Project acronym 19TH-CENTURY_EUCLID
Project Nineteenth-Century Euclid: Geometry and the Literary Imagination from Wordsworth to Wells
Researcher (PI) Alice Jenkins
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Summary
This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Max ERC Funding
323 118 €
Duration
Start date: 2009-01-01, End date: 2011-10-31
Project acronym 1stProposal
Project An alternative development of analytic number theory and applications
Researcher (PI) ANDREW Granville
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), PE1, ERC-2014-ADG
Summary The traditional (Riemann) approach to analytic number theory uses the zeros of zeta functions. This requires the associated multiplicative function, say f(n), to have special enough properties that the associated Dirichlet series may be analytically continued. In this proposal we continue to develop an approach which requires less of the multiplicative function, linking the original question with the mean value of f. Such techniques have been around for a long time but have generally been regarded as “ad hoc”. In this project we aim to show that one can develop a coherent approach to the whole subject, not only reproving all of the old results, but also many new ones that appear inaccessible to traditional methods.
Our first goal is to complete a monograph yielding a reworking of all the classical theory using these new methods and then to push forward in new directions. The most important is to extend these techniques to GL(n) L-functions, which we hope will now be feasible having found the correct framework in which to proceed. Since we rarely know how to analytically continue such L-functions this could be of great benefit to the subject.
We are developing the large sieve so that it can be used for individual moduli, and will determine a strong form of that. Also a new method to give asymptotics for mean values, when they are not too small.
We wish to incorporate techniques of analytic number theory into our theory, for example recent advances on mean values of Dirichlet polynomials. Also the recent breakthroughs on the sieve suggest strong links that need further exploration.
Additive combinatorics yields important results in many areas. There are strong analogies between its results, and those for multiplicative functions, especially in large value spectrum theory, and its applications. We hope to develop these further.
Much of this is joint work with K Soundararajan of Stanford University.
Summary
The traditional (Riemann) approach to analytic number theory uses the zeros of zeta functions. This requires the associated multiplicative function, say f(n), to have special enough properties that the associated Dirichlet series may be analytically continued. In this proposal we continue to develop an approach which requires less of the multiplicative function, linking the original question with the mean value of f. Such techniques have been around for a long time but have generally been regarded as “ad hoc”. In this project we aim to show that one can develop a coherent approach to the whole subject, not only reproving all of the old results, but also many new ones that appear inaccessible to traditional methods.
Our first goal is to complete a monograph yielding a reworking of all the classical theory using these new methods and then to push forward in new directions. The most important is to extend these techniques to GL(n) L-functions, which we hope will now be feasible having found the correct framework in which to proceed. Since we rarely know how to analytically continue such L-functions this could be of great benefit to the subject.
We are developing the large sieve so that it can be used for individual moduli, and will determine a strong form of that. Also a new method to give asymptotics for mean values, when they are not too small.
We wish to incorporate techniques of analytic number theory into our theory, for example recent advances on mean values of Dirichlet polynomials. Also the recent breakthroughs on the sieve suggest strong links that need further exploration.
Additive combinatorics yields important results in many areas. There are strong analogies between its results, and those for multiplicative functions, especially in large value spectrum theory, and its applications. We hope to develop these further.
Much of this is joint work with K Soundararajan of Stanford University.
Max ERC Funding
2 011 742 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym AAS
Project Approximate algebraic structure and applications
Researcher (PI) Ben Green
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE1, ERC-2011-StG_20101014
Summary This project studies several mathematical topics with a related theme, all of them part of the relatively new discipline known as additive combinatorics.
We look at approximate, or rough, variants of familiar mathematical notions such as group, polynomial or homomorphism. In each case we seek to describe the structure of these approximate objects, and then to give applications of the resulting theorems. This endeavour has already lead to groundbreaking results in the theory of prime numbers, group theory and combinatorial number theory.
Summary
This project studies several mathematical topics with a related theme, all of them part of the relatively new discipline known as additive combinatorics.
We look at approximate, or rough, variants of familiar mathematical notions such as group, polynomial or homomorphism. In each case we seek to describe the structure of these approximate objects, and then to give applications of the resulting theorems. This endeavour has already lead to groundbreaking results in the theory of prime numbers, group theory and combinatorial number theory.
Max ERC Funding
1 000 000 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym ACCI
Project Atmospheric Chemistry-Climate Interactions
Researcher (PI) John Adrian Pyle
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE10, ERC-2010-AdG_20100224
Summary Global change involves a large number of complex interactions between various earth system processes. In the atmosphere, one component of the earth system, there are crucial feedbacks between physical, chemical and biological processes. Thus many of the drivers of climate change depend on chemical processes in the atmosphere including, in addition to ozone and water vapour, methane, nitrous oxide, the halocarbons as well as a range of inorganic and organic aerosols. The link between chemistry and climate is two-way and changes in climate can influence atmospheric chemistry processes in a variety of ways.
Previous studies have looked at these interactions in isolation but the time is now right for more comprehensive studies. The crucial contribution that will be made here is in improving our understanding of the processes within this complex system. Process understanding has been the hallmark of my previous work. The earth system scope here will be ambitiously wide but with a similar drive to understand fundamental processes.
The ambitious programme of research is built around four interrelated questions using new state-of-the-art modelling tools: How will the composition of the stratosphere change in the future, given changes in the concentrations of ozone depleting substances and greenhouse gases? How will these changes in the stratosphere affect tropospheric composition and climate? How will the composition of the troposphere change in the future, given changes in the emissions of ozone precursors and greenhouse gases? How will these changes in the troposphere affect the troposphere-stratosphere climate system?
ACCI will break new ground in bringing all of these questions into a single modelling and diagnostic framework, enabling interrelated questions to be answered which should radically improve our overall projections for global change.
Summary
Global change involves a large number of complex interactions between various earth system processes. In the atmosphere, one component of the earth system, there are crucial feedbacks between physical, chemical and biological processes. Thus many of the drivers of climate change depend on chemical processes in the atmosphere including, in addition to ozone and water vapour, methane, nitrous oxide, the halocarbons as well as a range of inorganic and organic aerosols. The link between chemistry and climate is two-way and changes in climate can influence atmospheric chemistry processes in a variety of ways.
Previous studies have looked at these interactions in isolation but the time is now right for more comprehensive studies. The crucial contribution that will be made here is in improving our understanding of the processes within this complex system. Process understanding has been the hallmark of my previous work. The earth system scope here will be ambitiously wide but with a similar drive to understand fundamental processes.
The ambitious programme of research is built around four interrelated questions using new state-of-the-art modelling tools: How will the composition of the stratosphere change in the future, given changes in the concentrations of ozone depleting substances and greenhouse gases? How will these changes in the stratosphere affect tropospheric composition and climate? How will the composition of the troposphere change in the future, given changes in the emissions of ozone precursors and greenhouse gases? How will these changes in the troposphere affect the troposphere-stratosphere climate system?
ACCI will break new ground in bringing all of these questions into a single modelling and diagnostic framework, enabling interrelated questions to be answered which should radically improve our overall projections for global change.
Max ERC Funding
2 496 926 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym ACCLAIM
Project Aerosols effects on convective clouds and climate
Researcher (PI) Philip Stier
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE10, ERC-2011-StG_20101014
Summary Clouds play a key role in the climate system. Small anthropogenic perturbations of the cloud system potentially have large radiative effects. Aerosols perturb the global radiation budget directly, by scattering and absorption, as well as indirectly, by the modification of cloud properties and occurrence. The applicability of traditional conceptual models of indirect aerosol effects to convective clouds is disputed as cloud dynamics complicates the picture.
Strong evidence for numerous aerosol effects on convection has been established in individual disciplines: through remote sensing and in-situ observations as well as by cloud resolving and global modelling. However, a coherent scientific view of the effects of aerosols on convection has yet to be established.
The primary objective of ACCLAIM is to recast the effects of aerosols on convective clouds as basis for improved global estimates of anthropogenic climate effects. Specific objectives include: i) to unravel the governing principles of aerosol effects on convective clouds; ii) provide quantitative constraints on satellite-retrieved relationships between convective clouds and aerosols; and ultimately iii) to enable global climate models to represent the full range of anthropogenic climate perturbations and quantify the climate response to aerosol effects on convective clouds.
I have developed the research strategy of ACCLAIM to overcome disciplinary barriers in this frontier research area and seek five years of funding to establish an interdisciplinary, physics focused, research group consisting of two PostDocs, two PhD students and myself. ACCLAIM will be centred around global aerosol-convection climate modelling studies, complemented by research constraining aerosol-convection interactions through remote sensing and a process focused research strand, advancing fundamental understanding and global model parameterisations through high resolution aerosol-cloud modelling in synergy with in-situ observations.
Summary
Clouds play a key role in the climate system. Small anthropogenic perturbations of the cloud system potentially have large radiative effects. Aerosols perturb the global radiation budget directly, by scattering and absorption, as well as indirectly, by the modification of cloud properties and occurrence. The applicability of traditional conceptual models of indirect aerosol effects to convective clouds is disputed as cloud dynamics complicates the picture.
Strong evidence for numerous aerosol effects on convection has been established in individual disciplines: through remote sensing and in-situ observations as well as by cloud resolving and global modelling. However, a coherent scientific view of the effects of aerosols on convection has yet to be established.
The primary objective of ACCLAIM is to recast the effects of aerosols on convective clouds as basis for improved global estimates of anthropogenic climate effects. Specific objectives include: i) to unravel the governing principles of aerosol effects on convective clouds; ii) provide quantitative constraints on satellite-retrieved relationships between convective clouds and aerosols; and ultimately iii) to enable global climate models to represent the full range of anthropogenic climate perturbations and quantify the climate response to aerosol effects on convective clouds.
I have developed the research strategy of ACCLAIM to overcome disciplinary barriers in this frontier research area and seek five years of funding to establish an interdisciplinary, physics focused, research group consisting of two PostDocs, two PhD students and myself. ACCLAIM will be centred around global aerosol-convection climate modelling studies, complemented by research constraining aerosol-convection interactions through remote sensing and a process focused research strand, advancing fundamental understanding and global model parameterisations through high resolution aerosol-cloud modelling in synergy with in-situ observations.
Max ERC Funding
1 429 243 €
Duration
Start date: 2011-09-01, End date: 2017-02-28
Project acronym ACRCC
Project Understanding the atmospheric circulation response to climate change
Researcher (PI) Theodore Shepherd
Host Institution (HI) THE UNIVERSITY OF READING
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary Computer models based on known physical laws are our primary tool for predicting climate change. Yet the state-of-the-art models exhibit a disturbingly wide range of predictions of future climate change, especially when examined at the regional scale, which has not decreased as the models have become more comprehensive. The reasons for this are not understood. This represents a basic challenge to our fundamental understanding of climate.
The divergence of model projections is presumably related to systematic model errors in the large-scale fluxes of heat, moisture and momentum that control regional aspects of climate. That these errors stubbornly persist in spite of increases in the spatial resolution of the models suggests that they are associated with errors in the representation of unresolved processes, whose effects must be parameterised.
Most attention in climate science has hitherto focused on the thermodynamic aspects of climate. Dynamical aspects, which involve the atmospheric circulation, have received much less attention. However regional climate, including persistent climate regimes and extremes, is strongly controlled by atmospheric circulation patterns, which exhibit chaotic variability and whose representation in climate models depends sensitively on parameterised processes. Moreover the dynamical aspects of model projections are much less robust than the thermodynamic ones. There are good reasons to believe that model bias, the divergence of model projections, and chaotic variability are somehow related, although the relationships are not well understood. This calls for studying them together.
My proposed research will focus on this problem, addressing these three aspects of the atmospheric circulation response to climate change in parallel: (i) diagnosing the sources of model error; (ii) elucidating the relationship between model error and the spread in model projections; (iii) understanding the physical mechanisms of atmospheric variability.
Summary
Computer models based on known physical laws are our primary tool for predicting climate change. Yet the state-of-the-art models exhibit a disturbingly wide range of predictions of future climate change, especially when examined at the regional scale, which has not decreased as the models have become more comprehensive. The reasons for this are not understood. This represents a basic challenge to our fundamental understanding of climate.
The divergence of model projections is presumably related to systematic model errors in the large-scale fluxes of heat, moisture and momentum that control regional aspects of climate. That these errors stubbornly persist in spite of increases in the spatial resolution of the models suggests that they are associated with errors in the representation of unresolved processes, whose effects must be parameterised.
Most attention in climate science has hitherto focused on the thermodynamic aspects of climate. Dynamical aspects, which involve the atmospheric circulation, have received much less attention. However regional climate, including persistent climate regimes and extremes, is strongly controlled by atmospheric circulation patterns, which exhibit chaotic variability and whose representation in climate models depends sensitively on parameterised processes. Moreover the dynamical aspects of model projections are much less robust than the thermodynamic ones. There are good reasons to believe that model bias, the divergence of model projections, and chaotic variability are somehow related, although the relationships are not well understood. This calls for studying them together.
My proposed research will focus on this problem, addressing these three aspects of the atmospheric circulation response to climate change in parallel: (i) diagnosing the sources of model error; (ii) elucidating the relationship between model error and the spread in model projections; (iii) understanding the physical mechanisms of atmospheric variability.
Max ERC Funding
2 489 151 €
Duration
Start date: 2014-03-01, End date: 2020-02-29
Project acronym AF and MSOGR
Project Automorphic Forms and Moduli Spaces of Galois Representations
Researcher (PI) Toby Gee
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.
The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.
The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.
Summary
I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.
The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.
The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.
Max ERC Funding
1 131 339 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym AFDMATS
Project Anton Francesco Doni – Multimedia Archive Texts and Sources
Researcher (PI) Giovanna Rizzarelli
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This project aims at creating a multimedia archive of the printed works of Anton Francesco Doni, who was not only an author but also a typographer, a publisher and a member of the Giolito and Marcolini’s editorial staff. The analysis of Doni’s work may be a good way to investigate appropriation, text rewriting and image reusing practices which are typical of several authors of the 16th Century, as clearly shown by the critics in the last decades. This project intends to bring to light the wide range of impulses from which Doni’s texts are generated, with a great emphasis on the figurative aspect. The encoding of these texts will be carried out using the TEI (Text Encoding Initiative) guidelines, which will enable any single text to interact with a range of intertextual references both at a local level (inside the same text) and at a macrostructural level (references to other texts by Doni or to other authors). The elements that will emerge from the textual encoding concern: A) The use of images Real images: the complex relation between Doni’s writing and the xylographies available in Marcolini’s printing-house or belonging to other collections. Mental images: the remarkable presence of verbal images, as descriptions, ekphràseis, figurative visions, dreams and iconographic allusions not accompanied by illustrations, but related to a recognizable visual repertoire or to real images that will be reproduced. B) The use of sources A parallel archive of the texts most used by Doni will be created. Digital anastatic reproductions of the 16th-Century editions known by Doni will be provided whenever available. The various forms of intertextuality will be divided into the following typologies: allusions; citations; rewritings; plagiarisms; self-quotations. Finally, the different forms of narrative (tales, short stories, anecdotes, lyrics) and the different idiomatic expressions (proverbial forms and wellerisms) will also be encoded.
Summary
This project aims at creating a multimedia archive of the printed works of Anton Francesco Doni, who was not only an author but also a typographer, a publisher and a member of the Giolito and Marcolini’s editorial staff. The analysis of Doni’s work may be a good way to investigate appropriation, text rewriting and image reusing practices which are typical of several authors of the 16th Century, as clearly shown by the critics in the last decades. This project intends to bring to light the wide range of impulses from which Doni’s texts are generated, with a great emphasis on the figurative aspect. The encoding of these texts will be carried out using the TEI (Text Encoding Initiative) guidelines, which will enable any single text to interact with a range of intertextual references both at a local level (inside the same text) and at a macrostructural level (references to other texts by Doni or to other authors). The elements that will emerge from the textual encoding concern: A) The use of images Real images: the complex relation between Doni’s writing and the xylographies available in Marcolini’s printing-house or belonging to other collections. Mental images: the remarkable presence of verbal images, as descriptions, ekphràseis, figurative visions, dreams and iconographic allusions not accompanied by illustrations, but related to a recognizable visual repertoire or to real images that will be reproduced. B) The use of sources A parallel archive of the texts most used by Doni will be created. Digital anastatic reproductions of the 16th-Century editions known by Doni will be provided whenever available. The various forms of intertextuality will be divided into the following typologies: allusions; citations; rewritings; plagiarisms; self-quotations. Finally, the different forms of narrative (tales, short stories, anecdotes, lyrics) and the different idiomatic expressions (proverbial forms and wellerisms) will also be encoded.
Max ERC Funding
559 200 €
Duration
Start date: 2008-08-01, End date: 2012-07-31
Project acronym AFRICA-GHG
Project AFRICA-GHG: The role of African tropical forests on the Greenhouse Gases balance of the atmosphere
Researcher (PI) Riccardo Valentini
Host Institution (HI) FONDAZIONE CENTRO EURO-MEDITERRANEOSUI CAMBIAMENTI CLIMATICI
Call Details Advanced Grant (AdG), PE10, ERC-2009-AdG
Summary The role of the African continent in the global carbon cycle, and therefore in climate change, is increasingly recognised. Despite the increasingly acknowledged importance of Africa in the global carbon cycle and its high vulnerability to climate change there is still a lack of studies on the carbon cycle in representative African ecosystems (in particular tropical forests), and on the effects of climate on ecosystem-atmosphere exchange. In the present proposal we want to focus on these spoecifc objectives : 1. Understand the role of African tropical rainforest on the GHG balance of the atmosphere and revise their role on the global methane and N2O emissions. 2. Determine the carbon source/sink strength of African tropical rainforest in the pre-industrial versus the XXth century by temporal reconstruction of biomass growth with biogeochemical markers 3. Understand and quantify carbon and GHG fluxes variability across African tropical forests (west east equatorial belt) 4.Analyse the impact of forest degradation and deforestation on carbon and other GHG emissions
Summary
The role of the African continent in the global carbon cycle, and therefore in climate change, is increasingly recognised. Despite the increasingly acknowledged importance of Africa in the global carbon cycle and its high vulnerability to climate change there is still a lack of studies on the carbon cycle in representative African ecosystems (in particular tropical forests), and on the effects of climate on ecosystem-atmosphere exchange. In the present proposal we want to focus on these spoecifc objectives : 1. Understand the role of African tropical rainforest on the GHG balance of the atmosphere and revise their role on the global methane and N2O emissions. 2. Determine the carbon source/sink strength of African tropical rainforest in the pre-industrial versus the XXth century by temporal reconstruction of biomass growth with biogeochemical markers 3. Understand and quantify carbon and GHG fluxes variability across African tropical forests (west east equatorial belt) 4.Analyse the impact of forest degradation and deforestation on carbon and other GHG emissions
Max ERC Funding
2 406 950 €
Duration
Start date: 2010-04-01, End date: 2014-12-31
Project acronym ALKENoNE
Project Algal Lipids: the Key to Earth Now and aNcient Earth
Researcher (PI) Jaime Lynn Toney
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Alkenones are algal lipids that have been used for decades to reconstruct quantitative past sea surface temperature. Although alkenones are being discovered in an increasing number of lake sites worldwide, only two terrestrial temperature records have been reconstructed so far. The development of this research field is limited by the lack of interdisciplinary research that combines modern biological and ecological algal research with the organic geochemical techniques needed to develop a quantitative biomarker (or molecular fossil) for past lake temperatures. More research is needed for alkenones to become a widely used tool for reconstructing past terrestrial temperature change. The early career Principal Investigator has discovered a new lake alkenone-producing species of haptophyte algae that produces alkenones in high abundances both in the environment and in laboratory cultures. This makes the new species an ideal organism for developing a culture-based temperature calibration and exploring other potential environmental controls. In this project, alkenone production will be manipulated, and monitored using state-of-the-art photobioreactors with real-time detectors for cell density, light, and temperature. The latest algal culture and isolation techniques that are used in microalgal biofuel development will be applied to developing the lake temperature proxy. The objectives will be achieved through the analysis of 90 new Canadian lakes to develop a core-top temperature calibration across a large latitudinal and temperature gradient (Δ latitude = 5°, Δ spring surface temperature = 9°C). The results will be used to assess how regional palaeo-temperature (Uk37), palaeo-moisture (δDwax) and palaeo-evaporation (δDalgal) respond during times of past global warmth (e.g., Medieval Warm Period, 900-1200 AD) to find an accurate analogue for assessing future drought risk in the interior of Canada.
Summary
Alkenones are algal lipids that have been used for decades to reconstruct quantitative past sea surface temperature. Although alkenones are being discovered in an increasing number of lake sites worldwide, only two terrestrial temperature records have been reconstructed so far. The development of this research field is limited by the lack of interdisciplinary research that combines modern biological and ecological algal research with the organic geochemical techniques needed to develop a quantitative biomarker (or molecular fossil) for past lake temperatures. More research is needed for alkenones to become a widely used tool for reconstructing past terrestrial temperature change. The early career Principal Investigator has discovered a new lake alkenone-producing species of haptophyte algae that produces alkenones in high abundances both in the environment and in laboratory cultures. This makes the new species an ideal organism for developing a culture-based temperature calibration and exploring other potential environmental controls. In this project, alkenone production will be manipulated, and monitored using state-of-the-art photobioreactors with real-time detectors for cell density, light, and temperature. The latest algal culture and isolation techniques that are used in microalgal biofuel development will be applied to developing the lake temperature proxy. The objectives will be achieved through the analysis of 90 new Canadian lakes to develop a core-top temperature calibration across a large latitudinal and temperature gradient (Δ latitude = 5°, Δ spring surface temperature = 9°C). The results will be used to assess how regional palaeo-temperature (Uk37), palaeo-moisture (δDwax) and palaeo-evaporation (δDalgal) respond during times of past global warmth (e.g., Medieval Warm Period, 900-1200 AD) to find an accurate analogue for assessing future drought risk in the interior of Canada.
Max ERC Funding
940 883 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym AMOPROX
Project Quantifying Aerobic Methane Oxidation in the Ocean: Calibration and palaeo application of a novel proxy
Researcher (PI) Helen Marie Talbot
Host Institution (HI) UNIVERSITY OF NEWCASTLE UPON TYNE
Call Details Starting Grant (StG), PE10, ERC-2010-StG_20091028
Summary Methane, a key greenhouse gas, is cycled by microorganisms via two pathways, aerobically and anaerobically. Research on the
marine methane cycle has mainly concentrated on anaerobic processes. Recent biomarker work has provided compelling
evidence that aerobic methane oxidation (AMO) can play a more significant role in cycling methane emitted from sediments than
previously considered. AMO, however, is not well studied requiring novel proxies that can be applied to the sedimentary record. A
group of complex lipids biosynthesised by aerobic methanotrophs known as aminobacteriohopanepolyols represent an ideal target
for developing such poxies. Recently BHPs have been identified in a wide range of modern and recent environments including a
continuous record from the Congo deep sea fan spanning the last 1.2 million years.
In this integrated study, the regulation and expression of BHP will be investigated and calibrated against environmental variables
including temperature, pH, salinity and, most importantly, methane concentrations. The work program has three complementary
strands. (1) Pure culture and sedimentary microcosm experiments providing an approximation to natural conditions. (2) Calibration
of BHP signatures in natural marine settings (e.g. cold seeps, mud volcanoes, pockmarks) against measured methane gradients.
(3) Application of this novel approach to the marine sedimentary record to approximate methane fluxes in the past, explore the age
and bathymetric limits of this novel molecular proxy, and identify and potentially 14C date palaeo-pockmarks structures. Crucial to
the success is also the refinement of the analytical protocols to improve both accuracy and sensitivity, using a more sensitive
analytical instrument (triple-quadrupole mass spectrometer).
Summary
Methane, a key greenhouse gas, is cycled by microorganisms via two pathways, aerobically and anaerobically. Research on the
marine methane cycle has mainly concentrated on anaerobic processes. Recent biomarker work has provided compelling
evidence that aerobic methane oxidation (AMO) can play a more significant role in cycling methane emitted from sediments than
previously considered. AMO, however, is not well studied requiring novel proxies that can be applied to the sedimentary record. A
group of complex lipids biosynthesised by aerobic methanotrophs known as aminobacteriohopanepolyols represent an ideal target
for developing such poxies. Recently BHPs have been identified in a wide range of modern and recent environments including a
continuous record from the Congo deep sea fan spanning the last 1.2 million years.
In this integrated study, the regulation and expression of BHP will be investigated and calibrated against environmental variables
including temperature, pH, salinity and, most importantly, methane concentrations. The work program has three complementary
strands. (1) Pure culture and sedimentary microcosm experiments providing an approximation to natural conditions. (2) Calibration
of BHP signatures in natural marine settings (e.g. cold seeps, mud volcanoes, pockmarks) against measured methane gradients.
(3) Application of this novel approach to the marine sedimentary record to approximate methane fluxes in the past, explore the age
and bathymetric limits of this novel molecular proxy, and identify and potentially 14C date palaeo-pockmarks structures. Crucial to
the success is also the refinement of the analytical protocols to improve both accuracy and sensitivity, using a more sensitive
analytical instrument (triple-quadrupole mass spectrometer).
Max ERC Funding
1 496 392 €
Duration
Start date: 2010-11-01, End date: 2016-04-30
Project acronym AMSTAT
Project Problems at the Applied Mathematics-Statistics Interface
Researcher (PI) Andrew Stuart
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary Applied mathematics is concerned with developing models with predictive capability, and with probing those models to obtain qualitative and quantitative insight into the phenomena being modelled. Statistics is data-driven and is aimed at the development of methodologies to optimize the information derived from data. The increasing complexity of phenomena that scientists and engineers wish to model, together with our increased ability to gather, store and interrogate data, mean that the subjects of applied mathematics and statistics are increasingly required to work in conjunction. This research proposal is concerned with a research program at the interface between these two disciplines, aimed at problems in differential equations where profusion of data and the sophisticated model combine to produce the mathematical problem of obtaining information from a probability measure on function space. Applications are far-reaching and include the atmospheric sciences, geophysics, chemistry, econometrics and signal processing. The objectives of the research are: (i) to create the systematic foundations for a range of problems at the applied mathematics and statistics interface which share the common mathematical structure underpinning the range of applications described above; (ii) to exploit this common mathematical structure to design effecient algorithms to sample probability measures on function space; (iii) to apply these algorithms to attack a range of significant problems arising in molecular dynamics and in the atmospheric sciences.
Summary
Applied mathematics is concerned with developing models with predictive capability, and with probing those models to obtain qualitative and quantitative insight into the phenomena being modelled. Statistics is data-driven and is aimed at the development of methodologies to optimize the information derived from data. The increasing complexity of phenomena that scientists and engineers wish to model, together with our increased ability to gather, store and interrogate data, mean that the subjects of applied mathematics and statistics are increasingly required to work in conjunction. This research proposal is concerned with a research program at the interface between these two disciplines, aimed at problems in differential equations where profusion of data and the sophisticated model combine to produce the mathematical problem of obtaining information from a probability measure on function space. Applications are far-reaching and include the atmospheric sciences, geophysics, chemistry, econometrics and signal processing. The objectives of the research are: (i) to create the systematic foundations for a range of problems at the applied mathematics and statistics interface which share the common mathematical structure underpinning the range of applications described above; (ii) to exploit this common mathematical structure to design effecient algorithms to sample probability measures on function space; (iii) to apply these algorithms to attack a range of significant problems arising in molecular dynamics and in the atmospheric sciences.
Max ERC Funding
1 693 501 €
Duration
Start date: 2008-12-01, End date: 2014-11-30
Project acronym ANTEGEFI
Project Analytic Techniques for Geometric and Functional Inequalities
Researcher (PI) Nicola Fusco
Host Institution (HI) UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.
Summary
Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.
Max ERC Funding
600 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym APGRAPH
Project Asymptotic Graph Properties
Researcher (PI) Deryk Osthus
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary Many parts of Graph Theory have witnessed a huge growth over the last years, partly because of their relation to Theoretical Computer Science and Statistical Physics. These connections arise because graphs can be used to model many diverse structures.
The focus of this proposal is on asymptotic results, i.e. the graphs under consideration are large. This often unveils patterns and connections which remain obscure when considering only small graphs.
It also allows for the use of powerful techniques such as probabilistic arguments, which have led to spectacular new developments. In particular, my aim is to make decisive progress on central problems in the following 4 areas:
(1) Factorizations: Factorizations of graphs can be viewed as partitions of the edges of a graph into simple regular structures. They have a rich history and arise in many different settings, such as edge-colouring problems, decomposition problems and in information theory. They also have applications to finding good tours for the famous Travelling salesman problem.
(2) Hamilton cycles: A Hamilton cycle is a cycle which contains all the vertices of the graph. One of the most fundamental problems in Graph Theory/Theoretical Computer Science is to find conditions which guarantee the existence of a Hamilton cycle in a graph.
(3) Embeddings of graphs: This is a natural (but difficult) continuation of the previous question where the aim is to embed more general structures than Hamilton cycles - there has been exciting progress here in recent years which has opened up new avenues.
(4) Resilience of graphs: In many cases, it is important to know whether a graph `strongly’ possesses some property, i.e. one cannot destroy the property by changing a few edges. The systematic study of this notion is a new and rapidly growing area.
I have developed new methods for deep and long-standing problems in these areas which will certainly lead to further applications elsewhere.
Summary
Many parts of Graph Theory have witnessed a huge growth over the last years, partly because of their relation to Theoretical Computer Science and Statistical Physics. These connections arise because graphs can be used to model many diverse structures.
The focus of this proposal is on asymptotic results, i.e. the graphs under consideration are large. This often unveils patterns and connections which remain obscure when considering only small graphs.
It also allows for the use of powerful techniques such as probabilistic arguments, which have led to spectacular new developments. In particular, my aim is to make decisive progress on central problems in the following 4 areas:
(1) Factorizations: Factorizations of graphs can be viewed as partitions of the edges of a graph into simple regular structures. They have a rich history and arise in many different settings, such as edge-colouring problems, decomposition problems and in information theory. They also have applications to finding good tours for the famous Travelling salesman problem.
(2) Hamilton cycles: A Hamilton cycle is a cycle which contains all the vertices of the graph. One of the most fundamental problems in Graph Theory/Theoretical Computer Science is to find conditions which guarantee the existence of a Hamilton cycle in a graph.
(3) Embeddings of graphs: This is a natural (but difficult) continuation of the previous question where the aim is to embed more general structures than Hamilton cycles - there has been exciting progress here in recent years which has opened up new avenues.
(4) Resilience of graphs: In many cases, it is important to know whether a graph `strongly’ possesses some property, i.e. one cannot destroy the property by changing a few edges. The systematic study of this notion is a new and rapidly growing area.
I have developed new methods for deep and long-standing problems in these areas which will certainly lead to further applications elsewhere.
Max ERC Funding
818 414 €
Duration
Start date: 2012-12-01, End date: 2018-11-30
Project acronym APPELS
Project A Probe of the Periodic Elements for Life in the Sea
Researcher (PI) Rosalind Emily Mayors Rickaby
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary "Chemical elements are the building blocks of life. The major elements, C, H. O, N, P, S are easily recognised as essential nutrients, but their use by life relies on metalloproteins. The identity of the metal centres of these metalloproteins and even the broader palette of trace elements fundamental to life are remarkably poorly known. Whole genomes remain opaque to decoding of this bioinorganic dimension, and optimal trace element concentrations for physiological function. Defining the elemental requirements for maximum growth rate of photosynthesising phytoplankton in the ocean, is critical to understanding Earth's climate. Although microscopic in stature, phytoplankton exert a gigantic influence on the biological pumping of carbon from the atmosphere to the deep ocean. Yet their metal requirements are poorly constrained, being inferred from cellular quotas and "nutrient-like" ocean metal distributions, susceptible to ambiguity between mistaken cellular uptake and use.
APPELS will undertake a two-pronged approach to define the modern marine metallome/metalloproteome. I will explore the expanse of the periodic table for novel required elements by growing phytoplankton, representative of the broadest chemotypes, in manipulated media, to delineate optimal conditions for growth whereby any limitation at lowered concentrations implies use. The second prong uses cutting-edge techniques that unite methods from proteomics with geochemical mass-spectrometry to allow both metals and their associated proteins to be examined comprehensively. APPELS will transform our understanding of the essential elements in the ocean and how the biological pump of carbon is geared to ocean chemistry in an evolving world. More broadly, APPELS will provide a step change in documented protein-metal binding centres, with implications for discovery of novel biochemical pathways, and optimal nutrition."
Summary
"Chemical elements are the building blocks of life. The major elements, C, H. O, N, P, S are easily recognised as essential nutrients, but their use by life relies on metalloproteins. The identity of the metal centres of these metalloproteins and even the broader palette of trace elements fundamental to life are remarkably poorly known. Whole genomes remain opaque to decoding of this bioinorganic dimension, and optimal trace element concentrations for physiological function. Defining the elemental requirements for maximum growth rate of photosynthesising phytoplankton in the ocean, is critical to understanding Earth's climate. Although microscopic in stature, phytoplankton exert a gigantic influence on the biological pumping of carbon from the atmosphere to the deep ocean. Yet their metal requirements are poorly constrained, being inferred from cellular quotas and "nutrient-like" ocean metal distributions, susceptible to ambiguity between mistaken cellular uptake and use.
APPELS will undertake a two-pronged approach to define the modern marine metallome/metalloproteome. I will explore the expanse of the periodic table for novel required elements by growing phytoplankton, representative of the broadest chemotypes, in manipulated media, to delineate optimal conditions for growth whereby any limitation at lowered concentrations implies use. The second prong uses cutting-edge techniques that unite methods from proteomics with geochemical mass-spectrometry to allow both metals and their associated proteins to be examined comprehensively. APPELS will transform our understanding of the essential elements in the ocean and how the biological pump of carbon is geared to ocean chemistry in an evolving world. More broadly, APPELS will provide a step change in documented protein-metal binding centres, with implications for discovery of novel biochemical pathways, and optimal nutrition."
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym ARCHOFCON
Project The Architecture of Consciousness
Researcher (PI) Timothy John Bayne
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The nature of consciousness is one of the great unsolved mysteries of science. Although the global research effort dedicated to explaining how consciousness arises from neural and cognitive activity is now more than two decades old, as yet there is no widely accepted theory of consciousness. One reason for why no adequate theory of consciousness has yet been found is that there is a lack of clarity about what exactly a theory of consciousness needs to explain. What is needed is thus a model of the general features of consciousness — a model of the ‘architecture’ of consciousness — that will systematize the structural differences between conscious states, processes and creatures on the one hand and unconscious states, processes and creatures on the other. The aim of this project is to remove one of the central impediments to the progress of the science of consciousness by constructing such a model.
A great many of the data required for this task already exist, but these data concern different aspects of consciousness and are distributed across many disciplines. As a result, there have been few attempts to develop a truly comprehensive model of the architecture of consciousness. This project will overcome the limitations of previous work by drawing on research in philosophy, psychology, psychiatry, and cognitive neuroscience to develop a model of the architecture of consciousness that is structured around five of its core features: its subjectivity, its temporality, its unity, its selectivity, and its dimensionality (that is, the relationship between the levels of consciousness and the contents of consciousness). By providing a comprehensive characterization of what a theory of consciousness needs to explain, this project will provide a crucial piece of the puzzle of consciousness, enabling future generations of researchers to bridge the gap between raw data on the one hand and a full-blown theory of consciousness on the other
Summary
The nature of consciousness is one of the great unsolved mysteries of science. Although the global research effort dedicated to explaining how consciousness arises from neural and cognitive activity is now more than two decades old, as yet there is no widely accepted theory of consciousness. One reason for why no adequate theory of consciousness has yet been found is that there is a lack of clarity about what exactly a theory of consciousness needs to explain. What is needed is thus a model of the general features of consciousness — a model of the ‘architecture’ of consciousness — that will systematize the structural differences between conscious states, processes and creatures on the one hand and unconscious states, processes and creatures on the other. The aim of this project is to remove one of the central impediments to the progress of the science of consciousness by constructing such a model.
A great many of the data required for this task already exist, but these data concern different aspects of consciousness and are distributed across many disciplines. As a result, there have been few attempts to develop a truly comprehensive model of the architecture of consciousness. This project will overcome the limitations of previous work by drawing on research in philosophy, psychology, psychiatry, and cognitive neuroscience to develop a model of the architecture of consciousness that is structured around five of its core features: its subjectivity, its temporality, its unity, its selectivity, and its dimensionality (that is, the relationship between the levels of consciousness and the contents of consciousness). By providing a comprehensive characterization of what a theory of consciousness needs to explain, this project will provide a crucial piece of the puzzle of consciousness, enabling future generations of researchers to bridge the gap between raw data on the one hand and a full-blown theory of consciousness on the other
Max ERC Funding
1 477 483 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym AROMA-CFD
Project Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics
Researcher (PI) Gianluigi Rozza
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Summary
The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Max ERC Funding
1 656 579 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym ASIBIA
Project Arctic sea ice, biogeochemistry and impacts on the atmosphere: Past, present, future
Researcher (PI) Roland Von Glasow
Host Institution (HI) UNIVERSITY OF EAST ANGLIA
Call Details Consolidator Grant (CoG), PE10, ERC-2013-CoG
Summary The Arctic Ocean is a vast expanse of sea ice. Most of it is snow covered as are large continental regions for about half of the year. However, Global Change is arguably greatest in the Arctic, where temperatures have risen more than anywhere else in the last few decades. New record lows occurred in snow extent in June 2012 and sea ice extent in September 2012. Many observations show that widespread and sustained change is occurring in the Arctic driving this unique environmental system into a new state. This project focuses on the biogeochemical links between sea ice and snow and the composition and chemistry of the troposphere (the lowest ~10km of the atmosphere). This is an important topic because the concentrations of greenhouse gases and aerosol particles, which scatter sunlight directly and influence cloud properties, play key roles for our climate. Additionally, changes in the composition of the troposphere also affect the so-called oxidation capacity, the capability of the atmosphere to cleanse itself from pollutants.
This project aims to deliver a step change improvement in our quantitative understanding of chemical exchanges between ocean, sea ice, snow and the atmosphere in polar regions, especially the Arctic and of Arctic tropospheric chemistry. Answering these fundamental questions is essential to predict future change in the Arctic and globally. To this end a unique sea ice chamber will be constructed in the laboratory and used to quantify exchange processes in sea ice. Furthermore a hierarchy of numerical models will be used, operating at different spatial and temporal scales and degree of process description from a very detailed 1D to a global Earth System model. This will allow a breakthrough in our understanding of the importance of the changes for the composition and oxidation capacity of the atmosphere and climate and will allow us to calculate adjusted Greenhouse Warming Potentials that include these processes.
Summary
The Arctic Ocean is a vast expanse of sea ice. Most of it is snow covered as are large continental regions for about half of the year. However, Global Change is arguably greatest in the Arctic, where temperatures have risen more than anywhere else in the last few decades. New record lows occurred in snow extent in June 2012 and sea ice extent in September 2012. Many observations show that widespread and sustained change is occurring in the Arctic driving this unique environmental system into a new state. This project focuses on the biogeochemical links between sea ice and snow and the composition and chemistry of the troposphere (the lowest ~10km of the atmosphere). This is an important topic because the concentrations of greenhouse gases and aerosol particles, which scatter sunlight directly and influence cloud properties, play key roles for our climate. Additionally, changes in the composition of the troposphere also affect the so-called oxidation capacity, the capability of the atmosphere to cleanse itself from pollutants.
This project aims to deliver a step change improvement in our quantitative understanding of chemical exchanges between ocean, sea ice, snow and the atmosphere in polar regions, especially the Arctic and of Arctic tropospheric chemistry. Answering these fundamental questions is essential to predict future change in the Arctic and globally. To this end a unique sea ice chamber will be constructed in the laboratory and used to quantify exchange processes in sea ice. Furthermore a hierarchy of numerical models will be used, operating at different spatial and temporal scales and degree of process description from a very detailed 1D to a global Earth System model. This will allow a breakthrough in our understanding of the importance of the changes for the composition and oxidation capacity of the atmosphere and climate and will allow us to calculate adjusted Greenhouse Warming Potentials that include these processes.
Max ERC Funding
1 192 911 €
Duration
Start date: 2014-05-01, End date: 2016-09-30
Project acronym AUTISMS
Project Decomposing Heterogeneity in Autism Spectrum Disorders
Researcher (PI) Michael LOMBARDO
Host Institution (HI) FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Call Details Starting Grant (StG), SH4, ERC-2017-STG
Summary Autism spectrum disorders (ASD) affect 1-2% of the population and are a major public health issue. Heterogeneity between affected ASD individuals is substantial both at clinical and etiological levels, thus warranting the idea that we should begin characterizing the ASD population as multiple kinds of ‘autisms’. Without an advanced understanding of how heterogeneity manifests in ASD, it is likely that we will not make pronounced progress towards translational research goals that can have real impact on patient’s lives. This research program is focused on decomposing heterogeneity in ASD at multiple levels of analysis. Using multiple ‘big data’ resources that are both ‘broad’ (large sample size) and ‘deep’ (multiple levels of analysis measured within each individual), I will examine how known variables such as sex, early language development, early social preferences, and early intervention treatment response may be important stratification variables that differentiate ASD subgroups at phenotypic, neural systems/circuits, and genomic levels of analysis. In addition to examining known stratification variables, this research program will engage in data-driven discovery via application of advanced unsupervised computational techniques that can highlight novel multivariate distinctions in the data that signal important ASD subgroups. These data-driven approaches may hold promise for discovering novel ASD subgroups at biological and phenotypic levels of analysis that may be valuable for prioritization in future work developing personalized assessment, monitoring, and treatment strategies for subsets of the ASD population. By enhancing the precision of our understanding about multiple subtypes of ASD this work will help accelerate progress towards the ideals of personalized medicine and help to reduce the burden of ASD on individuals, families, and society.
Summary
Autism spectrum disorders (ASD) affect 1-2% of the population and are a major public health issue. Heterogeneity between affected ASD individuals is substantial both at clinical and etiological levels, thus warranting the idea that we should begin characterizing the ASD population as multiple kinds of ‘autisms’. Without an advanced understanding of how heterogeneity manifests in ASD, it is likely that we will not make pronounced progress towards translational research goals that can have real impact on patient’s lives. This research program is focused on decomposing heterogeneity in ASD at multiple levels of analysis. Using multiple ‘big data’ resources that are both ‘broad’ (large sample size) and ‘deep’ (multiple levels of analysis measured within each individual), I will examine how known variables such as sex, early language development, early social preferences, and early intervention treatment response may be important stratification variables that differentiate ASD subgroups at phenotypic, neural systems/circuits, and genomic levels of analysis. In addition to examining known stratification variables, this research program will engage in data-driven discovery via application of advanced unsupervised computational techniques that can highlight novel multivariate distinctions in the data that signal important ASD subgroups. These data-driven approaches may hold promise for discovering novel ASD subgroups at biological and phenotypic levels of analysis that may be valuable for prioritization in future work developing personalized assessment, monitoring, and treatment strategies for subsets of the ASD population. By enhancing the precision of our understanding about multiple subtypes of ASD this work will help accelerate progress towards the ideals of personalized medicine and help to reduce the burden of ASD on individuals, families, and society.
Max ERC Funding
1 499 444 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BABYRHYTHM
Project Oscillatory Rhythmic Entrainment and the Foundations of Language Acquisition
Researcher (PI) Usha Claire GOSWAMI
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), SH4, ERC-2015-AdG
Summary Half of “late talkers”, infants who are not yet speaking by 2 years of age, will go on to develop language impairments. Currently, we have no reliable means of identifying these infants. Here we combine our developmental approach to phonology (psycholinguistic grain size theory), to the neural mechanisms underlying speech encoding (temporal sampling [TS] theory) and our work on the developmental importance of the speech amplitude envelope (AE) to open a new research front in the foundations of language acquisition. Recent adult research confirms our decade-long focus on the importance of sensitivity to AE ‘rise time’ in children’s language development, showing that rise times (‘auditory edges’) re-set the endogenous cortical oscillations that encode speech. Accordingly, we now apply our in-house state-of-the-art methods for measuring oscillatory rhythmic entrainment in children along with our recent theoretical and behavioural advances concerning AE processing to infant studies. Our core aim is to use the TS theoretical perspective and analysis methods to generate robust early neural and behavioural markers of phonological and morphological development: TS for infants. We have published the first-ever studies of oscillatory entrainment to speech rhythm by children and we have developed methods for technically-challenging EEG speech envelope reconstruction. We now apply these innovative methods to infant language learning and infant-directed speech. Using our cutting-edge EEG methods, we will deliver a novel and innovative road map for charting early language acquisition from a rhythmic entrainment perspective. Our recent 5-year study of rise time sensitivity in infants confirms the feasibility of a TS approach. As our focus is on prosody, syllable stress and syllable processing, our methods will apply across European languages.
Summary
Half of “late talkers”, infants who are not yet speaking by 2 years of age, will go on to develop language impairments. Currently, we have no reliable means of identifying these infants. Here we combine our developmental approach to phonology (psycholinguistic grain size theory), to the neural mechanisms underlying speech encoding (temporal sampling [TS] theory) and our work on the developmental importance of the speech amplitude envelope (AE) to open a new research front in the foundations of language acquisition. Recent adult research confirms our decade-long focus on the importance of sensitivity to AE ‘rise time’ in children’s language development, showing that rise times (‘auditory edges’) re-set the endogenous cortical oscillations that encode speech. Accordingly, we now apply our in-house state-of-the-art methods for measuring oscillatory rhythmic entrainment in children along with our recent theoretical and behavioural advances concerning AE processing to infant studies. Our core aim is to use the TS theoretical perspective and analysis methods to generate robust early neural and behavioural markers of phonological and morphological development: TS for infants. We have published the first-ever studies of oscillatory entrainment to speech rhythm by children and we have developed methods for technically-challenging EEG speech envelope reconstruction. We now apply these innovative methods to infant language learning and infant-directed speech. Using our cutting-edge EEG methods, we will deliver a novel and innovative road map for charting early language acquisition from a rhythmic entrainment perspective. Our recent 5-year study of rise time sensitivity in infants confirms the feasibility of a TS approach. As our focus is on prosody, syllable stress and syllable processing, our methods will apply across European languages.
Max ERC Funding
2 614 275 €
Duration
Start date: 2016-09-01, End date: 2021-08-31