Project acronym 3D-E
Project 3D Engineered Environments for Regenerative Medicine
Researcher (PI) Ruth Elizabeth Cameron
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary "This proposal develops a unified, underpinning technology to create novel, complex and biomimetic 3D environments for the control of tissue growth. As director of Cambridge Centre for Medical Materials, I have recently been approached by medical colleagues to help to solve important problems in the separate therapeutic areas of breast cancer, cardiac disease and blood disorders. In each case, the solution lies in complex 3D engineered environments for cell culture. These colleagues make it clear that existing 3D scaffolds fail to provide the required complex orientational and spatial anisotropy, and are limited in their ability to impart appropriate biochemical and mechanical cues.
I have a strong track record in this area. A particular success has been the use of a freeze drying technology to make collagen based porous implants for the cartilage-bone interface in the knee, which has now been commercialised. The novelty of this proposal lies in the broadening of the established scientific base of this technology to enable biomacromolecular structures with:
(A) controlled and complex pore orientation to mimic many normal multi-oriented tissue structures
(B) compositional and positional control to match varying local biochemical environments,
(C) the attachment of novel peptides designed to control cell behaviour, and
(D) mechanical control at both a local and macroscopic level to provide mechanical cues for cells.
These will be complemented by the development of
(E) robust characterisation methodologies for the structures created.
These advances will then be employed in each of the medical areas above.
This approach is highly interdisciplinary. Existing working relationships with experts in each medical field will guarantee expertise and licensed facilities in the required biological disciplines. Funds for this proposal would therefore establish a rich hub of mutually beneficial research and opportunities for cross-disciplinary sharing of expertise."
Summary
"This proposal develops a unified, underpinning technology to create novel, complex and biomimetic 3D environments for the control of tissue growth. As director of Cambridge Centre for Medical Materials, I have recently been approached by medical colleagues to help to solve important problems in the separate therapeutic areas of breast cancer, cardiac disease and blood disorders. In each case, the solution lies in complex 3D engineered environments for cell culture. These colleagues make it clear that existing 3D scaffolds fail to provide the required complex orientational and spatial anisotropy, and are limited in their ability to impart appropriate biochemical and mechanical cues.
I have a strong track record in this area. A particular success has been the use of a freeze drying technology to make collagen based porous implants for the cartilage-bone interface in the knee, which has now been commercialised. The novelty of this proposal lies in the broadening of the established scientific base of this technology to enable biomacromolecular structures with:
(A) controlled and complex pore orientation to mimic many normal multi-oriented tissue structures
(B) compositional and positional control to match varying local biochemical environments,
(C) the attachment of novel peptides designed to control cell behaviour, and
(D) mechanical control at both a local and macroscopic level to provide mechanical cues for cells.
These will be complemented by the development of
(E) robust characterisation methodologies for the structures created.
These advances will then be employed in each of the medical areas above.
This approach is highly interdisciplinary. Existing working relationships with experts in each medical field will guarantee expertise and licensed facilities in the required biological disciplines. Funds for this proposal would therefore establish a rich hub of mutually beneficial research and opportunities for cross-disciplinary sharing of expertise."
Max ERC Funding
2 486 267 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym ACOULOMODE
Project Advanced coupling of low order combustor simulations with thermoacoustic modelling and controller design
Researcher (PI) Aimee Morgans
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary "Combustion is essential to the world’s energy generation and transport needs, and will remain so for the foreseeable future. Mitigating its impact on the climate and human health, by reducing its associated emissions, is thus a priority. One significant challenge for gas-turbine combustion is combustion instability, which is currently inhibiting reductions in NOx emissions (these damage human health via a deterioration in air quality). Combustion instability is caused by a two-way coupling between unsteady combustion and acoustic waves - the large pressure oscillations that result can cause substantial mechanical damage. Currently, the lack of fast, accurate modelling tools for combustion instability, and the lack of reliable ways of suppressing it are severely hindering reductions in NOx emissions.
This proposal aims to make step improvements in both fast, accurate modelling of combustion instability, and in developing reliable active control strategies for its suppression. It will achieve this by coupling low order combustor models (these are fast, simplified models for simulating combustion instability) with advances in analytical modelling, CFD simulation, reduced order modelling and control theory tools. In particular:
* important advances in accurately incorporating the effect of entropy waves (temperature variations resulting from unsteady combustion) and non-linear flame models will be made;
* new active control strategies for achieving reliable suppression of combustion instability, including from within limit cycle oscillations, will be developed;
* an open-source low order combustor modelling tool will be developed and widely disseminated, opening access to researchers worldwide and improving communications between the fields of thermoacoustics and control theory.
Thus the proposal aims to use analytical and computational methods to contribute to achieving low NOx gas-turbine combustion, without the penalty of damaging combustion instability."
Summary
"Combustion is essential to the world’s energy generation and transport needs, and will remain so for the foreseeable future. Mitigating its impact on the climate and human health, by reducing its associated emissions, is thus a priority. One significant challenge for gas-turbine combustion is combustion instability, which is currently inhibiting reductions in NOx emissions (these damage human health via a deterioration in air quality). Combustion instability is caused by a two-way coupling between unsteady combustion and acoustic waves - the large pressure oscillations that result can cause substantial mechanical damage. Currently, the lack of fast, accurate modelling tools for combustion instability, and the lack of reliable ways of suppressing it are severely hindering reductions in NOx emissions.
This proposal aims to make step improvements in both fast, accurate modelling of combustion instability, and in developing reliable active control strategies for its suppression. It will achieve this by coupling low order combustor models (these are fast, simplified models for simulating combustion instability) with advances in analytical modelling, CFD simulation, reduced order modelling and control theory tools. In particular:
* important advances in accurately incorporating the effect of entropy waves (temperature variations resulting from unsteady combustion) and non-linear flame models will be made;
* new active control strategies for achieving reliable suppression of combustion instability, including from within limit cycle oscillations, will be developed;
* an open-source low order combustor modelling tool will be developed and widely disseminated, opening access to researchers worldwide and improving communications between the fields of thermoacoustics and control theory.
Thus the proposal aims to use analytical and computational methods to contribute to achieving low NOx gas-turbine combustion, without the penalty of damaging combustion instability."
Max ERC Funding
1 489 309 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym ActiveWindFarms
Project Active Wind Farms: Optimization and Control of Atmospheric Energy Extraction in Gigawatt Wind Farms
Researcher (PI) Johan Meyers
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary With the recognition that wind energy will become an important contributor to the world’s energy portfolio, several wind farms with a capacity of over 1 gigawatt are in planning phase. In the past, engineering of wind farms focused on a bottom-up approach, in which atmospheric wind availability was considered to be fixed by climate and weather. However, farms of gigawatt size slow down the Atmospheric Boundary Layer (ABL) as a whole, reducing the availability of wind at turbine hub height. In Denmark’s large off-shore farms, this leads to underperformance of turbines which can reach levels of 40%–50% compared to the same turbine in a lone-standing case. For large wind farms, the vertical structure and turbulence physics of the flow in the ABL become crucial ingredients in their design and operation. This introduces a new set of scientific challenges related to the design and control of large wind farms. The major ambition of the present research proposal is to employ optimal control techniques to control the interaction between large wind farms and the ABL, and optimize overall farm-power extraction. Individual turbines are used as flow actuators by dynamically pitching their blades using time scales ranging between 10 to 500 seconds. The application of such control efforts on the atmospheric boundary layer has never been attempted before, and introduces flow control on a physical scale which is currently unprecedented. The PI possesses a unique combination of expertise and tools enabling these developments: efficient parallel large-eddy simulations of wind farms, multi-scale turbine modeling, and gradient-based optimization in large optimization-parameter spaces using adjoint formulations. To ensure a maximum impact on the wind-engineering field, the project aims at optimal control, experimental wind-tunnel validation, and at including multi-disciplinary aspects, related to structural mechanics, power quality, and controller design.
Summary
With the recognition that wind energy will become an important contributor to the world’s energy portfolio, several wind farms with a capacity of over 1 gigawatt are in planning phase. In the past, engineering of wind farms focused on a bottom-up approach, in which atmospheric wind availability was considered to be fixed by climate and weather. However, farms of gigawatt size slow down the Atmospheric Boundary Layer (ABL) as a whole, reducing the availability of wind at turbine hub height. In Denmark’s large off-shore farms, this leads to underperformance of turbines which can reach levels of 40%–50% compared to the same turbine in a lone-standing case. For large wind farms, the vertical structure and turbulence physics of the flow in the ABL become crucial ingredients in their design and operation. This introduces a new set of scientific challenges related to the design and control of large wind farms. The major ambition of the present research proposal is to employ optimal control techniques to control the interaction between large wind farms and the ABL, and optimize overall farm-power extraction. Individual turbines are used as flow actuators by dynamically pitching their blades using time scales ranging between 10 to 500 seconds. The application of such control efforts on the atmospheric boundary layer has never been attempted before, and introduces flow control on a physical scale which is currently unprecedented. The PI possesses a unique combination of expertise and tools enabling these developments: efficient parallel large-eddy simulations of wind farms, multi-scale turbine modeling, and gradient-based optimization in large optimization-parameter spaces using adjoint formulations. To ensure a maximum impact on the wind-engineering field, the project aims at optimal control, experimental wind-tunnel validation, and at including multi-disciplinary aspects, related to structural mechanics, power quality, and controller design.
Max ERC Funding
1 499 241 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym ADAPT
Project The Adoption of New Technological Arrays in the Production of Broadcast Television
Researcher (PI) John Cyril Paget Ellis
Host Institution (HI) ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE
Call Details Advanced Grant (AdG), SH5, ERC-2012-ADG_20120411
Summary "Since 1960, the television industry has undergone successive waves of technological change. Both the methods of programme making and the programmes themselves have changed substantially. The current opening of TV’s vast archives to public and academic use has emphasised the need to explain old programming to new users. Why particular programmes are like they are is not obvious to the contemporary viewer: the prevailing technologies imposed limits and enabled forms that have fallen into disuse. The project will examine the processes of change which gave rise to the particular dominant configurations of technologies for sound and image capture and processing, and some idea of the national and regional variants that existed. It will emphasise the capabilities of the machines in use rather than the process of their invention. The project therefore studies how the technologies of film and tape were implemented; how both broadcasters and individual filmers coped with the conflicting demands of the different machines at their disposal; how new ‘standard ways of doing things’ gradually emerged; and how all of this enabled desired changes in the resultant programmes. The project will produce an overall written account of the principal changes in the technologies in use in broadcast TV since 1960 to the near present. It will offer a theory of technological innovation, and a major case study in the adoption of digital workflow management in production for broadcasting: the so-called ‘tapeless environment’ which is currently being implemented in major organisations. It will offer two historical case studies: a longditudinal study of the evolution of tape-based sound recording and one of the rapid change from 16mm film cutting to digital editing, a process that took less than five years. Reconstructions of the process of working with particular technological arrays will be filmed and will be made available as explanatory material for any online archive of TV material ."
Summary
"Since 1960, the television industry has undergone successive waves of technological change. Both the methods of programme making and the programmes themselves have changed substantially. The current opening of TV’s vast archives to public and academic use has emphasised the need to explain old programming to new users. Why particular programmes are like they are is not obvious to the contemporary viewer: the prevailing technologies imposed limits and enabled forms that have fallen into disuse. The project will examine the processes of change which gave rise to the particular dominant configurations of technologies for sound and image capture and processing, and some idea of the national and regional variants that existed. It will emphasise the capabilities of the machines in use rather than the process of their invention. The project therefore studies how the technologies of film and tape were implemented; how both broadcasters and individual filmers coped with the conflicting demands of the different machines at their disposal; how new ‘standard ways of doing things’ gradually emerged; and how all of this enabled desired changes in the resultant programmes. The project will produce an overall written account of the principal changes in the technologies in use in broadcast TV since 1960 to the near present. It will offer a theory of technological innovation, and a major case study in the adoption of digital workflow management in production for broadcasting: the so-called ‘tapeless environment’ which is currently being implemented in major organisations. It will offer two historical case studies: a longditudinal study of the evolution of tape-based sound recording and one of the rapid change from 16mm film cutting to digital editing, a process that took less than five years. Reconstructions of the process of working with particular technological arrays will be filmed and will be made available as explanatory material for any online archive of TV material ."
Max ERC Funding
1 680 121 €
Duration
Start date: 2013-08-01, End date: 2018-07-31
Project acronym AF and MSOGR
Project Automorphic Forms and Moduli Spaces of Galois Representations
Researcher (PI) Toby Gee
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.
The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.
The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.
Summary
I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.
The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.
The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.
Max ERC Funding
1 131 339 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym AgricUrb
Project The Agricultural Origins of Urban Civilization
Researcher (PI) Amy Marie Bogaard
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH6, ERC-2012-StG_20111124
Summary The establishment of farming is a pivotal moment in human history, setting the stage for the emergence of class-based society and urbanization. Monolithic views of the nature and development of early agriculture, however, have prevented clear understanding of how exactly farming fuelled, shaped and sustained the emergence of complex societies. A breakthrough in archaeological approach is needed to determine the actual roles of farming in the emergence of social complexity. The methodology required must push beyond conventional interpretation of the most direct farming evidence – archaeobotanical remains of crops and associated arable weeds – to reconstruct not only what crops were grown, but also how, where and why farming was practised. Addressing these related aspects, in contexts ranging from early agricultural villages to some of the world’s earliest cities, would provide the key to unraveling the contribution of farming to the development of lasting social inequalities. The research proposed here takes a new interdisciplinary approach combining archaeobotany, plant stable isotope chemistry and functional plant ecology, building on groundwork laid in previous research by the applicant. These approaches will be applied to two relatively well researched areas, western Asia and Europe, where a series of sites that chart multiple pathways to early complex societies offer rich plant and other bioarchaeological assemblages. The proposed project will set a wholly new standard of insight into early farming and its relationship with early civilization, facilitating similar approaches in other parts of the world and the construction of comparative perspectives on the global significance of early agriculture in social development.
Summary
The establishment of farming is a pivotal moment in human history, setting the stage for the emergence of class-based society and urbanization. Monolithic views of the nature and development of early agriculture, however, have prevented clear understanding of how exactly farming fuelled, shaped and sustained the emergence of complex societies. A breakthrough in archaeological approach is needed to determine the actual roles of farming in the emergence of social complexity. The methodology required must push beyond conventional interpretation of the most direct farming evidence – archaeobotanical remains of crops and associated arable weeds – to reconstruct not only what crops were grown, but also how, where and why farming was practised. Addressing these related aspects, in contexts ranging from early agricultural villages to some of the world’s earliest cities, would provide the key to unraveling the contribution of farming to the development of lasting social inequalities. The research proposed here takes a new interdisciplinary approach combining archaeobotany, plant stable isotope chemistry and functional plant ecology, building on groundwork laid in previous research by the applicant. These approaches will be applied to two relatively well researched areas, western Asia and Europe, where a series of sites that chart multiple pathways to early complex societies offer rich plant and other bioarchaeological assemblages. The proposed project will set a wholly new standard of insight into early farming and its relationship with early civilization, facilitating similar approaches in other parts of the world and the construction of comparative perspectives on the global significance of early agriculture in social development.
Max ERC Funding
1 199 647 €
Duration
Start date: 2013-02-01, End date: 2017-01-31
Project acronym ALCOHOLLIFECOURSE
Project Alcohol Consumption across the Life-course: Determinants and Consequences
Researcher (PI) Anne Rebecca Britton
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary The epidemiology of alcohol use and related health consequences plays a vital role by monitoring populations’ alcohol consumption patterns and problems associated with drinking. Such studies seek to explain mechanisms linking consumption to harm and ultimately to reduce the health burden. Research needs to consider changes in drinking behaviour over the life-course. The current evidence base lacks the consideration of the complexity of lifetime consumption patterns, the predictors of change and subsequent health risks.
Aims of the study
1. To describe age-related trajectories of drinking in different settings and to determine the extent to which individual and social contextual factors, including socioeconomic position, social networks and life events influence drinking pattern trajectories.
2. To estimate the impact of drinking trajectories on physical functioning and disease and to disentangle the exposure-outcome associations in terms of a) timing, i.e. health effect of drinking patterns in early, mid and late life; and b) duration, i.e. whether the impact of drinking accumulates over time.
3. To test the bidirectional associations between health and changes in consumption over the life-course in order to estimate the relative importance of these effects and to determine the dominant temporal direction.
4. To explore mechanisms and pathways through which drinking trajectories affect health and functioning in later life and to examine the role played by potential effect modifiers of the association between drinking and poor health.
Several large, longitudinal cohort studies from European countries with repeated measures of alcohol consumption will be combined and analysed to address the aims. A new team will be formed consisting of the PI, a Research Associate and two PhD students. Dissemination will be through journals, conferences, and culminating in a one-day workshop for academics, practitioners and policy makers in the alcohol field.
Summary
The epidemiology of alcohol use and related health consequences plays a vital role by monitoring populations’ alcohol consumption patterns and problems associated with drinking. Such studies seek to explain mechanisms linking consumption to harm and ultimately to reduce the health burden. Research needs to consider changes in drinking behaviour over the life-course. The current evidence base lacks the consideration of the complexity of lifetime consumption patterns, the predictors of change and subsequent health risks.
Aims of the study
1. To describe age-related trajectories of drinking in different settings and to determine the extent to which individual and social contextual factors, including socioeconomic position, social networks and life events influence drinking pattern trajectories.
2. To estimate the impact of drinking trajectories on physical functioning and disease and to disentangle the exposure-outcome associations in terms of a) timing, i.e. health effect of drinking patterns in early, mid and late life; and b) duration, i.e. whether the impact of drinking accumulates over time.
3. To test the bidirectional associations between health and changes in consumption over the life-course in order to estimate the relative importance of these effects and to determine the dominant temporal direction.
4. To explore mechanisms and pathways through which drinking trajectories affect health and functioning in later life and to examine the role played by potential effect modifiers of the association between drinking and poor health.
Several large, longitudinal cohort studies from European countries with repeated measures of alcohol consumption will be combined and analysed to address the aims. A new team will be formed consisting of the PI, a Research Associate and two PhD students. Dissemination will be through journals, conferences, and culminating in a one-day workshop for academics, practitioners and policy makers in the alcohol field.
Max ERC Funding
1 032 815 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym ALGAME
Project Algorithms, Games, Mechanisms, and the Price of Anarchy
Researcher (PI) Elias Koutsoupias
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE6, ERC-2012-ADG_20120216
Summary The objective of this proposal is to bring together a local team of young researchers who will work closely with international collaborators to advance the state of the art of Algorithmic Game Theory and open new venues of research at the interface of Computer Science, Game Theory, and Economics. The proposal consists mainly of three intertwined research strands: algorithmic mechanism design, price of anarchy, and online algorithms.
Specifically, we will attempt to resolve some outstanding open problems in algorithmic mechanism design: characterizing the incentive compatible mechanisms for important domains, such as the domain of combinatorial auctions, and resolving the approximation ratio of mechanisms for scheduling unrelated machines. More generally, we will study centralized and distributed algorithms whose inputs are controlled by selfish agents that are interested in the outcome of the computation. We will investigate new notions of mechanisms with strong truthfulness and limited susceptibility to externalities that can facilitate modular design of mechanisms of complex domains.
We will expand the current research on the price of anarchy to time-dependent games where the players can select not only how to act but also when to act. We also plan to resolve outstanding questions on the price of stability and to build a robust approach to these questions, similar to smooth analysis. For repeated games, we will investigate convergence of simple strategies (e.g., fictitious play), online fairness, and strategic considerations (e.g., metagames). More generally, our aim is to find a productive formulation of playing unknown games by drawing on the fields of online algorithms and machine learning.
Summary
The objective of this proposal is to bring together a local team of young researchers who will work closely with international collaborators to advance the state of the art of Algorithmic Game Theory and open new venues of research at the interface of Computer Science, Game Theory, and Economics. The proposal consists mainly of three intertwined research strands: algorithmic mechanism design, price of anarchy, and online algorithms.
Specifically, we will attempt to resolve some outstanding open problems in algorithmic mechanism design: characterizing the incentive compatible mechanisms for important domains, such as the domain of combinatorial auctions, and resolving the approximation ratio of mechanisms for scheduling unrelated machines. More generally, we will study centralized and distributed algorithms whose inputs are controlled by selfish agents that are interested in the outcome of the computation. We will investigate new notions of mechanisms with strong truthfulness and limited susceptibility to externalities that can facilitate modular design of mechanisms of complex domains.
We will expand the current research on the price of anarchy to time-dependent games where the players can select not only how to act but also when to act. We also plan to resolve outstanding questions on the price of stability and to build a robust approach to these questions, similar to smooth analysis. For repeated games, we will investigate convergence of simple strategies (e.g., fictitious play), online fairness, and strategic considerations (e.g., metagames). More generally, our aim is to find a productive formulation of playing unknown games by drawing on the fields of online algorithms and machine learning.
Max ERC Funding
2 461 000 €
Duration
Start date: 2013-04-01, End date: 2019-03-31
Project acronym AMYTOX
Project Amyloid fibril cytotoxicity: new insights from novel approaches
Researcher (PI) Sheena Radford
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary Despite the discovery of amyloidosis more than a century ago, the molecular and cellular mechanisms of these devastating human disorders remain obscure. In addition to their involvement in disease, amyloid fibrils perform physiological functions, whilst others have potentials as biomaterials. To realise their use in nanotechnology and to enable the development of amyloid therapies, there is an urgent need to understand the molecular pathways of amyloid assembly and to determine how amyloid fibrils interact with cells and cellular components. The challenges lie in the transient nature and low population of aggregating species and the panoply of amyloid fibril structures. This molecular complexity renders identification of the culprits of amyloid disease impossible to achieve using traditional methods.
Here I propose a series of exciting experiments that aim to cast new light on the molecular and cellular mechanisms of amyloidosis by exploiting approaches capable of imaging individual protein molecules or single protein fibrils in vitro and in living cells. The proposal builds on new data from our laboratory that have shown that amyloid fibrils (disease-associated, functional and created from de novo designed sequences) kill cells by a mechanism that depends on fibril length and on cellular uptake. Specifically, I will (i) use single molecule fluorescence and non-covalent mass spectrometry and to determine why short fibril samples disrupt biological membranes more than their longer counterparts and electron tomography to determine, for the first time, the structural properties of cytotoxic fibril ends; (ii) develop single molecule force spectroscopy to probe the interactions between amyloid precursors, fibrils and cellular membranes; and (iii) develop cell biological assays to discover the biological mechanism(s) of amyloid-induced cell death and high resolution imaging and electron tomography to visualise amyloid fibrils in the act of killing living cells.
Summary
Despite the discovery of amyloidosis more than a century ago, the molecular and cellular mechanisms of these devastating human disorders remain obscure. In addition to their involvement in disease, amyloid fibrils perform physiological functions, whilst others have potentials as biomaterials. To realise their use in nanotechnology and to enable the development of amyloid therapies, there is an urgent need to understand the molecular pathways of amyloid assembly and to determine how amyloid fibrils interact with cells and cellular components. The challenges lie in the transient nature and low population of aggregating species and the panoply of amyloid fibril structures. This molecular complexity renders identification of the culprits of amyloid disease impossible to achieve using traditional methods.
Here I propose a series of exciting experiments that aim to cast new light on the molecular and cellular mechanisms of amyloidosis by exploiting approaches capable of imaging individual protein molecules or single protein fibrils in vitro and in living cells. The proposal builds on new data from our laboratory that have shown that amyloid fibrils (disease-associated, functional and created from de novo designed sequences) kill cells by a mechanism that depends on fibril length and on cellular uptake. Specifically, I will (i) use single molecule fluorescence and non-covalent mass spectrometry and to determine why short fibril samples disrupt biological membranes more than their longer counterparts and electron tomography to determine, for the first time, the structural properties of cytotoxic fibril ends; (ii) develop single molecule force spectroscopy to probe the interactions between amyloid precursors, fibrils and cellular membranes; and (iii) develop cell biological assays to discover the biological mechanism(s) of amyloid-induced cell death and high resolution imaging and electron tomography to visualise amyloid fibrils in the act of killing living cells.
Max ERC Funding
2 498 465 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym ANGLE
Project Accelerated design and discovery of novel molecular materials via global lattice energy minimisation
Researcher (PI) Graeme Matthew Day
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary The goal of crystal engineering is the design of functional crystalline materials in which the arrangement of basic structural building blocks imparts desired properties. The engineering of organic molecular crystals has, to date, relied largely on empirical rules governing the intermolecular association of functional groups in the solid state. However, many materials properties depend intricately on the complete crystal structure, i.e. the unit cell, space group and atomic positions, which cannot be predicted solely using such rules. Therefore, the development of computational methods for crystal structure prediction (CSP) from first principles has been a goal of computational chemistry that could significantly accelerate the design of new materials. It is only recently that the necessary advances in the modelling of intermolecular interactions and developments in algorithms for identifying all relevant crystal structures have come together to provide predictive methods that are becoming reliable and affordable on a timescale that could usefully complement an experimental research programme. The principle aim of the proposed work is to establish the use of state-of-the-art crystal structure prediction methods as a means of guiding the discovery and design of novel molecular materials.
This research proposal both continues the development of the computational methods for CSP and, by developing a computational framework for screening of potential molecules, develops the application of these methods for materials design. The areas on which we will focus are organic molecular semiconductors with high charge carrier mobilities and, building on our recently published results in Nature [1], the development of porous organic molecular materials. The project will both deliver novel materials, as well as improvements in the reliability of computational methods that will find widespread applications in materials chemistry.
[1] Nature 2011, 474, 367-371.
Summary
The goal of crystal engineering is the design of functional crystalline materials in which the arrangement of basic structural building blocks imparts desired properties. The engineering of organic molecular crystals has, to date, relied largely on empirical rules governing the intermolecular association of functional groups in the solid state. However, many materials properties depend intricately on the complete crystal structure, i.e. the unit cell, space group and atomic positions, which cannot be predicted solely using such rules. Therefore, the development of computational methods for crystal structure prediction (CSP) from first principles has been a goal of computational chemistry that could significantly accelerate the design of new materials. It is only recently that the necessary advances in the modelling of intermolecular interactions and developments in algorithms for identifying all relevant crystal structures have come together to provide predictive methods that are becoming reliable and affordable on a timescale that could usefully complement an experimental research programme. The principle aim of the proposed work is to establish the use of state-of-the-art crystal structure prediction methods as a means of guiding the discovery and design of novel molecular materials.
This research proposal both continues the development of the computational methods for CSP and, by developing a computational framework for screening of potential molecules, develops the application of these methods for materials design. The areas on which we will focus are organic molecular semiconductors with high charge carrier mobilities and, building on our recently published results in Nature [1], the development of porous organic molecular materials. The project will both deliver novel materials, as well as improvements in the reliability of computational methods that will find widespread applications in materials chemistry.
[1] Nature 2011, 474, 367-371.
Max ERC Funding
1 499 906 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym ANTINEUTRINONOVA
Project Probing Fundamental Physics with Antineutrinos at the NOvA Experiment
Researcher (PI) Jeffrey Hartnell
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary "This proposal addresses major questions in particle physics that are at the forefront of experimental and theoretical physics research today. The results offered would have far-reaching implications in other fields such as cosmology and could help answer some of the big questions such as why the universe contains so much more matter than antimatter. The research objectives of this proposal are to (i) make world-leading tests of CPT symmetry and (ii) discover the neutrino mass hierarchy and search for indications of leptonic CP violation.
The NOvA long-baseline neutrino oscillation experiment will use a novel ""totally active scintillator design"" for the detector technology and will be exposed to the world's highest power neutrino beam. Building on the first direct observation of muon antineutrino disappearance (that was made by a group founded and led by the PI at the MINOS experiment), tests of CPT symmetry will be performed by looking for differences in the mass squared splittings and mixing angles between neutrinos and antineutrinos. The potential to discover the mass hierarchy is unique to NOvA on the timescale of this proposal due to the long 810 km baseline and the well measured beam of neutrinos and antineutrinos.
This proposal addresses several key challenges in a long-baseline neutrino oscillation experiment with the following tasks: (i) development of a new approach to event energy reconstruction that is expected to have widespread applicability for future neutrino experiments; (ii) undertaking a comprehensive calibration project, exploiting a novel technique developed by the PI, that will be essential to achieving the physics goals; (iii) development of a sophisticated statistical analyses.
The results promised in this proposal surpass the sensitivity to antineutrino oscillation parameters of current 1st generation experiments by at least an order of magnitude, offering wide scope for profound discoveries with implications across disciplines."
Summary
"This proposal addresses major questions in particle physics that are at the forefront of experimental and theoretical physics research today. The results offered would have far-reaching implications in other fields such as cosmology and could help answer some of the big questions such as why the universe contains so much more matter than antimatter. The research objectives of this proposal are to (i) make world-leading tests of CPT symmetry and (ii) discover the neutrino mass hierarchy and search for indications of leptonic CP violation.
The NOvA long-baseline neutrino oscillation experiment will use a novel ""totally active scintillator design"" for the detector technology and will be exposed to the world's highest power neutrino beam. Building on the first direct observation of muon antineutrino disappearance (that was made by a group founded and led by the PI at the MINOS experiment), tests of CPT symmetry will be performed by looking for differences in the mass squared splittings and mixing angles between neutrinos and antineutrinos. The potential to discover the mass hierarchy is unique to NOvA on the timescale of this proposal due to the long 810 km baseline and the well measured beam of neutrinos and antineutrinos.
This proposal addresses several key challenges in a long-baseline neutrino oscillation experiment with the following tasks: (i) development of a new approach to event energy reconstruction that is expected to have widespread applicability for future neutrino experiments; (ii) undertaking a comprehensive calibration project, exploiting a novel technique developed by the PI, that will be essential to achieving the physics goals; (iii) development of a sophisticated statistical analyses.
The results promised in this proposal surpass the sensitivity to antineutrino oscillation parameters of current 1st generation experiments by at least an order of magnitude, offering wide scope for profound discoveries with implications across disciplines."
Max ERC Funding
1 415 848 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym APGRAPH
Project Asymptotic Graph Properties
Researcher (PI) Deryk Osthus
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary Many parts of Graph Theory have witnessed a huge growth over the last years, partly because of their relation to Theoretical Computer Science and Statistical Physics. These connections arise because graphs can be used to model many diverse structures.
The focus of this proposal is on asymptotic results, i.e. the graphs under consideration are large. This often unveils patterns and connections which remain obscure when considering only small graphs.
It also allows for the use of powerful techniques such as probabilistic arguments, which have led to spectacular new developments. In particular, my aim is to make decisive progress on central problems in the following 4 areas:
(1) Factorizations: Factorizations of graphs can be viewed as partitions of the edges of a graph into simple regular structures. They have a rich history and arise in many different settings, such as edge-colouring problems, decomposition problems and in information theory. They also have applications to finding good tours for the famous Travelling salesman problem.
(2) Hamilton cycles: A Hamilton cycle is a cycle which contains all the vertices of the graph. One of the most fundamental problems in Graph Theory/Theoretical Computer Science is to find conditions which guarantee the existence of a Hamilton cycle in a graph.
(3) Embeddings of graphs: This is a natural (but difficult) continuation of the previous question where the aim is to embed more general structures than Hamilton cycles - there has been exciting progress here in recent years which has opened up new avenues.
(4) Resilience of graphs: In many cases, it is important to know whether a graph `strongly’ possesses some property, i.e. one cannot destroy the property by changing a few edges. The systematic study of this notion is a new and rapidly growing area.
I have developed new methods for deep and long-standing problems in these areas which will certainly lead to further applications elsewhere.
Summary
Many parts of Graph Theory have witnessed a huge growth over the last years, partly because of their relation to Theoretical Computer Science and Statistical Physics. These connections arise because graphs can be used to model many diverse structures.
The focus of this proposal is on asymptotic results, i.e. the graphs under consideration are large. This often unveils patterns and connections which remain obscure when considering only small graphs.
It also allows for the use of powerful techniques such as probabilistic arguments, which have led to spectacular new developments. In particular, my aim is to make decisive progress on central problems in the following 4 areas:
(1) Factorizations: Factorizations of graphs can be viewed as partitions of the edges of a graph into simple regular structures. They have a rich history and arise in many different settings, such as edge-colouring problems, decomposition problems and in information theory. They also have applications to finding good tours for the famous Travelling salesman problem.
(2) Hamilton cycles: A Hamilton cycle is a cycle which contains all the vertices of the graph. One of the most fundamental problems in Graph Theory/Theoretical Computer Science is to find conditions which guarantee the existence of a Hamilton cycle in a graph.
(3) Embeddings of graphs: This is a natural (but difficult) continuation of the previous question where the aim is to embed more general structures than Hamilton cycles - there has been exciting progress here in recent years which has opened up new avenues.
(4) Resilience of graphs: In many cases, it is important to know whether a graph `strongly’ possesses some property, i.e. one cannot destroy the property by changing a few edges. The systematic study of this notion is a new and rapidly growing area.
I have developed new methods for deep and long-standing problems in these areas which will certainly lead to further applications elsewhere.
Max ERC Funding
818 414 €
Duration
Start date: 2012-12-01, End date: 2018-11-30
Project acronym APHIDHOST
Project Molecular determinants of aphid host range
Researcher (PI) Jorunn Indra Berit Bos
Host Institution (HI) THE JAMES HUTTON INSTITUTE
Call Details Starting Grant (StG), LS9, ERC-2012-StG_20111109
Summary Many aphid species are restricted to one or few host plants, while some aphids, many of which are of agricultural importance, can infest a wide range of plant species. An important observation is that aphids spend a considerable time on nonhost species, where they probe the leaf tissue and secrete saliva, but for unknown reasons are unable to ingest phloem sap. This suggest that aphids, like plant pathogens, interact with nonhost plants at the molecular level, but potentially are not successful in suppressing plant defenses and/or releasing nutrients. To date, however, the plant cellular changes and the involvement of immune response, such as ETI and PTI, in aphid-host and -nonhost interactions remain elusive. The aim of the proposed project is to gain insight into the level of cellular host reprogramming that takes place during aphid-host interactions, the cellular processes involved in aphid nonhost resistance, and the role of aphid effectors in determining host range. We will compare interactions of two economically important aphid species, Myzus persicae (green peach aphid) and Rhopalosiphum padi (bird cherry oat aphid), with host and nonhost plants. We will investigate local changes in plant cellular processes during aphid-host and -nonhost interactions using microscopy and biochemistry approaches. We will apply a comparative transcriptomics approach and functional assays to identify aphid effectors as potential determinants of host range. Herein we will specifically looks for aphids-species specific effectors and those that are expressed in specific host interactions. To gain insight into molecular mechanisms of effector activities we will identify host targets and investigate the contribution of effector-target interactions to host range. The expected outcomes of the project will, in the long term, contribute to the development of novel strategies to control infestations by aphids and potentially other pests and pathogens, thereby improving food security.
Summary
Many aphid species are restricted to one or few host plants, while some aphids, many of which are of agricultural importance, can infest a wide range of plant species. An important observation is that aphids spend a considerable time on nonhost species, where they probe the leaf tissue and secrete saliva, but for unknown reasons are unable to ingest phloem sap. This suggest that aphids, like plant pathogens, interact with nonhost plants at the molecular level, but potentially are not successful in suppressing plant defenses and/or releasing nutrients. To date, however, the plant cellular changes and the involvement of immune response, such as ETI and PTI, in aphid-host and -nonhost interactions remain elusive. The aim of the proposed project is to gain insight into the level of cellular host reprogramming that takes place during aphid-host interactions, the cellular processes involved in aphid nonhost resistance, and the role of aphid effectors in determining host range. We will compare interactions of two economically important aphid species, Myzus persicae (green peach aphid) and Rhopalosiphum padi (bird cherry oat aphid), with host and nonhost plants. We will investigate local changes in plant cellular processes during aphid-host and -nonhost interactions using microscopy and biochemistry approaches. We will apply a comparative transcriptomics approach and functional assays to identify aphid effectors as potential determinants of host range. Herein we will specifically looks for aphids-species specific effectors and those that are expressed in specific host interactions. To gain insight into molecular mechanisms of effector activities we will identify host targets and investigate the contribution of effector-target interactions to host range. The expected outcomes of the project will, in the long term, contribute to the development of novel strategies to control infestations by aphids and potentially other pests and pathogens, thereby improving food security.
Max ERC Funding
1 463 840 €
Duration
Start date: 2013-02-01, End date: 2018-10-31
Project acronym ARCAS
Project ARCAS: Analysis of the Route to Commercialisation of MVA based influenza vaccines
Researcher (PI) Albertus Dominicus Marcellinus Erasmus OSTERHAUS
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Proof of Concept (PoC), PC1, ERC-2012-PoC
Summary ARCAS will investigate the commercial potential and commercialization strategy of a platform of continuously updated repository of pandemic influenza vaccine candidates that was developed under the ERC project FLUPLAN. This platform is based on a novel vector technology using recombinant modified vaccinia virus Ankara (MVA) to develop pandemic influenza vaccines. There are two major advantages of the platform in comparison to current pandemic influenza vaccine platforms using adjuvanted-inactivated and live-attenuated influenza vaccines: i) the high immunogenicity induced in the absence of adjuvants, even at very low dosages, and ii) higher and faster vaccine production capacity. This addresses today’s key unmet needs of pandemic influenza vaccines: strong and broad immunogenicity as well as virtually unlimited production capacity for large scale vaccination campaigns needed in the face of an emerging influenza pandemic. While FLUPLAN addresses the technical development of the platform, including one of the promising candidate vaccines (MVA-based influenza A/H5N1 vaccine), ARCAS will focus on the commercial potential and the commercialization strategy for the platform. This will be achieved by conducting an extensive market study to determine the potential for the novel vaccine repository platform, by analyzing the IP position to build a solid IP portfolio, and by conducting a technical evaluation on the potential of the platform. This will provide the basis to determine the commercial potential and subsequently the most viable commercialization strategy for the platform, to be detailed in a strategic business plan. Furthermore, as part of the strategic business plan, we aim to develop a sound factsheet that will allow potential commercial partners to invest in the technology, addressing the current influenza market needs, given the competitive advantage offered by the platform.
Summary
ARCAS will investigate the commercial potential and commercialization strategy of a platform of continuously updated repository of pandemic influenza vaccine candidates that was developed under the ERC project FLUPLAN. This platform is based on a novel vector technology using recombinant modified vaccinia virus Ankara (MVA) to develop pandemic influenza vaccines. There are two major advantages of the platform in comparison to current pandemic influenza vaccine platforms using adjuvanted-inactivated and live-attenuated influenza vaccines: i) the high immunogenicity induced in the absence of adjuvants, even at very low dosages, and ii) higher and faster vaccine production capacity. This addresses today’s key unmet needs of pandemic influenza vaccines: strong and broad immunogenicity as well as virtually unlimited production capacity for large scale vaccination campaigns needed in the face of an emerging influenza pandemic. While FLUPLAN addresses the technical development of the platform, including one of the promising candidate vaccines (MVA-based influenza A/H5N1 vaccine), ARCAS will focus on the commercial potential and the commercialization strategy for the platform. This will be achieved by conducting an extensive market study to determine the potential for the novel vaccine repository platform, by analyzing the IP position to build a solid IP portfolio, and by conducting a technical evaluation on the potential of the platform. This will provide the basis to determine the commercial potential and subsequently the most viable commercialization strategy for the platform, to be detailed in a strategic business plan. Furthermore, as part of the strategic business plan, we aim to develop a sound factsheet that will allow potential commercial partners to invest in the technology, addressing the current influenza market needs, given the competitive advantage offered by the platform.
Max ERC Funding
149 840 €
Duration
Start date: 2012-12-01, End date: 2013-11-30
Project acronym ARCHOFCON
Project The Architecture of Consciousness
Researcher (PI) Timothy John Bayne
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The nature of consciousness is one of the great unsolved mysteries of science. Although the global research effort dedicated to explaining how consciousness arises from neural and cognitive activity is now more than two decades old, as yet there is no widely accepted theory of consciousness. One reason for why no adequate theory of consciousness has yet been found is that there is a lack of clarity about what exactly a theory of consciousness needs to explain. What is needed is thus a model of the general features of consciousness — a model of the ‘architecture’ of consciousness — that will systematize the structural differences between conscious states, processes and creatures on the one hand and unconscious states, processes and creatures on the other. The aim of this project is to remove one of the central impediments to the progress of the science of consciousness by constructing such a model.
A great many of the data required for this task already exist, but these data concern different aspects of consciousness and are distributed across many disciplines. As a result, there have been few attempts to develop a truly comprehensive model of the architecture of consciousness. This project will overcome the limitations of previous work by drawing on research in philosophy, psychology, psychiatry, and cognitive neuroscience to develop a model of the architecture of consciousness that is structured around five of its core features: its subjectivity, its temporality, its unity, its selectivity, and its dimensionality (that is, the relationship between the levels of consciousness and the contents of consciousness). By providing a comprehensive characterization of what a theory of consciousness needs to explain, this project will provide a crucial piece of the puzzle of consciousness, enabling future generations of researchers to bridge the gap between raw data on the one hand and a full-blown theory of consciousness on the other
Summary
The nature of consciousness is one of the great unsolved mysteries of science. Although the global research effort dedicated to explaining how consciousness arises from neural and cognitive activity is now more than two decades old, as yet there is no widely accepted theory of consciousness. One reason for why no adequate theory of consciousness has yet been found is that there is a lack of clarity about what exactly a theory of consciousness needs to explain. What is needed is thus a model of the general features of consciousness — a model of the ‘architecture’ of consciousness — that will systematize the structural differences between conscious states, processes and creatures on the one hand and unconscious states, processes and creatures on the other. The aim of this project is to remove one of the central impediments to the progress of the science of consciousness by constructing such a model.
A great many of the data required for this task already exist, but these data concern different aspects of consciousness and are distributed across many disciplines. As a result, there have been few attempts to develop a truly comprehensive model of the architecture of consciousness. This project will overcome the limitations of previous work by drawing on research in philosophy, psychology, psychiatry, and cognitive neuroscience to develop a model of the architecture of consciousness that is structured around five of its core features: its subjectivity, its temporality, its unity, its selectivity, and its dimensionality (that is, the relationship between the levels of consciousness and the contents of consciousness). By providing a comprehensive characterization of what a theory of consciousness needs to explain, this project will provide a crucial piece of the puzzle of consciousness, enabling future generations of researchers to bridge the gap between raw data on the one hand and a full-blown theory of consciousness on the other
Max ERC Funding
1 477 483 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym ARSEM
Project LANGUAGE–PHILOLOGY–CULTURE: Arab Cultural Semantics in Transition
Researcher (PI) Kirill Dmitriev
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Starting Grant (StG), SH5, ERC-2012-StG_20111124
Summary This project aims to study:
• the semantic development of the vocabulary of the Arabic language,
• philological discourses on the semantic changes in the language in the classical Arabic philological tradition (8th-10th centuries A.D.), and
• the impact of Arabic philology in the wider historical and cultural context of the Judaeo-Arab neo-classical heritage (12th-13th centuries A.D.) and Christian-Arab intellectual history on the eve of modernity (19th century A.D.).
The project will explore the universal cultural significance and the pivotal role of language consciousness in the history of Arab culture. It will introduce a new dimension into the existing research on the Arabic language and Arabic philology, which until now have been studied without any comprehensive cultural and social contextualisation. The project will focus on the process of the transmission of Arabic poetry, which provides detailed evidence of the development of Arabic philological thought and its universal significance for the theological, philosophical, historical and linguistic discourses of Arab intellectual history. This project will document the transmission of early Arabic poetry and analyse its vocabulary in a systematic way for the first time. For this purpose it will create an Analytical Database of Arabic Poetry. This publicly accessible database will represent a ground-breaking contribution to European research on the Arabic language and the Arabic philological heritage, which so far lacks even such fundamental tools as an etymological dictionary of the Arabic language or a complete dictionary of Classical Arabic. The database will implement comprehensive analytical tools and will serve as a reference work for wider research on Arabic literature, history and culture. Thus, the project will create an integrative research platform for the history and semantics of the Arabic language—a subject indispensable for understanding the foundations of Arab culture past and present.
Summary
This project aims to study:
• the semantic development of the vocabulary of the Arabic language,
• philological discourses on the semantic changes in the language in the classical Arabic philological tradition (8th-10th centuries A.D.), and
• the impact of Arabic philology in the wider historical and cultural context of the Judaeo-Arab neo-classical heritage (12th-13th centuries A.D.) and Christian-Arab intellectual history on the eve of modernity (19th century A.D.).
The project will explore the universal cultural significance and the pivotal role of language consciousness in the history of Arab culture. It will introduce a new dimension into the existing research on the Arabic language and Arabic philology, which until now have been studied without any comprehensive cultural and social contextualisation. The project will focus on the process of the transmission of Arabic poetry, which provides detailed evidence of the development of Arabic philological thought and its universal significance for the theological, philosophical, historical and linguistic discourses of Arab intellectual history. This project will document the transmission of early Arabic poetry and analyse its vocabulary in a systematic way for the first time. For this purpose it will create an Analytical Database of Arabic Poetry. This publicly accessible database will represent a ground-breaking contribution to European research on the Arabic language and the Arabic philological heritage, which so far lacks even such fundamental tools as an etymological dictionary of the Arabic language or a complete dictionary of Classical Arabic. The database will implement comprehensive analytical tools and will serve as a reference work for wider research on Arabic literature, history and culture. Thus, the project will create an integrative research platform for the history and semantics of the Arabic language—a subject indispensable for understanding the foundations of Arab culture past and present.
Max ERC Funding
1 499 507 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym ARTIMATTER
Project "Lego-Style Materials, Structures and Devices Assembled on Demand from Isolated Atomic Planes"
Researcher (PI) Andre Geim
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Advanced Grant (AdG), PE3, ERC-2012-ADG_20120216
Summary "Following the advent of graphene with its wide range of unique properties, several other one-atom-thick crystals have been isolated and their preliminary studies have been undertaken. They range from semiconducting monolayers of MoS2 and NbSe2, which similar to graphene exhibit the electric field effect and relatively high electronic quality, to wide-gap insulators such as boron-nitride monolayers that can serve as atomically-thin tunnel barriers.
This library of two-dimensional crystals opens a possibility to construct various 3D structures with on-demand properties, which do not exist in nature but can be assembled in Lego style by stacking individual atomic planes on top of each other in a desired sequence. This project is to explore this new avenue.
We will design, fabricate and study multilayer materials ranging from basic heterostructures that consist of a few alternating layers of graphene and boron nitride and already exhibit a rich spectrum of new phenomena, as recently demonstrated by the applicant’s group, to complex artificial materials containing many layers of different 2D crystals and mimicking, for example, layered superconductors. In a similar manner, various electronic, optoelectronic, micromechanical and other devices will be developed and investigated. The applicant’s aim is to search for new materials with unique properties, novel devices with better characteristics and new physics that is likely to emerge along the way.
The proposed research offers many exciting opportunities and can lead to the development of a large unexplored field with impact exceeding even that of graphene research. This presents a unique, once-in-decade, opportunity to make a very significant breakthrough in condensed matter physics and materials science."
Summary
"Following the advent of graphene with its wide range of unique properties, several other one-atom-thick crystals have been isolated and their preliminary studies have been undertaken. They range from semiconducting monolayers of MoS2 and NbSe2, which similar to graphene exhibit the electric field effect and relatively high electronic quality, to wide-gap insulators such as boron-nitride monolayers that can serve as atomically-thin tunnel barriers.
This library of two-dimensional crystals opens a possibility to construct various 3D structures with on-demand properties, which do not exist in nature but can be assembled in Lego style by stacking individual atomic planes on top of each other in a desired sequence. This project is to explore this new avenue.
We will design, fabricate and study multilayer materials ranging from basic heterostructures that consist of a few alternating layers of graphene and boron nitride and already exhibit a rich spectrum of new phenomena, as recently demonstrated by the applicant’s group, to complex artificial materials containing many layers of different 2D crystals and mimicking, for example, layered superconductors. In a similar manner, various electronic, optoelectronic, micromechanical and other devices will be developed and investigated. The applicant’s aim is to search for new materials with unique properties, novel devices with better characteristics and new physics that is likely to emerge along the way.
The proposed research offers many exciting opportunities and can lead to the development of a large unexplored field with impact exceeding even that of graphene research. This presents a unique, once-in-decade, opportunity to make a very significant breakthrough in condensed matter physics and materials science."
Max ERC Funding
2 200 000 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym AUTHORITARIANGLOBAL
Project Authoritarianism in a Global Age: Controlling Information and Communication, Association and People Movement
Researcher (PI) Marlies Glasius
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), SH2, ERC-2012-ADG_20120411
Summary The overarching research question of this project is: how is authoritarian rule affected by and responding to globalisation of (a) information and communication, (b) association, and (c) people movement? The wholly unpredicted series of revolts that recently spread across the Arab world suggests that the nature and sustainability of contemporary authoritarian rule are not well-understood. Openness to global ICT and media, international NGOs, and inflow and outflow of people have thrown up new challenges for authoritarian rulers in terms of how to control citizens. This project investigates changes in both the nature and the sustainability of authoritarian rule in relation to the erosion of decision-making autonomy at the state level posited by globalisation theorists.
In four sub-projects, this project will investigate:
1. Whether, how and to what extent globalisation of information and communication, association, and people movement affect authoritarian persistence (longitudinal quantitative study, 1970-2011)
2. How, i.e. with what policy mechanisms, authoritarian states respond to globalisation of information and communication, association, and people movement (qualitative multi-sited studies relating to Belarus, China, Iran and Zimbabwe)
3. How to understand the phenomenon of subnational authoritarianism in its engagement with the democratic state and the wider world in relation to information and communication, association, and people movement (mixed method subnational studies of states within India and Mexico)
4. What authoritarianism is in a global age: reconsidering authoritarianism’s defining characteristics of low accountability and high coercion, and whether these still relate exclusively to statehood (theory study)
The project will transcend the theoretical and empirical separation between globalisation studies (which have neglected authoritarian contexts) and authoritarianism studies(which have taken relatively little notice of effects of globalisation)
Summary
The overarching research question of this project is: how is authoritarian rule affected by and responding to globalisation of (a) information and communication, (b) association, and (c) people movement? The wholly unpredicted series of revolts that recently spread across the Arab world suggests that the nature and sustainability of contemporary authoritarian rule are not well-understood. Openness to global ICT and media, international NGOs, and inflow and outflow of people have thrown up new challenges for authoritarian rulers in terms of how to control citizens. This project investigates changes in both the nature and the sustainability of authoritarian rule in relation to the erosion of decision-making autonomy at the state level posited by globalisation theorists.
In four sub-projects, this project will investigate:
1. Whether, how and to what extent globalisation of information and communication, association, and people movement affect authoritarian persistence (longitudinal quantitative study, 1970-2011)
2. How, i.e. with what policy mechanisms, authoritarian states respond to globalisation of information and communication, association, and people movement (qualitative multi-sited studies relating to Belarus, China, Iran and Zimbabwe)
3. How to understand the phenomenon of subnational authoritarianism in its engagement with the democratic state and the wider world in relation to information and communication, association, and people movement (mixed method subnational studies of states within India and Mexico)
4. What authoritarianism is in a global age: reconsidering authoritarianism’s defining characteristics of low accountability and high coercion, and whether these still relate exclusively to statehood (theory study)
The project will transcend the theoretical and empirical separation between globalisation studies (which have neglected authoritarian contexts) and authoritarianism studies(which have taken relatively little notice of effects of globalisation)
Max ERC Funding
2 451 179 €
Duration
Start date: 2013-10-01, End date: 2019-02-28
Project acronym AXONSURVIVAL
Project Axon survival: the role of protein synthesis
Researcher (PI) Christine Elizabeth Holt
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), LS5, ERC-2012-ADG_20120314
Summary Neurons make long-distance connections with synaptic targets via axons. These axons survive throughout the lifetime of an organism, often many years in mammals, yet how axons are maintained is not fully understood. Recently, we provided in vivo evidence that local mRNA translation in mature axons is required for their maintenance. This new finding, along with in vitro work from other groups, indicates that promoting axonal protein synthesis is a key mechanism by which trophic factors act to prevent axon degeneration. Here we propose a program of research to investigate the importance of ribosomal proteins (RPs) in axon maintenance and degeneration. The rationale for this is fourfold. First, recent genome-wide studies of axonal transcriptomes have revealed that protein synthesis (including RP mRNAs) is the highest functional category in several neuronal types. Second, some RPs have evolved extra-ribosomal functions that include signalling, such as 67LR which acts both as a cell surface receptor for laminin and as a RP. Third, mutations in different RPs in vertebrates cause unexpectedly specific defects, such as the loss of optic axons. Fourth, preliminary results show that RP mRNAs are translated in optic axons in response to trophic factors. Collectively these findings lead us to propose that locally synthesized RPs play a role in axon maintenance through either ribosomal or extra-ribosomal function. To pursue this proposal, we will perform unbiased screens and functional assays using an array of experimental approaches and animal models. By gaining an understanding of how local RP synthesis contributes to axon survival, our studies have the potential to provide novel insights into how components conventionally associated with a housekeeping role (translation) are linked to axon degeneration. Our findings could provide new directions for developing therapeutic tools for neurodegenerative disorders and may have an impact on more diverse areas of biology and disease.
Summary
Neurons make long-distance connections with synaptic targets via axons. These axons survive throughout the lifetime of an organism, often many years in mammals, yet how axons are maintained is not fully understood. Recently, we provided in vivo evidence that local mRNA translation in mature axons is required for their maintenance. This new finding, along with in vitro work from other groups, indicates that promoting axonal protein synthesis is a key mechanism by which trophic factors act to prevent axon degeneration. Here we propose a program of research to investigate the importance of ribosomal proteins (RPs) in axon maintenance and degeneration. The rationale for this is fourfold. First, recent genome-wide studies of axonal transcriptomes have revealed that protein synthesis (including RP mRNAs) is the highest functional category in several neuronal types. Second, some RPs have evolved extra-ribosomal functions that include signalling, such as 67LR which acts both as a cell surface receptor for laminin and as a RP. Third, mutations in different RPs in vertebrates cause unexpectedly specific defects, such as the loss of optic axons. Fourth, preliminary results show that RP mRNAs are translated in optic axons in response to trophic factors. Collectively these findings lead us to propose that locally synthesized RPs play a role in axon maintenance through either ribosomal or extra-ribosomal function. To pursue this proposal, we will perform unbiased screens and functional assays using an array of experimental approaches and animal models. By gaining an understanding of how local RP synthesis contributes to axon survival, our studies have the potential to provide novel insights into how components conventionally associated with a housekeeping role (translation) are linked to axon degeneration. Our findings could provide new directions for developing therapeutic tools for neurodegenerative disorders and may have an impact on more diverse areas of biology and disease.
Max ERC Funding
2 426 573 €
Duration
Start date: 2013-03-01, End date: 2018-09-30
Project acronym BACKTOBACK
Project Engineering Solutions for Back Pain: Simulation of Patient Variance
Researcher (PI) Ruth Wilcox
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary Back pain affects eight out of ten adults during their lifetime. It a huge economic burden on society, estimated to cost as much as 1-2% of gross national product in several European countries. Treatments for back pain have lower levels of success and are not as technologically mature as those for other musculoskeletal disorders such as hip and knee replacement. This application proposes to tackle one of the major barriers to the development of better surgical treatments for back pain.
At present, new spinal devices are commonly assessed in isolation in the laboratory under standardised conditions that do not represent the variation across the patient population. Consequently many interventions have failed during clinical trials or have proved to have poor long term success rates.
Using a combination of computational and experimental models, a new testing methodology will be developed that will enable the variation between patients to be simulated for the first time. This will enable spinal implants and therapies to be more robustly evaluated across a virtual patient population prior to clinical trial. The tools developed will be used in collaboration with clinicians and basic scientists to develop and, crucially, optimise new treatments that reduce back pain whilst preserving the unique functions of the spine.
If successful, this approach could be translated to evaluate and optimise emerging minimally invasive treatments in other joints such as the hip and knee. Research in the spine could then, for the first time, lead rather than follow that undertaken in other branches of orthopaedics.
Summary
Back pain affects eight out of ten adults during their lifetime. It a huge economic burden on society, estimated to cost as much as 1-2% of gross national product in several European countries. Treatments for back pain have lower levels of success and are not as technologically mature as those for other musculoskeletal disorders such as hip and knee replacement. This application proposes to tackle one of the major barriers to the development of better surgical treatments for back pain.
At present, new spinal devices are commonly assessed in isolation in the laboratory under standardised conditions that do not represent the variation across the patient population. Consequently many interventions have failed during clinical trials or have proved to have poor long term success rates.
Using a combination of computational and experimental models, a new testing methodology will be developed that will enable the variation between patients to be simulated for the first time. This will enable spinal implants and therapies to be more robustly evaluated across a virtual patient population prior to clinical trial. The tools developed will be used in collaboration with clinicians and basic scientists to develop and, crucially, optimise new treatments that reduce back pain whilst preserving the unique functions of the spine.
If successful, this approach could be translated to evaluate and optimise emerging minimally invasive treatments in other joints such as the hip and knee. Research in the spine could then, for the first time, lead rather than follow that undertaken in other branches of orthopaedics.
Max ERC Funding
1 498 777 €
Duration
Start date: 2012-12-01, End date: 2018-11-30