Project acronym ACTOMYO
Project Mechanisms of actomyosin-based contractility during cytokinesis
Researcher (PI) Ana Costa Xavier de Carvalho
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Call Details Starting Grant (StG), LS3, ERC-2014-STG
Summary Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Summary
Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Max ERC Funding
1 499 989 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym ANTEGEFI
Project Analytic Techniques for Geometric and Functional Inequalities
Researcher (PI) Nicola Fusco
Host Institution (HI) UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.
Summary
Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.
Max ERC Funding
600 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym AROMA-CFD
Project Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics
Researcher (PI) Gianluigi Rozza
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Summary
The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Max ERC Funding
1 656 579 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym BABE
Project Bodies across borders: oral and visual memory in Europe and beyond
Researcher (PI) Luisella Passerini
Host Institution (HI) EUROPEAN UNIVERSITY INSTITUTE
Call Details Advanced Grant (AdG), SH6, ERC-2011-ADG_20110406
Summary This project intends to study intercultural connections in contemporary Europe, engaging both native and ‘new’ Europeans. These connections are woven through the faculties of embodied subjects – memory, visuality and mobility – and concern the movement of people, ideas and images across the borders of European nation-states. These faculties are connected with that of affect, an increasingly important concept in history and the social sciences. Memory will be understood not only as oral or direct memory, but also as cultural memory, embodied in various cultural products. Our study aims to understand new forms of European identity, as these develop in an increasingly diasporic world. Europe today is not only a key site of immigration, after having been for centuries an area of emigration, but also a crucial point of arrival in a global network designed by mobile human beings.
Three parts will make up the project. The first will engage with bodies, their gendered dimension, performative capacities and connection to place. It will explore the ways certain bodies are ‘emplaced’ as ‘European’, while others are marked as alien, and contrast these discourses with the counter-narratives by visual artists. The second part will extend further the reflection on the role of the visual arts in challenging an emergent ‘Fortress Europe’ but also in re-imagining the memory of European colonialism. The work of some key artists will be shown to students in Italy and the Netherlands, both recent migrants and ‘natives’, creating an ‘induced reception’. The final part of the project will look at alternative imaginations of Europe, investigating the oral memories and ‘mental maps’ created by two migrant communities in Europe: from Peru and from the Horn of Africa.
Examining the heterogeneous micro-productions of mobility – whether ‘real’ or imagined/envisioned – will thus yield important lessons for the historical understanding of inclusion and exclusion in today’s Europe.
Summary
This project intends to study intercultural connections in contemporary Europe, engaging both native and ‘new’ Europeans. These connections are woven through the faculties of embodied subjects – memory, visuality and mobility – and concern the movement of people, ideas and images across the borders of European nation-states. These faculties are connected with that of affect, an increasingly important concept in history and the social sciences. Memory will be understood not only as oral or direct memory, but also as cultural memory, embodied in various cultural products. Our study aims to understand new forms of European identity, as these develop in an increasingly diasporic world. Europe today is not only a key site of immigration, after having been for centuries an area of emigration, but also a crucial point of arrival in a global network designed by mobile human beings.
Three parts will make up the project. The first will engage with bodies, their gendered dimension, performative capacities and connection to place. It will explore the ways certain bodies are ‘emplaced’ as ‘European’, while others are marked as alien, and contrast these discourses with the counter-narratives by visual artists. The second part will extend further the reflection on the role of the visual arts in challenging an emergent ‘Fortress Europe’ but also in re-imagining the memory of European colonialism. The work of some key artists will be shown to students in Italy and the Netherlands, both recent migrants and ‘natives’, creating an ‘induced reception’. The final part of the project will look at alternative imaginations of Europe, investigating the oral memories and ‘mental maps’ created by two migrant communities in Europe: from Peru and from the Horn of Africa.
Examining the heterogeneous micro-productions of mobility – whether ‘real’ or imagined/envisioned – will thus yield important lessons for the historical understanding of inclusion and exclusion in today’s Europe.
Max ERC Funding
1 488 501 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym BARRAGE
Project Cell compartmentalization, individuation and diversity
Researcher (PI) Yves Barral
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS3, ERC-2009-AdG
Summary Asymmetric cell division is a key mechanism for the generation of cell diversity in eukaryotes. During this process, a polarized mother cell divides into non-equivalent daughters. These may differentially inherit fate determinants, irreparable damages or age determinants. Our aim is to decipher the mechanisms governing the individualization of daughters from each other. In the past ten years, our studies identified several lateral diffusion barriers located in the plasma membrane and the endoplasmic reticulum of budding yeast. These barriers all restrict molecular exchanges between the mother cell and its bud, and thereby compartmentalize the cell already long before its division. They play key roles in the asymmetric segregation of various factors. On one side, they help maintain polarized factors into the bud. Thereby, they reinforce cell polarity and sequester daughter-specific fate determinants into the bud. On the other side they prevent aging factors of the mother from entering the bud. Hence, they play key roles in the rejuvenation of the bud, in the aging of the mother, and in the differentiation of mother and daughter from each other. Recently, we accumulated evidence that some of these barriers are subject to regulation, such as to help modulate the longevity of the mother cell in response to environmental signals. Our data also suggest that barriers help the mother cell keep traces of its life history, thereby contributing to its individuation and adaption to the environment. In this project, we will address the following questions: 1 How are these barriers assembled, functioning, and regulated? 2 What type of differentiation processes are they involved in? 3 Are they conserved in other eukaryotes, and what are their functions outside of budding yeast? These studies will shed light into the principles underlying and linking aging, rejuvenation and differentiation.
Summary
Asymmetric cell division is a key mechanism for the generation of cell diversity in eukaryotes. During this process, a polarized mother cell divides into non-equivalent daughters. These may differentially inherit fate determinants, irreparable damages or age determinants. Our aim is to decipher the mechanisms governing the individualization of daughters from each other. In the past ten years, our studies identified several lateral diffusion barriers located in the plasma membrane and the endoplasmic reticulum of budding yeast. These barriers all restrict molecular exchanges between the mother cell and its bud, and thereby compartmentalize the cell already long before its division. They play key roles in the asymmetric segregation of various factors. On one side, they help maintain polarized factors into the bud. Thereby, they reinforce cell polarity and sequester daughter-specific fate determinants into the bud. On the other side they prevent aging factors of the mother from entering the bud. Hence, they play key roles in the rejuvenation of the bud, in the aging of the mother, and in the differentiation of mother and daughter from each other. Recently, we accumulated evidence that some of these barriers are subject to regulation, such as to help modulate the longevity of the mother cell in response to environmental signals. Our data also suggest that barriers help the mother cell keep traces of its life history, thereby contributing to its individuation and adaption to the environment. In this project, we will address the following questions: 1 How are these barriers assembled, functioning, and regulated? 2 What type of differentiation processes are they involved in? 3 Are they conserved in other eukaryotes, and what are their functions outside of budding yeast? These studies will shed light into the principles underlying and linking aging, rejuvenation and differentiation.
Max ERC Funding
2 200 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym BETWEEN THE TIMES
Project “Between the Times”: Embattled Temporalities and Political Imagination in Interwar Europe
Researcher (PI) Liisi KEEDUS
Host Institution (HI) TALLINN UNIVERSITY
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary The proposed project offers a new, pan-European intellectual history of the political imagination in the interwar period that places the demise of historicism and progressivism – and the emerging anti-teleological visions of time – at the center of some of its most innovative ethical, political and methodological pursuits. It argues that only a distinctively cross-disciplinary and European narrative can capture the full ramifications and legacies of a fundamental rupture in thought conventionally, yet inadequately confined to the German cultural space and termed “anti-historicism”. It innovates narratively by exploring politically and theoretically interlaced reinventions of temporality across and between different disciplines (theology, jurisprudence, classical studies, literary theory, linguistics, sociology, philosophy), as well as other creative fields. It experiments methodologically by reconstructing the dynamics of political thought prosopographically, through intellectual groupings at the forefront of the scholarly and political debates of the period. It challenges the sufficiency of the standard focus in interwar intellectual history on one or two, at most three (usually “Western” European) national contexts by following out the interactions of these groupings in France, Britain, Germany, Russia, Czechoslovakia, and Romania – groupings whose members frequently moved across national contexts. What were the political languages encoded in the reinventions of time, and vice versa – how were political aims translated into and advanced through theoretical innovation? How did these differ in different national contexts, and why? What are the fragmented legacies of this rupture, disbursed in and through the philosophical, methodological and political dicta and dogmas that rooted themselves in post-1945 thought? This project provides the first comprehensive answer to these fundamental questions about the intellectual identity of Europe and its historicities.
Summary
The proposed project offers a new, pan-European intellectual history of the political imagination in the interwar period that places the demise of historicism and progressivism – and the emerging anti-teleological visions of time – at the center of some of its most innovative ethical, political and methodological pursuits. It argues that only a distinctively cross-disciplinary and European narrative can capture the full ramifications and legacies of a fundamental rupture in thought conventionally, yet inadequately confined to the German cultural space and termed “anti-historicism”. It innovates narratively by exploring politically and theoretically interlaced reinventions of temporality across and between different disciplines (theology, jurisprudence, classical studies, literary theory, linguistics, sociology, philosophy), as well as other creative fields. It experiments methodologically by reconstructing the dynamics of political thought prosopographically, through intellectual groupings at the forefront of the scholarly and political debates of the period. It challenges the sufficiency of the standard focus in interwar intellectual history on one or two, at most three (usually “Western” European) national contexts by following out the interactions of these groupings in France, Britain, Germany, Russia, Czechoslovakia, and Romania – groupings whose members frequently moved across national contexts. What were the political languages encoded in the reinventions of time, and vice versa – how were political aims translated into and advanced through theoretical innovation? How did these differ in different national contexts, and why? What are the fragmented legacies of this rupture, disbursed in and through the philosophical, methodological and political dicta and dogmas that rooted themselves in post-1945 thought? This project provides the first comprehensive answer to these fundamental questions about the intellectual identity of Europe and its historicities.
Max ERC Funding
1 425 000 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BIOSMA
Project Mathematics for Shape Memory Technologies in Biomechanics
Researcher (PI) Ulisse Stefanelli
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary Shape Memory Alloys (SMAs) are nowadays widely exploited for the realization of innovative devices and have a great impact on the development of a variety of biomedical applications ranging from orthodontic archwires to vascular stents. The design, realization, and optimization of such devices are quite demanding tasks. Mathematics is involved in this process as a major tool in order to let the modeling more accurate, the numerical simulations more reliable, and the design more effective. Many material properties of SMAs such as martensitic reorientation, training, and ferromagnetic behavior, are still to be properly and efficiently addressed. Therefore, new modeling ideas, along with original analytical and numerical techniques, are required. This project is aimed at addressing novel mathematical issues in order to move from experimental materials results toward the solution of real-scale biomechanical Engineering problems. The research focus will be multidisciplinary and include modeling, analytic, numerical, and computational issues. A progress in the macroscopic description of SMAs, the computational simulation of real-scale SMA devices, and the optimization of the production processes will contribute to advance in the direction of innovative applications.
Summary
Shape Memory Alloys (SMAs) are nowadays widely exploited for the realization of innovative devices and have a great impact on the development of a variety of biomedical applications ranging from orthodontic archwires to vascular stents. The design, realization, and optimization of such devices are quite demanding tasks. Mathematics is involved in this process as a major tool in order to let the modeling more accurate, the numerical simulations more reliable, and the design more effective. Many material properties of SMAs such as martensitic reorientation, training, and ferromagnetic behavior, are still to be properly and efficiently addressed. Therefore, new modeling ideas, along with original analytical and numerical techniques, are required. This project is aimed at addressing novel mathematical issues in order to move from experimental materials results toward the solution of real-scale biomechanical Engineering problems. The research focus will be multidisciplinary and include modeling, analytic, numerical, and computational issues. A progress in the macroscopic description of SMAs, the computational simulation of real-scale SMA devices, and the optimization of the production processes will contribute to advance in the direction of innovative applications.
Max ERC Funding
700 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym BORDER
Project Towards a decentred history of the Middle East: Transborder spaces, circulations, frontier effects and state formation, 1920-1946
Researcher (PI) Jordi TEJEL GORGAS
Host Institution (HI) UNIVERSITE DE NEUCHATEL
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary While the crisis of the territorial nation-state in the Middle East has once again been brought to a head by the wars in Iraq and Syria, it cannot be simply understood as the logical consequence of an imported political construction. Based on two epistemological notions – borderlands as histoire-problème (history-as-problem) and the co-production of borders between state and society – this research project proposes to rethink the classical historical narrative about the emergence of the post-Ottoman Middle East. Taking its cue from trans-border phenomena and thus paying attention to the circulation of people, goods and ideas as well as to everyday encounters between local actors and state representatives, the project will be guided by four principle objectives to offer:
• A socio-historical analysis of state violence in the borderlands of the Middle East;
• An examination of the capacity of border populations to create the history of the borderlands, nation-states, and the region as a whole;
• A study of the frontier effects based around the notions of subjectivity, space and time, and involving various levels of observation (macro, meso and micro) in order to identify the ruptures and continuities evoked by the delineation of new borderlines; and
• A historical lens through which to make sense of current events in Syria and Iraq, and possibly orient conflict-resolution practitioners.
Through the exploitation of a wide range of sources (diplomatic, administrative and military records, missionary documents, newspapers) and by looking at the social construction of international frontiers at the borderlands located between Turkey, Iraq and Syria in the interwar era, the research project will provide a much more holistic yet finely-grained understanding of the formation of the territorial state in the region in the aftermath of the First World War as well as a historical perspective on the on-going armed conflicts.
Summary
While the crisis of the territorial nation-state in the Middle East has once again been brought to a head by the wars in Iraq and Syria, it cannot be simply understood as the logical consequence of an imported political construction. Based on two epistemological notions – borderlands as histoire-problème (history-as-problem) and the co-production of borders between state and society – this research project proposes to rethink the classical historical narrative about the emergence of the post-Ottoman Middle East. Taking its cue from trans-border phenomena and thus paying attention to the circulation of people, goods and ideas as well as to everyday encounters between local actors and state representatives, the project will be guided by four principle objectives to offer:
• A socio-historical analysis of state violence in the borderlands of the Middle East;
• An examination of the capacity of border populations to create the history of the borderlands, nation-states, and the region as a whole;
• A study of the frontier effects based around the notions of subjectivity, space and time, and involving various levels of observation (macro, meso and micro) in order to identify the ruptures and continuities evoked by the delineation of new borderlines; and
• A historical lens through which to make sense of current events in Syria and Iraq, and possibly orient conflict-resolution practitioners.
Through the exploitation of a wide range of sources (diplomatic, administrative and military records, missionary documents, newspapers) and by looking at the social construction of international frontiers at the borderlands located between Turkey, Iraq and Syria in the interwar era, the research project will provide a much more holistic yet finely-grained understanding of the formation of the territorial state in the region in the aftermath of the First World War as well as a historical perspective on the on-going armed conflicts.
Max ERC Funding
1 997 675 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BRIDGES
Project Bridging Non-Equilibrium Problems: From the Fourier Law to Gene Expression
Researcher (PI) Jean-Pierre Eckmann
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Advanced Grant (AdG), PE1, ERC-2011-ADG_20110209
Summary My goal is to study several important open mathematical problems in non-equilibrium (NEQ) systems and to build a bridge between these problems and NEQ aspects of soft sciences, in particular biological questions. Traffic on this bridge is going to be two-way, the mathematics carrying a long history as a language of science towards the soft sciences, and the soft sciences fruitfully asking new questions and building new paradigms for mathematical research.
Out-of-equilibrium systems pose several fascinating problems: The Fourier law which says that resistance of a wire is proportional to its length is still presenting hard problems for research, and even the existence and the convergence to a NEQ steady state are continuously posing new puzzles, as do questions of smoothness and correlations of such states. These will be addressed with stochastic differential equations, and with particlescatterer systems, both canonical and grand-canonical. The latter are extensions of the well-known Lorentz gas and the study of hyperbolic billiards.
Another field where NEQ plays an important role is the study of glassy systems. They were studied with molecular dynamics (MD) but I have used a topological variant, which mimics astonishingly well what happens in MD simulations. The aim is to extend this to 3 dimensions, where new problems appear.
Finally, I will apply the NEQ studies to biological systems: How a system copes with the varying environment,adapting in this way to a novel type of NEQ. I will study networks of communication among neurons,which are like random graphs with the additional property of being embedded, and the arrangement of genes on chromosomes in such a way as to optimize the adaptation to the different cell types which must be produced using the same genetic information.
I will answer such questions with students and collaborators, who will specialize in the subprojects but will interact with my help across the common bridge.
Summary
My goal is to study several important open mathematical problems in non-equilibrium (NEQ) systems and to build a bridge between these problems and NEQ aspects of soft sciences, in particular biological questions. Traffic on this bridge is going to be two-way, the mathematics carrying a long history as a language of science towards the soft sciences, and the soft sciences fruitfully asking new questions and building new paradigms for mathematical research.
Out-of-equilibrium systems pose several fascinating problems: The Fourier law which says that resistance of a wire is proportional to its length is still presenting hard problems for research, and even the existence and the convergence to a NEQ steady state are continuously posing new puzzles, as do questions of smoothness and correlations of such states. These will be addressed with stochastic differential equations, and with particlescatterer systems, both canonical and grand-canonical. The latter are extensions of the well-known Lorentz gas and the study of hyperbolic billiards.
Another field where NEQ plays an important role is the study of glassy systems. They were studied with molecular dynamics (MD) but I have used a topological variant, which mimics astonishingly well what happens in MD simulations. The aim is to extend this to 3 dimensions, where new problems appear.
Finally, I will apply the NEQ studies to biological systems: How a system copes with the varying environment,adapting in this way to a novel type of NEQ. I will study networks of communication among neurons,which are like random graphs with the additional property of being embedded, and the arrangement of genes on chromosomes in such a way as to optimize the adaptation to the different cell types which must be produced using the same genetic information.
I will answer such questions with students and collaborators, who will specialize in the subprojects but will interact with my help across the common bridge.
Max ERC Funding
2 135 385 €
Duration
Start date: 2012-04-01, End date: 2017-07-31
Project acronym CausalStats
Project Statistics, Prediction and Causality for Large-Scale Data
Researcher (PI) Peter Lukas Bühlmann
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE1, ERC-2017-ADG
Summary Understanding cause-effect relationships between variables is of great interest in many fields of science. However, causal inference from data is much more ambitious and difficult than inferring (undirected) measures of association such as correlations, partial correlations or multivariate regression coefficients, mainly because of fundamental identifiability
problems. A main objective of the proposal is to exploit advantages from large-scale heterogeneous data for causal inference where heterogeneity arises from different experimental conditions or different unknown sub-populations. A key idea is to consider invariance or stability across different experimental conditions of certain conditional probability distributions: the invariants correspond on the one hand to (properly defined) causal variables which are of main interest in causality; andon the other hand, they correspond to the features for constructing powerful predictions for new scenarios which are unobserved in the data (new probability distributions). This opens novel perspectives: causal inference
can be phrased as a prediction problem of a certain kind, and vice versa, new prediction methods which work well across different scenarios (unobserved in the data) should be based on or regularized towards causal variables. Fundamental identifiability limits will become weaker with increased degree of heterogeneity, as we expect in large-scale data. The topic is essentially unexplored, yet it opens new avenues for causal inference, structural equation and graphical modeling, and robust prediction based on large-scale complex data. We will develop mathematical theory, statistical methodology and efficient algorithms; and we will also work and collaborate on major application problems such as inferring causal effects (i.e., total intervention effects) from gene knock-out or RNA interference perturbation experiments, genome-wide association studies and novel prediction tasks in economics.
Summary
Understanding cause-effect relationships between variables is of great interest in many fields of science. However, causal inference from data is much more ambitious and difficult than inferring (undirected) measures of association such as correlations, partial correlations or multivariate regression coefficients, mainly because of fundamental identifiability
problems. A main objective of the proposal is to exploit advantages from large-scale heterogeneous data for causal inference where heterogeneity arises from different experimental conditions or different unknown sub-populations. A key idea is to consider invariance or stability across different experimental conditions of certain conditional probability distributions: the invariants correspond on the one hand to (properly defined) causal variables which are of main interest in causality; andon the other hand, they correspond to the features for constructing powerful predictions for new scenarios which are unobserved in the data (new probability distributions). This opens novel perspectives: causal inference
can be phrased as a prediction problem of a certain kind, and vice versa, new prediction methods which work well across different scenarios (unobserved in the data) should be based on or regularized towards causal variables. Fundamental identifiability limits will become weaker with increased degree of heterogeneity, as we expect in large-scale data. The topic is essentially unexplored, yet it opens new avenues for causal inference, structural equation and graphical modeling, and robust prediction based on large-scale complex data. We will develop mathematical theory, statistical methodology and efficient algorithms; and we will also work and collaborate on major application problems such as inferring causal effects (i.e., total intervention effects) from gene knock-out or RNA interference perturbation experiments, genome-wide association studies and novel prediction tasks in economics.
Max ERC Funding
2 184 375 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym CAVE
Project Challenges and Advancements in Virtual Elements
Researcher (PI) Lourenco Beirao da veiga
Host Institution (HI) UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The Virtual Element Method (VEM) is a novel technology for the discretization of partial differential equations (PDEs), that shares the same variational background as the Finite Element Method. First but not only, the VEM responds to the strongly increasing interest in using general polyhedral and polygonal meshes in the approximation of PDEs without the limit of using tetrahedral or hexahedral grids. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrixes, the VEM acquires very interesting properties and advantages with respect to more standard Galerkin methods, yet still keeping the same coding complexity. For instance, the VEM easily allows for polygonal/polyhedral meshes (even non-conforming) with non-convex elements and possibly with curved faces; it allows for discrete spaces of arbitrary C^k regularity on unstructured meshes.
The main scope of the project is to address the recent theoretical challenges posed by VEM and to assess whether this promising technology can achieve a breakthrough in applications. First, the theoretical and computational foundations of VEM will be made stronger. A deeper theoretical insight, supported by a wider numerical experience on benchmark problems, will be developed to gain a better understanding of the method's potentials and set the foundations for more applicative purposes. Second, we will focus our attention on two tough and up-to-date problems of practical interest: large deformation elasticity (where VEM can yield a dramatically more efficient handling of material inclusions, meshing of the domain and grid adaptivity, plus a much stronger robustness with respect to large grid distortions) and the cardiac bidomain model (where VEM can lead to a more accurate domain approximation through MRI data, a flexible refinement/de-refinement procedure along the propagation front, to an exact satisfaction of conservation laws).
Summary
The Virtual Element Method (VEM) is a novel technology for the discretization of partial differential equations (PDEs), that shares the same variational background as the Finite Element Method. First but not only, the VEM responds to the strongly increasing interest in using general polyhedral and polygonal meshes in the approximation of PDEs without the limit of using tetrahedral or hexahedral grids. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrixes, the VEM acquires very interesting properties and advantages with respect to more standard Galerkin methods, yet still keeping the same coding complexity. For instance, the VEM easily allows for polygonal/polyhedral meshes (even non-conforming) with non-convex elements and possibly with curved faces; it allows for discrete spaces of arbitrary C^k regularity on unstructured meshes.
The main scope of the project is to address the recent theoretical challenges posed by VEM and to assess whether this promising technology can achieve a breakthrough in applications. First, the theoretical and computational foundations of VEM will be made stronger. A deeper theoretical insight, supported by a wider numerical experience on benchmark problems, will be developed to gain a better understanding of the method's potentials and set the foundations for more applicative purposes. Second, we will focus our attention on two tough and up-to-date problems of practical interest: large deformation elasticity (where VEM can yield a dramatically more efficient handling of material inclusions, meshing of the domain and grid adaptivity, plus a much stronger robustness with respect to large grid distortions) and the cardiac bidomain model (where VEM can lead to a more accurate domain approximation through MRI data, a flexible refinement/de-refinement procedure along the propagation front, to an exact satisfaction of conservation laws).
Max ERC Funding
980 634 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym CELLFITNESS
Project Active Mechanisms of Cell Selection: From Cell Competition to Cell Fitness
Researcher (PI) Eduardo Moreno Lampaya
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Consolidator Grant (CoG), LS3, ERC-2013-CoG
Summary The molecular mechanisms that mediate cell competition, cell fitness and cell selection is gaining interest. With innovative approaches, molecules and ground-breaking hypothesis, this field of research can help understand several biological processes such as development, cancer and tissue degeneration. The project has 3 clear and ambitious objectives: 1. We propose to identify all the key genes mediating cell competition and their molecular mechanisms. In order to reach this objective we will use data from two whole genome screens in Drosophila where we have identified 7 key genes. By the end of this CoG grant, we should have no big gaps in our knowledge of how slow dividing cells are recognised and eliminated in Drosophila. 2. In addition, we will explore how general the cell competition pathways are and how they can impact biomedical research, with a focus in cancer and tissue degeneration. The interest in cancer is based on experiments in Drosophila and mice where we and others have found that an active process of cell selection determines tumour growth. Preliminary results suggest that the pathways identified do not only play important roles in the elimination of slow dividing cells, but also during cancer initiation and progression. 3. We will further explore the role of cell competition in neuronal selection, specially during neurodegeneration, development of the retina and adult brain regeneration in Drosophila. This proposal is of an interdisciplinary nature because it takes a basic cellular mechanism (the genetic pathways that select cells within tissues) and crosses boundaries between different fields of research: development, cancer, regeneration and tissue degeneration. In this ERC CoG proposal, we are committed to continue our efforts from basic science to biomedical approaches. The phenomena of cell competition and its participating genes have the potential to discover novel biomarkers and therapeutic strategies against cancer and tissue degeneration.
Summary
The molecular mechanisms that mediate cell competition, cell fitness and cell selection is gaining interest. With innovative approaches, molecules and ground-breaking hypothesis, this field of research can help understand several biological processes such as development, cancer and tissue degeneration. The project has 3 clear and ambitious objectives: 1. We propose to identify all the key genes mediating cell competition and their molecular mechanisms. In order to reach this objective we will use data from two whole genome screens in Drosophila where we have identified 7 key genes. By the end of this CoG grant, we should have no big gaps in our knowledge of how slow dividing cells are recognised and eliminated in Drosophila. 2. In addition, we will explore how general the cell competition pathways are and how they can impact biomedical research, with a focus in cancer and tissue degeneration. The interest in cancer is based on experiments in Drosophila and mice where we and others have found that an active process of cell selection determines tumour growth. Preliminary results suggest that the pathways identified do not only play important roles in the elimination of slow dividing cells, but also during cancer initiation and progression. 3. We will further explore the role of cell competition in neuronal selection, specially during neurodegeneration, development of the retina and adult brain regeneration in Drosophila. This proposal is of an interdisciplinary nature because it takes a basic cellular mechanism (the genetic pathways that select cells within tissues) and crosses boundaries between different fields of research: development, cancer, regeneration and tissue degeneration. In this ERC CoG proposal, we are committed to continue our efforts from basic science to biomedical approaches. The phenomena of cell competition and its participating genes have the potential to discover novel biomarkers and therapeutic strategies against cancer and tissue degeneration.
Max ERC Funding
1 968 062 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym CELLFUSION
Project Molecular dissection of the mechanisms of cell-cell fusion in the fission yeast
Researcher (PI) Sophie Geneviève Elisabeth Martin Benton
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Consolidator Grant (CoG), LS3, ERC-2015-CoG
Summary Cell fusion is critical for fertilization and development, for instance underlying muscle or bone formation. Cell fusion may also play important roles in regeneration and cancer. A conceptual understanding is emerging that cell fusion requires cell-cell communication, polarization of the cells towards each other, and assembly of a fusion machinery, in which an actin-based structure promotes membrane juxtaposition and fusogenic factors drive membrane fusion. However, in no single system have the molecular nature of all these parts been described, and thus the molecular basis of cell fusion remains poorly understood.
This proposal aims to depict the complete fusion process in a single organism, using the simple yeast model Schizosaccharomyces pombe, which has a long track record of discoveries in fundamental cellular processes. These haploid cells, which fuse to generate a diploid zygote, use highly conserved mechanisms of cell-cell communication (through pheromones and GPCR signaling), cell polarization (centred around the small GTPase Cdc42) and fusion. Indeed, we recently showed that these cells assemble an actin-based fusion structure, dubbed the actin fusion focus. Our five aims probe the molecular nature of, and the links between, signaling, polarization and the fusion machinery from initiation to termination of the process. These are:
1: To define the roles and feedback regulation of Cdc42 during cell fusion
2: To understand the molecular mechanisms of actin fusion focus formation
3: To identify the fusogen(s) promoting membrane fusion
4: To probe the GPCR signal for fusion initiation
5: To define the mechanism of fusion termination
By combining genetic, optogenetic, biochemical, live-imaging, synthetic and modeling approaches, this project will bring a molecular and conceptual understanding of cell fusion. This work will have far-ranging relevance for cell polarization, cytoskeletal organization, cell signalling and communication, and cell fate regulation.
Summary
Cell fusion is critical for fertilization and development, for instance underlying muscle or bone formation. Cell fusion may also play important roles in regeneration and cancer. A conceptual understanding is emerging that cell fusion requires cell-cell communication, polarization of the cells towards each other, and assembly of a fusion machinery, in which an actin-based structure promotes membrane juxtaposition and fusogenic factors drive membrane fusion. However, in no single system have the molecular nature of all these parts been described, and thus the molecular basis of cell fusion remains poorly understood.
This proposal aims to depict the complete fusion process in a single organism, using the simple yeast model Schizosaccharomyces pombe, which has a long track record of discoveries in fundamental cellular processes. These haploid cells, which fuse to generate a diploid zygote, use highly conserved mechanisms of cell-cell communication (through pheromones and GPCR signaling), cell polarization (centred around the small GTPase Cdc42) and fusion. Indeed, we recently showed that these cells assemble an actin-based fusion structure, dubbed the actin fusion focus. Our five aims probe the molecular nature of, and the links between, signaling, polarization and the fusion machinery from initiation to termination of the process. These are:
1: To define the roles and feedback regulation of Cdc42 during cell fusion
2: To understand the molecular mechanisms of actin fusion focus formation
3: To identify the fusogen(s) promoting membrane fusion
4: To probe the GPCR signal for fusion initiation
5: To define the mechanism of fusion termination
By combining genetic, optogenetic, biochemical, live-imaging, synthetic and modeling approaches, this project will bring a molecular and conceptual understanding of cell fusion. This work will have far-ranging relevance for cell polarization, cytoskeletal organization, cell signalling and communication, and cell fate regulation.
Max ERC Funding
1 999 956 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym CENDUP
Project Decoding the mechanisms of centrosome duplication
Researcher (PI) Pierre Gönczy
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS3, ERC-2008-AdG
Summary Centrosome duplication entails the formation of a single procentriole next to each centriole once per cell cycle. The mechanisms governing procentriole formation are poorly understood and constitute a fundamental open question in cell biology. We will launch an innovative multidisciplinary research program to gain significant insight into these mechanisms using C. elegans and human cells. This research program is also expected to have a significant impact by contributing important novel assays to the field. Six specific aims will be pursued: 1) SAS-6 as a ZYG-1 substrate: mechanisms of procentriole formation in C. elegans. We will test in vivo the consequence of SAS-6 phosphorylation by ZYG-1. 2) Biochemical and structural analysis of SAS-6-containing macromolecular complexes (SAMACs). We will isolate and characterize SAMACs from C. elegans embryos and human cells, and analyze their structure using single-particle electron microscopy. 3) Novel cell-free assay for procentriole formation in human cells. We will develop such an assay and use it to test whether SAMACs can direct procentriole formation and whether candidate proteins are needed at centrioles or in the cytoplasm. 4) Mapping interactions between centriolar proteins in live human cells. We will use chemical methods developed by our collaborators to probe interactions between HsSAS-6 and centriolar proteins in a time- and space-resolved manner. 5) Functional genomic and chemical genetic screens in human cells. We will conduct high-throughput fluorescence-based screens in human cells to identify novel genes required for procentriole formation and small molecule inhibitors of this process. 6) Mechanisms underlying differential centriolar maintenance in the germline. In C. elegans, we will characterize how the sas-1 locus is required for centriole maintenance during spermatogenesis, as well as analyze centriole elimination during oogenesis and identify components needed for this process
Summary
Centrosome duplication entails the formation of a single procentriole next to each centriole once per cell cycle. The mechanisms governing procentriole formation are poorly understood and constitute a fundamental open question in cell biology. We will launch an innovative multidisciplinary research program to gain significant insight into these mechanisms using C. elegans and human cells. This research program is also expected to have a significant impact by contributing important novel assays to the field. Six specific aims will be pursued: 1) SAS-6 as a ZYG-1 substrate: mechanisms of procentriole formation in C. elegans. We will test in vivo the consequence of SAS-6 phosphorylation by ZYG-1. 2) Biochemical and structural analysis of SAS-6-containing macromolecular complexes (SAMACs). We will isolate and characterize SAMACs from C. elegans embryos and human cells, and analyze their structure using single-particle electron microscopy. 3) Novel cell-free assay for procentriole formation in human cells. We will develop such an assay and use it to test whether SAMACs can direct procentriole formation and whether candidate proteins are needed at centrioles or in the cytoplasm. 4) Mapping interactions between centriolar proteins in live human cells. We will use chemical methods developed by our collaborators to probe interactions between HsSAS-6 and centriolar proteins in a time- and space-resolved manner. 5) Functional genomic and chemical genetic screens in human cells. We will conduct high-throughput fluorescence-based screens in human cells to identify novel genes required for procentriole formation and small molecule inhibitors of this process. 6) Mechanisms underlying differential centriolar maintenance in the germline. In C. elegans, we will characterize how the sas-1 locus is required for centriole maintenance during spermatogenesis, as well as analyze centriole elimination during oogenesis and identify components needed for this process
Max ERC Funding
2 004 155 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym CENFOR
Project Dissecting the mechanisms governing centriole formation
Researcher (PI) Pierre Gönczy
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS3, ERC-2013-ADG
Summary "Centrioles are critical for the formation of cilia, flagella and centrosomes, as well as for human health. The mechanisms governing centriole formation constitute a long-standing question in cell biology. We will pursue an innovative multidisciplinary research program to gain further insight into these mechanisms, using human cells, C. elegans and Trichonympha as model systems. This program is expected to also have a major impact by contributing a novel cell free assay to the field, thus paving the way towards making synthetic centrioles. Six specific aims will be pursued:
1) Deciphering HsSAS-6/STIL distribution and dynamics. We will use super-resolution microscopy, molecular counting, photoconversion and FCS to further characterize these two key components required for centriole formation in human cells.
2) The SAS-6 ring model as a tool to redirect centriole organization. Utilizing predictions from the SAS-6 ring model, we will assay the consequences for centrioles and cilia of altering the diameter and symmetry of the structure.
3) Determining the architecture of C. elegans centrioles. We will conduct molecular counting and cryo-ET of purified C. elegans centrioles to determine if they contain a spiral or a cartwheel, as well as identify SAS-6-interacting components.
4) Comprehensive 3D map and proteomics of Trichonympha centriole. We will obtain a ~35 Å 3D map of the complete T. agilis centriole, perform proteomic analysis to identify its constituents and test their function using RNAi.
5) Regulation of cartwheel height and centriole length. We will explore whether cartwheel height is set by SAS-6 proteins and perform screens in human cells to identify novel components regulating cartwheel height and centriole length.
6) Novel cell free assay for cartwheel assembly and centriole formation. Using SAS-6 proteins on a lipid monolayer as starting point, we will develop and utilize a cell-free assay to reconstitute cartwheel assembly and centriole format"
Summary
"Centrioles are critical for the formation of cilia, flagella and centrosomes, as well as for human health. The mechanisms governing centriole formation constitute a long-standing question in cell biology. We will pursue an innovative multidisciplinary research program to gain further insight into these mechanisms, using human cells, C. elegans and Trichonympha as model systems. This program is expected to also have a major impact by contributing a novel cell free assay to the field, thus paving the way towards making synthetic centrioles. Six specific aims will be pursued:
1) Deciphering HsSAS-6/STIL distribution and dynamics. We will use super-resolution microscopy, molecular counting, photoconversion and FCS to further characterize these two key components required for centriole formation in human cells.
2) The SAS-6 ring model as a tool to redirect centriole organization. Utilizing predictions from the SAS-6 ring model, we will assay the consequences for centrioles and cilia of altering the diameter and symmetry of the structure.
3) Determining the architecture of C. elegans centrioles. We will conduct molecular counting and cryo-ET of purified C. elegans centrioles to determine if they contain a spiral or a cartwheel, as well as identify SAS-6-interacting components.
4) Comprehensive 3D map and proteomics of Trichonympha centriole. We will obtain a ~35 Å 3D map of the complete T. agilis centriole, perform proteomic analysis to identify its constituents and test their function using RNAi.
5) Regulation of cartwheel height and centriole length. We will explore whether cartwheel height is set by SAS-6 proteins and perform screens in human cells to identify novel components regulating cartwheel height and centriole length.
6) Novel cell free assay for cartwheel assembly and centriole formation. Using SAS-6 proteins on a lipid monolayer as starting point, we will develop and utilize a cell-free assay to reconstitute cartwheel assembly and centriole format"
Max ERC Funding
2 499 270 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym CENGIN
Project Deciphering and engineering centriole assembly
Researcher (PI) Pierre Jörg GÖNCZY
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS3, ERC-2018-ADG
Summary Deciphering and engineering the assembly of cellular organelles is a key pursuit in biology. The centriole is an evolutionarily conserved organelle well suited for this goal, and which is crucial for cell signaling, motility and division. The centriole exhibits a striking 9-fold radial symmetry of microtubules around a likewise symmetrical cartwheel containing stacked ring-bearing structures. Components essential for generating this remarkable architecture from alga to man have been identified. A next critical step is to engineer assays to probe the dynamics of centriole assembly with molecular precision to fully understand how these components together build a functional organelle. Our ambitious research proposal aims at taking groundbreaking steps in this direction through four specific aims:
1) Reconstituting cartwheel ring assembly dynamics. We will use high-speed AFM (HS-AFM) to dissect the biophysics of SAS-6 ring polymer dynamics at the root of cartwheel assembly. We will also use HS-AFM to analyze monobodies against SAS-6, as well as engineer surfaces and DNA origamis to further dissect ring assembly.
2) Deciphering ring stacking mechanisms. We will use cryo-ET to identify SAS-6 features that direct stacking of ring structures and set cartwheel height. Moreover, we will develop an HS-AFM stacking assay and a reconstituted stacking assay from human cells.
3) Understanding peripheral element contributions to centriole biogenesis. We will dissect the function of the peripheral centriole pinhead protein Cep135/Bld10p, as well as identify and likewise dissect peripheral A-C linker proteins. Furthermore, we will further engineer the HS-AFM assay to include such peripheral components.
4) Dissecting de novo centriole assembly mechanisms. We will dissect de novo centriole formation in human cells and water fern. We will also explore whether de novo formation involves a phase separation mechanism and repurpose the HS-AFM assay to probe de novo organelle biogenes
Summary
Deciphering and engineering the assembly of cellular organelles is a key pursuit in biology. The centriole is an evolutionarily conserved organelle well suited for this goal, and which is crucial for cell signaling, motility and division. The centriole exhibits a striking 9-fold radial symmetry of microtubules around a likewise symmetrical cartwheel containing stacked ring-bearing structures. Components essential for generating this remarkable architecture from alga to man have been identified. A next critical step is to engineer assays to probe the dynamics of centriole assembly with molecular precision to fully understand how these components together build a functional organelle. Our ambitious research proposal aims at taking groundbreaking steps in this direction through four specific aims:
1) Reconstituting cartwheel ring assembly dynamics. We will use high-speed AFM (HS-AFM) to dissect the biophysics of SAS-6 ring polymer dynamics at the root of cartwheel assembly. We will also use HS-AFM to analyze monobodies against SAS-6, as well as engineer surfaces and DNA origamis to further dissect ring assembly.
2) Deciphering ring stacking mechanisms. We will use cryo-ET to identify SAS-6 features that direct stacking of ring structures and set cartwheel height. Moreover, we will develop an HS-AFM stacking assay and a reconstituted stacking assay from human cells.
3) Understanding peripheral element contributions to centriole biogenesis. We will dissect the function of the peripheral centriole pinhead protein Cep135/Bld10p, as well as identify and likewise dissect peripheral A-C linker proteins. Furthermore, we will further engineer the HS-AFM assay to include such peripheral components.
4) Dissecting de novo centriole assembly mechanisms. We will dissect de novo centriole formation in human cells and water fern. We will also explore whether de novo formation involves a phase separation mechanism and repurpose the HS-AFM assay to probe de novo organelle biogenes
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CentrioleBirthDeath
Project Mechanism of centriole inheritance and maintenance
Researcher (PI) Monica BETTENCOURT CARVALHO DIAS
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Consolidator Grant (CoG), LS3, ERC-2015-CoG
Summary Centrioles assemble centrosomes and cilia/flagella, critical structures for cell division, polarity, motility and signalling, which are often deregulated in human disease. Centriole inheritance, in particular the preservation of their copy number and position in the cell is critical in many eukaryotes. I propose to investigate, in an integrative and quantitative way, how centrioles are formed in the right numbers at the right time and place, and how they are maintained to ensure their function and inheritance. We first ask how centrioles guide their own assembly position and centriole copy number. Our recent work highlighted several properties of the system, including positive and negative feedbacks and spatial cues. We explore critical hypotheses through a combination of biochemistry, quantitative live cell microscopy and computational modelling. We then ask how the centrosome and the cell cycle are both coordinated. We recently identified the triggering event in centriole biogenesis and how its regulation is akin to cell cycle control of DNA replication and centromere assembly. We will explore new hypotheses to understand how assembly time is coupled to the cell cycle. Lastly, we ask how centriole maintenance is regulated. By studying centriole disappearance in the female germline we uncovered that centrioles need to be actively maintained by their surrounding matrix. We propose to investigate how that matrix provides stability to the centrioles, whether this is differently regulated in different cell types and the possible consequences of its misregulation for the organism (infertility and ciliopathy-like symptoms). We will take advantage of several experimental systems (in silico, ex-vivo, flies and human cells), tailoring the assay to the question and allowing for comparisons across experimental systems to provide a deeper understanding of the process and its regulation.
Summary
Centrioles assemble centrosomes and cilia/flagella, critical structures for cell division, polarity, motility and signalling, which are often deregulated in human disease. Centriole inheritance, in particular the preservation of their copy number and position in the cell is critical in many eukaryotes. I propose to investigate, in an integrative and quantitative way, how centrioles are formed in the right numbers at the right time and place, and how they are maintained to ensure their function and inheritance. We first ask how centrioles guide their own assembly position and centriole copy number. Our recent work highlighted several properties of the system, including positive and negative feedbacks and spatial cues. We explore critical hypotheses through a combination of biochemistry, quantitative live cell microscopy and computational modelling. We then ask how the centrosome and the cell cycle are both coordinated. We recently identified the triggering event in centriole biogenesis and how its regulation is akin to cell cycle control of DNA replication and centromere assembly. We will explore new hypotheses to understand how assembly time is coupled to the cell cycle. Lastly, we ask how centriole maintenance is regulated. By studying centriole disappearance in the female germline we uncovered that centrioles need to be actively maintained by their surrounding matrix. We propose to investigate how that matrix provides stability to the centrioles, whether this is differently regulated in different cell types and the possible consequences of its misregulation for the organism (infertility and ciliopathy-like symptoms). We will take advantage of several experimental systems (in silico, ex-vivo, flies and human cells), tailoring the assay to the question and allowing for comparisons across experimental systems to provide a deeper understanding of the process and its regulation.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CENTRIOLSTRUCTNUMBER
Project Control of Centriole Structure And Number
Researcher (PI) Monica Bettencourt Carvalho Dias
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Starting Grant (StG), LS3, ERC-2010-StG_20091118
Summary Centrioles are essential for the formation of several microtubule organizing structures including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. Centrosome defects are seen in many cancers, while abnormalities in cilia and flagella can lead to a variety of human diseases, such as polycystic kidney disease. The molecular mechanisms regulating centriole biogenesis have only recently started to be unravelled, opening new ways to answer a wide range of questions that have fascinated biologists for more than a century. In this grant we are asking two fundamental questions that are central to human disease: how is centriole structure and number established and regulated in the eukaryotic cell? To address these questions we propose to identify new molecular players, and to test the role of these and known players in the context of specific mechanistic hypothesis, using in vitro and in vivo models. We propose to develop novel assays for centriole structure and regulation in order to address mechanistic problems not accessible with today s assays. In our search for novel components we will use a multidisciplinary approach combining bioinformatics with high throughput screening. The use of in vitro systems will permit the quantitative dissection of molecular mechanisms, while the study of those mechanisms in Drosophila will allow us to understand them at the whole organism level. Furthermore, this analysis, together with studies in human tissue culture cells, will allow us to understand the consequences of misregulation of these fundamental centriole properties for human disease, such as ciliopathies and cancer. My group is already collaborating with medical doctors in the study of centriole aberrations in human disease (cancer and ciliopathies), which will be invaluable to bringing the results of this study to the translational level.
Summary
Centrioles are essential for the formation of several microtubule organizing structures including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. Centrosome defects are seen in many cancers, while abnormalities in cilia and flagella can lead to a variety of human diseases, such as polycystic kidney disease. The molecular mechanisms regulating centriole biogenesis have only recently started to be unravelled, opening new ways to answer a wide range of questions that have fascinated biologists for more than a century. In this grant we are asking two fundamental questions that are central to human disease: how is centriole structure and number established and regulated in the eukaryotic cell? To address these questions we propose to identify new molecular players, and to test the role of these and known players in the context of specific mechanistic hypothesis, using in vitro and in vivo models. We propose to develop novel assays for centriole structure and regulation in order to address mechanistic problems not accessible with today s assays. In our search for novel components we will use a multidisciplinary approach combining bioinformatics with high throughput screening. The use of in vitro systems will permit the quantitative dissection of molecular mechanisms, while the study of those mechanisms in Drosophila will allow us to understand them at the whole organism level. Furthermore, this analysis, together with studies in human tissue culture cells, will allow us to understand the consequences of misregulation of these fundamental centriole properties for human disease, such as ciliopathies and cancer. My group is already collaborating with medical doctors in the study of centriole aberrations in human disease (cancer and ciliopathies), which will be invaluable to bringing the results of this study to the translational level.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2016-12-31
Project acronym CHANGE
Project New CHallenges for (adaptive) PDE solvers: the interplay of ANalysis and GEometry
Researcher (PI) Annalisa BUFFA
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), PE1, ERC-2015-AdG
Summary The simulation of Partial Differential Equations (PDEs) is an indispensable tool for innovation in science and technology.
Computer-based simulation of PDEs approximates unknowns defined on a geometrical entity such as the computational domain with all of its properties. Mainly due to historical reasons, geometric design and numerical methods for PDEs have been developed independently, resulting in tools that rely on different representations of the same objects.
CHANGE aims at developing innovative mathematical tools for numerically solving PDEs and for geometric modeling and processing, the final goal being the definition of a common framework where geometrical entities and simulation are coherently integrated and where adaptive methods can be used to guarantee optimal use of computer resources, from the geometric description to the simulation.
We will concentrate on two classes of methods for the discretisation of PDEs that are having growing impact:
isogeometric methods and variational methods on polyhedral partitions. They are both extensions of standard finite elements enjoying exciting features, but both lack of an ad-hoc geometric modelling counterpart.
We will extend numerical methods to ensure robustness on the most general geometric models, and we will develop geometric tools to construct, manipulate and refine such models. Based on our tools, we will design an innovative adaptive framework, that jointly exploits multilevel representation of geometric entities and PDE unknowns.
Moreover, efficient algorithms call for efficient implementation: the issue of the optimisation of our algorithms on modern computer architecture will be addressed.
Our research (and the team involved in the project) will combine competencies in computer science, numerical analysis, high performance computing, and computational mechanics. Leveraging our innovative tools, we will also tackle challenging numerical problems deriving from bio-mechanical applications.
Summary
The simulation of Partial Differential Equations (PDEs) is an indispensable tool for innovation in science and technology.
Computer-based simulation of PDEs approximates unknowns defined on a geometrical entity such as the computational domain with all of its properties. Mainly due to historical reasons, geometric design and numerical methods for PDEs have been developed independently, resulting in tools that rely on different representations of the same objects.
CHANGE aims at developing innovative mathematical tools for numerically solving PDEs and for geometric modeling and processing, the final goal being the definition of a common framework where geometrical entities and simulation are coherently integrated and where adaptive methods can be used to guarantee optimal use of computer resources, from the geometric description to the simulation.
We will concentrate on two classes of methods for the discretisation of PDEs that are having growing impact:
isogeometric methods and variational methods on polyhedral partitions. They are both extensions of standard finite elements enjoying exciting features, but both lack of an ad-hoc geometric modelling counterpart.
We will extend numerical methods to ensure robustness on the most general geometric models, and we will develop geometric tools to construct, manipulate and refine such models. Based on our tools, we will design an innovative adaptive framework, that jointly exploits multilevel representation of geometric entities and PDE unknowns.
Moreover, efficient algorithms call for efficient implementation: the issue of the optimisation of our algorithms on modern computer architecture will be addressed.
Our research (and the team involved in the project) will combine competencies in computer science, numerical analysis, high performance computing, and computational mechanics. Leveraging our innovative tools, we will also tackle challenging numerical problems deriving from bio-mechanical applications.
Max ERC Funding
2 199 219 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym ChromoCellDev
Project Chromosome Architecture and the Fidelity of Mitosis during Development
Researcher (PI) Raquel Aguiar Cardoso de Oliveira
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Starting Grant (StG), LS3, ERC-2014-STG
Summary Genome stability relies on accurate partition of the genome during nuclear division. Proper mitosis, in turn, depends on changes in chromosome organization, such as chromosome condensation and sister chromatid cohesion. Despite the importance of these structural changes, chromatin itself has been long assumed to play a rather passive role during mitosis and chromosomes are usually compared to a “corpse at a funeral: they provide the reason for the proceedings but do not take an active part in them.” (Mazia, 1961). Recent evidence, however, suggests that chromosomes play a more active role in the process of their own segregation. The present proposal tests the “active chromosome” hypothesis by investigating how chromosome morphology influences the fidelity of mitosis. I will use innovative methods for acute protein inactivation, developed during my postdoctoral studies, to evaluate the role of two key protein complexes involved in mitotic chromosome architecture - Condensins and Cohesins. Using a multidisciplinary approach, combining acute protein inactivation, 3D-live cell imaging and quantitative methods, I propose to investigate the role of mitotic chromosomes in the fidelity of mitosis at three different levels. The first one will use novel approaches to uncover the process of mitotic chromosome assembly, which is still largely unknown. The second will explore how mitotic chromosomes take an active part in mitosis by examining how chromosome condensation and cohesion influence chromosome movement and the signalling of the surveillance mechanisms that control nuclear division. Lastly we will evaluate how mitotic errors arising from abnormal chromosome structure impact on development. We aim to evaluate, at the cellular and organism level, how the cell perceives such errors and how (indeed if) they tolerate mitotic abnormalities. By conceptually challenging the passive chromosome view this project has the potential to redefine the role of chromatin during mitosis.
Summary
Genome stability relies on accurate partition of the genome during nuclear division. Proper mitosis, in turn, depends on changes in chromosome organization, such as chromosome condensation and sister chromatid cohesion. Despite the importance of these structural changes, chromatin itself has been long assumed to play a rather passive role during mitosis and chromosomes are usually compared to a “corpse at a funeral: they provide the reason for the proceedings but do not take an active part in them.” (Mazia, 1961). Recent evidence, however, suggests that chromosomes play a more active role in the process of their own segregation. The present proposal tests the “active chromosome” hypothesis by investigating how chromosome morphology influences the fidelity of mitosis. I will use innovative methods for acute protein inactivation, developed during my postdoctoral studies, to evaluate the role of two key protein complexes involved in mitotic chromosome architecture - Condensins and Cohesins. Using a multidisciplinary approach, combining acute protein inactivation, 3D-live cell imaging and quantitative methods, I propose to investigate the role of mitotic chromosomes in the fidelity of mitosis at three different levels. The first one will use novel approaches to uncover the process of mitotic chromosome assembly, which is still largely unknown. The second will explore how mitotic chromosomes take an active part in mitosis by examining how chromosome condensation and cohesion influence chromosome movement and the signalling of the surveillance mechanisms that control nuclear division. Lastly we will evaluate how mitotic errors arising from abnormal chromosome structure impact on development. We aim to evaluate, at the cellular and organism level, how the cell perceives such errors and how (indeed if) they tolerate mitotic abnormalities. By conceptually challenging the passive chromosome view this project has the potential to redefine the role of chromatin during mitosis.
Max ERC Funding
1 492 000 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym CLaQS
Project Correlations in Large Quantum Systems
Researcher (PI) Benjamin Schlein
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), PE1, ERC-2018-ADG
Summary This project is devoted to the mathematical analysis of important physical properties of many-body quantum systems. We will be interested in properties of the ground state and low-energy excitations but also of non-equilibrium dynamics. We are going to consider systems with different statistics and in different regimes. The questions we are going to address have a common aspect: correlations among particles play a crucial role. Our main goal consists in developing new tools that allow us to correctly describe many-body correlations and to understand their effects. The starting point of our proposal are ideas and techniques that have been introduced in a series of papers establishing the validity of Bogoliubov theory for Bose gases in the Gross-Pitaevskii regime, and in a recent preprint showing how (bosonic) Bogoliubov theory can also be used to study the correlation energy of Fermi gases. In this project, we plan to develop these techniques further and to apply them to new contexts. We believe they have the potential to approach some fundamental open problem in mathematical physics. Among our most ambitious objectives, we include the proof of the Lee-Huang-Yang formula for the energy of dilute Bose gases and of the corresponding Huang-Yang formula for dilute Fermi gases, as well as the derivation of the Gell-Mann--Brueckner expression for the correlation energy of a high density Fermi system. Furthermore, we propose to work on long-term projects (going beyond the duration of the grant) aiming at a rigorous justification of the quantum Boltzmann equation for fermions in the weak coupling limit and at a proof of Bose-Einstein condensation in the thermodynamic limit, two very challenging and important questions in the field.
Summary
This project is devoted to the mathematical analysis of important physical properties of many-body quantum systems. We will be interested in properties of the ground state and low-energy excitations but also of non-equilibrium dynamics. We are going to consider systems with different statistics and in different regimes. The questions we are going to address have a common aspect: correlations among particles play a crucial role. Our main goal consists in developing new tools that allow us to correctly describe many-body correlations and to understand their effects. The starting point of our proposal are ideas and techniques that have been introduced in a series of papers establishing the validity of Bogoliubov theory for Bose gases in the Gross-Pitaevskii regime, and in a recent preprint showing how (bosonic) Bogoliubov theory can also be used to study the correlation energy of Fermi gases. In this project, we plan to develop these techniques further and to apply them to new contexts. We believe they have the potential to approach some fundamental open problem in mathematical physics. Among our most ambitious objectives, we include the proof of the Lee-Huang-Yang formula for the energy of dilute Bose gases and of the corresponding Huang-Yang formula for dilute Fermi gases, as well as the derivation of the Gell-Mann--Brueckner expression for the correlation energy of a high density Fermi system. Furthermore, we propose to work on long-term projects (going beyond the duration of the grant) aiming at a rigorous justification of the quantum Boltzmann equation for fermions in the weak coupling limit and at a proof of Bose-Einstein condensation in the thermodynamic limit, two very challenging and important questions in the field.
Max ERC Funding
1 876 050 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CODECHECK
Project CRACKING THE CODE BEHIND MITOTIC FIDELITY: the roles of tubulin post-translational modifications and a chromosome separation checkpoint
Researcher (PI) Helder Jose Martins Maiato
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Call Details Consolidator Grant (CoG), LS3, ERC-2015-CoG
Summary During the human lifetime 10000 trillion cell divisions take place to ensure tissue homeostasis and several vital functions in the organism. Mitosis is the process that ensures that dividing cells preserve the chromosome number of their progenitors, while deviation from this, a condition known as aneuploidy, represents the most common feature in human cancers. Here we will test two original concepts with strong implications for chromosome segregation fidelity. The first concept is based on the “tubulin code” hypothesis, which predicts that molecular motors “read” tubulin post-translational modifications on spindle microtubules. Our proof-of-concept experiments demonstrate that tubulin detyrosination works as a navigation system that guides chromosomes towards the cell equator. Thus, in addition to regulating the motors required for chromosome motion, the cell might regulate the tracks in which they move on. We will combine proteomic, super-resolution and live-cell microscopy, with in vitro reconstitutions, to perform a comprehensive survey of the tubulin code and the respective implications for motors involved in chromosome motion, mitotic spindle assembly and correction of kinetochore-microtubule attachments. The second concept is centered on the recently uncovered chromosome separation checkpoint mediated by a midzone-associated Aurora B gradient, which delays nuclear envelope reformation in response to incompletely separated chromosomes. We aim to identify Aurora B targets involved in the spatiotemporal regulation of the anaphase-telophase transition. We will establish powerful live-cell microscopy assays and a novel mammalian model system to dissect how this checkpoint allows the detection and correction of lagging/long chromosomes and DNA bridges that would otherwise contribute to genomic instability. Overall, this work will establish a paradigm shift in our understanding of how spatial information is conveyed to faithfully segregate chromosomes during mitosis.
Summary
During the human lifetime 10000 trillion cell divisions take place to ensure tissue homeostasis and several vital functions in the organism. Mitosis is the process that ensures that dividing cells preserve the chromosome number of their progenitors, while deviation from this, a condition known as aneuploidy, represents the most common feature in human cancers. Here we will test two original concepts with strong implications for chromosome segregation fidelity. The first concept is based on the “tubulin code” hypothesis, which predicts that molecular motors “read” tubulin post-translational modifications on spindle microtubules. Our proof-of-concept experiments demonstrate that tubulin detyrosination works as a navigation system that guides chromosomes towards the cell equator. Thus, in addition to regulating the motors required for chromosome motion, the cell might regulate the tracks in which they move on. We will combine proteomic, super-resolution and live-cell microscopy, with in vitro reconstitutions, to perform a comprehensive survey of the tubulin code and the respective implications for motors involved in chromosome motion, mitotic spindle assembly and correction of kinetochore-microtubule attachments. The second concept is centered on the recently uncovered chromosome separation checkpoint mediated by a midzone-associated Aurora B gradient, which delays nuclear envelope reformation in response to incompletely separated chromosomes. We aim to identify Aurora B targets involved in the spatiotemporal regulation of the anaphase-telophase transition. We will establish powerful live-cell microscopy assays and a novel mammalian model system to dissect how this checkpoint allows the detection and correction of lagging/long chromosomes and DNA bridges that would otherwise contribute to genomic instability. Overall, this work will establish a paradigm shift in our understanding of how spatial information is conveyed to faithfully segregate chromosomes during mitosis.
Max ERC Funding
2 323 468 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym COLOUR
Project THE COLOUR OF LABOUR: THE RACIALIZED LIVES OF MIGRANTS
Researcher (PI) Cristiana BASTOS
Host Institution (HI) INSTITUTO DE CIENCIAS SOCIAIS
Call Details Advanced Grant (AdG), SH6, ERC-2015-AdG
Summary This project is about the racialization of migrant labourers across political boundaries, with a main focus on impoverished Europeans who served in huge numbers as indentured labourers in nineteenth-century Guianese, Caribbean and Hawaiian sugar plantations and in the workforce of late nineteenth and early twentieth century New England cotton mills.
With this project I aim to provide major, innovative contributions on three fronts:
(i) theory-making, by working the concepts of race, racism, racialization, embodiment and memory in association with migrant work across political boundaries and imperial classifications;
(ii) social relevance of basic research, by linking an issue of pressing urgency in contemporary Europe to substantive, broad-scope, and multi-sited anthropological/historical research on the wider structures of domination, rather than to targeted problem-solving research of immediate applicability;
(iii) disciplinary scope, by proposing to unsettle historical anthropology and ethnographic history from within the boundaries of a single empire, and to overcome the limitations of existing comparative studies, by inquiring into the flows and interactions between competing empires.
I will also:
(iv) strengthen the methodology for multi-sited, multi-period research in anthropology;
(v) contribute to an anthropology of global connections and trans-local approaches;
(vi) promote the multidisciplinary and combined-methods approach to complex subjects;
(vii) narrate a poorly known set of historical situations of labour racializations involving Europeans and document the ways they reverberate through generations; and
(viii) make the analysis available to both academic audiences and the different communities involved in the research.
Summary
This project is about the racialization of migrant labourers across political boundaries, with a main focus on impoverished Europeans who served in huge numbers as indentured labourers in nineteenth-century Guianese, Caribbean and Hawaiian sugar plantations and in the workforce of late nineteenth and early twentieth century New England cotton mills.
With this project I aim to provide major, innovative contributions on three fronts:
(i) theory-making, by working the concepts of race, racism, racialization, embodiment and memory in association with migrant work across political boundaries and imperial classifications;
(ii) social relevance of basic research, by linking an issue of pressing urgency in contemporary Europe to substantive, broad-scope, and multi-sited anthropological/historical research on the wider structures of domination, rather than to targeted problem-solving research of immediate applicability;
(iii) disciplinary scope, by proposing to unsettle historical anthropology and ethnographic history from within the boundaries of a single empire, and to overcome the limitations of existing comparative studies, by inquiring into the flows and interactions between competing empires.
I will also:
(iv) strengthen the methodology for multi-sited, multi-period research in anthropology;
(v) contribute to an anthropology of global connections and trans-local approaches;
(vi) promote the multidisciplinary and combined-methods approach to complex subjects;
(vii) narrate a poorly known set of historical situations of labour racializations involving Europeans and document the ways they reverberate through generations; and
(viii) make the analysis available to both academic audiences and the different communities involved in the research.
Max ERC Funding
2 161 397 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym COMANFLO
Project Computation and analysis of statistical solutions of fluid flow
Researcher (PI) Siddhartha MISHRA
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Consolidator Grant (CoG), PE1, ERC-2017-COG
Summary Entropy (admissible) weak solutions are widely considered to be the standard solution framework for hyperbolic systems of conservation laws and incompressible Euler equations. However, the lack of global existence results in several space dimensions, the recent demonstration of non-uniqueness of these solutions and computations showing the lack of convergence of state of the art numerical methods to them, have reinforced the need to seek alternative solution paradigms.
Although one can show that numerical approximations of these nonlinear PDEs converge to measure-valued solutions i.e Young measures, these solutions are not unique and we need to constrain them further. Statistical solutions i.e, time-parametrized probability measures on spaces of integrable functions, are a promising framework in this regard as they can be characterized as a measure-valued solution that also contains information about all possible multi-point spatial correlations. So far, well-posedness of statistical solutions has been shown only in the case of scalar conservation laws.
The main aim of the proposed project is to analyze statistical solutions of systems of conservation laws and incompressible Euler equations and to design efficient numerical approximations for them. We aim to prove global existence of statistical solutions in several space dimensions, by showing convergence of these numerical approximations, and to identify suitable additional admissibility criteria for statistical solutions that can ensure uniqueness. We will use these numerical methods to compute statistical quantities of interest and relate them to existing theories (and observations) for unstable and turbulent fluid flows. Successful completion of this project aims to establish statistical solutions as the appropriate solution paradigm for inviscid fluid flows, even for deterministic initial data, and will pave the way for applications to astrophysics, climate science and uncertainty quantification.
Summary
Entropy (admissible) weak solutions are widely considered to be the standard solution framework for hyperbolic systems of conservation laws and incompressible Euler equations. However, the lack of global existence results in several space dimensions, the recent demonstration of non-uniqueness of these solutions and computations showing the lack of convergence of state of the art numerical methods to them, have reinforced the need to seek alternative solution paradigms.
Although one can show that numerical approximations of these nonlinear PDEs converge to measure-valued solutions i.e Young measures, these solutions are not unique and we need to constrain them further. Statistical solutions i.e, time-parametrized probability measures on spaces of integrable functions, are a promising framework in this regard as they can be characterized as a measure-valued solution that also contains information about all possible multi-point spatial correlations. So far, well-posedness of statistical solutions has been shown only in the case of scalar conservation laws.
The main aim of the proposed project is to analyze statistical solutions of systems of conservation laws and incompressible Euler equations and to design efficient numerical approximations for them. We aim to prove global existence of statistical solutions in several space dimensions, by showing convergence of these numerical approximations, and to identify suitable additional admissibility criteria for statistical solutions that can ensure uniqueness. We will use these numerical methods to compute statistical quantities of interest and relate them to existing theories (and observations) for unstable and turbulent fluid flows. Successful completion of this project aims to establish statistical solutions as the appropriate solution paradigm for inviscid fluid flows, even for deterministic initial data, and will pave the way for applications to astrophysics, climate science and uncertainty quantification.
Max ERC Funding
1 959 323 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym COMBOS
Project Collective phenomena in quantum and classical many body systems
Researcher (PI) Alessandro Giuliani
Host Institution (HI) UNIVERSITA DEGLI STUDI ROMA TRE
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The collective behavior of quantum and classical many body systems such as ultracold atomic gases, nanowires, cuprates and micromagnets are currently subject of an intense experimental and theoretical research worldwide. Understanding the fascinating phenomena of Bose-Einstein condensation, Luttinger liquid vs non-Luttinger liquid behavior, high temperature superconductivity, and spontaneous formation of periodic patterns in magnetic systems, is an exciting challenge for theoreticians. Most of these phenomena are still far from being fully understood, even from a heuristic point of view. Unveiling the exotic properties of such systems by rigorous mathematical analysis is an important and difficult challenge for mathematical physics. In the last two decades, substantial progress has been made on various aspects of many-body theory, including Fermi liquids, Luttinger liquids, perturbed Ising models at criticality, bosonization, trapped Bose gases and spontaneous formation of periodic patterns. The techniques successfully employed in this field are diverse, and range from constructive renormalization group to functional variational estimates. In this research project we propose to investigate a number of statistical mechanics models by a combination of different mathematical methods. The objective is, on the one hand, to understand crossover phenomena, phase transitions and low-temperature states with broken symmetry, which are of interest in the theory of condensed matter and that we believe to be accessible to the currently available methods; on the other, to develop new techiques combining different and complementary methods, such as multiscale analysis and localization bounds, or reflection positivity and cluster expansion, which may be useful to further progress on important open problems, such as Bose-Einstein condensation, conformal invariance in non-integrable models, existence of magnetic or superconducting long range order.
Summary
The collective behavior of quantum and classical many body systems such as ultracold atomic gases, nanowires, cuprates and micromagnets are currently subject of an intense experimental and theoretical research worldwide. Understanding the fascinating phenomena of Bose-Einstein condensation, Luttinger liquid vs non-Luttinger liquid behavior, high temperature superconductivity, and spontaneous formation of periodic patterns in magnetic systems, is an exciting challenge for theoreticians. Most of these phenomena are still far from being fully understood, even from a heuristic point of view. Unveiling the exotic properties of such systems by rigorous mathematical analysis is an important and difficult challenge for mathematical physics. In the last two decades, substantial progress has been made on various aspects of many-body theory, including Fermi liquids, Luttinger liquids, perturbed Ising models at criticality, bosonization, trapped Bose gases and spontaneous formation of periodic patterns. The techniques successfully employed in this field are diverse, and range from constructive renormalization group to functional variational estimates. In this research project we propose to investigate a number of statistical mechanics models by a combination of different mathematical methods. The objective is, on the one hand, to understand crossover phenomena, phase transitions and low-temperature states with broken symmetry, which are of interest in the theory of condensed matter and that we believe to be accessible to the currently available methods; on the other, to develop new techiques combining different and complementary methods, such as multiscale analysis and localization bounds, or reflection positivity and cluster expansion, which may be useful to further progress on important open problems, such as Bose-Einstein condensation, conformal invariance in non-integrable models, existence of magnetic or superconducting long range order.
Max ERC Funding
650 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym COMPASP
Project Complex analysis and statistical physics
Researcher (PI) Stanislav Smirnov
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Advanced Grant (AdG), PE1, ERC-2013-ADG
Summary "The goal of this project is to achieve breakthroughs in a few fundamental questions in 2D statistical physics, using techniques from complex analysis, probability, dynamical systems, geometric measure theory and theoretical physics.
Over the last decade, we significantly expanded our understanding of 2D lattice models of statistical physics, their conformally invariant scaling limits and related random geometries. However, there seem to be serious obstacles, preventing further development and requiring novel ideas. We plan to attack those, in particular we intend to:
(A) Describe new scaling limits by Schramm’s SLE curves and their generalizations,
(B) Study discrete complex structures and use them to describe more 2D models,
(C) Describe the scaling limits of random planar graphs by the Liouville Quantum Gravity,
(D) Understand universality and lay framework for the Renormalization Group Formalism,
(E) Go beyond the current setup of spin models and SLEs.
These problems are known to be very difficult, but fundamental questions, which have the potential to lead to significant breakthroughs in our understanding of phase transitions, allowing for further progresses. In resolving them, we plan to exploit interactions of different subjects, and recent advances are encouraging."
Summary
"The goal of this project is to achieve breakthroughs in a few fundamental questions in 2D statistical physics, using techniques from complex analysis, probability, dynamical systems, geometric measure theory and theoretical physics.
Over the last decade, we significantly expanded our understanding of 2D lattice models of statistical physics, their conformally invariant scaling limits and related random geometries. However, there seem to be serious obstacles, preventing further development and requiring novel ideas. We plan to attack those, in particular we intend to:
(A) Describe new scaling limits by Schramm’s SLE curves and their generalizations,
(B) Study discrete complex structures and use them to describe more 2D models,
(C) Describe the scaling limits of random planar graphs by the Liouville Quantum Gravity,
(D) Understand universality and lay framework for the Renormalization Group Formalism,
(E) Go beyond the current setup of spin models and SLEs.
These problems are known to be very difficult, but fundamental questions, which have the potential to lead to significant breakthroughs in our understanding of phase transitions, allowing for further progresses. In resolving them, we plan to exploit interactions of different subjects, and recent advances are encouraging."
Max ERC Funding
1 995 900 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym COMPAT
Project Complex Patterns for Strongly Interacting Dynamical Systems
Researcher (PI) Susanna Terracini
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TORINO
Call Details Advanced Grant (AdG), PE1, ERC-2013-ADG
Summary This project focuses on nontrivial solutions of systems of differential equations characterized by strongly nonlinear interactions. We are interested in the effect of the nonlinearities on the emergence of non trivial self-organized structures. Such patterns correspond to selected solutions of the differential system possessing special symmetries or shadowing particular shapes. We want to understand, from the
mathematical point of view, what are the main mechanisms involved in the aggregation process in terms of the global variational structure of the problem. Following this common thread, we deal with both with the classical N-body problem of Celestial Mechanics, where interactions feature attractive singularities, and competition-diffusion systems, where pattern formation is driven by strongly repulsive forces. More
precisely, we are interested in periodic and bounded solutions, parabolic trajectories with the final intent to build complex motions and possibly obtain the symbolic dynamics for the general N–body problem. On the other hand, we deal with elliptic, parabolic and hyperbolic systems of differential equations with strongly competing interaction terms, modeling both the dynamics of competing populations (Lotka-
Volterra systems) and other interesting physical phenomena, among which the phase segregation of solitary waves of Gross-Pitaevskii systems arising in the study of multicomponent Bose-Einstein condensates. In particular, we will study existence, multiplicity and asymptotic expansions of solutions when the competition parameter tends to infinity. We shall be concerned with optimal partition problems
related to linear and nonlinear eigenvalues
Summary
This project focuses on nontrivial solutions of systems of differential equations characterized by strongly nonlinear interactions. We are interested in the effect of the nonlinearities on the emergence of non trivial self-organized structures. Such patterns correspond to selected solutions of the differential system possessing special symmetries or shadowing particular shapes. We want to understand, from the
mathematical point of view, what are the main mechanisms involved in the aggregation process in terms of the global variational structure of the problem. Following this common thread, we deal with both with the classical N-body problem of Celestial Mechanics, where interactions feature attractive singularities, and competition-diffusion systems, where pattern formation is driven by strongly repulsive forces. More
precisely, we are interested in periodic and bounded solutions, parabolic trajectories with the final intent to build complex motions and possibly obtain the symbolic dynamics for the general N–body problem. On the other hand, we deal with elliptic, parabolic and hyperbolic systems of differential equations with strongly competing interaction terms, modeling both the dynamics of competing populations (Lotka-
Volterra systems) and other interesting physical phenomena, among which the phase segregation of solitary waves of Gross-Pitaevskii systems arising in the study of multicomponent Bose-Einstein condensates. In particular, we will study existence, multiplicity and asymptotic expansions of solutions when the competition parameter tends to infinity. We shall be concerned with optimal partition problems
related to linear and nonlinear eigenvalues
Max ERC Funding
1 346 145 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym COMPLEXDATA
Project Statistics for Complex Data: Understanding Randomness, Geometry and Complexity with a view Towards Biophysics
Researcher (PI) Victor Michael Panaretos
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The ComplexData project aims at advancing our understanding of the statistical treatment of varied types of complex data by generating new theory and methods, and to obtain progress in concrete current biophysical problems through the implementation of the new tools developed. Complex Data constitute data where the basic object of observation cannot be described in the standard Euclidean context of statistics, but rather needs to be thought of as an element of an abstract mathematical space with special properties. Scientific progress has, in recent years, begun to generate an increasing number of new and complex types of data that require statistical understanding and analysis. Four such types of data that are arising in the context of current scientific research and that the project will be focusing on are: random integral transforms, random unlabelled shapes, random flows of functions, and random tensor fields. In these unconventional contexts for statistics, the strategy of the project will be to carefully exploit the special aspects involved due to geometry, dimension and randomness in order to be able to either adapt and synthesize existing statistical methods, or to generate new statistical ideas altogether. However, the project will not restrict itself to merely studying the theoretical aspects of complex data, but will be truly interdisciplinary. The connecting thread among all the above data types is that their study is motivated by, and will be applied to concrete practical problems arising in the study of biological structure, dynamics, and function: biophysics. For this reason, the programme will be in interaction with local and international contacts from this field. In particular, the theoretical/methodological output of the four programme research foci will be applied to gain insights in the following corresponding four application areas: electron microscopy, protein homology, DNA molecular dynamics, brain imaging.
Summary
The ComplexData project aims at advancing our understanding of the statistical treatment of varied types of complex data by generating new theory and methods, and to obtain progress in concrete current biophysical problems through the implementation of the new tools developed. Complex Data constitute data where the basic object of observation cannot be described in the standard Euclidean context of statistics, but rather needs to be thought of as an element of an abstract mathematical space with special properties. Scientific progress has, in recent years, begun to generate an increasing number of new and complex types of data that require statistical understanding and analysis. Four such types of data that are arising in the context of current scientific research and that the project will be focusing on are: random integral transforms, random unlabelled shapes, random flows of functions, and random tensor fields. In these unconventional contexts for statistics, the strategy of the project will be to carefully exploit the special aspects involved due to geometry, dimension and randomness in order to be able to either adapt and synthesize existing statistical methods, or to generate new statistical ideas altogether. However, the project will not restrict itself to merely studying the theoretical aspects of complex data, but will be truly interdisciplinary. The connecting thread among all the above data types is that their study is motivated by, and will be applied to concrete practical problems arising in the study of biological structure, dynamics, and function: biophysics. For this reason, the programme will be in interaction with local and international contacts from this field. In particular, the theoretical/methodological output of the four programme research foci will be applied to gain insights in the following corresponding four application areas: electron microscopy, protein homology, DNA molecular dynamics, brain imaging.
Max ERC Funding
681 146 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym CONFRA
Project Conformal fractals in analysis, dynamics, physics
Researcher (PI) Stanislav Smirnov
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary The goal of this project is to study conformally invariant fractal structures from the perspectives of analysis, dynamics, probability, geometry and physics, emphasizing interrelations of these fields. In the last two decades such structures emerged in several areas: continuum scaling limits of 2D critical models in statistical physics (percolation, Ising model); extremal configurations for various problems in complex analysis (multifractal harmonic measures, coefficient growth of univalent maps, Brennan's conjecture); chaotic sets for complex dynamical systems (Julia sets, Kleinian groups). Capitalizing on recent successes, I plan to continue my work in these areas, exploiting their interactions and connections to physics. I intend to achieve at least some of the following goals: * To establish that several critical lattice models have conformally invariant scaling limits, by building upon results on percolation and Ising models and finding discrete holomorphic observables. * To study geometric properties of arising fractal curves and random fields by connecting them to Schramm's SLE curves and Gaussian Free Fields. * To investigate massive scaling limits by describing them geometrically with generalizations of SLEs. * To lay mathematical framework behind relevant physical notions, such as Coulomb Gas (by relating height functions to GFFs) and Quantum Gravity (by identifying limits of random planar graphs with Liouville QGs). * To improve known bounds in several old questions in complex analysis by studying multifractal spectra of harmonic measures. * To estimate extremal behavior of such spectra by using holomorphic motions of (quasi) conformal maps and thermodynamic formalism. * To understand nature of extremal multifractals for harmonic measure by studying random and dynamical fractals. The topics involved range from century old to very young ones. Recently connections between them started to emerge, opening exciting possibilities for new developments in some long standing open problems.
Summary
The goal of this project is to study conformally invariant fractal structures from the perspectives of analysis, dynamics, probability, geometry and physics, emphasizing interrelations of these fields. In the last two decades such structures emerged in several areas: continuum scaling limits of 2D critical models in statistical physics (percolation, Ising model); extremal configurations for various problems in complex analysis (multifractal harmonic measures, coefficient growth of univalent maps, Brennan's conjecture); chaotic sets for complex dynamical systems (Julia sets, Kleinian groups). Capitalizing on recent successes, I plan to continue my work in these areas, exploiting their interactions and connections to physics. I intend to achieve at least some of the following goals: * To establish that several critical lattice models have conformally invariant scaling limits, by building upon results on percolation and Ising models and finding discrete holomorphic observables. * To study geometric properties of arising fractal curves and random fields by connecting them to Schramm's SLE curves and Gaussian Free Fields. * To investigate massive scaling limits by describing them geometrically with generalizations of SLEs. * To lay mathematical framework behind relevant physical notions, such as Coulomb Gas (by relating height functions to GFFs) and Quantum Gravity (by identifying limits of random planar graphs with Liouville QGs). * To improve known bounds in several old questions in complex analysis by studying multifractal spectra of harmonic measures. * To estimate extremal behavior of such spectra by using holomorphic motions of (quasi) conformal maps and thermodynamic formalism. * To understand nature of extremal multifractals for harmonic measure by studying random and dynamical fractals. The topics involved range from century old to very young ones. Recently connections between them started to emerge, opening exciting possibilities for new developments in some long standing open problems.
Max ERC Funding
1 278 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym CONLAWS
Project Hyperbolic Systems of Conservation Laws: singular limits, properties of solutions and control problems
Researcher (PI) Stefano Bianchini
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The research program concerns various theoretic aspects of hyperbolic conservation laws. In first place we plan to study the existence and uniqueness of solutions to systems of equations of mathematical physics with physic viscosity. This is one of the main open problems within the theory of conservation laws in one space dimension, which cannot be tackled relying on the techniques developed in the case where the viscosity matrix is the identity. Furthermore, this represents a first step toward the analysis of more complex relaxation and kinetic models with a finite number of velocities as for Broadwell equation, or with a continuous distribution of velocities as for Boltzmann equation. A second research topic concerns the study of conservation laws with large data. Even in this case the basic model is provided by fluidodynamic equations. We wish to extend the results of existence, uniqueness and continuous dependence of solutions to the case of large (in BV or in L^infty) data, at least for the simplest systems of mathematical physics such as the isentropic gas dynamics. A third research topic that we wish to pursue concerns the analysis of fine properties of solutions to conservation laws. Many of such properties depend on the existence of one or more entropies of the system. In particular, we have in mind to study the regularity and the concentration of the dissipativity measure for an entropic solution of a system of conservation laws. Finally, we wish to continue the study of hyperbolic equations from the control theory point of view along two directions: (i) the analysis of controllability and asymptotic stabilizability properties; (ii) the study of optimal control problems related to hyperbolic systems.
Summary
The research program concerns various theoretic aspects of hyperbolic conservation laws. In first place we plan to study the existence and uniqueness of solutions to systems of equations of mathematical physics with physic viscosity. This is one of the main open problems within the theory of conservation laws in one space dimension, which cannot be tackled relying on the techniques developed in the case where the viscosity matrix is the identity. Furthermore, this represents a first step toward the analysis of more complex relaxation and kinetic models with a finite number of velocities as for Broadwell equation, or with a continuous distribution of velocities as for Boltzmann equation. A second research topic concerns the study of conservation laws with large data. Even in this case the basic model is provided by fluidodynamic equations. We wish to extend the results of existence, uniqueness and continuous dependence of solutions to the case of large (in BV or in L^infty) data, at least for the simplest systems of mathematical physics such as the isentropic gas dynamics. A third research topic that we wish to pursue concerns the analysis of fine properties of solutions to conservation laws. Many of such properties depend on the existence of one or more entropies of the system. In particular, we have in mind to study the regularity and the concentration of the dissipativity measure for an entropic solution of a system of conservation laws. Finally, we wish to continue the study of hyperbolic equations from the control theory point of view along two directions: (i) the analysis of controllability and asymptotic stabilizability properties; (ii) the study of optimal control problems related to hyperbolic systems.
Max ERC Funding
422 000 €
Duration
Start date: 2009-11-01, End date: 2013-10-31
Project acronym CONSTAMIS
Project Connecting Statistical Mechanics and Conformal Field Theory: an Ising Model Perspective
Researcher (PI) CLEMENT HONGLER
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE1, ERC-2016-STG
Summary The developments of Statistical Mechanics and Quantum Field Theory are among the major achievements of the 20th century's science. During the second half of the century, these two subjects started to converge. In two dimensions, this resulted in a most remarkable chapter of mathematical physics: Conformal Field Theory (CFT) reveals deep structures allowing for extremely precise investigations, making such theories powerful building blocks of many subjects of mathematics and physics. Unfortunately, this convergence has remained non-rigorous, leaving most of the spectacular field-theoretic applications to Statistical Mechanics conjectural.
About 15 years ago, several mathematical breakthroughs shed new light on this picture. The development of SLE curves and discrete complex analysis has enabled one to connect various statistical mechanics models with conformally symmetric processes. Recently, major progress was made on a key statistical mechanics model, the Ising model: the connection with SLE was established, and many formulae predicted by CFT were proven.
Important advances towards connecting Statistical Mechanics and CFT now appear possible. This is the goal of this proposal, which is organized in three objectives:
(I) Build a deep correspondence between the Ising model and CFT: reveal clear links between the objects and structures arising in the Ising and CFT frameworks.
(II) Gather the insights of (I) to study new connections to CFT, particularly for minimal models, current algebras and parafermions.
(III) Combine (I) and (II) to go beyond conformal symmetry: link the Ising model with massive integrable field theories.
The aim is to build one of the first rigorous bridges between Statistical Mechanics and CFT. It will help to close the gap between physical derivations and mathematical theorems. By linking the deep structures of CFT to concrete models that are applicable in many subjects, it will be potentially useful to theoretical and applied scientists.
Summary
The developments of Statistical Mechanics and Quantum Field Theory are among the major achievements of the 20th century's science. During the second half of the century, these two subjects started to converge. In two dimensions, this resulted in a most remarkable chapter of mathematical physics: Conformal Field Theory (CFT) reveals deep structures allowing for extremely precise investigations, making such theories powerful building blocks of many subjects of mathematics and physics. Unfortunately, this convergence has remained non-rigorous, leaving most of the spectacular field-theoretic applications to Statistical Mechanics conjectural.
About 15 years ago, several mathematical breakthroughs shed new light on this picture. The development of SLE curves and discrete complex analysis has enabled one to connect various statistical mechanics models with conformally symmetric processes. Recently, major progress was made on a key statistical mechanics model, the Ising model: the connection with SLE was established, and many formulae predicted by CFT were proven.
Important advances towards connecting Statistical Mechanics and CFT now appear possible. This is the goal of this proposal, which is organized in three objectives:
(I) Build a deep correspondence between the Ising model and CFT: reveal clear links between the objects and structures arising in the Ising and CFT frameworks.
(II) Gather the insights of (I) to study new connections to CFT, particularly for minimal models, current algebras and parafermions.
(III) Combine (I) and (II) to go beyond conformal symmetry: link the Ising model with massive integrable field theories.
The aim is to build one of the first rigorous bridges between Statistical Mechanics and CFT. It will help to close the gap between physical derivations and mathematical theorems. By linking the deep structures of CFT to concrete models that are applicable in many subjects, it will be potentially useful to theoretical and applied scientists.
Max ERC Funding
998 005 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym CROME
Project Crossed Memories, Politics of Silence: The Colonial-Liberation Wars in Postcolonial Times
Researcher (PI) Miguel Gonçalo CARDINA
Host Institution (HI) CENTRO DE ESTUDOS SOCIAIS
Call Details Starting Grant (StG), SH6, ERC-2016-STG
Summary Colonial-Liberation Wars generate plural memories, conflicting evocations and persisting amnesias. The project’s main challenge is to produce innovative knowledge about the memories of the wars fought by the Portuguese state and pro-independence African movements between 1961 and 1974/5. The approach chosen is simultaneously diachronic and comparative, inasmuch as it contrasts changes that took place between the end of the conflicts and nowadays, regarding how wars, colonial pasts and anticolonial legacies have been remembered and silenced in Portugal, Angola, Mozambique, Guinea-Bissau, Cape Verde and São Tomé and Principe. The key hypothesis is that wars - as pivotal moments that ended the cycle of Empire in Portugal and started the cycle of African independences in the former Portuguese colonies - triggered memorialisation and silencing processes which had their own historicity.
CROME is divided into two strands. The first one, named ‘Colonial Wars, Postcolonial States’, looks at the role played by the states under consideration in mobilising, articulating and recognising the past, but also in actively generating selective representations. ‘Memory as a battlefield’ is the second strand, which will highlight distinct uses of the past and dynamics between social memories and individual memories.
The project intends to demonstrate how wars gave rise to multiple memories and conflicting historical judgements, mostly in Portugal, but also to examine how the specific nature of the (post-)colonial histories of each African country has generated different ways to summon war memories and (anti-)colonial legacies. CROME will, thus, put forward a ground-breaking perspective in terms of colonial-liberation war studies, and will be instrumental in dealing with such traumatic experience, for its comparative approach might help overcoming everlasting constraints still at play today, caused by the historical burden European colonialism left behind.
Summary
Colonial-Liberation Wars generate plural memories, conflicting evocations and persisting amnesias. The project’s main challenge is to produce innovative knowledge about the memories of the wars fought by the Portuguese state and pro-independence African movements between 1961 and 1974/5. The approach chosen is simultaneously diachronic and comparative, inasmuch as it contrasts changes that took place between the end of the conflicts and nowadays, regarding how wars, colonial pasts and anticolonial legacies have been remembered and silenced in Portugal, Angola, Mozambique, Guinea-Bissau, Cape Verde and São Tomé and Principe. The key hypothesis is that wars - as pivotal moments that ended the cycle of Empire in Portugal and started the cycle of African independences in the former Portuguese colonies - triggered memorialisation and silencing processes which had their own historicity.
CROME is divided into two strands. The first one, named ‘Colonial Wars, Postcolonial States’, looks at the role played by the states under consideration in mobilising, articulating and recognising the past, but also in actively generating selective representations. ‘Memory as a battlefield’ is the second strand, which will highlight distinct uses of the past and dynamics between social memories and individual memories.
The project intends to demonstrate how wars gave rise to multiple memories and conflicting historical judgements, mostly in Portugal, but also to examine how the specific nature of the (post-)colonial histories of each African country has generated different ways to summon war memories and (anti-)colonial legacies. CROME will, thus, put forward a ground-breaking perspective in terms of colonial-liberation war studies, and will be instrumental in dealing with such traumatic experience, for its comparative approach might help overcoming everlasting constraints still at play today, caused by the historical burden European colonialism left behind.
Max ERC Funding
1 478 249 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym CYCLODE
Project Cyclical and Linear Timing Modes in Development
Researcher (PI) Helge GROSSHANS
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Advanced Grant (AdG), LS3, ERC-2016-ADG
Summary Organismal development requires proper timing of events such as cell fate choices, but the mechanisms that control temporal patterning remain poorly understood. In particular, we know little of the cyclical timers, or ‘clocks’, that control recurring events such as vertebrate segmentation or nematode molting. Furthermore, it is unknown how cyclical timers are coordinated with the global, or linear, timing of development, e.g. to ensure an appropriate number of cyclical repeats. We propose to elucidate the components, wiring, and properties of a prototypic developmental clock by studying developmental timing in the roundworm C. elegans. We build on our recent discovery that nearly 20% of the worm’s transcriptome oscillates during larval development – an apparent manifestation of a clock that times the various recurring events that encompass each larval stage. Our aims are i) to identify components of this clock using genetic screens, ii) to gain insight into the system’s architecture and properties by employing specific perturbations such as food deprivation, and iii) to understand the coupling of this cyclic clock to the linear heterochronic timer through genetic manipulations. To achieve our ambitious goals, we will develop tools for mRNA sequencing of individual worms and for their developmental tracking and microchamber-based imaging. These important advances will increase temporal resolution, enhance signal-to-noise ratio, and achieve live tracking of oscillations in vivo. Our combination of genetic, genomic, imaging, and computational approaches will provide a detailed understanding of this clock, and biological timing mechanisms in general. As heterochronic genes and rhythmic gene expression are also important for controlling stem cell fates, we foresee that the results gained will additionally reveal regulatory mechanisms of stem cells, thus advancing our fundamental understanding of animal development and future applications in regenerative medicine.
Summary
Organismal development requires proper timing of events such as cell fate choices, but the mechanisms that control temporal patterning remain poorly understood. In particular, we know little of the cyclical timers, or ‘clocks’, that control recurring events such as vertebrate segmentation or nematode molting. Furthermore, it is unknown how cyclical timers are coordinated with the global, or linear, timing of development, e.g. to ensure an appropriate number of cyclical repeats. We propose to elucidate the components, wiring, and properties of a prototypic developmental clock by studying developmental timing in the roundworm C. elegans. We build on our recent discovery that nearly 20% of the worm’s transcriptome oscillates during larval development – an apparent manifestation of a clock that times the various recurring events that encompass each larval stage. Our aims are i) to identify components of this clock using genetic screens, ii) to gain insight into the system’s architecture and properties by employing specific perturbations such as food deprivation, and iii) to understand the coupling of this cyclic clock to the linear heterochronic timer through genetic manipulations. To achieve our ambitious goals, we will develop tools for mRNA sequencing of individual worms and for their developmental tracking and microchamber-based imaging. These important advances will increase temporal resolution, enhance signal-to-noise ratio, and achieve live tracking of oscillations in vivo. Our combination of genetic, genomic, imaging, and computational approaches will provide a detailed understanding of this clock, and biological timing mechanisms in general. As heterochronic genes and rhythmic gene expression are also important for controlling stem cell fates, we foresee that the results gained will additionally reveal regulatory mechanisms of stem cells, thus advancing our fundamental understanding of animal development and future applications in regenerative medicine.
Max ERC Funding
2 358 625 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym DASTCO
Project Developing and Applying Structural Techniques for Combinatorial Objects
Researcher (PI) Paul Joseph Wollan
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Starting Grant (StG), PE1, ERC-2011-StG_20101014
Summary The proposed project will tackle a series of fundamental problems in discrete mathematics by studying labeled graphs, a generalization of graphs which readily apply to problems beyond graph theory. To achieve these goals will require both developing new graph theoretic tools and techniques as well as further expounding upon known methodologies.
The specific problems to be studied can be grouped into a series of semi-independent projects. The first focuses on signed graphs with applications to a conjecture of Seymour concerning 1-flowing binary matroids and a related conjecture on the intregality of polyhedra defined by a class of binary matrices. The second proposes to develop a theory of minors for directed graphs. Finally, the project looks at topological questions arising from graphs embedding in a surface and the classic problem of efficiently identifying the trivial knot. The range of topics considered will lead to the development of tools and techniques applicable to questions in discrete mathematics beyond those under direct study.
The project will create a research group incorporating graduate students and post doctoral researchers lead by the PI. Each area to be studied offers the potential for ground-breaking results at the same time offering numerous intermediate opportunities for scientific progress.
Summary
The proposed project will tackle a series of fundamental problems in discrete mathematics by studying labeled graphs, a generalization of graphs which readily apply to problems beyond graph theory. To achieve these goals will require both developing new graph theoretic tools and techniques as well as further expounding upon known methodologies.
The specific problems to be studied can be grouped into a series of semi-independent projects. The first focuses on signed graphs with applications to a conjecture of Seymour concerning 1-flowing binary matroids and a related conjecture on the intregality of polyhedra defined by a class of binary matrices. The second proposes to develop a theory of minors for directed graphs. Finally, the project looks at topological questions arising from graphs embedding in a surface and the classic problem of efficiently identifying the trivial knot. The range of topics considered will lead to the development of tools and techniques applicable to questions in discrete mathematics beyond those under direct study.
The project will create a research group incorporating graduate students and post doctoral researchers lead by the PI. Each area to be studied offers the potential for ground-breaking results at the same time offering numerous intermediate opportunities for scientific progress.
Max ERC Funding
850 000 €
Duration
Start date: 2011-12-01, End date: 2017-09-30
Project acronym DC-LYMPH
Project The Role of Lymphatic Vessels in Dendritic Cell Homing and Maturation
Researcher (PI) Melody A. Swartz
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), LS3, ERC-2007-StG
Summary Dendritic cell (DC) activation and homing from the periphery to lymph nodes is a critical first event in the immune response. It involves upregulation of the chemokine receptor CCR7 and chemoinvasion towards lymphatic vessels. Despite its critical importance in adaptive immunity, the mechanisms of DC migration towards and entry into lymphatics are still poorly understood; this severely limits new therapeutic strategies for immunomodulation and even strategies for treating lymphedema, which is exacerbated by poor immune functioning. We propose a battery of physiological, cell-biological, molecular, and computational studies to determine both the mechanisms of DC homing to lymphatic vessels and how DCs modulate lymphatic function. We approach this from the perspectives of both the DC and the lymphatic vessel. Regarding the DC, we will examine computationally and experimentally how draining flows toward the lymphatic alter their migration tactics and test our hypothesis that DCs possess a biomolecular flow-detector network (which we refer to as autologous chemotaxis) and are thus able to sense the direction of the subtle flow of fluid toward the lymphatics. Regarding the lymphatic vessel, we will elucidate how biochemical and biophysical inflammatory signals regulate their drainage function, alter cell-cell adhesions and overall permeability, and alter adhesion receptors to facilitate DC homing and entry. Finally, we will examine DC migration in mice with dysfunctional lymphatics and explore strategies to improve immune response. These will be carried out in 4 main projects, and will complement our recent work in lymphatic functional biology as well as our more therapeutic investigations in DC targeting and activation (Reddy et al., Nature Biotechnol., 2007). This deeper knowledge of mechanisms of DC-lymphatic cross-talk in a relevant biophysical context will enable our long-term goal of rational design for therapeutic immunomodulation and lymphedema.
Summary
Dendritic cell (DC) activation and homing from the periphery to lymph nodes is a critical first event in the immune response. It involves upregulation of the chemokine receptor CCR7 and chemoinvasion towards lymphatic vessels. Despite its critical importance in adaptive immunity, the mechanisms of DC migration towards and entry into lymphatics are still poorly understood; this severely limits new therapeutic strategies for immunomodulation and even strategies for treating lymphedema, which is exacerbated by poor immune functioning. We propose a battery of physiological, cell-biological, molecular, and computational studies to determine both the mechanisms of DC homing to lymphatic vessels and how DCs modulate lymphatic function. We approach this from the perspectives of both the DC and the lymphatic vessel. Regarding the DC, we will examine computationally and experimentally how draining flows toward the lymphatic alter their migration tactics and test our hypothesis that DCs possess a biomolecular flow-detector network (which we refer to as autologous chemotaxis) and are thus able to sense the direction of the subtle flow of fluid toward the lymphatics. Regarding the lymphatic vessel, we will elucidate how biochemical and biophysical inflammatory signals regulate their drainage function, alter cell-cell adhesions and overall permeability, and alter adhesion receptors to facilitate DC homing and entry. Finally, we will examine DC migration in mice with dysfunctional lymphatics and explore strategies to improve immune response. These will be carried out in 4 main projects, and will complement our recent work in lymphatic functional biology as well as our more therapeutic investigations in DC targeting and activation (Reddy et al., Nature Biotechnol., 2007). This deeper knowledge of mechanisms of DC-lymphatic cross-talk in a relevant biophysical context will enable our long-term goal of rational design for therapeutic immunomodulation and lymphedema.
Max ERC Funding
1 730 966 €
Duration
Start date: 2008-05-01, End date: 2013-04-30
Project acronym DENDROWORLD
Project Mucosal dendritic cells in intestinal homeostasis and bacteria-related diseases
Researcher (PI) Maria Rescigno
Host Institution (HI) ISTITUTO EUROPEO DI ONCOLOGIA SRL
Call Details Starting Grant (StG), LS3, ERC-2007-StG
Summary The bacterial microflora has always been regarded as beneficial for the host but recent studies have shown that this symbiosis has risks as well as benefits. Although active mechanisms allow tolerating the commensal flora, the physiological stress that is associated with the symbionts’ metabolism can exhaust the intestinal barrier resulting in serious effects on the health of the host. Protracted immune deregulations can lead to severe disorders including diabetes, cancer and inflammatory bowel disease (IBD). Several mechanisms and players are involved in the maintenance of intestinal immune homeostasis, including T regulatory cells and Immunoglobulin (Ig)-A. In this proposal we focus our attention on dendritic cells (DCs) for their ability to induce both tolerance and immunity by regulating B and T cell responses. We have recently shown that DC function is controlled by intestinal epithelial cell (EC) derived factors and in particular by Thymic stromal lymphopoietin (TSLP). EC-conditioned DCs acquire a ‘mucosal’ phenotype as they are prone to activate T regulatory cells and IgA responses. Three major issues related to the maintenance and disruption of intestinal immune homeostasis will be explored in this project: 1) What are the mediators and mechanisms that regulate the interaction between intestinal epithelial cells and dendritic cells? What is the function of TSLP? 2) Which are the sites and players for the activation of an IgA response to pathogenic and commensal bacteria? Can we visualize them in vivo? 3) Can prolonged infections or bacterial products promote intestinal tumour development? Are there different bacterial constituents acting as inducers or protectors of carcinogenesis? What is the role of Toll-like receptors?
Summary
The bacterial microflora has always been regarded as beneficial for the host but recent studies have shown that this symbiosis has risks as well as benefits. Although active mechanisms allow tolerating the commensal flora, the physiological stress that is associated with the symbionts’ metabolism can exhaust the intestinal barrier resulting in serious effects on the health of the host. Protracted immune deregulations can lead to severe disorders including diabetes, cancer and inflammatory bowel disease (IBD). Several mechanisms and players are involved in the maintenance of intestinal immune homeostasis, including T regulatory cells and Immunoglobulin (Ig)-A. In this proposal we focus our attention on dendritic cells (DCs) for their ability to induce both tolerance and immunity by regulating B and T cell responses. We have recently shown that DC function is controlled by intestinal epithelial cell (EC) derived factors and in particular by Thymic stromal lymphopoietin (TSLP). EC-conditioned DCs acquire a ‘mucosal’ phenotype as they are prone to activate T regulatory cells and IgA responses. Three major issues related to the maintenance and disruption of intestinal immune homeostasis will be explored in this project: 1) What are the mediators and mechanisms that regulate the interaction between intestinal epithelial cells and dendritic cells? What is the function of TSLP? 2) Which are the sites and players for the activation of an IgA response to pathogenic and commensal bacteria? Can we visualize them in vivo? 3) Can prolonged infections or bacterial products promote intestinal tumour development? Are there different bacterial constituents acting as inducers or protectors of carcinogenesis? What is the role of Toll-like receptors?
Max ERC Funding
1 195 680 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym DIOPHANTINE PROBLEMS
Project Integral and Algebraic Points on Varieties, Diophantine Problems on Number Fields and Function Fields
Researcher (PI) Umberto Zannier
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Call Details Advanced Grant (AdG), PE1, ERC-2010-AdG_20100224
Summary Diophantine problems have always been a central topic in Number Theory, and have shown deep links with other basic mathematical topics, like Algebraic and Complex Geometry. Our research plan focuses on some issues in this realm, which are strictly interrelated. In the last years the PI and collaborators obtained several results on integral and algebraic points on varieties, which have inspired much subsequent research by others, and which we plan to develop further. In particular:
We plan a further study of integral points on varieties, and applications to Algebraic Dynamics, a possibility which has emerged recently.
We plan to study further the so-called `Unlikely intersections'. This theme contains celebrated issues like the Manin-Mumford conjecture. After work of the PI with Bombieri and Masser in the last 10 years, it has been the object of much recent work and also of new conjectures by R. Pink and B. Zilber. Here a new method has recently emerged in work of the PI with Masser and Pila, which also leads (as shown by Pila) to signi_cant new cases of the Andr_e-Oort conjecture. We intend to pursue in this kind of investigation, exploring further the range of the methods.
Finally, we plan further study of topics of Diophantine Approximation and Hilbert Irreducibility, connected with the above ones in the contents and in the methodology.
Summary
Diophantine problems have always been a central topic in Number Theory, and have shown deep links with other basic mathematical topics, like Algebraic and Complex Geometry. Our research plan focuses on some issues in this realm, which are strictly interrelated. In the last years the PI and collaborators obtained several results on integral and algebraic points on varieties, which have inspired much subsequent research by others, and which we plan to develop further. In particular:
We plan a further study of integral points on varieties, and applications to Algebraic Dynamics, a possibility which has emerged recently.
We plan to study further the so-called `Unlikely intersections'. This theme contains celebrated issues like the Manin-Mumford conjecture. After work of the PI with Bombieri and Masser in the last 10 years, it has been the object of much recent work and also of new conjectures by R. Pink and B. Zilber. Here a new method has recently emerged in work of the PI with Masser and Pila, which also leads (as shown by Pila) to signi_cant new cases of the Andr_e-Oort conjecture. We intend to pursue in this kind of investigation, exploring further the range of the methods.
Finally, we plan further study of topics of Diophantine Approximation and Hilbert Irreducibility, connected with the above ones in the contents and in the methodology.
Max ERC Funding
928 500 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym DiRECT
Project Directly reprogrammed renal cells for targeted medicine
Researcher (PI) Soeren LIENKAMP
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), LS3, ERC-2018-STG
Summary The global incidence of kidney disease is on the rise, but little progress has been made to develop novel therapies or preventative measures.
New methods to generated renal tissue in vitro hold great promise for regenerative medicine and the prospect of organ replacement. Most of the strategies employed differentiate induced pluripotent stem cells (iPSCs) into kidney organoids, which can be derived from patient tissue.
Direct reprogramming is an alternative approach to convert one cell type into another using cell fate specifying transcription factors. We were the first to develop a method to directly reprogram mouse and human fibroblasts to kidney cells (induced renal tubular epithelial cells - iRECs) without the need for pluripotent cells. Morphological, transcriptomic and functional analyses found that directly reprogrammed iRECs are remarkably similar to native renal tubular cells. Direct reprogramming is fast, technically simple and scalable.
This proposal aims to establish direct reprogramming in nephrology and develop novel in vitro models for kidney diseases that primarily affect the renal tubules. We will unravel the mechanics of how only four transcription factors can change the morphology and function of fibroblasts towards a renal tubule cell identity. These insights will be used to identify alternative routes to directly reprogram tubule cells with increased efficiency and accuracy. We will identify cell type specifying factors for reprogramming of tubular segment specific cell types. Finally, we will use of reprogrammed kidney cells to establish new in vitro models for autosomal dominant polycystic kidney disease and nephronophthisis.
Direct reprogramming holds enormous potential to deliver patient specific disease models for diagnostic and therapeutic applications in the age of personalized and targeted medicine.
Summary
The global incidence of kidney disease is on the rise, but little progress has been made to develop novel therapies or preventative measures.
New methods to generated renal tissue in vitro hold great promise for regenerative medicine and the prospect of organ replacement. Most of the strategies employed differentiate induced pluripotent stem cells (iPSCs) into kidney organoids, which can be derived from patient tissue.
Direct reprogramming is an alternative approach to convert one cell type into another using cell fate specifying transcription factors. We were the first to develop a method to directly reprogram mouse and human fibroblasts to kidney cells (induced renal tubular epithelial cells - iRECs) without the need for pluripotent cells. Morphological, transcriptomic and functional analyses found that directly reprogrammed iRECs are remarkably similar to native renal tubular cells. Direct reprogramming is fast, technically simple and scalable.
This proposal aims to establish direct reprogramming in nephrology and develop novel in vitro models for kidney diseases that primarily affect the renal tubules. We will unravel the mechanics of how only four transcription factors can change the morphology and function of fibroblasts towards a renal tubule cell identity. These insights will be used to identify alternative routes to directly reprogram tubule cells with increased efficiency and accuracy. We will identify cell type specifying factors for reprogramming of tubular segment specific cell types. Finally, we will use of reprogrammed kidney cells to establish new in vitro models for autosomal dominant polycystic kidney disease and nephronophthisis.
Direct reprogramming holds enormous potential to deliver patient specific disease models for diagnostic and therapeutic applications in the age of personalized and targeted medicine.
Max ERC Funding
1 499 917 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym DISCOMPOSE
Project Disasters, Communication and Politics in South-Western Europe: the Making of Emergency Response Policies in the Early Modern Age
Researcher (PI) Domenico CECERE
Host Institution (HI) UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary The connections between the circulation of news of extreme events, the making of influential narratives of collective traumas and the development of emergency response policies lie at the heart of this research proposal, which focuses on four Southern European areas: Catalonia, Naples, Sicily and Valencia, from the 16th to the 18th century. How did accounts and individual memories of extreme events amount to authoritative interpretations? In which ways, and to what extent, did the latter orient collective behaviours and the recovery process, in both the short and the long term?
Starting from the assumption that human relations are enhanced by the increased levels of socialisation that commonly occur in the aftermath of shocking events, which trigger the sharing of information, opinions and memories; and that the emotional impact of such events is likely to create a public opinion that draws attention to government’s action; the research proposal aims to contribute new insights into these issues by adopting an original methodology, developed across a variety of disciplines, including Cultural and Social History, Textual Criticism, Philology and Anthropology. Moreover, it will adopt a transnational perspective: since the selected regions belonged to the Spanish Monarchy, the development of practices and polices aimed to respond to disruption depended not only on the specific social and cultural features of local societies, but also on the circulation of political and technical staff, as well as on the sharing of knowledge, experiences and policy models, among the various areas of the Empire and its colonies. Studying the information exchange in the aftermath of disasters and the formation of an imagery of extraordinary events, will allow a comprehensive perspective on the policies and practices adopted by early modern societies to manage uncertainty, and on the potential impact that such narratives could have on the renegotiation of political and social relations.
Summary
The connections between the circulation of news of extreme events, the making of influential narratives of collective traumas and the development of emergency response policies lie at the heart of this research proposal, which focuses on four Southern European areas: Catalonia, Naples, Sicily and Valencia, from the 16th to the 18th century. How did accounts and individual memories of extreme events amount to authoritative interpretations? In which ways, and to what extent, did the latter orient collective behaviours and the recovery process, in both the short and the long term?
Starting from the assumption that human relations are enhanced by the increased levels of socialisation that commonly occur in the aftermath of shocking events, which trigger the sharing of information, opinions and memories; and that the emotional impact of such events is likely to create a public opinion that draws attention to government’s action; the research proposal aims to contribute new insights into these issues by adopting an original methodology, developed across a variety of disciplines, including Cultural and Social History, Textual Criticism, Philology and Anthropology. Moreover, it will adopt a transnational perspective: since the selected regions belonged to the Spanish Monarchy, the development of practices and polices aimed to respond to disruption depended not only on the specific social and cultural features of local societies, but also on the circulation of political and technical staff, as well as on the sharing of knowledge, experiences and policy models, among the various areas of the Empire and its colonies. Studying the information exchange in the aftermath of disasters and the formation of an imagery of extraordinary events, will allow a comprehensive perspective on the policies and practices adopted by early modern societies to manage uncertainty, and on the potential impact that such narratives could have on the renegotiation of political and social relations.
Max ERC Funding
1 481 813 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym DissectPcG
Project Dissecting the Function of Multiple Polycomb Group Complexes in Establishing Transcriptional Identity
Researcher (PI) Diego PASINI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Consolidator Grant (CoG), LS3, ERC-2016-COG
Summary The activities of the Polycomb group (PcG) of repressive chromatin modifiers are required to maintain correct transcriptional identity during development and differentiation. These activities are altered in a variety of tumours by gain- or loss-of-function mutations, whose mechanistic aspects still remain unclear.
PcGs can be classified in two major repressive complexes (PRC1 and PRC2) with common pathways but distinct biochemical activities. PRC1 catalyses histone H2A ubiquitination of lysine 119, and PRC2 tri-methylation of histone H3 lysine 27. However, PRC1 has a more heterogeneous composition than PRC2, with six mutually exclusive PCGF subunits (PCGF1–6) essential for assembling distinct PRC1 complexes that differ in subunit composition but share the same catalytic core.
While up to six different PRC1 forms can co-exist in a given cell, the molecular mechanisms regulating their activities and their relative contributions to general PRC1 function in any tissue/cell type remain largely unknown. In line with this biochemical heterogeneity, PRC1 retains broader biological functions than PRC2. Critically, however, no molecular analysis has yet been published that dissects the contribution of each PRC1 complex in regulating transcriptional identity.
We will take advantage of newly developed reagents and unpublished genetic models to target each of the six Pcgf genes in either embryonic stem cells or mouse adult tissues. This will systematically dissect the contributions of the different PRC1 complexes to chromatin profiles, gene expression programs, and cellular phenotypes during stem cell self-renewal, differentiation and adult tissue homeostasis. Overall, this will elucidate some of the fundamental mechanisms underlying the establishment and maintenance of cellular identity and will allow us to further determine the molecular links between PcG deregulation and cancer development in a tissue- and/or cell type–specific manner.
Summary
The activities of the Polycomb group (PcG) of repressive chromatin modifiers are required to maintain correct transcriptional identity during development and differentiation. These activities are altered in a variety of tumours by gain- or loss-of-function mutations, whose mechanistic aspects still remain unclear.
PcGs can be classified in two major repressive complexes (PRC1 and PRC2) with common pathways but distinct biochemical activities. PRC1 catalyses histone H2A ubiquitination of lysine 119, and PRC2 tri-methylation of histone H3 lysine 27. However, PRC1 has a more heterogeneous composition than PRC2, with six mutually exclusive PCGF subunits (PCGF1–6) essential for assembling distinct PRC1 complexes that differ in subunit composition but share the same catalytic core.
While up to six different PRC1 forms can co-exist in a given cell, the molecular mechanisms regulating their activities and their relative contributions to general PRC1 function in any tissue/cell type remain largely unknown. In line with this biochemical heterogeneity, PRC1 retains broader biological functions than PRC2. Critically, however, no molecular analysis has yet been published that dissects the contribution of each PRC1 complex in regulating transcriptional identity.
We will take advantage of newly developed reagents and unpublished genetic models to target each of the six Pcgf genes in either embryonic stem cells or mouse adult tissues. This will systematically dissect the contributions of the different PRC1 complexes to chromatin profiles, gene expression programs, and cellular phenotypes during stem cell self-renewal, differentiation and adult tissue homeostasis. Overall, this will elucidate some of the fundamental mechanisms underlying the establishment and maintenance of cellular identity and will allow us to further determine the molecular links between PcG deregulation and cancer development in a tissue- and/or cell type–specific manner.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym DIVLAW
Project How God Became a Lawgiver: The Place of the Torah in Ancient Near Eastern Legal History
Researcher (PI) Konrad Schmid
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), SH6, ERC-2018-ADG
Summary The Torah’s notion of divine law fundamentally transforms the nature of law found in its ancient Near Eastern context. Typically kings—not gods—took on the role of the promulgation of laws. The Torah’s conception of God as lawgiver emerged gradually through historical processes, rather than constituting the bedrock of the Bible’s literary and legal history. And, while scholars have long recognized the uniqueness of the Torah’s conception, its early historical development has received little attention. Only tangential analysis exists on the forces surrounding the genesis of the Torah’s notion of divine laws within ancient Near Eastern legal history or its impact on religion and politics in the early historical contexts of ancient Israel and Judah.
This project therefore aims: 1) to explicate the anchoring of law in the religious ether of the Ancient Near East; 2) to elucidate for the first time the intellectual processes in ancient Israel and Judah that led to the notion of divine laws and God as lawgiver, drawing comparisons with other legal understandings and practices from the ancient Near East; 3) to assess the socio-political and religious impact of this notion with ancient Judaism through the Hellenistic Period; and 4) to contextualize this development in the ancient world in comparison to parallel developments in Greek polities.
The project’s innovative potential lies in: 1) the evaluation of the divine laws as a historical phenomenon; 2) the neglected effort to understand their intellectual genesis and early development in a reciprocal relation to their socio-political context; 3) the cross-cultural analysis of ancient Israel and Judah and its neighbouring cultures in this regard; and 4) the application of a longue durée and realgeschichtliche perspective to largely literary and philological disciplines. These investigations offer a new paradigm for elucidating the webs connecting divinity, law, and socio-political developments in the first millennium BCE.
Summary
The Torah’s notion of divine law fundamentally transforms the nature of law found in its ancient Near Eastern context. Typically kings—not gods—took on the role of the promulgation of laws. The Torah’s conception of God as lawgiver emerged gradually through historical processes, rather than constituting the bedrock of the Bible’s literary and legal history. And, while scholars have long recognized the uniqueness of the Torah’s conception, its early historical development has received little attention. Only tangential analysis exists on the forces surrounding the genesis of the Torah’s notion of divine laws within ancient Near Eastern legal history or its impact on religion and politics in the early historical contexts of ancient Israel and Judah.
This project therefore aims: 1) to explicate the anchoring of law in the religious ether of the Ancient Near East; 2) to elucidate for the first time the intellectual processes in ancient Israel and Judah that led to the notion of divine laws and God as lawgiver, drawing comparisons with other legal understandings and practices from the ancient Near East; 3) to assess the socio-political and religious impact of this notion with ancient Judaism through the Hellenistic Period; and 4) to contextualize this development in the ancient world in comparison to parallel developments in Greek polities.
The project’s innovative potential lies in: 1) the evaluation of the divine laws as a historical phenomenon; 2) the neglected effort to understand their intellectual genesis and early development in a reciprocal relation to their socio-political context; 3) the cross-cultural analysis of ancient Israel and Judah and its neighbouring cultures in this regard; and 4) the application of a longue durée and realgeschichtliche perspective to largely literary and philological disciplines. These investigations offer a new paradigm for elucidating the webs connecting divinity, law, and socio-political developments in the first millennium BCE.
Max ERC Funding
2 500 000 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym DROSOPHILASIGNALING
Project Signaling Pathways Controlling Patterning, Growth and Final Size of Drosophila Limbs
Researcher (PI) Konrad Basler
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), LS3, ERC-2008-AdG
Summary Developmental biology seeks not only to learn more about the fundamental processes of growth and pattern per se, but to understand how they synergize to enable the morphogenesis of multicellular organisms. Our goal is to perform real-time analyses of these developmental processes in an intact developing organ. By applying a vital imaging approach, we can circumvent the normal limitations of inferring cellular dynamics from static images or molecular data, and obtain the real dynamic view of growth and patterning. The wing imaginal disc of Drosophila, which starts out as a simple epithelial structure and gives rise to a precisely structured adult limb, will serve as an ideal model system. This system has the combined advantages of relative simplicity and genetic tractability. We will create several innovations that expand the current toolkit and thus facilitate the detailed dissection of growth and patterning. A key early step will be to develop novel reporters to dynamically and faithfully monitor signaling cascades involved in growth and patterning, such as the Dpp and Hippo pathways. We will also implement quantification techniques that are currently being set up in collaboration with an experimental physicist, to deduce, and alter, the mechanical forces that develop in the cells of a growing tissue. The large amount of quantitative data that will be generated allow us derive computational models of the individual pathways and their interaction. The focus of the study will be to answer the following questions: 1) Is the Hippo pathway regulated spatially and temporally, and by what signaling pathways? 2) Do mechanical forces play a pivotal controlling role in organ morphogenesis? 3) What are the global effects on growth, when pathways controlling patterning, cell competition or compensatory proliferation are perturbed? The proposed project will bring the approaches taken to define the mechanisms underlying and controlling growth and patterning to the next level.
Summary
Developmental biology seeks not only to learn more about the fundamental processes of growth and pattern per se, but to understand how they synergize to enable the morphogenesis of multicellular organisms. Our goal is to perform real-time analyses of these developmental processes in an intact developing organ. By applying a vital imaging approach, we can circumvent the normal limitations of inferring cellular dynamics from static images or molecular data, and obtain the real dynamic view of growth and patterning. The wing imaginal disc of Drosophila, which starts out as a simple epithelial structure and gives rise to a precisely structured adult limb, will serve as an ideal model system. This system has the combined advantages of relative simplicity and genetic tractability. We will create several innovations that expand the current toolkit and thus facilitate the detailed dissection of growth and patterning. A key early step will be to develop novel reporters to dynamically and faithfully monitor signaling cascades involved in growth and patterning, such as the Dpp and Hippo pathways. We will also implement quantification techniques that are currently being set up in collaboration with an experimental physicist, to deduce, and alter, the mechanical forces that develop in the cells of a growing tissue. The large amount of quantitative data that will be generated allow us derive computational models of the individual pathways and their interaction. The focus of the study will be to answer the following questions: 1) Is the Hippo pathway regulated spatially and temporally, and by what signaling pathways? 2) Do mechanical forces play a pivotal controlling role in organ morphogenesis? 3) What are the global effects on growth, when pathways controlling patterning, cell competition or compensatory proliferation are perturbed? The proposed project will bring the approaches taken to define the mechanisms underlying and controlling growth and patterning to the next level.
Max ERC Funding
2 310 000 €
Duration
Start date: 2009-02-01, End date: 2014-01-31
Project acronym DUNES
Project Sea, Sand and People. An Environmental History of Coastal Dunes
Researcher (PI) Joana FREITAS
Host Institution (HI) Faculdade de letras da Universidade de Lisboa
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary Dunes are now protected environments, being top priority for coastal managers, because of their important role as coastal defences. But, it was not like that in the past.
For centuries dunes were considered unproductive and dangerous. The sand blown by the wind was taken inland, invading fields, silting rivers and destroying villages. In the eighteenth century, a strategy was developed to fight against the dunes: trapping them with trees, with the double purpose of preventing the destruction of arable land and increasing their economic value converting them into forest areas. Different governments, in different countries supported the immobilization of the shifting sands. The strategy, developed in Europe, was taken to other places in the world. These works caused profound changes in vast coastal areas transforming arid landscapes of sandy dunes into green tree forests.
This project aims to explore human-environment relations in coastal areas worldwide, since the eighteenth century until today, through the study of dunes as hybrid landscapes. Based on selected case-studies and comparative approaches, the project will focus on the origins, reasons and means of dunes afforestation; the impacts of the creation of new landscapes to local communities and ecosystems; and the present situation of dunes as coastal defences and rehabilitated environments. The final purpose is to produce an innovative global history of coastal dunes, combining knowledges from both Humanities and Social Sciences and Physical and Life Sciences, which has never been done.
Supported by an interdisciplinary team, this research will result in new developments in the field of the Environmental History studies; provide relevant knowledge considering the need of efficient management solutions to adapt to the expected mean sea level rise; and stimulate environmental citizenship by disseminating the idea that the future of the world coasts depends on today’s actions.
Summary
Dunes are now protected environments, being top priority for coastal managers, because of their important role as coastal defences. But, it was not like that in the past.
For centuries dunes were considered unproductive and dangerous. The sand blown by the wind was taken inland, invading fields, silting rivers and destroying villages. In the eighteenth century, a strategy was developed to fight against the dunes: trapping them with trees, with the double purpose of preventing the destruction of arable land and increasing their economic value converting them into forest areas. Different governments, in different countries supported the immobilization of the shifting sands. The strategy, developed in Europe, was taken to other places in the world. These works caused profound changes in vast coastal areas transforming arid landscapes of sandy dunes into green tree forests.
This project aims to explore human-environment relations in coastal areas worldwide, since the eighteenth century until today, through the study of dunes as hybrid landscapes. Based on selected case-studies and comparative approaches, the project will focus on the origins, reasons and means of dunes afforestation; the impacts of the creation of new landscapes to local communities and ecosystems; and the present situation of dunes as coastal defences and rehabilitated environments. The final purpose is to produce an innovative global history of coastal dunes, combining knowledges from both Humanities and Social Sciences and Physical and Life Sciences, which has never been done.
Supported by an interdisciplinary team, this research will result in new developments in the field of the Environmental History studies; provide relevant knowledge considering the need of efficient management solutions to adapt to the expected mean sea level rise; and stimulate environmental citizenship by disseminating the idea that the future of the world coasts depends on today’s actions.
Max ERC Funding
1 062 330 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym DYNEINOME
Project Cytoplasmic Dynein: Mechanisms of Regulation and Novel Interactors
Researcher (PI) Reto Gassmann
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Call Details Starting Grant (StG), LS3, ERC-2013-StG
Summary "The megadalton cytoplasmic dynein complex, whose motor subunit is encoded by a single gene, provides the major microtubule minus end-directed motility in cells and is essential for a wide range of processes, ranging from the transport of proteins, RNA, and membrane vesicles to nuclear migration and cell division. To achieve this stunning functional diversity, cytoplasmic dynein is subject to tight regulation by co-factors that modulate localization, interaction with cargo, and motor activity. At present, our knowledge of the underlying mechanisms remains limited. An overarching goal of this proposal is to gain an understanding of how interactions with diverse adaptor proteins regulate dynein function in space and time. We choose the nematode C. elegans as our model system, because it will enable us to study the biology of dynein regulation in the broad context of a metazoan organism. The nematode’s versatile genetic tools, its biochemical tractability, and the powerful molecular replacement technologies available, this makes for a uniquely attractive experimental system to address the mechanisms employed by dynein regulators through a combination of biochemical, proteomic, and cell biological assays. Specifically, we propose to use a biochemical reconstitution approach to obtain a detailed molecular picture of how dynein is targeted to the mitotic kinetochore; we will perform a forward genetic and proteomic screen to expand the so-far limited inventory of metazoan dynein interactors, whose functional characterization will shed light on known dynein-dependent processes and lead to novel unanticipated lines of research into dynein regulation; we will dissect the function and regulation of the most important dynein co-factor, the multi-subunit dynactin complex; and finally we will strive to establish a novel C. elegans model for human neurodegenerative disease, based on pathogenic point mutations in a dynactin subunit."
Summary
"The megadalton cytoplasmic dynein complex, whose motor subunit is encoded by a single gene, provides the major microtubule minus end-directed motility in cells and is essential for a wide range of processes, ranging from the transport of proteins, RNA, and membrane vesicles to nuclear migration and cell division. To achieve this stunning functional diversity, cytoplasmic dynein is subject to tight regulation by co-factors that modulate localization, interaction with cargo, and motor activity. At present, our knowledge of the underlying mechanisms remains limited. An overarching goal of this proposal is to gain an understanding of how interactions with diverse adaptor proteins regulate dynein function in space and time. We choose the nematode C. elegans as our model system, because it will enable us to study the biology of dynein regulation in the broad context of a metazoan organism. The nematode’s versatile genetic tools, its biochemical tractability, and the powerful molecular replacement technologies available, this makes for a uniquely attractive experimental system to address the mechanisms employed by dynein regulators through a combination of biochemical, proteomic, and cell biological assays. Specifically, we propose to use a biochemical reconstitution approach to obtain a detailed molecular picture of how dynein is targeted to the mitotic kinetochore; we will perform a forward genetic and proteomic screen to expand the so-far limited inventory of metazoan dynein interactors, whose functional characterization will shed light on known dynein-dependent processes and lead to novel unanticipated lines of research into dynein regulation; we will dissect the function and regulation of the most important dynein co-factor, the multi-subunit dynactin complex; and finally we will strive to establish a novel C. elegans model for human neurodegenerative disease, based on pathogenic point mutations in a dynactin subunit."
Max ERC Funding
1 367 466 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym EarlyModernCosmology
Project Institutions and Metaphysics of Cosmology in the Epistemic Networks of Seventeenth-Century Europe
Researcher (PI) Pietro Daniel OMODEO
Host Institution (HI) UNIVERSITA CA' FOSCARI VENEZIA
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary The focus of this project is the competing confessional discourses on cosmology of the seventeenth century, an epoch in which religious conflicts originated opposing ‘epistemic cultures’, which were embodied in scholarly institutions and networks such as the Protestant web of northern European universities or the global web of Jesuit colleges.
In the Early Modern Period cosmological controversies (over issues such as heliocentrism, plurality of worlds, space, infinity, cometary theory, celestial matter and fluidity) were heated and amplified by increasing political and confessional fragmentation. The Roman prohibition of the Copernican system (1616) and the extraordinary condemnation of Galileo (1633) accelerated the formation of competing cosmological cultures along confessional and political lines of alliance and opposition. This research project addresses the interrelations between [1.] cosmological debates in the northern European Protestant institutional networks of scholars and institutions and [2.] cosmological debates in Jesuit institutional networks aiming at [3.] a comparative assessment of early formations and transformations of epistemic webs. It considers parallelisms and contrasts, negotiations and intersections of seventeenth-century cosmological discourses between scholars, institutions and scientific communities belonging to different epistemic cultures. This endeavor brings into focus the political-confessional dimension of early-modern cosmology and shows how science is embedded in struggles for cultural hegemony, struggles which were at once institutional and ideological. While there is a great deal of in-depth study on the history of science in various early-modern confessional contexts, a comparative study bringing together the history of knowledge institutions and their metaphysical legitimation is still a desideratum.
Summary
The focus of this project is the competing confessional discourses on cosmology of the seventeenth century, an epoch in which religious conflicts originated opposing ‘epistemic cultures’, which were embodied in scholarly institutions and networks such as the Protestant web of northern European universities or the global web of Jesuit colleges.
In the Early Modern Period cosmological controversies (over issues such as heliocentrism, plurality of worlds, space, infinity, cometary theory, celestial matter and fluidity) were heated and amplified by increasing political and confessional fragmentation. The Roman prohibition of the Copernican system (1616) and the extraordinary condemnation of Galileo (1633) accelerated the formation of competing cosmological cultures along confessional and political lines of alliance and opposition. This research project addresses the interrelations between [1.] cosmological debates in the northern European Protestant institutional networks of scholars and institutions and [2.] cosmological debates in Jesuit institutional networks aiming at [3.] a comparative assessment of early formations and transformations of epistemic webs. It considers parallelisms and contrasts, negotiations and intersections of seventeenth-century cosmological discourses between scholars, institutions and scientific communities belonging to different epistemic cultures. This endeavor brings into focus the political-confessional dimension of early-modern cosmology and shows how science is embedded in struggles for cultural hegemony, struggles which were at once institutional and ideological. While there is a great deal of in-depth study on the history of science in various early-modern confessional contexts, a comparative study bringing together the history of knowledge institutions and their metaphysical legitimation is still a desideratum.
Max ERC Funding
1 999 976 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym EBLA CHORA
Project The early state and its chora. Towns, villages and landscape at Ebla in Syria during the 3rd Millennium BC. Royal archives, visual and material culture, remote sensing and artificial neural networks
Researcher (PI) Paolo Matthiae
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Advanced Grant (AdG), SH6, ERC-2009-AdG
Summary The case of Ebla in northern Syria is certainly the most favourable one for enhancing our understanding of mechanisms of functioning of the early state. The discovery in 1975 of royal archives consisting of 17.000 cuneiform tablets dating to c. 2300 BC has supplied the scientific community with an invaluable mass of documents dealing with all aspects of state organization. These tablets inform us about the political, diplomatic and military affairs of the Eblaite state, as well as on the economic and social fabric of this early state formation. Further, considerable progresses during the past decade have been made at Ebla in seriating material culture assemblages, in interpreting the rich evidence for ancient visual communication and in exposing the urban structure. We now foresee a unique opportunity to test theories and models about the rise and structure of the early state by expanding the level of analysis to the landscape around Ebla: archaeological surface surveys, remote sensing, geomorphological studies will be evaluated together with the results of archaeological and geophysic investigations on village sites. Our research group has already considerable experience in developing calculation programs that employ along with traditional statistic and quantitative methods within a web GIS environment, including all the cuneiform tablets models of modern dynamic mathematics: the massive amount of data obtained from excavations, surveys, epigraphic studies, archeometric and archeobiological analyses will be combined and analyzed by means of mathematical, economical and computer science concepts and models, in order to build a multi-tier explanatory pattern which can be applied also to other early foci of urbanization in the Near East and elsewhere. We thus hope to gain a much richer historical framework and a sophisticated predictive model of general validity: until now no studies have ever focused on explanations of these phenomena on such an integrated scale
Summary
The case of Ebla in northern Syria is certainly the most favourable one for enhancing our understanding of mechanisms of functioning of the early state. The discovery in 1975 of royal archives consisting of 17.000 cuneiform tablets dating to c. 2300 BC has supplied the scientific community with an invaluable mass of documents dealing with all aspects of state organization. These tablets inform us about the political, diplomatic and military affairs of the Eblaite state, as well as on the economic and social fabric of this early state formation. Further, considerable progresses during the past decade have been made at Ebla in seriating material culture assemblages, in interpreting the rich evidence for ancient visual communication and in exposing the urban structure. We now foresee a unique opportunity to test theories and models about the rise and structure of the early state by expanding the level of analysis to the landscape around Ebla: archaeological surface surveys, remote sensing, geomorphological studies will be evaluated together with the results of archaeological and geophysic investigations on village sites. Our research group has already considerable experience in developing calculation programs that employ along with traditional statistic and quantitative methods within a web GIS environment, including all the cuneiform tablets models of modern dynamic mathematics: the massive amount of data obtained from excavations, surveys, epigraphic studies, archeometric and archeobiological analyses will be combined and analyzed by means of mathematical, economical and computer science concepts and models, in order to build a multi-tier explanatory pattern which can be applied also to other early foci of urbanization in the Near East and elsewhere. We thus hope to gain a much richer historical framework and a sophisticated predictive model of general validity: until now no studies have ever focused on explanations of these phenomena on such an integrated scale
Max ERC Funding
1 105 240 €
Duration
Start date: 2010-04-01, End date: 2014-03-31
Project acronym EINITE
Project "Economic Inequality across Italy and Europe, 1300-1800"
Researcher (PI) Guido Alfani
Host Institution (HI) UNIVERSITA COMMERCIALE LUIGI BOCCONI
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary "The aim of EINITE is to clarify the dynamics of economic inequality in Europe from the late Middle Ages up until the beginning of the Industrial Revolution. Very little data about economic inequality during such an early period is available today. Apart from some studies focussed on single years and small areas (usually only one city or a village), the only European region which has been the object of a large research project is Holland.
The project will collect an extensive database about economic inequality, mainly of wealth (for which better documentation exists), focussing on Italy from a wider European perspective. Archival research will be concentrated on Italy where particularly good sources exist, but the Italian case will be placed in the varying European context. Published data and existing databases from all over the continent will be collected as terms of comparison. The final version of the project database will be made public.
The activity of ENITE will be organized around four main research questions:
1) What is the long-term relationship between economic growth and inequality?
This is the main question to which the others are all connected.
2) What were the effects of plagues and other severe mortality crises on property structures?
3) What is the underlying relationship between immigration and urban inequality?
4) How was economic inequality perceived in the past, and how did its perception change over time?
The project will also help to explain the origin of the property structures and inequality levels to be found on the eve of the Industrial Revolution. Then, it will provide information relevant to the ‘Kuznets curve’ debate. Overall the project will lead to a better knowledge of economic inequality in the past, which is also expected to help understanding recent developments in inequality levels in Europe and elsewhere."
Summary
"The aim of EINITE is to clarify the dynamics of economic inequality in Europe from the late Middle Ages up until the beginning of the Industrial Revolution. Very little data about economic inequality during such an early period is available today. Apart from some studies focussed on single years and small areas (usually only one city or a village), the only European region which has been the object of a large research project is Holland.
The project will collect an extensive database about economic inequality, mainly of wealth (for which better documentation exists), focussing on Italy from a wider European perspective. Archival research will be concentrated on Italy where particularly good sources exist, but the Italian case will be placed in the varying European context. Published data and existing databases from all over the continent will be collected as terms of comparison. The final version of the project database will be made public.
The activity of ENITE will be organized around four main research questions:
1) What is the long-term relationship between economic growth and inequality?
This is the main question to which the others are all connected.
2) What were the effects of plagues and other severe mortality crises on property structures?
3) What is the underlying relationship between immigration and urban inequality?
4) How was economic inequality perceived in the past, and how did its perception change over time?
The project will also help to explain the origin of the property structures and inequality levels to be found on the eve of the Industrial Revolution. Then, it will provide information relevant to the ‘Kuznets curve’ debate. Overall the project will lead to a better knowledge of economic inequality in the past, which is also expected to help understanding recent developments in inequality levels in Europe and elsewhere."
Max ERC Funding
995 400 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym EllipticPDE
Project Regularity and singularities in elliptic PDE's: beyond monotonicity formulas
Researcher (PI) Xavier ROS-OTON
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), PE1, ERC-2018-STG
Summary One of the oldest and most important questions in PDE theory is that of regularity. A classical example is Hilbert's XIXth problem (1900), solved by De Giorgi and Nash in 1956. During the second half of the XXth century, the regularity theory for elliptic and parabolic PDE's experienced a huge development, and many fundamental questions were answered by Caffarelli, Nirenberg, Krylov, Evans, Nadirashvili, Friedman, and many others. Still, there are problems of crucial importance that remain open.
The aim of this project is to go significantly beyond the state of the art in some of the most important open questions in this context. In particular, three key objectives of the project are the following. First, to introduce new techniques to obtain fine description of singularities in nonlinear elliptic PDE's. Aside from its intrinsic interest, a good regularity theory for singular points is likely to provide insightful applications in other contexts. A second aim of the project is to establish generic regularity results for free boundaries and other PDE problems. The development of methods which would allow one to prove generic regularity results may be viewed as one of the greatest challenges not only for free boundary problems, but for PDE problems in general. Finally, the third main objective is to achieve a complete regularity theory for nonlinear elliptic PDE's that does not rely on monotonicity formulas. These three objectives, while seemingly different, are in fact deeply interrelated.
Summary
One of the oldest and most important questions in PDE theory is that of regularity. A classical example is Hilbert's XIXth problem (1900), solved by De Giorgi and Nash in 1956. During the second half of the XXth century, the regularity theory for elliptic and parabolic PDE's experienced a huge development, and many fundamental questions were answered by Caffarelli, Nirenberg, Krylov, Evans, Nadirashvili, Friedman, and many others. Still, there are problems of crucial importance that remain open.
The aim of this project is to go significantly beyond the state of the art in some of the most important open questions in this context. In particular, three key objectives of the project are the following. First, to introduce new techniques to obtain fine description of singularities in nonlinear elliptic PDE's. Aside from its intrinsic interest, a good regularity theory for singular points is likely to provide insightful applications in other contexts. A second aim of the project is to establish generic regularity results for free boundaries and other PDE problems. The development of methods which would allow one to prove generic regularity results may be viewed as one of the greatest challenges not only for free boundary problems, but for PDE problems in general. Finally, the third main objective is to achieve a complete regularity theory for nonlinear elliptic PDE's that does not rely on monotonicity formulas. These three objectives, while seemingly different, are in fact deeply interrelated.
Max ERC Funding
1 335 250 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym EMoBookTrade
Project The Early Modern Book Trade: An Evidence-based Reconstruction of the Economic and Juridical Framework of the European Book Market
Researcher (PI) Angela NUOVO
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Advanced Grant (AdG), SH6, ERC-2015-AdG
Summary This project will explore the idea – and gather the evidence to prove it – that the so-called printing revolution does not consist in a change in book-making technology but in the process, prolonged over the entire course of the early modern age, of the formation of the printed book market and the creation of readers as purchasers and consumers of books. In order to demonstrate this, the project will reconstruct the economic and legal framework of the European book market by applying an interdisciplinary approach to the economic study of book history. By using unique and hitherto unexplored documentary evidence, this project addresses four fundamental questions relating to the growth of a fully developed book trade and the rise of a society of book consumers within the social and religious context of early modern Europe: the economic issue of book prices; the juridical and political issue of the book privilege system (which in turn influenced the process of book pricing); the management of the bookselling business (focusing on businesses in two major cities in the European book trade, Venice (Bernardino Giunti) and Antwerp (Christopher Plantin)); the technique of building and managing a transnational network for book distribution and sale (analyzing groundbreaking new evidence, an entire year (1522) of correspondence from a Venetian wholesale bookseller, Giovanni Bartolomeo Gabiano). These four research areas will feed into an overarching project which will examine the impact of books and the access of readers to them, together with the development in patterns of cultural consumption which meant that printed books lost the luxury status which they had had throughout the incunabula period to become transformed into ‘popoluxe’ goods.
Summary
This project will explore the idea – and gather the evidence to prove it – that the so-called printing revolution does not consist in a change in book-making technology but in the process, prolonged over the entire course of the early modern age, of the formation of the printed book market and the creation of readers as purchasers and consumers of books. In order to demonstrate this, the project will reconstruct the economic and legal framework of the European book market by applying an interdisciplinary approach to the economic study of book history. By using unique and hitherto unexplored documentary evidence, this project addresses four fundamental questions relating to the growth of a fully developed book trade and the rise of a society of book consumers within the social and religious context of early modern Europe: the economic issue of book prices; the juridical and political issue of the book privilege system (which in turn influenced the process of book pricing); the management of the bookselling business (focusing on businesses in two major cities in the European book trade, Venice (Bernardino Giunti) and Antwerp (Christopher Plantin)); the technique of building and managing a transnational network for book distribution and sale (analyzing groundbreaking new evidence, an entire year (1522) of correspondence from a Venetian wholesale bookseller, Giovanni Bartolomeo Gabiano). These four research areas will feed into an overarching project which will examine the impact of books and the access of readers to them, together with the development in patterns of cultural consumption which meant that printed books lost the luxury status which they had had throughout the incunabula period to become transformed into ‘popoluxe’ goods.
Max ERC Funding
1 434 375 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ENDOFUN
Project The endodermis - unraveling the function of an ancient barrier
Researcher (PI) Niko Geldner
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Consolidator Grant (CoG), LS3, ERC-2013-CoG
Summary In addition to maintaining homeostasis within their cells, multicellular organisms also need to control their inner, extracellular spaces between cells. In order to do so, epithelia have developed, bearing ring-like paracellular barriers, with specialised membrane surfaces facing either the environment or the inner space of the organism. In animals, such polarised epithelia use specialised protein assemblies, called tight junctions, to seal the extracellular space, which have been a topic of active research for decades. Plant roots need to extract inorganic elements from the soil. A plethora of transporters are expressed in plant roots, yet, as in animals, transporter action is contingent upon the presence of efficient paracellular (apoplastic) barriers. Therefore, an understanding of the development, structure and function of the root apoplastic barrier is crucial for mechanistic models of root nutrient uptake. The endodermis is the main apoplastic barrier in roots, but, in contrast to animals, molecular data about endodermal differentiation and function has been virtually absent. We recently gained insights into the factors that drive endodermal differentiation, largely due to efforts from my research team. Our work has led a foundation of mutants, markers and protocols that provide an unprecented opportunity to test the many supposed roles of the root endodermis. Our preliminary insights indicate that generally accepted views of endodermal function have been overly simplistic. The topic of this proposal is to develop better tools and much more precise molecular analysis of nutrient uptake, centered around the endodermis. I propose to investigate our specific barrier mutants with new tools that allow visualisation of changes in nutrient transport at cellular resolution. The results from this project will provide a new foundation for models of plant nutrition and help us to understand how plants manage, and sometimes fail, to extract what they need from the soil.
Summary
In addition to maintaining homeostasis within their cells, multicellular organisms also need to control their inner, extracellular spaces between cells. In order to do so, epithelia have developed, bearing ring-like paracellular barriers, with specialised membrane surfaces facing either the environment or the inner space of the organism. In animals, such polarised epithelia use specialised protein assemblies, called tight junctions, to seal the extracellular space, which have been a topic of active research for decades. Plant roots need to extract inorganic elements from the soil. A plethora of transporters are expressed in plant roots, yet, as in animals, transporter action is contingent upon the presence of efficient paracellular (apoplastic) barriers. Therefore, an understanding of the development, structure and function of the root apoplastic barrier is crucial for mechanistic models of root nutrient uptake. The endodermis is the main apoplastic barrier in roots, but, in contrast to animals, molecular data about endodermal differentiation and function has been virtually absent. We recently gained insights into the factors that drive endodermal differentiation, largely due to efforts from my research team. Our work has led a foundation of mutants, markers and protocols that provide an unprecented opportunity to test the many supposed roles of the root endodermis. Our preliminary insights indicate that generally accepted views of endodermal function have been overly simplistic. The topic of this proposal is to develop better tools and much more precise molecular analysis of nutrient uptake, centered around the endodermis. I propose to investigate our specific barrier mutants with new tools that allow visualisation of changes in nutrient transport at cellular resolution. The results from this project will provide a new foundation for models of plant nutrition and help us to understand how plants manage, and sometimes fail, to extract what they need from the soil.
Max ERC Funding
1 985 443 €
Duration
Start date: 2014-06-01, End date: 2019-05-31