes a combination of experimental and theoretical research aimed at some of the key mysteries surrounding transport and sensing by and in complex, multicellular organisms, and the implications of those findings for the explanation of driving forces behind transitions to multicellularity. There are two main components of the research. The first involves studies of single and multicellular algae which serves as model systems for allometric scaling laws in evolution. Of particular importance are the synchronization dynamics of the eukaryotic flagella that provide motility, enhance nutrient transport, and allow phototaxis in these organisms. The second thrust involves investigation of the ubiquitous phenomenon of cytoplasmic streaming in aquatic and terrestrial plants. Despite decades of research, there is no clear consensus on the metabolic role of this persistent circulation of the fluid contents of cell. Building on recent theoretical developmnts we will study its implications for internal transport and mixing, homeostasis, and development in large cells. In each case, state-of-the art experimental methods from physics, fluid dynamics, and cell biology will be used in combination with advanced theoretical methods for the study of the stochastic nonlinear PDEs that form the natural description of these systems.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-01-01, End date: 2015-12-31
Project acronym BIOINCMED
Project Bioinorganic Chemistry for the Design of New Medicines
Researcher (PI) Peter John Sadler
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Advanced Grant (AdG), PE5, ERC-2009-AdG
Summary Bioinorganic chemistry is a rapidly expanding area of research, but the potential for the therapeutic application of metal complexes is highly underdeveloped. The basic principles required to guide the development of metal-containing therapeutic agents are lacking, despite the unique therapeutic opportunities which they offer. It is the goal of the proposed research to establish basic principles of medicinal coordination chemistry of metals that will allow the rational screening of future metallopharmaceuticals. We propose to utilize the power of inorganic chemistry to provide new knowledge of and new approaches for intervention in biological systems. This will be based on improved understanding of reactions of metal complexes under physiological conditions, on improving the specificity of their interactions, and gaining control over the potential toxicity of synthetic metal complexes. The research programme is highly interdisciplinary involving chemistry, physics, biology and pharmacology, with potential for the discovery of truly novel medicines, especially for the treatment of diseases and conditions which are currently intractable, such as cancer. The challenging and ambitious goals of the present work involve transition metal complexes with novel chemical and biochemical mechanisms of action. They will contain novel features which allow them (i) to be selectively activated by light in cells, or (ii) to be activated by a structural transition, or (ii) exhibit catalytic activity in cells. This ground-breaking research potentially has a very high impact and is based on recent discoveries in the applicant s laboratory. A feature of the programme is the use of state-of-the-art-and-beyond methodology to advance knowledge of medicinal metal coordination chemistry.
Summary
Bioinorganic chemistry is a rapidly expanding area of research, but the potential for the therapeutic application of metal complexes is highly underdeveloped. The basic principles required to guide the development of metal-containing therapeutic agents are lacking, despite the unique therapeutic opportunities which they offer. It is the goal of the proposed research to establish basic principles of medicinal coordination chemistry of metals that will allow the rational screening of future metallopharmaceuticals. We propose to utilize the power of inorganic chemistry to provide new knowledge of and new approaches for intervention in biological systems. This will be based on improved understanding of reactions of metal complexes under physiological conditions, on improving the specificity of their interactions, and gaining control over the potential toxicity of synthetic metal complexes. The research programme is highly interdisciplinary involving chemistry, physics, biology and pharmacology, with potential for the discovery of truly novel medicines, especially for the treatment of diseases and conditions which are currently intractable, such as cancer. The challenging and ambitious goals of the present work involve transition metal complexes with novel chemical and biochemical mechanisms of action. They will contain novel features which allow them (i) to be selectively activated by light in cells, or (ii) to be activated by a structural transition, or (ii) exhibit catalytic activity in cells. This ground-breaking research potentially has a very high impact and is based on recent discoveries in the applicant s laboratory. A feature of the programme is the use of state-of-the-art-and-beyond methodology to advance knowledge of medicinal metal coordination chemistry.
Max ERC Funding
1 565 397 €
Duration
Start date: 2010-07-01, End date: 2015-12-31
Project acronym BIOTIME
Project Biological diversity in an inconstant world: temporal turnover in modified ecosystems
Researcher (PI) Anne Elizabeth Magurran
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), LS8, ERC-2009-AdG
Summary This project addresses a key issue in fundamental research - one that has challenged ecologists ever since Darwin s time that is why some species are common, and others rare, and why, despite marked turnover at the level of individual species abundances, the structure of a community is generally conserved through time. Its aim is to examine the temporal dynamics of species abundance distributions (SADs), and to assess the capacity of these distributions to withstand change (resistance) and to recover from change (resilience). These are topical and important questions given the increasing impact that humans are having on the natural world. There are three components to the research. First, we will model SADs and predict responses to a range of events including climate change and the arrival of invasive species. A range of modeling approaches (including neutral, niche and statistical) will be adopted; by incorporating temporal turnover in hitherto static models we will advance the field. Second, we will test predictions concerning the resistance and resilience of SADs by a comparative analysis of existing data sets (that encompass communities in terrestrial, freshwater and marine environments for ecosystems extending from the poles to the tropics) and through a new field experiment that quantifies temporal turnover across a community (unicellular organisms to vertebrates) in relation to factors both natural (dispersal limitation) and anthropogenic (human disturbance) thought to shape SADs. In the final part of the project we will apply these new insights into the temporal dynamics of SADs to two important conservation challenges. These are 1) the conservation of biodiversity in a heavily utilized European landscape (Fife, Scotland) and 2) the conservation of biodiversity in Mamirauá and Amaña reserves in Amazonian flooded forest. Taken together this research will not only shed new light on the structure of ecological communities but will also aid conservation.
Summary
This project addresses a key issue in fundamental research - one that has challenged ecologists ever since Darwin s time that is why some species are common, and others rare, and why, despite marked turnover at the level of individual species abundances, the structure of a community is generally conserved through time. Its aim is to examine the temporal dynamics of species abundance distributions (SADs), and to assess the capacity of these distributions to withstand change (resistance) and to recover from change (resilience). These are topical and important questions given the increasing impact that humans are having on the natural world. There are three components to the research. First, we will model SADs and predict responses to a range of events including climate change and the arrival of invasive species. A range of modeling approaches (including neutral, niche and statistical) will be adopted; by incorporating temporal turnover in hitherto static models we will advance the field. Second, we will test predictions concerning the resistance and resilience of SADs by a comparative analysis of existing data sets (that encompass communities in terrestrial, freshwater and marine environments for ecosystems extending from the poles to the tropics) and through a new field experiment that quantifies temporal turnover across a community (unicellular organisms to vertebrates) in relation to factors both natural (dispersal limitation) and anthropogenic (human disturbance) thought to shape SADs. In the final part of the project we will apply these new insights into the temporal dynamics of SADs to two important conservation challenges. These are 1) the conservation of biodiversity in a heavily utilized European landscape (Fife, Scotland) and 2) the conservation of biodiversity in Mamirauá and Amaña reserves in Amazonian flooded forest. Taken together this research will not only shed new light on the structure of ecological communities but will also aid conservation.
Max ERC Funding
1 812 782 €
Duration
Start date: 2010-08-01, End date: 2016-01-31
Project acronym BRAINPOWER
Project Brain energy supply and the consequences of its failure
Researcher (PI) David Ian Attwell
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary Energy, supplied in the form of oxygen and glucose in the blood, is essential for the brain s cognitive power. Failure of the energy supply to the nervous system underlies the mental and physical disability occurring in a wide range of economically important neurological disorders, such as stroke, spinal cord injury and cerebral palsy. Using a combination of two-photon imaging, electrophysiological, molecular and transgenic approaches, I will investigate the control of brain energy supply at the vascular level, and at the level of individual neurons and glial cells, and study the deleterious consequences for the neurons, glia and vasculature of a failure of brain energy supply. The work will focus on the following fundamental issues: A. Vascular control of the brain energy supply (1) How important is control of energy supply at the capillary level, by pericytes? (2) Which synapses control blood flow (and thus generate functional imaging signals) in the cortex? B. Neuronal and glial control of brain energy supply (3) How is grey matter neuronal activity powered? (4) How is the white matter supplied with energy? C. The pathological consequences of a loss of brain energy supply (5) How does a fall of energy supply cause neurotoxic glutamate release? (6) How similar are events in the grey and white matter in energy deprivation conditions? (7) How does a transient loss of energy supply affect blood flow regulation? (8) How does brain energy use change after a period without energy supply? Together this work will significantly advance our understanding of how the energy supply to neurons and glia is regulated in normal conditions, and how the loss of the energy supply causes disorders which consume more than 5% of the costs of European health services (5% of ~1000 billion euro/year).
Summary
Energy, supplied in the form of oxygen and glucose in the blood, is essential for the brain s cognitive power. Failure of the energy supply to the nervous system underlies the mental and physical disability occurring in a wide range of economically important neurological disorders, such as stroke, spinal cord injury and cerebral palsy. Using a combination of two-photon imaging, electrophysiological, molecular and transgenic approaches, I will investigate the control of brain energy supply at the vascular level, and at the level of individual neurons and glial cells, and study the deleterious consequences for the neurons, glia and vasculature of a failure of brain energy supply. The work will focus on the following fundamental issues: A. Vascular control of the brain energy supply (1) How important is control of energy supply at the capillary level, by pericytes? (2) Which synapses control blood flow (and thus generate functional imaging signals) in the cortex? B. Neuronal and glial control of brain energy supply (3) How is grey matter neuronal activity powered? (4) How is the white matter supplied with energy? C. The pathological consequences of a loss of brain energy supply (5) How does a fall of energy supply cause neurotoxic glutamate release? (6) How similar are events in the grey and white matter in energy deprivation conditions? (7) How does a transient loss of energy supply affect blood flow regulation? (8) How does brain energy use change after a period without energy supply? Together this work will significantly advance our understanding of how the energy supply to neurons and glia is regulated in normal conditions, and how the loss of the energy supply causes disorders which consume more than 5% of the costs of European health services (5% of ~1000 billion euro/year).
Max ERC Funding
2 499 947 €
Duration
Start date: 2010-04-01, End date: 2016-03-31
Project acronym BSMWLHCB
Project Advanced techniques to Search for Physics Beyond the Standard Model with the LHCb Detector at CERN
Researcher (PI) Timothy John Gershon
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary I propose a programme of precision tests of the Standard Model of particle physics to be carried out using the LHCb experiment at CERN. The proposal is focussed on studies of CP violation - differences between the behaviour of particles and antiparticles that are fundamental to understanding why the Universe we see today is made up of matter, not antimatter. The innovative feature of this research is the use of Dalitz plot analyses to improve the sensitivity to interesting CP violation effects. Recently I have developed a number of new methods to search for CP violation based on this technique. These methods can be used at LHCb and will extend the physics reach of the experiment beyond what was previously considered possible. I propose to create a small research team, based at the University of Warwick, to develop these methods and to make a number of precise measurements of CP violation parameters using the LHCb experiment. By comparing the results with the Standard Model predictions for these parameters, effects due to non-standard particles can be observed or highly constrained. The results of this work have the potential to redefine the direction of this research field. They will be essential to develop theories of particle physics that go beyond the Standard Model and attempt to address great unanswered questions, such as the origin of the matter--antimatter asymmetry of the Universe.
Summary
I propose a programme of precision tests of the Standard Model of particle physics to be carried out using the LHCb experiment at CERN. The proposal is focussed on studies of CP violation - differences between the behaviour of particles and antiparticles that are fundamental to understanding why the Universe we see today is made up of matter, not antimatter. The innovative feature of this research is the use of Dalitz plot analyses to improve the sensitivity to interesting CP violation effects. Recently I have developed a number of new methods to search for CP violation based on this technique. These methods can be used at LHCb and will extend the physics reach of the experiment beyond what was previously considered possible. I propose to create a small research team, based at the University of Warwick, to develop these methods and to make a number of precise measurements of CP violation parameters using the LHCb experiment. By comparing the results with the Standard Model predictions for these parameters, effects due to non-standard particles can be observed or highly constrained. The results of this work have the potential to redefine the direction of this research field. They will be essential to develop theories of particle physics that go beyond the Standard Model and attempt to address great unanswered questions, such as the origin of the matter--antimatter asymmetry of the Universe.
Max ERC Funding
1 682 800 €
Duration
Start date: 2010-02-01, End date: 2016-01-31
Project acronym CHINA
Project Trade, Productivity, and Firm Capabilities in China's Manufacturing Sector
Researcher (PI) Johannes Van Biesebroeck
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), SH1, ERC-2009-StG
Summary China s economy has expanded at breakneck speed to become the 3rd largest trading country in the world and the largest recipient of foreign direct investment (FDI). Entry into the WTO in 2001 was a landmark event in this ongoing process and I propose to study several channels through which it spurred China s industrial development. Crucially, I will take an integrated view of the different ways in which Chinese and Western firms interact: through trade flows, as suppliers or competitors, FDI, or knowledge transfers. First, I investigate the existence and magnitude of a causal link from the trade reforms to productivity growth. Second, I look for evidence of capability upgrading, such as increased production efficiency, an ability to produce higher quality products, or introduce new products by innovating. Third, I study the mechanisms for the impact of trade and FDI on local firms, in particular assessing the relative importance of increased market competition and the transfer of know-how from foreign firms. For this analysis, I draw heavily on a unique data set. Information on the universe of Chinese manufacturing firms is being linked to the universe of Chinese trade transactions. These are unique research tools on their own, but as a linked data set, the only comparable one in the world is for the U.S. economy. The Chinese data has the advantage to contain detailed information on FDI, distinguishes between ordinary and processing trade, and contains information on innovation, such as R&D and sales of new goods. Answering the above questions is important for other developing countries wanting to learn from China s experience and for Western firms assessing how quickly Chinese firms will become viable suppliers of sophisticated inputs or direct competitors. By estimating models that are explicitly derived from new theories, I advance the literature at the interaction of international and development economics, industrial organization, economic geography.
Summary
China s economy has expanded at breakneck speed to become the 3rd largest trading country in the world and the largest recipient of foreign direct investment (FDI). Entry into the WTO in 2001 was a landmark event in this ongoing process and I propose to study several channels through which it spurred China s industrial development. Crucially, I will take an integrated view of the different ways in which Chinese and Western firms interact: through trade flows, as suppliers or competitors, FDI, or knowledge transfers. First, I investigate the existence and magnitude of a causal link from the trade reforms to productivity growth. Second, I look for evidence of capability upgrading, such as increased production efficiency, an ability to produce higher quality products, or introduce new products by innovating. Third, I study the mechanisms for the impact of trade and FDI on local firms, in particular assessing the relative importance of increased market competition and the transfer of know-how from foreign firms. For this analysis, I draw heavily on a unique data set. Information on the universe of Chinese manufacturing firms is being linked to the universe of Chinese trade transactions. These are unique research tools on their own, but as a linked data set, the only comparable one in the world is for the U.S. economy. The Chinese data has the advantage to contain detailed information on FDI, distinguishes between ordinary and processing trade, and contains information on innovation, such as R&D and sales of new goods. Answering the above questions is important for other developing countries wanting to learn from China s experience and for Western firms assessing how quickly Chinese firms will become viable suppliers of sophisticated inputs or direct competitors. By estimating models that are explicitly derived from new theories, I advance the literature at the interaction of international and development economics, industrial organization, economic geography.
Max ERC Funding
944 940 €
Duration
Start date: 2010-02-01, End date: 2016-01-31
Project acronym CHOMP
Project A Complete History of Massive Proto-Galaxies
Researcher (PI) James Dunlop
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), PE9, ERC-2009-AdG
Summary A key question in modern science is to explain how the present-day universe of galaxies evolved from the initial conditions measured in the micro-wave background at recombination. Over the next 5 years I propose to undertake a major program of research to address this issue, by discovering and studying directly the progenitors of today's massive galaxies during the first ~2 billion years of cosmic history, and hence performing critical tests of current theories of galaxy formation. It is now clear that to sample representative volumes of the high-redshift universe requires ultra-deep near-infrared, mid-infrared and sub-mm surveys covering over ~1 sq. degree. Until now this has not been possible, but this field is about to be revolutionized by the introduction of a new generation of wide-field facilities in the next year. Specifically, 2009 will see the commissioning of the new near-infrared VISTA survey telescope in Chile, the new SCUBA2 sub-mm camera on the JCMT in Hawaii, the far-infrared Herschel Space Observatory, and the near-infrared camera WFC3 in the Hubble Space Telescope. Now, through my leadership of the deepest of the new generation of wide-field infrared and submm surveys to be undertaken with these revolutionary new facilities, I am unusually well-placed to take an integrated approach to the study of galaxy formation/evolution reaching back, for the first time, into the epoch of re-ionisation, at redshifts z ~ 7 - 10. Through this application I request the level of support required to exploit these new and unique data in what is one of the most important and topical areas at the forefront of modern astronomical research. Investment in this research program will also help ensure that European astronomers are strongly positioned to exploit the James Webb Space Telescope (JWST), the Atacama Large Millimetre Array (ALMA), and future large telescopes (e.g. E-ELT) to study the physics of galaxy formation over virtually all of cosmic history.
Summary
A key question in modern science is to explain how the present-day universe of galaxies evolved from the initial conditions measured in the micro-wave background at recombination. Over the next 5 years I propose to undertake a major program of research to address this issue, by discovering and studying directly the progenitors of today's massive galaxies during the first ~2 billion years of cosmic history, and hence performing critical tests of current theories of galaxy formation. It is now clear that to sample representative volumes of the high-redshift universe requires ultra-deep near-infrared, mid-infrared and sub-mm surveys covering over ~1 sq. degree. Until now this has not been possible, but this field is about to be revolutionized by the introduction of a new generation of wide-field facilities in the next year. Specifically, 2009 will see the commissioning of the new near-infrared VISTA survey telescope in Chile, the new SCUBA2 sub-mm camera on the JCMT in Hawaii, the far-infrared Herschel Space Observatory, and the near-infrared camera WFC3 in the Hubble Space Telescope. Now, through my leadership of the deepest of the new generation of wide-field infrared and submm surveys to be undertaken with these revolutionary new facilities, I am unusually well-placed to take an integrated approach to the study of galaxy formation/evolution reaching back, for the first time, into the epoch of re-ionisation, at redshifts z ~ 7 - 10. Through this application I request the level of support required to exploit these new and unique data in what is one of the most important and topical areas at the forefront of modern astronomical research. Investment in this research program will also help ensure that European astronomers are strongly positioned to exploit the James Webb Space Telescope (JWST), the Atacama Large Millimetre Array (ALMA), and future large telescopes (e.g. E-ELT) to study the physics of galaxy formation over virtually all of cosmic history.
Max ERC Funding
2 317 255 €
Duration
Start date: 2010-04-01, End date: 2016-03-31
Project acronym CHROMOCOND
Project A molecular view of chromosome condensation
Researcher (PI) Frank Uhlmann
Host Institution (HI) CANCER RESEARCH UK LBG
Call Details Advanced Grant (AdG), LS3, ERC-2009-AdG
Summary Eukaryotic cells inherit much of their genomic information in the form of chromosomes during cell division. Centimetre-long DNA molecules are packed into micrometer-sized chromosomes to enable this process. How DNA is organised within mitotic chromosomes is still largely unknown. A key structural protein component of mitotic chromosomes, implicated in their compaction, is the condensin complex. In this proposal, we aim to elucidate the molecular architecture of mitotic chromosomes, taking advantage of new genomic techniques and the relatively simple genome organisation of yeast model systems. We will place particular emphasis on elucidating the contribution of the condensin complex, and the cell cycle regulation of its activities, in promoting chromosome condensation. Our previous work has provided genome-wide maps of condensin binding to budding and fission yeast chromosomes. We will continue to decipher the molecular determinants for condensin binding. To investigate how condensin mediates DNA compaction, we propose to generate chromosome-wide DNA/DNA proximity maps. Our approach will be an extension of the chromosome conformation capture (3C) technique. High throughput sequencing of interaction points has provided a first glimpse of the interactions that govern chromosome condensation. The role that condensin plays in promoting these interactions will be investigated. The contribution of condensin s ATP-dependent activities, and cell cycle-dependent post-translational modifications, will be studied. This will be complemented by mathematical modelling of the condensation process. In addition to chromosome condensation, condensin is required for resolution of sister chromatids in anaphase. We will develop an assay to study the catenation status of sister chromatids and how condensin may contribute to their topological resolution.
Summary
Eukaryotic cells inherit much of their genomic information in the form of chromosomes during cell division. Centimetre-long DNA molecules are packed into micrometer-sized chromosomes to enable this process. How DNA is organised within mitotic chromosomes is still largely unknown. A key structural protein component of mitotic chromosomes, implicated in their compaction, is the condensin complex. In this proposal, we aim to elucidate the molecular architecture of mitotic chromosomes, taking advantage of new genomic techniques and the relatively simple genome organisation of yeast model systems. We will place particular emphasis on elucidating the contribution of the condensin complex, and the cell cycle regulation of its activities, in promoting chromosome condensation. Our previous work has provided genome-wide maps of condensin binding to budding and fission yeast chromosomes. We will continue to decipher the molecular determinants for condensin binding. To investigate how condensin mediates DNA compaction, we propose to generate chromosome-wide DNA/DNA proximity maps. Our approach will be an extension of the chromosome conformation capture (3C) technique. High throughput sequencing of interaction points has provided a first glimpse of the interactions that govern chromosome condensation. The role that condensin plays in promoting these interactions will be investigated. The contribution of condensin s ATP-dependent activities, and cell cycle-dependent post-translational modifications, will be studied. This will be complemented by mathematical modelling of the condensation process. In addition to chromosome condensation, condensin is required for resolution of sister chromatids in anaphase. We will develop an assay to study the catenation status of sister chromatids and how condensin may contribute to their topological resolution.
Max ERC Funding
2 076 126 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym CIF
Project Complex Interfacial Flows: From the Nano- to the Macro-Scale
Researcher (PI) Serafim Kalliadasis
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Advanced Grant (AdG), PE8, ERC-2009-AdG
Summary A wide variety of natural phenomena and technological applications involve flow, transport and chemical reactions taking place on or near fluid-solid or fluid-fluid interfaces. From gravity currents under water and lava flows to heat and mass transport processes in engineering applications and to the rapidly developing field of microfluidics. Both equilibrium properties of a fluid and transportcoefficients are modified in the vicinity of interfaces. The effect of these changes is crucial in the behavior of ultra-thin fluidfilms and fluid motion in microchannels of micro-electromechanical systems, but is essential as well in macroscopic phenomena involving interfacial singularities, such as thin-film rupture and motion of three-phase contact lines associated e.g. with droplet spreading. Interface boundaries are mesoscopic structures. While material properties vary smoothly at macroscopic distances from an interface, gradients in the normal direction of conserved parameters, such as density, are steep with strong variations as the molecular scale in the neighborhood of the interface is approached. This brings about a contradiction between the need in macroscopic description and a necessity to take into consideration microscopic factors that come to influence the fluid motion and transport on incommensurately larger scales. The aim of the proposed research is to develop a class of novel continuous models bridging the gap between molecular dynamics and conventional hydrodynamics and applicable at mesoscopic distances from gas-liquid and fluid-solid interfaces. A combination of analytical techniques, numerical modeling and computer-aided multiscale analysis will be employed. The results of the proposed work will greatly contribute to the fundamental understanding of mesoscopic non-equilibrium phenomena in the vicinity of interfaces and to the development of novel computational methods combining the advantages of molecular and continuous models.
Summary
A wide variety of natural phenomena and technological applications involve flow, transport and chemical reactions taking place on or near fluid-solid or fluid-fluid interfaces. From gravity currents under water and lava flows to heat and mass transport processes in engineering applications and to the rapidly developing field of microfluidics. Both equilibrium properties of a fluid and transportcoefficients are modified in the vicinity of interfaces. The effect of these changes is crucial in the behavior of ultra-thin fluidfilms and fluid motion in microchannels of micro-electromechanical systems, but is essential as well in macroscopic phenomena involving interfacial singularities, such as thin-film rupture and motion of three-phase contact lines associated e.g. with droplet spreading. Interface boundaries are mesoscopic structures. While material properties vary smoothly at macroscopic distances from an interface, gradients in the normal direction of conserved parameters, such as density, are steep with strong variations as the molecular scale in the neighborhood of the interface is approached. This brings about a contradiction between the need in macroscopic description and a necessity to take into consideration microscopic factors that come to influence the fluid motion and transport on incommensurately larger scales. The aim of the proposed research is to develop a class of novel continuous models bridging the gap between molecular dynamics and conventional hydrodynamics and applicable at mesoscopic distances from gas-liquid and fluid-solid interfaces. A combination of analytical techniques, numerical modeling and computer-aided multiscale analysis will be employed. The results of the proposed work will greatly contribute to the fundamental understanding of mesoscopic non-equilibrium phenomena in the vicinity of interfaces and to the development of novel computational methods combining the advantages of molecular and continuous models.
Max ERC Funding
1 273 788 €
Duration
Start date: 2010-04-01, End date: 2016-03-31
Project acronym CMR
Project Cosmic ray acceleration, magnetic field and radiation hydrodynamics
Researcher (PI) Anthony Raymond Bell
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE9, ERC-2009-AdG
Summary Diffusive shock acceleration is widely acknowledged as the most likely source of cosmic rays and high energy particles. The basic macroscopic theory of how cosmic rays gain energy during multiple shock crossings is well known, but the microphysics of the interaction between cosmic rays (CR) and the MHD background fluid remained poorly understood before the recent discovery of a new non-resonant instability by which the CR precursor could greatly amplify the ambient magnetic field. The aims of the project are: 1) to develop the first self-consistent non-linear simulation of the CR/MHD interaction; to calculate the magnitude of the saturated magnetic field and the maximum energy to which CR are accelerated. We will characterise the structure of the amplified magnetic field and compare it with x-ray observations of the time-evolving outer shock of supernova remnants (SNR). We will investigate the effect of various orientations of the shock relative to the ambient magnetic field, the effect of non-diffusive transport on the energy spectrum and CR escape from the SNR, and how these match observation. 2) to extend the simulation to relativistic shocks as found in gamma-ray bursts (GRB) and active galactic nuclei (AGN); to establish whether the non-resonant instability operates effectively at relativistic shock velocities, whether it explains the large magnetic field found in GRB, and determine the maximum CR energy achieved by relativistic shocks. 3) to investigate high density shocks in GRB, x-ray flashes (XRF) and supernovae (SN) where radiative processes, pair production and other particle/photon and particle/particle interactions are important. We shall investigate CR acceleration on SN shock breakout and very young SNR as a possible source of very high energy CR.
Summary
Diffusive shock acceleration is widely acknowledged as the most likely source of cosmic rays and high energy particles. The basic macroscopic theory of how cosmic rays gain energy during multiple shock crossings is well known, but the microphysics of the interaction between cosmic rays (CR) and the MHD background fluid remained poorly understood before the recent discovery of a new non-resonant instability by which the CR precursor could greatly amplify the ambient magnetic field. The aims of the project are: 1) to develop the first self-consistent non-linear simulation of the CR/MHD interaction; to calculate the magnitude of the saturated magnetic field and the maximum energy to which CR are accelerated. We will characterise the structure of the amplified magnetic field and compare it with x-ray observations of the time-evolving outer shock of supernova remnants (SNR). We will investigate the effect of various orientations of the shock relative to the ambient magnetic field, the effect of non-diffusive transport on the energy spectrum and CR escape from the SNR, and how these match observation. 2) to extend the simulation to relativistic shocks as found in gamma-ray bursts (GRB) and active galactic nuclei (AGN); to establish whether the non-resonant instability operates effectively at relativistic shock velocities, whether it explains the large magnetic field found in GRB, and determine the maximum CR energy achieved by relativistic shocks. 3) to investigate high density shocks in GRB, x-ray flashes (XRF) and supernovae (SN) where radiative processes, pair production and other particle/photon and particle/particle interactions are important. We shall investigate CR acceleration on SN shock breakout and very young SNR as a possible source of very high energy CR.
Max ERC Funding
900 024 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym COCOON
Project Conformal coating of nanoporous materials
Researcher (PI) Christophe Detavernier
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), PE8, ERC-2009-StG
Summary CONTEXT - Nanoporous structures are used for application in catalysis, molecular separation, fuel cells, dye sensitized solar cells etc. Given the near molecular size of the porous network, it is extremely challenging to modify the interior surface of the pores after the nanoporous material has been synthesized.
THIS PROPOSAL - Atomic Layer Deposition (ALD) is envisioned as a novel technique for creating catalytically active sites and for controlling the pore size distribution in nanoporous materials. ALD is a self-limited growth method that is characterized by alternating exposure of the growing film to precursor vapours, resulting in the sequential deposition of (sub)monolayers. It provides atomic level control of thickness and composition, and is currently used in micro-electronics to grow films into structures with aspect ratios of up to 100 / 1. We aim to make the fundamental breakthroughs necessary to enable atomic layer deposition to engineer the composition, size and shape of the interior surface of nanoporous materials with aspect ratios in excess of 10,000 / 1.
POTENTIAL IMPACT Achieving these objectives will enable atomic level engineering of the interior surface of any porous material. We plan to focus on three specific applications where our results will have both medium and long term impacts:
- Engineering the composition of pore walls using ALD, e.g. to create catalytic sites (e.g. Al for acid sites, Ti for redox sites, or Pt, Pd or Ni)
- chemical functionalization of the pore walls with atomic level control can result in breakthrough applications in the fields of catalysis and sensors.
- Atomic level control of the size of nanopores through ALD controlling the pore size distribution of molecular sieves can potentially lead to breakthrough applications in molecular separation and filtration.
- Nanocasting replication of a mesoporous template by means of ALD can result in the mass-scale production of nanotubes.
Summary
CONTEXT - Nanoporous structures are used for application in catalysis, molecular separation, fuel cells, dye sensitized solar cells etc. Given the near molecular size of the porous network, it is extremely challenging to modify the interior surface of the pores after the nanoporous material has been synthesized.
THIS PROPOSAL - Atomic Layer Deposition (ALD) is envisioned as a novel technique for creating catalytically active sites and for controlling the pore size distribution in nanoporous materials. ALD is a self-limited growth method that is characterized by alternating exposure of the growing film to precursor vapours, resulting in the sequential deposition of (sub)monolayers. It provides atomic level control of thickness and composition, and is currently used in micro-electronics to grow films into structures with aspect ratios of up to 100 / 1. We aim to make the fundamental breakthroughs necessary to enable atomic layer deposition to engineer the composition, size and shape of the interior surface of nanoporous materials with aspect ratios in excess of 10,000 / 1.
POTENTIAL IMPACT Achieving these objectives will enable atomic level engineering of the interior surface of any porous material. We plan to focus on three specific applications where our results will have both medium and long term impacts:
- Engineering the composition of pore walls using ALD, e.g. to create catalytic sites (e.g. Al for acid sites, Ti for redox sites, or Pt, Pd or Ni)
- chemical functionalization of the pore walls with atomic level control can result in breakthrough applications in the fields of catalysis and sensors.
- Atomic level control of the size of nanopores through ALD controlling the pore size distribution of molecular sieves can potentially lead to breakthrough applications in molecular separation and filtration.
- Nanocasting replication of a mesoporous template by means of ALD can result in the mass-scale production of nanotubes.
Max ERC Funding
1 432 800 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym COGATIMABIO
Project Combined time domain and spectral domain coherence gating for imaging and biosensing
Researcher (PI) Adrian Podoleanu
Host Institution (HI) UNIVERSITY OF KENT
Call Details Advanced Grant (AdG), LS7, ERC-2009-AdG
Summary Revolutionary combination of principles of spectral domain and time domain coherence gating will be researched. The present proposal puts forward: (i) a novel class of optical interferometers, (ii) a novel class of wavefront sensors and (iii) combinations of imaging channels with the novel wavefront sensors. All these are driven by the needs to address the limitations in terms of speed of the time domain (TD) optical coherence tomography (OCT), in terms of range, resolution and focus of the spectral (SD) OCT methods and in terms of spatial resolution of wavefront sensors. A new class of OCT systems is researched, as a marriage between the TD-OCT and SD-OCT methods. The novel methods present the generality of being compatible with both TD-OCT and SD-OCT. It is envisaged that the research results will revolutionise the field of high resolution imaging and high sensitive sensing and open applications not currently possible with the present OCT, confocal microscopy or multiphoton microscopy technology. The method to be researched will allow versatile functionality in measurements, in 3D imaging of moving tissue and functional/low noise imaging by making use of angular compounding or polarisation. Novel directions are opened in the tracking of the axial position of objects (cornea or retina), automatic dispersion compensation as well as improvement in the synchronism between the coherence gate and the focus in axial scanning. Simultaneous measurements over multiple path lengths becomes feasible, with potential applications in high throughput sensing. The methods proposed open novel avenues in biosensing by amplification of tiny frequency shifts or tiny changes in the optical paths. Possible outcome are high sensitive biosensors, multiple imaging at different depths, fast and long range tracking, long axial scanning, coherence gated wavefront sensors with applications in vision sciences and microscopy, protein identification and contrast agents developments.
Summary
Revolutionary combination of principles of spectral domain and time domain coherence gating will be researched. The present proposal puts forward: (i) a novel class of optical interferometers, (ii) a novel class of wavefront sensors and (iii) combinations of imaging channels with the novel wavefront sensors. All these are driven by the needs to address the limitations in terms of speed of the time domain (TD) optical coherence tomography (OCT), in terms of range, resolution and focus of the spectral (SD) OCT methods and in terms of spatial resolution of wavefront sensors. A new class of OCT systems is researched, as a marriage between the TD-OCT and SD-OCT methods. The novel methods present the generality of being compatible with both TD-OCT and SD-OCT. It is envisaged that the research results will revolutionise the field of high resolution imaging and high sensitive sensing and open applications not currently possible with the present OCT, confocal microscopy or multiphoton microscopy technology. The method to be researched will allow versatile functionality in measurements, in 3D imaging of moving tissue and functional/low noise imaging by making use of angular compounding or polarisation. Novel directions are opened in the tracking of the axial position of objects (cornea or retina), automatic dispersion compensation as well as improvement in the synchronism between the coherence gate and the focus in axial scanning. Simultaneous measurements over multiple path lengths becomes feasible, with potential applications in high throughput sensing. The methods proposed open novel avenues in biosensing by amplification of tiny frequency shifts or tiny changes in the optical paths. Possible outcome are high sensitive biosensors, multiple imaging at different depths, fast and long range tracking, long axial scanning, coherence gated wavefront sensors with applications in vision sciences and microscopy, protein identification and contrast agents developments.
Max ERC Funding
1 999 241 €
Duration
Start date: 2010-05-01, End date: 2015-10-31