Project acronym ADIMMUNE
Project Decoding interactions between adipose tissue immune cells, metabolic function, and the intestinal microbiome in obesity
Researcher (PI) Eran Elinav
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS6, ERC-2018-COG
Summary Obesity and its metabolic co-morbidities have given rise to a rapidly expanding ‘metabolic syndrome’ pandemic affecting
hundreds of millions of individuals worldwide. The integrative genetic and environmental causes of the obesity pandemic
remain elusive. White adipose tissue (WAT)-resident immune cells have recently been highlighted as important factors
contributing to metabolic complications. However, a comprehensive understanding of the regulatory circuits governing their
function and the cell type-specific mechanisms by which they contribute to the development of metabolic syndrome is
lacking. Likewise, the gut microbiome has been suggested as a critical regulator of obesity, but the bacterial species and
metabolites that influence WAT inflammation are entirely unknown.
We propose to use our recently developed high-throughput genomic and gnotobiotic tools, integrated with CRISPR-mediated interrogation of gene function, microbial culturomics, and in-vivo metabolic analysis in newly generated mouse models, in order to achieve a new level of molecular understanding of how WAT immune cells integrate environmental cues into their crosstalk with organismal metabolism, and to explore the microbial contributions to the molecular etiology of WAT inflammation in the pathogenesis of diet-induced obesity. Specifically, we aim to (a) decipher the global regulatory landscape and interaction networks of WAT hematopoietic cells at the single-cell level, (b) identify new mediators of WAT immune cell contributions to metabolic homeostasis, and (c) decode how host-microbiome communication shapes the development of WAT inflammation and obesity.
Unraveling the principles of WAT immune cell regulation and their amenability to change by host-microbiota interactions
may lead to a conceptual leap forward in our understanding of metabolic physiology and disease. Concomitantly, it may
generate a platform for microbiome-based personalized therapy against obesity and its complications.
Summary
Obesity and its metabolic co-morbidities have given rise to a rapidly expanding ‘metabolic syndrome’ pandemic affecting
hundreds of millions of individuals worldwide. The integrative genetic and environmental causes of the obesity pandemic
remain elusive. White adipose tissue (WAT)-resident immune cells have recently been highlighted as important factors
contributing to metabolic complications. However, a comprehensive understanding of the regulatory circuits governing their
function and the cell type-specific mechanisms by which they contribute to the development of metabolic syndrome is
lacking. Likewise, the gut microbiome has been suggested as a critical regulator of obesity, but the bacterial species and
metabolites that influence WAT inflammation are entirely unknown.
We propose to use our recently developed high-throughput genomic and gnotobiotic tools, integrated with CRISPR-mediated interrogation of gene function, microbial culturomics, and in-vivo metabolic analysis in newly generated mouse models, in order to achieve a new level of molecular understanding of how WAT immune cells integrate environmental cues into their crosstalk with organismal metabolism, and to explore the microbial contributions to the molecular etiology of WAT inflammation in the pathogenesis of diet-induced obesity. Specifically, we aim to (a) decipher the global regulatory landscape and interaction networks of WAT hematopoietic cells at the single-cell level, (b) identify new mediators of WAT immune cell contributions to metabolic homeostasis, and (c) decode how host-microbiome communication shapes the development of WAT inflammation and obesity.
Unraveling the principles of WAT immune cell regulation and their amenability to change by host-microbiota interactions
may lead to a conceptual leap forward in our understanding of metabolic physiology and disease. Concomitantly, it may
generate a platform for microbiome-based personalized therapy against obesity and its complications.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym BCELLMECHANICS
Project Regulation of antibody responses by B cell mechanical activity
Researcher (PI) Pavel Tolar
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary The production of antibodies against pathogens is an effective mechanism of protection against a wide range of infections. However, some pathogens evade antibody responses by rapidly changing their composition. Designing vaccines that elicit antibody responses against invariant parts of the pathogen is a rational strategy to combat existing and emerging pathogens. Production of antibodies is initiated by binding of B cell receptors (BCRs) to foreign antigens presented on the surfaces of antigen presenting cells. This binding induces B cell signalling and internalisation of the antigens for presentation to helper T cells. Although it is known that T cell help controls B cell expansion and differentiation into antibody-secreting and memory B cells, how the strength of antigen binding to the BCR regulates antigen internalisation remains poorly understood. As a result, the response and the affinity maturation of individual B cell clones are difficult to predict, posing a problem for the design of next-generation vaccines. My aim is to develop an understanding of the cellular mechanisms that underlie critical B cell activation steps. My laboratory has recently described that B cells use mechanical forces to extract antigens from antigen presenting cells. We hypothesise that application of mechanical forces tests BCR binding strength and thereby regulates B cell clonal selection during antibody affinity maturation and responses to pathogen evasion. We propose to test this hypothesis by (1) determining the magnitude and timing of the forces generated by B cells, and (2) determining the role of the mechanical properties of BCR-antigen bonds in affinity maturation and (3) in the development of broadly neutralising antibodies. We expect that the results of these studies will contribute to our understanding of the mechanisms that regulate the antibody repertoire in response to infections and have practical implications for the development of vaccines.
Summary
The production of antibodies against pathogens is an effective mechanism of protection against a wide range of infections. However, some pathogens evade antibody responses by rapidly changing their composition. Designing vaccines that elicit antibody responses against invariant parts of the pathogen is a rational strategy to combat existing and emerging pathogens. Production of antibodies is initiated by binding of B cell receptors (BCRs) to foreign antigens presented on the surfaces of antigen presenting cells. This binding induces B cell signalling and internalisation of the antigens for presentation to helper T cells. Although it is known that T cell help controls B cell expansion and differentiation into antibody-secreting and memory B cells, how the strength of antigen binding to the BCR regulates antigen internalisation remains poorly understood. As a result, the response and the affinity maturation of individual B cell clones are difficult to predict, posing a problem for the design of next-generation vaccines. My aim is to develop an understanding of the cellular mechanisms that underlie critical B cell activation steps. My laboratory has recently described that B cells use mechanical forces to extract antigens from antigen presenting cells. We hypothesise that application of mechanical forces tests BCR binding strength and thereby regulates B cell clonal selection during antibody affinity maturation and responses to pathogen evasion. We propose to test this hypothesis by (1) determining the magnitude and timing of the forces generated by B cells, and (2) determining the role of the mechanical properties of BCR-antigen bonds in affinity maturation and (3) in the development of broadly neutralising antibodies. We expect that the results of these studies will contribute to our understanding of the mechanisms that regulate the antibody repertoire in response to infections and have practical implications for the development of vaccines.
Max ERC Funding
1 999 386 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym BoneMalar
Project Mechanisms of bone marrow sequestration during malaria infection
Researcher (PI) Matthias Marti
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Consolidator Grant (CoG), LS6, ERC-2015-CoG
Summary Malaria remains a major problem of public health in developing countries. It is responsible for about 600000 deaths per year, predominantly children in sub-Saharan Africa. There is an urgent need for novel therapies as resistance against current treatments is widespread. The complex parasite biology requires a multifaceted approach targeting multiple life cycle stages and virulence pathways. The pathogenesis of the most deadly of human malaria parasites, Plasmodium falciparum, is related to the capability of infected red blood cells to sequester in deep tissues. Sequestration is critical for the completion of the red blood cell cycle because the release of parasites into the blood circulation allows recognition by surveillance macrophages and clearance in the spleen. A series of studies have since led to the understanding that sequestration of asexually replicating parasites is caused by the adherence of parasite infected red blood cells to the vascular endothelium of various tissues in the body.
We have recently demonstrated that gametocytes, the only stage capable of transmission to the mosquito vector, develop in the extravascular environment of the human bone marrow. Preliminary studies in the mouse model have confirmed this finding and also suggest existence of an asexual reservoir in the bone marrow. In this innovative multidiscipinary proposal we aim to investigate the host pathogen interactions at the interface between infected red blood cell and bone marrow vasculature. Specifically we will focus on the following questions: how do parasites home to bone marrow? What are the changes in the bone marrow endothelium upon infection? How do parasites adhere with and transmigrate across the vascular endothelium in the bone marrow? The proposed studies initiate detailed characterization of a new paradigm in malaria parasite interaction with the host vasculature and provide a compelling new avenue for intervention strategies.
Summary
Malaria remains a major problem of public health in developing countries. It is responsible for about 600000 deaths per year, predominantly children in sub-Saharan Africa. There is an urgent need for novel therapies as resistance against current treatments is widespread. The complex parasite biology requires a multifaceted approach targeting multiple life cycle stages and virulence pathways. The pathogenesis of the most deadly of human malaria parasites, Plasmodium falciparum, is related to the capability of infected red blood cells to sequester in deep tissues. Sequestration is critical for the completion of the red blood cell cycle because the release of parasites into the blood circulation allows recognition by surveillance macrophages and clearance in the spleen. A series of studies have since led to the understanding that sequestration of asexually replicating parasites is caused by the adherence of parasite infected red blood cells to the vascular endothelium of various tissues in the body.
We have recently demonstrated that gametocytes, the only stage capable of transmission to the mosquito vector, develop in the extravascular environment of the human bone marrow. Preliminary studies in the mouse model have confirmed this finding and also suggest existence of an asexual reservoir in the bone marrow. In this innovative multidiscipinary proposal we aim to investigate the host pathogen interactions at the interface between infected red blood cell and bone marrow vasculature. Specifically we will focus on the following questions: how do parasites home to bone marrow? What are the changes in the bone marrow endothelium upon infection? How do parasites adhere with and transmigrate across the vascular endothelium in the bone marrow? The proposed studies initiate detailed characterization of a new paradigm in malaria parasite interaction with the host vasculature and provide a compelling new avenue for intervention strategies.
Max ERC Funding
2 298 557 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym CholeraIndex
Project Pathoecology of Vibrio cholerae to better understand cholera index cases in endemic areas
Researcher (PI) Melanie BLOKESCH
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Consolidator Grant (CoG), LS6, ERC-2016-COG
Summary Cholera is one of the oldest infectious diseases known and remains a major burden in many developing countries. The World Health Organization estimates that up to 4 million cases of cholera occur annually. The transmission of cholera by contaminated water, particularly under epidemic conditions, was first reported in the 19th century. However, early volunteer studies suggested that an incredibly high infectious dose (ID) is required to produce disease symptoms, in contrast to most other intestinal pathogens. Therefore, the mechanism of infection of index cases at the onset of an outbreak is unclear. This proposal aims to fill this knowledge gap by studying how the environmental lifestyle of the causative agent of the disease, the bacterium Vibrio cholerae, may prime the pathogen for intestinal colonization. We hypothesize that one of the natural niches of the bacterium (chitinous surfaces) fosters biofilm formation and provides a competitive advantage over co-colonizing bacteria. As an adaptive trait, passage of chitin-attached sessile V. cholerae through the acidic environment of the human stomach might be vastly facilitated compared to planktonic bacteria. Moreover, interbacterial warfare exerted by V. cholerae on these biotic surfaces may help the pathogen overcome the colonization barrier imposed by the human microbiota upon ingestion. The mechanism by which V. cholerae leaves the sessile lifestyle and the regulatory circuits involved in this process will also be investigated in this project. In summary, our goal is to elucidate the environmental community structures of V. cholerae that may enhance transmissibility from the ecosystem to humans in endemic areas resulting in the infection of index cases.
Summary
Cholera is one of the oldest infectious diseases known and remains a major burden in many developing countries. The World Health Organization estimates that up to 4 million cases of cholera occur annually. The transmission of cholera by contaminated water, particularly under epidemic conditions, was first reported in the 19th century. However, early volunteer studies suggested that an incredibly high infectious dose (ID) is required to produce disease symptoms, in contrast to most other intestinal pathogens. Therefore, the mechanism of infection of index cases at the onset of an outbreak is unclear. This proposal aims to fill this knowledge gap by studying how the environmental lifestyle of the causative agent of the disease, the bacterium Vibrio cholerae, may prime the pathogen for intestinal colonization. We hypothesize that one of the natural niches of the bacterium (chitinous surfaces) fosters biofilm formation and provides a competitive advantage over co-colonizing bacteria. As an adaptive trait, passage of chitin-attached sessile V. cholerae through the acidic environment of the human stomach might be vastly facilitated compared to planktonic bacteria. Moreover, interbacterial warfare exerted by V. cholerae on these biotic surfaces may help the pathogen overcome the colonization barrier imposed by the human microbiota upon ingestion. The mechanism by which V. cholerae leaves the sessile lifestyle and the regulatory circuits involved in this process will also be investigated in this project. In summary, our goal is to elucidate the environmental community structures of V. cholerae that may enhance transmissibility from the ecosystem to humans in endemic areas resulting in the infection of index cases.
Max ERC Funding
1 999 988 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ChronosAntibiotics
Project Exploring the bacterial cell cycle to re-sensitize antibiotic-resistant bacteria
Researcher (PI) MARIANA LUISA TOMAS GOMES DE PINHO
Host Institution (HI) UNIVERSIDADE NOVA DE LISBOA
Call Details Consolidator Grant (CoG), LS6, ERC-2017-COG
Summary Over the next 35 years, antibiotic resistant bacteria are expected to kill more than 300 million people. The need to find alternative strategies for antimicrobial therapies remains a global challenge with several bottlenecks in the antibiotic discovery process. Using Staphylococcus aureus, the most common multidrug-resistant bacterium in the European Union and an excellent model organism for cell division in cocci, we propose:
(i) to find new pathways to re-sensitize resistant bacteria. Bacteria undergo major morphology changes during the cell cycle. We hypothesize that these changes generate windows of opportunity during which bacteria are more susceptible or more tolerant to the action of antibiotics. We will identify key regulators of the cell cycle in order to manipulate the duration of windows of opportunity for the action of existing antibiotics.
(ii) to develop new fluorescence-based reporters for whole-cell screenings of antimicrobial compounds with new modes of action, including compounds that arrest or delay the cell cycle; compounds that target non-essential pathways that are required for expression of resistance against existing antibiotics and therefore can be used as synergistic drugs for combination therapies; compounds that inhibit the production of virulence factors and compounds that revert persister states that are phenotypically resistant to antibiotics.
(iii) to unravel new modes of action of antibiotics by using the constructed reporter strains as powerful tools to learn how antibiotics act at the single cell level.
Over the past years, my group has become expert on the biology of S. aureus, has constructed powerful biological tools to study cell division and synthesis of the cell surface and has studied mechanisms of action of various antimicrobial compounds. We are therefore in a privileged position to quickly unravel the function of new players in the bacterial cell cycle and simultaneously contribute to accelerate antibiotic discovery.
Summary
Over the next 35 years, antibiotic resistant bacteria are expected to kill more than 300 million people. The need to find alternative strategies for antimicrobial therapies remains a global challenge with several bottlenecks in the antibiotic discovery process. Using Staphylococcus aureus, the most common multidrug-resistant bacterium in the European Union and an excellent model organism for cell division in cocci, we propose:
(i) to find new pathways to re-sensitize resistant bacteria. Bacteria undergo major morphology changes during the cell cycle. We hypothesize that these changes generate windows of opportunity during which bacteria are more susceptible or more tolerant to the action of antibiotics. We will identify key regulators of the cell cycle in order to manipulate the duration of windows of opportunity for the action of existing antibiotics.
(ii) to develop new fluorescence-based reporters for whole-cell screenings of antimicrobial compounds with new modes of action, including compounds that arrest or delay the cell cycle; compounds that target non-essential pathways that are required for expression of resistance against existing antibiotics and therefore can be used as synergistic drugs for combination therapies; compounds that inhibit the production of virulence factors and compounds that revert persister states that are phenotypically resistant to antibiotics.
(iii) to unravel new modes of action of antibiotics by using the constructed reporter strains as powerful tools to learn how antibiotics act at the single cell level.
Over the past years, my group has become expert on the biology of S. aureus, has constructed powerful biological tools to study cell division and synthesis of the cell surface and has studied mechanisms of action of various antimicrobial compounds. We are therefore in a privileged position to quickly unravel the function of new players in the bacterial cell cycle and simultaneously contribute to accelerate antibiotic discovery.
Max ERC Funding
2 533 500 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym COMBAT
Project Clearance Of Microbial Biofilms by Advancing diagnostics and Therapy
Researcher (PI) Susanne Christiane Haeussler
Host Institution (HI) HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBH
Call Details Consolidator Grant (CoG), LS6, ERC-2016-COG
Summary Every year chronic infections in patients due to biofilm formation of pathogenic bacteria are a multi-billion Euro burden to national healthcare systems. Despite improvements in technology and medical services, morbidity and mortality due to chronic infections have remained unchanged over the past decades. The emergence of a chronic infection disease burden calls for the development of modern diagnostics for biofilm resistance profiling and new therapeutic strategies to eradicate biofilm-associated infections. However, many unsuccessful attempts to address this need teach us that alternative perspectives are needed to meet the challenges.
The project is committed to develop innovative diagnostics and to strive for therapeutic solutions in patients suffering from biofilm-associated infections. The objective is to apply data-driven science to unlock the potential of microbial genomics. This new approach uses tools of advanced microbiological genomics and machine learning in genome-wide association studies on an existing unprecedentedly large dataset. This dataset has been generated in my group within the last five years and comprises sequence variation and gene expression information of a plethora of clinical Pseudomonas aeruginosa isolates. The wealth of patterns and characteristics of biofilm resistance are invisible at a smaller scale and will be interpreted within context and domain-specific knowledge.
The unique combination of basic molecular biology research, technology-driven approaches and data-driven science allows pioneer research dedicated to advance strategies to combat biofilm-associated infections. My approach does not only provide a prediction of biofilm resistance based on the bacteria´s genotype but also holds promise to transform treatment paradigms for the management of chronic infections and by interference with bacterial stress responses will promote the effectiveness of antimicrobials in clinical use to eradicate biofilm infections.
Summary
Every year chronic infections in patients due to biofilm formation of pathogenic bacteria are a multi-billion Euro burden to national healthcare systems. Despite improvements in technology and medical services, morbidity and mortality due to chronic infections have remained unchanged over the past decades. The emergence of a chronic infection disease burden calls for the development of modern diagnostics for biofilm resistance profiling and new therapeutic strategies to eradicate biofilm-associated infections. However, many unsuccessful attempts to address this need teach us that alternative perspectives are needed to meet the challenges.
The project is committed to develop innovative diagnostics and to strive for therapeutic solutions in patients suffering from biofilm-associated infections. The objective is to apply data-driven science to unlock the potential of microbial genomics. This new approach uses tools of advanced microbiological genomics and machine learning in genome-wide association studies on an existing unprecedentedly large dataset. This dataset has been generated in my group within the last five years and comprises sequence variation and gene expression information of a plethora of clinical Pseudomonas aeruginosa isolates. The wealth of patterns and characteristics of biofilm resistance are invisible at a smaller scale and will be interpreted within context and domain-specific knowledge.
The unique combination of basic molecular biology research, technology-driven approaches and data-driven science allows pioneer research dedicated to advance strategies to combat biofilm-associated infections. My approach does not only provide a prediction of biofilm resistance based on the bacteria´s genotype but also holds promise to transform treatment paradigms for the management of chronic infections and by interference with bacterial stress responses will promote the effectiveness of antimicrobials in clinical use to eradicate biofilm infections.
Max ERC Funding
1 998 750 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym CoPathoPhage
Project Pathogen-phage cooperation during mammalian infection
Researcher (PI) Anat Herskovits
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Consolidator Grant (CoG), LS6, ERC-2018-COG
Summary Most bacterial pathogens are lysogens, namely carry DNA of active phages within their genome, referred to as prophages. While these prophages have the potential to turn under stress into infective viruses which kill their host bacterium in a matter of minutes, it is unclear how pathogens manage to survive this internal threat under the stresses imposed by their invasion into mammalian cells. In the proposed project, we will study the hypothesis that a complex bacteria-phage cooperative adaptation supports virulence during mammalian infection while preventing inadvertent killing by phages. Several years ago, we uncovered a novel pathogen-phage interaction, in which an infective prophage promotes the virulence of its host, the bacterial pathogen Listeria monocytogenes (Lm), via adaptive behaviour. More recently, we discovered that the prophage, though fully infective, is non-autonomous- completely dependent on regulatory factors derived from inactive prophage remnants that reside in the Lm chromosome. These findings lead us to propose that the intimate cross-regulatory interactions between all phage elements within the genome (infective and remnant), are crucial in promoting bacteria-phage patho-adaptive behaviours in the mammalian niche and thereby bacterial virulence. In the proposed project, we will investigate specific cross-regulatory and cooperative mechanisms of all the phage elements, study the domestication of phage remnant-derived regulatory factors, and examine the hypothesis that they collectively form an auxiliary phage-control system that tempers infective phages. Finally, we will examine the premise that the mammalian niche drives the evolution of temperate phages into patho-adaptive phages, and that phages that lack this adaptation may kill host pathogens during infection. This work is expected to provide novel insights into bacteria-phage coexistence in mammalian environments and to facilitate the development of innovative phage therapy strategies.
Summary
Most bacterial pathogens are lysogens, namely carry DNA of active phages within their genome, referred to as prophages. While these prophages have the potential to turn under stress into infective viruses which kill their host bacterium in a matter of minutes, it is unclear how pathogens manage to survive this internal threat under the stresses imposed by their invasion into mammalian cells. In the proposed project, we will study the hypothesis that a complex bacteria-phage cooperative adaptation supports virulence during mammalian infection while preventing inadvertent killing by phages. Several years ago, we uncovered a novel pathogen-phage interaction, in which an infective prophage promotes the virulence of its host, the bacterial pathogen Listeria monocytogenes (Lm), via adaptive behaviour. More recently, we discovered that the prophage, though fully infective, is non-autonomous- completely dependent on regulatory factors derived from inactive prophage remnants that reside in the Lm chromosome. These findings lead us to propose that the intimate cross-regulatory interactions between all phage elements within the genome (infective and remnant), are crucial in promoting bacteria-phage patho-adaptive behaviours in the mammalian niche and thereby bacterial virulence. In the proposed project, we will investigate specific cross-regulatory and cooperative mechanisms of all the phage elements, study the domestication of phage remnant-derived regulatory factors, and examine the hypothesis that they collectively form an auxiliary phage-control system that tempers infective phages. Finally, we will examine the premise that the mammalian niche drives the evolution of temperate phages into patho-adaptive phages, and that phages that lack this adaptation may kill host pathogens during infection. This work is expected to provide novel insights into bacteria-phage coexistence in mammalian environments and to facilitate the development of innovative phage therapy strategies.
Max ERC Funding
2 200 000 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym Danger ATP
Project Regulation of inflammatory response by extracellular ATP and P2X7 receptor signalling: through and beyond the inflammasome
Researcher (PI) Pablo Pelegrin Vivancos
Host Institution (HI) FUNDACION PARA LA FORMACION E INVESTIGACION SANITARIAS DE LA REGION DE MURCIA
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary Inflammatory diseases affect over 80 million people worldwide and accompany many diseases of industrialized countries, being the majority of them infection-free conditions. There are few efficient anti-inflammatory drugs to treat chronic inflammation and thus, there is an urgent need to validate novel targets. We now know that innate immunity is the main coordinator and driver of inflammation. Recently, we and others have shown that the activation of purinergic P2X7 receptors (P2X7R) in immune cells is a novel and increasingly validated pathway to initiate inflammation through the activation of the NLRP3 inflammasome and the release of IL-1β and IL-18 cytokines. However, how NLRP3 sense P2X7R activation is not fully understood. Furthermore, extracellular ATP, the physiological P2X7R agonist, is a crucial danger signal released by injured cells, and one of the most important mediators of infection-free inflammation. We have also identified novel signalling roles for P2X7R independent on the NLRP3 inflammasome, including the release of proteases or inflammatory lipids. Therefore, P2X7R has generated increasing interest as a therapeutic target in inflammatory diseases, being drug like P2X7R antagonist in clinical trials to treat inflammatory diseases. However, it is often questioned the functionality of P2X7R in vivo, where it is thought that extracellular ATP levels are below the threshold to activate P2X7R. The overall significance of this proposal relays to elucidate how extracellular ATP controls host-defence in vivo, ultimately depicting P2X7R signalling through and beyond inflammasome activation. We foresee that our results will generate a leading innovative knowledge about in vivo extracellular ATP signalling during the host response to infection and sterile danger.
Summary
Inflammatory diseases affect over 80 million people worldwide and accompany many diseases of industrialized countries, being the majority of them infection-free conditions. There are few efficient anti-inflammatory drugs to treat chronic inflammation and thus, there is an urgent need to validate novel targets. We now know that innate immunity is the main coordinator and driver of inflammation. Recently, we and others have shown that the activation of purinergic P2X7 receptors (P2X7R) in immune cells is a novel and increasingly validated pathway to initiate inflammation through the activation of the NLRP3 inflammasome and the release of IL-1β and IL-18 cytokines. However, how NLRP3 sense P2X7R activation is not fully understood. Furthermore, extracellular ATP, the physiological P2X7R agonist, is a crucial danger signal released by injured cells, and one of the most important mediators of infection-free inflammation. We have also identified novel signalling roles for P2X7R independent on the NLRP3 inflammasome, including the release of proteases or inflammatory lipids. Therefore, P2X7R has generated increasing interest as a therapeutic target in inflammatory diseases, being drug like P2X7R antagonist in clinical trials to treat inflammatory diseases. However, it is often questioned the functionality of P2X7R in vivo, where it is thought that extracellular ATP levels are below the threshold to activate P2X7R. The overall significance of this proposal relays to elucidate how extracellular ATP controls host-defence in vivo, ultimately depicting P2X7R signalling through and beyond inflammasome activation. We foresee that our results will generate a leading innovative knowledge about in vivo extracellular ATP signalling during the host response to infection and sterile danger.
Max ERC Funding
1 794 948 €
Duration
Start date: 2014-09-01, End date: 2019-08-31
Project acronym DC_Nutrient
Project Investigating nutrients as key determinants of DC-induced CD8 T cell responses
Researcher (PI) David FINLAY
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Consolidator Grant (CoG), LS6, ERC-2017-COG
Summary A new immunoregulatory axis has emerged in recent years demonstrating that cellular metabolism is crucial in controlling immune responses. This regulatory axis is acutely sensitive to nutrients that fuel metabolic pathways and support nutrient sensitive signalling pathways. My recent research demonstrates that nutrients are dynamically controlled and are not equally available to all immune cells. The data shows that activated T cells, clustered around a dendritic cell (DC), can consume the available nutrients, leaving the DC nutrient deprived in vitro. This local regulation of the DC nutrient microenvironment by neighbouring cells has profound effects on DC function and T cell responses. Nutrient deprived DC have altered signalling (decreased mTORC1 activity), increased pro-inflammatory functions (IL12 and costimulatory molecule expression) and induce enhanced T cell responses (proliferation, IFNγ production). However, proving this, particularly in vivo, is a major challenge as the tools to investigate nutrient dynamics within complex microenvironments have not yet been developed. This research programme will generate innovative new technologies to measure the local distribution of glucose, glutamine and leucine (all of which control mTORC1 signalling) to be visualised and quantified. These technologies will pioneer a new era of in vivo nutrient analysis. Nutrient deprivation of antigen presenting DC will then be investigated (using our new technologies) in response to various stimuli within the inflammatory lymph node and correlated to CD8 T cell responses. We will generate state-of-the-art transgenic mice to specifically knock-down nutrient transporters for glucose, glutamine, or leucine in DC to definitively prove that the availability of these nutrients to antigen presenting DC is a key mechanism for controlling CD8 T cells responses. This would be a paradigm shifting discovery that would open new horizons for the study of nutrient-regulated immune responses.
Summary
A new immunoregulatory axis has emerged in recent years demonstrating that cellular metabolism is crucial in controlling immune responses. This regulatory axis is acutely sensitive to nutrients that fuel metabolic pathways and support nutrient sensitive signalling pathways. My recent research demonstrates that nutrients are dynamically controlled and are not equally available to all immune cells. The data shows that activated T cells, clustered around a dendritic cell (DC), can consume the available nutrients, leaving the DC nutrient deprived in vitro. This local regulation of the DC nutrient microenvironment by neighbouring cells has profound effects on DC function and T cell responses. Nutrient deprived DC have altered signalling (decreased mTORC1 activity), increased pro-inflammatory functions (IL12 and costimulatory molecule expression) and induce enhanced T cell responses (proliferation, IFNγ production). However, proving this, particularly in vivo, is a major challenge as the tools to investigate nutrient dynamics within complex microenvironments have not yet been developed. This research programme will generate innovative new technologies to measure the local distribution of glucose, glutamine and leucine (all of which control mTORC1 signalling) to be visualised and quantified. These technologies will pioneer a new era of in vivo nutrient analysis. Nutrient deprivation of antigen presenting DC will then be investigated (using our new technologies) in response to various stimuli within the inflammatory lymph node and correlated to CD8 T cell responses. We will generate state-of-the-art transgenic mice to specifically knock-down nutrient transporters for glucose, glutamine, or leucine in DC to definitively prove that the availability of these nutrients to antigen presenting DC is a key mechanism for controlling CD8 T cells responses. This would be a paradigm shifting discovery that would open new horizons for the study of nutrient-regulated immune responses.
Max ERC Funding
1 995 861 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym DevoTed_miR
Project MicroRNA determinants of the balance between effector and regulatory T cells in vivo
Researcher (PI) Bruno Miguel De Carvalho e Silva Santos
Host Institution (HI) INSTITUTO DE MEDICINA MOLECULAR JOAO LOBO ANTUNES
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary T lymphocytes display potent pro- or anti-inflammatory properties, which typically associate with distinct effector (Teff) versus regulatory (Treg) cell subsets. Based on published and our preliminary data showing a major impact of microRNAs on T cell differentiation and (auto)immune pathology, my proposal aims to dissect the miRNA networks that control the balance between Teff and Treg subsets in vivo, in various experimental models of infection and autoimmunity.
We will focus on three critical mediators of T cell functions: interferon-gamma (IFN-g) and interleukin-17A (IL-17), highly pro-inflammatory Teff cytokines; and Foxp3, the transcription factor that confers Treg suppressive properties. To track the activity of these key genes, we will generate a new Ifng/ Il17/ Foxp3 triple reporter mouse, from which we will isolate Teff and Treg subsets to determine their genome-wide miRNA profiles and specific signatures in vivo. We will investigate both natural (thymic-derived and present in naïve mice) and induced (in the periphery upon challenge) Teff and Treg subsets, as they make distinct contributions to the immune response. We will identify miRNAs selectively expressed in Teff (Ifng+ or Il17+) versus Treg (Foxp3+) subsets of various lineages (CD4+, CD8+, gamma-delta or NKT) in each in vivo model; assess whether they are induced during thymic development or upon peripheral activation; and determine the robustness of subset-specific miRNA profiles across various in vivo challenges.
We will then use loss- and gain-of-function strategies to define the individual miRNAs that impact Teff or Treg differentiation and disease pathogenesis; dissect the external cues and intracellular mechanisms that regulate miRNA expression; and identify the mRNA networks controlled by key miRNAs in Teff and Treg differentiation. I expect this project to provide major conceptual and experimental advances towards manipulating miRNAs either to boost immunity or to treat autoimmunity.
Summary
T lymphocytes display potent pro- or anti-inflammatory properties, which typically associate with distinct effector (Teff) versus regulatory (Treg) cell subsets. Based on published and our preliminary data showing a major impact of microRNAs on T cell differentiation and (auto)immune pathology, my proposal aims to dissect the miRNA networks that control the balance between Teff and Treg subsets in vivo, in various experimental models of infection and autoimmunity.
We will focus on three critical mediators of T cell functions: interferon-gamma (IFN-g) and interleukin-17A (IL-17), highly pro-inflammatory Teff cytokines; and Foxp3, the transcription factor that confers Treg suppressive properties. To track the activity of these key genes, we will generate a new Ifng/ Il17/ Foxp3 triple reporter mouse, from which we will isolate Teff and Treg subsets to determine their genome-wide miRNA profiles and specific signatures in vivo. We will investigate both natural (thymic-derived and present in naïve mice) and induced (in the periphery upon challenge) Teff and Treg subsets, as they make distinct contributions to the immune response. We will identify miRNAs selectively expressed in Teff (Ifng+ or Il17+) versus Treg (Foxp3+) subsets of various lineages (CD4+, CD8+, gamma-delta or NKT) in each in vivo model; assess whether they are induced during thymic development or upon peripheral activation; and determine the robustness of subset-specific miRNA profiles across various in vivo challenges.
We will then use loss- and gain-of-function strategies to define the individual miRNAs that impact Teff or Treg differentiation and disease pathogenesis; dissect the external cues and intracellular mechanisms that regulate miRNA expression; and identify the mRNA networks controlled by key miRNAs in Teff and Treg differentiation. I expect this project to provide major conceptual and experimental advances towards manipulating miRNAs either to boost immunity or to treat autoimmunity.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym DynaMO_TB
Project Spatiotemporal regulation of localization and replication of M. tuberculosis in humanmacrophages
Researcher (PI) Maximiliano Gabriel GUTIERREZ
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Consolidator Grant (CoG), LS6, ERC-2017-COG
Summary Mycobacterium tuberculosis (Mtb) is a very successful intracellular pathogen: in 2014, tuberculosis (TB) caused 1.5 million human deaths (World Health Organisation). To cause disease and disseminate to other hosts, Mtb needs to replicate within human cells. In spite of its enormous relevance for TB pathogenesis, the precise sites of Mtb replication in host cells remain unknown. This surprising gap in knowledge is in part due to the lack of appropriate imaging technologies that have precluded comprehensive understanding of the fundamental biology that underpins Mtb-host cell interactions critical to design rational interventions. Here, we propose to use a series of cutting-edge imaging approaches in human macrophages to: (1) define how the dynamic interactions between Mtb populations and organelles impact Mtb replication; (2) identify critical host and bacterial components that regulate Mtb replication and (3) characterise the host cell death pathways that control Mtb replication. For this, we will benefit from technologies developed in our group to image and quantify Mtb localisation and replication, such as live cell imaging, super resolution (SR) microscopy and correlative live cell 3D- electron microscopy (CLEM). We will refine these approaches to challenge the current limits of cell-based, high content imaging by combining human stem cell-derived macrophages with adhesive micropattern technologies for single cell analysis; this allows us to identify where and when Mtb replicate and how the interplay between host cells and Mtb impacts this process. Together, this proposal can uncover novel cellular pathways defining the intracellular sites that allow or restrict Mtb replication in human macrophages, thereby advancing the fields of both cell and infection biology. The characterization of the site of intracellular replication of Mtb can open avenues for a deeper understanding of human TB pathogenesis and facilitate development of vaccines and antibioo be here soon
Summary
Mycobacterium tuberculosis (Mtb) is a very successful intracellular pathogen: in 2014, tuberculosis (TB) caused 1.5 million human deaths (World Health Organisation). To cause disease and disseminate to other hosts, Mtb needs to replicate within human cells. In spite of its enormous relevance for TB pathogenesis, the precise sites of Mtb replication in host cells remain unknown. This surprising gap in knowledge is in part due to the lack of appropriate imaging technologies that have precluded comprehensive understanding of the fundamental biology that underpins Mtb-host cell interactions critical to design rational interventions. Here, we propose to use a series of cutting-edge imaging approaches in human macrophages to: (1) define how the dynamic interactions between Mtb populations and organelles impact Mtb replication; (2) identify critical host and bacterial components that regulate Mtb replication and (3) characterise the host cell death pathways that control Mtb replication. For this, we will benefit from technologies developed in our group to image and quantify Mtb localisation and replication, such as live cell imaging, super resolution (SR) microscopy and correlative live cell 3D- electron microscopy (CLEM). We will refine these approaches to challenge the current limits of cell-based, high content imaging by combining human stem cell-derived macrophages with adhesive micropattern technologies for single cell analysis; this allows us to identify where and when Mtb replicate and how the interplay between host cells and Mtb impacts this process. Together, this proposal can uncover novel cellular pathways defining the intracellular sites that allow or restrict Mtb replication in human macrophages, thereby advancing the fields of both cell and infection biology. The characterization of the site of intracellular replication of Mtb can open avenues for a deeper understanding of human TB pathogenesis and facilitate development of vaccines and antibioo be here soon
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym EndoSubvert
Project Common mechanisms of host membrane trafficking subversion by intracellular pathogens to rupture bacterial containing vacuoles
Researcher (PI) Jost Heiko Enninga
Host Institution (HI) INSTITUT PASTEUR
Call Details Consolidator Grant (CoG), LS6, ERC-2015-CoG
Summary A common strategy of bacterial pathogens is active or passive uptake into host cells. There, they can localize within a bacterial containing vacuole (BCV) or access the host cytoplasm through BCV rupture. Hence, intracellular pathogens are often classified as vacuole-bound or cytoplasmic. Recently, this definition has been challenged by the discovery that many vacuole-bound pathogens, including Mycobacterium tuberculosis and Salmonella enterica, access the host cytoplasm, and by the insight that cytoplasmic bacteria, like Shigella flexneri or Listeria monocytogenes, do not always escape the BCV. Despite this increasing complexity, a precise understanding lacks for why and how a pathogen “chooses” between a BCV or the cytoplasm and yet this is very important: because of differential pathogen sensing in membrane-bound and cytoplasmic compartments, intracellular localization leads to induction of different host responses. Therefore, a comprehensive understanding of the processes controlling BCV integrity is not only essential, but can provide new therapeutic targets. Our previous research has implemented innovative fluorescence microscopy to track the invasion steps of pathogenic bacteria. We have further integrated a large-volume, correlative, light/electron microscopy (CLEM) workflow via focused ion beam scanning electron microscopy. This uncovered the subversion of host Rab cascades by Shigella to rupture its BCV. Starting with the Shigella model of epithelial cell invasion, we will delineate the precise molecular mechanisms controlling BCV integrity in different host cell types. We will analyze (i) the scaffolds of host pathways for membrane remodeling, (ii) their subversion by various pathogens, and (iii) their differential regulation depending on pathophysiological conditions. Together, this will allow development of novel, rational antimicrobial strategies and will yield fundamental insight into understudied cell biological mechanisms of membrane trafficking.
Summary
A common strategy of bacterial pathogens is active or passive uptake into host cells. There, they can localize within a bacterial containing vacuole (BCV) or access the host cytoplasm through BCV rupture. Hence, intracellular pathogens are often classified as vacuole-bound or cytoplasmic. Recently, this definition has been challenged by the discovery that many vacuole-bound pathogens, including Mycobacterium tuberculosis and Salmonella enterica, access the host cytoplasm, and by the insight that cytoplasmic bacteria, like Shigella flexneri or Listeria monocytogenes, do not always escape the BCV. Despite this increasing complexity, a precise understanding lacks for why and how a pathogen “chooses” between a BCV or the cytoplasm and yet this is very important: because of differential pathogen sensing in membrane-bound and cytoplasmic compartments, intracellular localization leads to induction of different host responses. Therefore, a comprehensive understanding of the processes controlling BCV integrity is not only essential, but can provide new therapeutic targets. Our previous research has implemented innovative fluorescence microscopy to track the invasion steps of pathogenic bacteria. We have further integrated a large-volume, correlative, light/electron microscopy (CLEM) workflow via focused ion beam scanning electron microscopy. This uncovered the subversion of host Rab cascades by Shigella to rupture its BCV. Starting with the Shigella model of epithelial cell invasion, we will delineate the precise molecular mechanisms controlling BCV integrity in different host cell types. We will analyze (i) the scaffolds of host pathways for membrane remodeling, (ii) their subversion by various pathogens, and (iii) their differential regulation depending on pathophysiological conditions. Together, this will allow development of novel, rational antimicrobial strategies and will yield fundamental insight into understudied cell biological mechanisms of membrane trafficking.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym ENTRAPMENT
Project Septins: from bacterial entrapment to cellular immunity
Researcher (PI) Serge MOSTOWY
Host Institution (HI) LONDON SCHOOL OF HYGIENE AND TROPICAL MEDICINE ROYAL CHARTER
Call Details Consolidator Grant (CoG), LS6, ERC-2017-COG
Summary The intracellular bacterium Shigella flexneri is an exceptional model pathogen to address key issues in biology, including how bacteria can move inside host cells and escape the immune system. The cytoskeleton has recently emerged to occupy a central role in innate immunity by promoting bacterial sensing and executing antibacterial functions. I discovered that host cells employ septins, a poorly understood component of the cytoskeleton, to restrict the actin-based motility of Shigella and target them for destruction by autophagy, an important mechanism of innate immune defence. However, the processes underlying septin cage assembly, and the breadth of roles for septins in bacterial infection control, remain to be established. I developed zebrafish (Danio rerio) infection models to study the cell biology of Shigella infection in vivo, and to discover new roles for septins in host defence against bacterial infection. This approach has enabled a cutting edge platform for in vivo studies both at the single cell and whole animal level, and provides unprecedented opportunities to follow cytoskeleton dynamics and innate immunity at a resolution that cannot be achieved using any other animal model. I will now exploit the novelty of septin biology, and its direct link to host defence, as the foundation for this research programme. Using Shigella I will: (1) Discover new roles for the cytoskeleton in host defence against bacterial infection, and (2) Investigate the role of septin-mediated host defence mechanisms in vivo using zebrafish models of infection. The results generated from this research programme will provide fundamental advances in understanding septin biology and cellular immunity. They could also suggest the development of new strategies aimed at combating infectious diseases, and possibly other human diseases in which septins have been implicated including neoplasia and neurodegenerative conditions.
Summary
The intracellular bacterium Shigella flexneri is an exceptional model pathogen to address key issues in biology, including how bacteria can move inside host cells and escape the immune system. The cytoskeleton has recently emerged to occupy a central role in innate immunity by promoting bacterial sensing and executing antibacterial functions. I discovered that host cells employ septins, a poorly understood component of the cytoskeleton, to restrict the actin-based motility of Shigella and target them for destruction by autophagy, an important mechanism of innate immune defence. However, the processes underlying septin cage assembly, and the breadth of roles for septins in bacterial infection control, remain to be established. I developed zebrafish (Danio rerio) infection models to study the cell biology of Shigella infection in vivo, and to discover new roles for septins in host defence against bacterial infection. This approach has enabled a cutting edge platform for in vivo studies both at the single cell and whole animal level, and provides unprecedented opportunities to follow cytoskeleton dynamics and innate immunity at a resolution that cannot be achieved using any other animal model. I will now exploit the novelty of septin biology, and its direct link to host defence, as the foundation for this research programme. Using Shigella I will: (1) Discover new roles for the cytoskeleton in host defence against bacterial infection, and (2) Investigate the role of septin-mediated host defence mechanisms in vivo using zebrafish models of infection. The results generated from this research programme will provide fundamental advances in understanding septin biology and cellular immunity. They could also suggest the development of new strategies aimed at combating infectious diseases, and possibly other human diseases in which septins have been implicated including neoplasia and neurodegenerative conditions.
Max ERC Funding
2 744 407 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym ERVE
Project Systematic discovery of functional elements in RNA virus genomes: an Encyclopedia of RNA Virus Elements
Researcher (PI) Andrew Edwin Firth
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary Identification of the full complement of genes and other functional elements in any virus is crucial to fully understand its molecular biology and guide the development of effective control strategies. Our recent discoveries of new 'hidden' genes in the potyviruses, alphaviruses, arteriviruses, flaviviruses and influenza A virus have demonstrated that, even in the most well-studied and economically-important viruses, small overlapping genes can remain undetected throughout decades of research. Comparative computational analyses can be used to efficiently identify hidden features and target experimental analyses, thus saving time and cost, and minimizing animal experiments. With the rapid increase in sequencing data, for the first time it is now possible to map out at high resolution functional elements genome-wide in hundreds of important virus species.
Our research involves the development of powerful new tools for virus comparative genomics, and the application of these tools to uncover hidden genes and other functional elements in RNA virus and retrovirus genomes. Hidden genes are often translated via non-canonical mechanisms, such as programmed ribosomal frameshifting, and we are particularly interested in discovering and characterizing new types of non-canonical translation. Deciphering these 'exceptions-to-the-rule' enhances our understanding of the mechanics of protein synthesis. Further, these novel mechanisms may also be relevant to cellular gene expression.
The goals of this project are:
1) To computationally identify all 'hidden' genes and major functional non-coding elements in the genomes of RNA viruses and retroviruses of medical, veterinary and agricultural importance.
2) To experimentally characterize the most interesting new features.
3) To characterize novel translation mechanisms utilized by RNA viruses.
4) To develop web interfaces to our software and an interactive RNA virus comparative genomics database.
Summary
Identification of the full complement of genes and other functional elements in any virus is crucial to fully understand its molecular biology and guide the development of effective control strategies. Our recent discoveries of new 'hidden' genes in the potyviruses, alphaviruses, arteriviruses, flaviviruses and influenza A virus have demonstrated that, even in the most well-studied and economically-important viruses, small overlapping genes can remain undetected throughout decades of research. Comparative computational analyses can be used to efficiently identify hidden features and target experimental analyses, thus saving time and cost, and minimizing animal experiments. With the rapid increase in sequencing data, for the first time it is now possible to map out at high resolution functional elements genome-wide in hundreds of important virus species.
Our research involves the development of powerful new tools for virus comparative genomics, and the application of these tools to uncover hidden genes and other functional elements in RNA virus and retrovirus genomes. Hidden genes are often translated via non-canonical mechanisms, such as programmed ribosomal frameshifting, and we are particularly interested in discovering and characterizing new types of non-canonical translation. Deciphering these 'exceptions-to-the-rule' enhances our understanding of the mechanics of protein synthesis. Further, these novel mechanisms may also be relevant to cellular gene expression.
The goals of this project are:
1) To computationally identify all 'hidden' genes and major functional non-coding elements in the genomes of RNA viruses and retroviruses of medical, veterinary and agricultural importance.
2) To experimentally characterize the most interesting new features.
3) To characterize novel translation mechanisms utilized by RNA viruses.
4) To develop web interfaces to our software and an interactive RNA virus comparative genomics database.
Max ERC Funding
1 780 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym EXODUS
Project Light induced spatially EXact and genetically encoded labeling of immune cells for monitoring of lOng Distance and Ultra-compartment Shuttling during autoimmunity and chronic inflammation
Researcher (PI) Thomas Gunther Thorsten Korn
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary The incidence of autoimmune diseases including multiple sclerosis is dramatically increasing. While there is a genetically defined “bedrock” susceptibility to develop T cell mediated autoimmunity, environmental cues likely determine the threshold for disease development. Yet, little is known on how environmental cues sensed at body/environment interfaces are translated into immunopathology in distant organs like the central nervous system (CNS).
Here, we raise the hypothesis that immune cells must be activated at epithelial surfaces and then physically migrate to distant organs in order to induce autoimmunity. Furthermore, we propose that the “state of activation” of (either lymphoid or myeloid) immune cells can be interrogated by IL-6 production since IL-6 deficiency confers resistance to virtually any organ specific autoimmune disease and we have contributed fundamentally in defining the role of IL-6 for the generation of Th17 cells that are highly associated with autoimmune tissue inflammation.
In EXODUS, we will develop ground-breaking next generation reporter tools in order to test these hypotheses. A split Cre recombinase protein, which dimerizes and is activated by blue light, will be used to genetically label cells (and their progeny) in a topologically defined manner (“compartment reporter”). Furthermore, we have developed a novel type of Cre-inducible in vivo IL-6 reporter (“activation reporter”). The combination of these tools will enable us to trace the anatomical compartment of activation of immune cells without limitations in lag time.
Thus, site specific photogenetic co-induction of a fluorescence and IL-6 reporter will be used to probe peripheral sites for their potency to licence immune cells to travel to the CNS (Forward). Vice versa, labeling of cells in the CNS (through a thinned skull window) will allow for studying immune cell exodus from the CNS in homeostasis and during inflammation (Reverse).
Summary
The incidence of autoimmune diseases including multiple sclerosis is dramatically increasing. While there is a genetically defined “bedrock” susceptibility to develop T cell mediated autoimmunity, environmental cues likely determine the threshold for disease development. Yet, little is known on how environmental cues sensed at body/environment interfaces are translated into immunopathology in distant organs like the central nervous system (CNS).
Here, we raise the hypothesis that immune cells must be activated at epithelial surfaces and then physically migrate to distant organs in order to induce autoimmunity. Furthermore, we propose that the “state of activation” of (either lymphoid or myeloid) immune cells can be interrogated by IL-6 production since IL-6 deficiency confers resistance to virtually any organ specific autoimmune disease and we have contributed fundamentally in defining the role of IL-6 for the generation of Th17 cells that are highly associated with autoimmune tissue inflammation.
In EXODUS, we will develop ground-breaking next generation reporter tools in order to test these hypotheses. A split Cre recombinase protein, which dimerizes and is activated by blue light, will be used to genetically label cells (and their progeny) in a topologically defined manner (“compartment reporter”). Furthermore, we have developed a novel type of Cre-inducible in vivo IL-6 reporter (“activation reporter”). The combination of these tools will enable us to trace the anatomical compartment of activation of immune cells without limitations in lag time.
Thus, site specific photogenetic co-induction of a fluorescence and IL-6 reporter will be used to probe peripheral sites for their potency to licence immune cells to travel to the CNS (Forward). Vice versa, labeling of cells in the CNS (through a thinned skull window) will allow for studying immune cell exodus from the CNS in homeostasis and during inflammation (Reverse).
Max ERC Funding
1 998 063 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym FATE
Project Functional Biology of Hepatic CD8+ T cells
Researcher (PI) Matteo Iannacone
Host Institution (HI) OSPEDALE SAN RAFFAELE SRL
Call Details Consolidator Grant (CoG), LS6, ERC-2016-COG
Summary CD8+ T cells have a key role in eliminating intracellular pathogens and tumors that affect the liver. The protective capacity of these cells relies on their ability to migrate to and traffic within the liver, recognize pathogen- or tumor-derived antigens, get activated and deploy effector functions. While some of the rules that characterize CD8+ T cell behavior in the infected and cancerous liver have been characterized at the population level, we have only limited knowledge of the precise dynamics of intrahepatic CD8+ T cell conduct at the single-cell level. In preliminary data for this project we have developed several advanced imaging techniques that allow us to dissect the interactive behavior of CD8+ T cells within the mouse liver at an unprecedented level of spatial and temporal resolution. We predict that this approach, combined with unique models of hepatitis B virus pathogenesis and a new model of hepatocellular carcinoma created ad hoc for this proposal, will generate novel mechanistic insights into the spatiotemporal determinants that govern the capacity of CD8+ T cells to home and function in the virus- or tumor-bearing liver. Specifically, we plan to pursue two main goals: 1) To assess how the anatomical, hemodynamic and environmental cues that characterize hepatocellular carcinomas shape CD8+ T cell behavior and function; 2) To characterize intrahepatic T cell priming events that induce functionally defective T cell responses. Results emerging from these studies will advance our knowledge on how adaptive immunity mediates pathogen clearance and tumor elimination. This new knowledge may lead to improved vaccination and treatment strategies for immunotherapy of infectious diseases and cancer.
Summary
CD8+ T cells have a key role in eliminating intracellular pathogens and tumors that affect the liver. The protective capacity of these cells relies on their ability to migrate to and traffic within the liver, recognize pathogen- or tumor-derived antigens, get activated and deploy effector functions. While some of the rules that characterize CD8+ T cell behavior in the infected and cancerous liver have been characterized at the population level, we have only limited knowledge of the precise dynamics of intrahepatic CD8+ T cell conduct at the single-cell level. In preliminary data for this project we have developed several advanced imaging techniques that allow us to dissect the interactive behavior of CD8+ T cells within the mouse liver at an unprecedented level of spatial and temporal resolution. We predict that this approach, combined with unique models of hepatitis B virus pathogenesis and a new model of hepatocellular carcinoma created ad hoc for this proposal, will generate novel mechanistic insights into the spatiotemporal determinants that govern the capacity of CD8+ T cells to home and function in the virus- or tumor-bearing liver. Specifically, we plan to pursue two main goals: 1) To assess how the anatomical, hemodynamic and environmental cues that characterize hepatocellular carcinomas shape CD8+ T cell behavior and function; 2) To characterize intrahepatic T cell priming events that induce functionally defective T cell responses. Results emerging from these studies will advance our knowledge on how adaptive immunity mediates pathogen clearance and tumor elimination. This new knowledge may lead to improved vaccination and treatment strategies for immunotherapy of infectious diseases and cancer.
Max ERC Funding
2 390 000 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym FatTryp
Project Exploring the hidden life of African trypanosomes: parasite fat tropism and implications for disease
Researcher (PI) Luisa FIGUEIREDO
Host Institution (HI) INSTITUTO DE MEDICINA MOLECULAR JOAO LOBO ANTUNES
Call Details Consolidator Grant (CoG), LS6, ERC-2017-COG
Summary Background: The study of protozoan pathogens has been extensively explored often motivated to find suitable targets for new intervention strategies. However these studies have been mostly limited to those life-cycle stages that can be cultivated in vitro. Using a mouse model of African trypanosomiasis, we have recently discovered that the adipose tissue (fat) is a major reservoir for the extracellular protozoan Trypanosoma brucei and that, within this environment, parasites become phenotypically different from those in the blood. Our study exposed novel biology of the T. brucei life cycle, yet it remains unknown how parasites adapt to the fat and how parasite fat tropism affects disease.
Our first aim is to determine the molecular and cellular mechanisms underlying T. brucei fat tropism. We will perform a genetic screen in mice to identify key parasite genes required for establishing and maintaining chronic infection in the fat. Together with the information of the transcriptome and proteome, we will identify the mechanistic steps underlying parasite tissue-adaptation.
Our second aim is to identify the consequences of T. brucei fat tropism for the host and the importance for disease. We will first investigate if parasites can egress from the fat. We will also determine if parasites induce lipid breakdown in the host, leading to loss of fat mass. Finally, we will measure the impact of fat tropism in general traits of disease, including host survival and transmission potential.
Impact: This project represents a completely novel research avenue built on recent work from my laboratory. By uncovering fundamental aspects of the biology of T. brucei, we will also improve the understanding of clinically relevant features of African trypanosomiasis, including relapses and weight loss. In addition, since parasite fat tropism has also been observed in malaria and Chagas’ disease, our findings will help elucidate disease mechanisms relevant to other infectious diseases.
Summary
Background: The study of protozoan pathogens has been extensively explored often motivated to find suitable targets for new intervention strategies. However these studies have been mostly limited to those life-cycle stages that can be cultivated in vitro. Using a mouse model of African trypanosomiasis, we have recently discovered that the adipose tissue (fat) is a major reservoir for the extracellular protozoan Trypanosoma brucei and that, within this environment, parasites become phenotypically different from those in the blood. Our study exposed novel biology of the T. brucei life cycle, yet it remains unknown how parasites adapt to the fat and how parasite fat tropism affects disease.
Our first aim is to determine the molecular and cellular mechanisms underlying T. brucei fat tropism. We will perform a genetic screen in mice to identify key parasite genes required for establishing and maintaining chronic infection in the fat. Together with the information of the transcriptome and proteome, we will identify the mechanistic steps underlying parasite tissue-adaptation.
Our second aim is to identify the consequences of T. brucei fat tropism for the host and the importance for disease. We will first investigate if parasites can egress from the fat. We will also determine if parasites induce lipid breakdown in the host, leading to loss of fat mass. Finally, we will measure the impact of fat tropism in general traits of disease, including host survival and transmission potential.
Impact: This project represents a completely novel research avenue built on recent work from my laboratory. By uncovering fundamental aspects of the biology of T. brucei, we will also improve the understanding of clinically relevant features of African trypanosomiasis, including relapses and weight loss. In addition, since parasite fat tropism has also been observed in malaria and Chagas’ disease, our findings will help elucidate disease mechanisms relevant to other infectious diseases.
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym GCB-PRID
Project Post-transcriptional Regulation of Germinal Center B Cell Responses in Immunity and Disease
Researcher (PI) Marc Schmidt-Supprian
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Call Details Consolidator Grant (CoG), LS6, ERC-2015-CoG
Summary Antibodies secreted by B cells of the adaptive immune system establish an essential barrier against bacteria and viruses and their presence is the hallmark of protective vaccinations. B cells are licensed for their tasks during germinal center (GC) reactions and differentiation into antibody-secreting plasma cells. Unfortunately, B cell-derived autoantibodies and proinflammatory cytokines can cause or contribute to autoimmune diseases.
While major transcription factor networks regulating protective (or pathogenic) GCB cell responses have been identified and characterized, little is known about the post-transcriptional regulation by RNA-binding proteins (RBP), whose number rivals that of transcription factors.
We postulate that RBPs exercise critical post-transcriptional control over germinal center B (GCB) and plasmacytic cell physiology and we aim to identify and molecularly characterize these regulatory mechanisms.
To this end, we will complement sophisticated genetic mouse models with novel cell culture systems. We will monitor RBP activity with fluorescent sensors and use proteomics to reveal RBPs regulating the protein abundance of critical mediators of GCB and plasmacytic cell fates. In addition, we will conduct genetic screens to uncover relevant functions of a short list of 40 RBPs, whose protein expression we found to differ significantly between GCB and mantle zone B cells. Ultimately, we will use cellular immunology and RNA biochemistry to elucidate how these RBPs exert their post-transcriptional control.
Through the integrated power of our multi-disciplinary approach we will thus pinpoint and investigate the functions of key RBPs regulating the biology of GCB and plasmacytic cells. GCB-PRID promises to uncover profoundly new insights into post-transcriptional regulation of adaptive immunity. Thereby, this groundbreaking research aims to reveal novel molecular targets for the treatment of autoimmune diseases, whose incidence is steadily on the rise.
Summary
Antibodies secreted by B cells of the adaptive immune system establish an essential barrier against bacteria and viruses and their presence is the hallmark of protective vaccinations. B cells are licensed for their tasks during germinal center (GC) reactions and differentiation into antibody-secreting plasma cells. Unfortunately, B cell-derived autoantibodies and proinflammatory cytokines can cause or contribute to autoimmune diseases.
While major transcription factor networks regulating protective (or pathogenic) GCB cell responses have been identified and characterized, little is known about the post-transcriptional regulation by RNA-binding proteins (RBP), whose number rivals that of transcription factors.
We postulate that RBPs exercise critical post-transcriptional control over germinal center B (GCB) and plasmacytic cell physiology and we aim to identify and molecularly characterize these regulatory mechanisms.
To this end, we will complement sophisticated genetic mouse models with novel cell culture systems. We will monitor RBP activity with fluorescent sensors and use proteomics to reveal RBPs regulating the protein abundance of critical mediators of GCB and plasmacytic cell fates. In addition, we will conduct genetic screens to uncover relevant functions of a short list of 40 RBPs, whose protein expression we found to differ significantly between GCB and mantle zone B cells. Ultimately, we will use cellular immunology and RNA biochemistry to elucidate how these RBPs exert their post-transcriptional control.
Through the integrated power of our multi-disciplinary approach we will thus pinpoint and investigate the functions of key RBPs regulating the biology of GCB and plasmacytic cells. GCB-PRID promises to uncover profoundly new insights into post-transcriptional regulation of adaptive immunity. Thereby, this groundbreaking research aims to reveal novel molecular targets for the treatment of autoimmune diseases, whose incidence is steadily on the rise.
Max ERC Funding
1 998 066 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym GENESIS
Project GENEtic DiSsection of Innate Immune Sensing and Signalling
Researcher (PI) Veit Helmut Hornung
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary In vertebrates, a receptor-based, innate sensing machinery is used to detect the presence of microbederived molecules or the perturbation microbial infection causes within the host. In the context of viral infection, non-self nucleic acids are sensed by a set of intracellular receptors that upon activation initiate broad antiviral effector responses to eliminate the imminent threat. Over the past years our understanding of these processes has considerably grown, mainly by employing murine knockout models.
Recent advances in genome engineering now provide the opportunity to knockout genes or even to perform functional genetic screens in human cells, providing a powerful means to validate and generate hypotheses. We have developed a high-throughput genome targeting and validation platform that allows us to tackle large-scale loss-of-function studies both at a polyclonal as well as an arrayed format. In addition, we have invested considerable efforts to render this technology applicable to study innate immune sensing and signalling pathways in the human system. GENESIS will combine these efforts to tackle pertinent questions in this field that could not have been addressed before: We will systematically dissect known nucleic acid sensing pathways in the human system to explore their unique roles, cooperativity or redundancy in detecting non-self nucleic acids. We will perform polyclonal, genome-wide loss-of-function screens to elucidate signalling
events downstream of intracellular DNA and RNA sensing pathways and their roles in orchestrating antiviral effector mechanisms. Moreover, in a large-scale perturbation study, we will specifically address the role of the kinome in antiviral innate immune signalling pathways, exploring the role of its individual members and their epistatic relationships in orchestrating gene expression. Altogether, these studies will allow us to obtain insight into innate immune signalling pathways at unprecedented precision, depth and breadth.
Summary
In vertebrates, a receptor-based, innate sensing machinery is used to detect the presence of microbederived molecules or the perturbation microbial infection causes within the host. In the context of viral infection, non-self nucleic acids are sensed by a set of intracellular receptors that upon activation initiate broad antiviral effector responses to eliminate the imminent threat. Over the past years our understanding of these processes has considerably grown, mainly by employing murine knockout models.
Recent advances in genome engineering now provide the opportunity to knockout genes or even to perform functional genetic screens in human cells, providing a powerful means to validate and generate hypotheses. We have developed a high-throughput genome targeting and validation platform that allows us to tackle large-scale loss-of-function studies both at a polyclonal as well as an arrayed format. In addition, we have invested considerable efforts to render this technology applicable to study innate immune sensing and signalling pathways in the human system. GENESIS will combine these efforts to tackle pertinent questions in this field that could not have been addressed before: We will systematically dissect known nucleic acid sensing pathways in the human system to explore their unique roles, cooperativity or redundancy in detecting non-self nucleic acids. We will perform polyclonal, genome-wide loss-of-function screens to elucidate signalling
events downstream of intracellular DNA and RNA sensing pathways and their roles in orchestrating antiviral effector mechanisms. Moreover, in a large-scale perturbation study, we will specifically address the role of the kinome in antiviral innate immune signalling pathways, exploring the role of its individual members and their epistatic relationships in orchestrating gene expression. Altogether, these studies will allow us to obtain insight into innate immune signalling pathways at unprecedented precision, depth and breadth.
Max ERC Funding
1 970 000 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym GliaInnateSensing
Project Glia-derived factors in innate lymphoid cell sensing and intestinal defence
Researcher (PI) Jose Henrique Veiga Fernandes
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary The interplay between intestinal microbes and immune cells ensures vital functions of the organism. However, inadequate host-microbe relationships lead to inflammatory diseases that are major public health concerns.
Innate lymphoid cells (ILC) are an emergent family of effectors abundantly present at mucosal sites. Group 3 ILC (ILC3) produce pro-inflammatory cytokines and regulate mucosal homeostasis, anti-microbial defence and adaptive immune responses.
ILC development and function have been widely perceived to be programmed. However, recent evidence indicates that ILC are also controlled by dietary signals. Nevertheless, how ILC3 perceive, integrate and respond to environmental cues remains utterly unexplored.
We hypothesise that ILC3 sense their environment and exert their function as part of a novel epithelial-glial-ILC unit orchestrated by neurotrophic factors. Thus, we propose to employ genetic, cellular and molecular approaches to decipher how this unconventional multi-cellular unit is controlled and how glial-derived factors set ILC3 function and intestinal homeostasis.
In order to achieve this, we will assess ILC3-autonomous functions of neurotrophic factor receptors. ILC3-specific loss and gain of function mutant mice for neuroregulatory receptors will be used to define the role of these molecules in ILC3 function, mucosal homeostasis, gut defence and microbial ecology. Sequentially we propose to decipher the anatomical and functional basis for the enteric epithelial-glial-ILC unit. To this end we will employ high-resolution imaging, genome-wide expression analysis and tissue-specific mutants for define target genes.
Our ground-breaking research will establish a novel sensing program by which ILC3 integrate environmental cues and will define a key multi-cellular unit at the core of intestinal homeostasis and defence. Finally, our work will reveal new pathways that may be targeted in inflammatory diseases that are major Public Health concerns.
Summary
The interplay between intestinal microbes and immune cells ensures vital functions of the organism. However, inadequate host-microbe relationships lead to inflammatory diseases that are major public health concerns.
Innate lymphoid cells (ILC) are an emergent family of effectors abundantly present at mucosal sites. Group 3 ILC (ILC3) produce pro-inflammatory cytokines and regulate mucosal homeostasis, anti-microbial defence and adaptive immune responses.
ILC development and function have been widely perceived to be programmed. However, recent evidence indicates that ILC are also controlled by dietary signals. Nevertheless, how ILC3 perceive, integrate and respond to environmental cues remains utterly unexplored.
We hypothesise that ILC3 sense their environment and exert their function as part of a novel epithelial-glial-ILC unit orchestrated by neurotrophic factors. Thus, we propose to employ genetic, cellular and molecular approaches to decipher how this unconventional multi-cellular unit is controlled and how glial-derived factors set ILC3 function and intestinal homeostasis.
In order to achieve this, we will assess ILC3-autonomous functions of neurotrophic factor receptors. ILC3-specific loss and gain of function mutant mice for neuroregulatory receptors will be used to define the role of these molecules in ILC3 function, mucosal homeostasis, gut defence and microbial ecology. Sequentially we propose to decipher the anatomical and functional basis for the enteric epithelial-glial-ILC unit. To this end we will employ high-resolution imaging, genome-wide expression analysis and tissue-specific mutants for define target genes.
Our ground-breaking research will establish a novel sensing program by which ILC3 integrate environmental cues and will define a key multi-cellular unit at the core of intestinal homeostasis and defence. Finally, our work will reveal new pathways that may be targeted in inflammatory diseases that are major Public Health concerns.
Max ERC Funding
2 270 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym HERPES
Project Herpesvirus Effectors of RNA synthesis, Processing, Export and Stability
Researcher (PI) Lars DÖLKEN
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Consolidator Grant (CoG), LS6, ERC-2016-COG
Summary Herpes simplex virus 1 (HSV-1) is an important human pathogen, which intensively interacts with the cellular transcriptional machinery at multiple levels during lytic infection. Employing next-generation sequencing to study RNA synthesis, processing and translation in short intervals throughout lytic HSV-1 infection, my laboratory made the surprising observation that HSV-1 triggers widespread disruption of transcription termination of cellular but not viral genes. Transcription commonly extends for tens-of-thousands of nucleotides beyond poly(A)-sites and into downstream genes. In contrast to textbook knowledge, HSV-1 infection does not inhibit splicing but induces a broad range of aberrant splicing events associated with disruption of transcription termination. Exploring these fascinating phenomena will provide fundamental insights into RNA biology of human cells.
The proposed work combines both hypothesis-driven and innovative unbiased screening approaches. I will utilise cutting-edge methodology ranging from high-throughput studies to advanced single molecule imaging. Thereby, I will detail the molecular mechanisms responsible for disruption of transcription termination and aberrant splicing. I will identify novel cellular proteins governing transcription termination using a genome-wide Cas9-knockout screen. I will develop RNA aptamer technology to visualise and track single RNA molecules suffering from poly(A) read-through. I will elucidate why transcription termination of some cellular and all viral genes remains unaltered throughout infection. I hypothesize that the alterations in RNA processing are depicted by specific changes in RNA Polymerase II CTD phosphorylation and in the associated proteins. I will characterise these dynamic changes using mNET-seq and quantitative proteomics. Finally, data-driven quantitative bioinformatic modelling will detail how the coupling of RNA synthesis, processing, export, stability and translation is orchestrated by HSV-1.
Summary
Herpes simplex virus 1 (HSV-1) is an important human pathogen, which intensively interacts with the cellular transcriptional machinery at multiple levels during lytic infection. Employing next-generation sequencing to study RNA synthesis, processing and translation in short intervals throughout lytic HSV-1 infection, my laboratory made the surprising observation that HSV-1 triggers widespread disruption of transcription termination of cellular but not viral genes. Transcription commonly extends for tens-of-thousands of nucleotides beyond poly(A)-sites and into downstream genes. In contrast to textbook knowledge, HSV-1 infection does not inhibit splicing but induces a broad range of aberrant splicing events associated with disruption of transcription termination. Exploring these fascinating phenomena will provide fundamental insights into RNA biology of human cells.
The proposed work combines both hypothesis-driven and innovative unbiased screening approaches. I will utilise cutting-edge methodology ranging from high-throughput studies to advanced single molecule imaging. Thereby, I will detail the molecular mechanisms responsible for disruption of transcription termination and aberrant splicing. I will identify novel cellular proteins governing transcription termination using a genome-wide Cas9-knockout screen. I will develop RNA aptamer technology to visualise and track single RNA molecules suffering from poly(A) read-through. I will elucidate why transcription termination of some cellular and all viral genes remains unaltered throughout infection. I hypothesize that the alterations in RNA processing are depicted by specific changes in RNA Polymerase II CTD phosphorylation and in the associated proteins. I will characterise these dynamic changes using mNET-seq and quantitative proteomics. Finally, data-driven quantitative bioinformatic modelling will detail how the coupling of RNA synthesis, processing, export, stability and translation is orchestrated by HSV-1.
Max ERC Funding
1 994 375 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym HOMEOGUT
Project Immune mechanisms that control the homeostasis of the gut and that are deregulated in intestinal pathologies cancer
Researcher (PI) Maria Rescigno
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary This project stems from an ERC STG grant that I received in 2007 (DENDROworld) in which we analyzed several aspects of the homeostasis of the gut and how defects in controlling this process could result in different pathologies, including inflammatory bowel disease (IBD) and cancer. In the present project, we will continue working on the immune homeostasis of the gut and we will focus on fundamental questions in mucosal immunity.
Three important and novel questions will be addressed in this project. The first aims at understanding how the gut microbiota is restrained from reaching systemic sites and hence it is tolerated only locally. We think that we have identified a new barrier at mucosal sites that avoids systemic spreading of bacteria via the blood stream. This is a very selective barrier that resembles the blood brain barrier and occurs at the level of enteric endothelial cells. The second question is closely related and tries to identify the role of the microbiota in the establishment/maintenance of this barrier and to understand its role during infection with enteric pathogens or in other circumstances (like pregnancy, liver disease). Finally, we want to characterize the activity of an anti-inflammatory mediator that we have identified. This is a short isoform of the well-known cytokine called TSLP. We think that this isoform is the one involved in the homeostasis of the intestine as it is the only one produced by epithelial cells in health and is downregulated during chronic inflammation.
This project is divided into three major aims.
1. Analysis of a putative gut vascular barrier that resembles the blood brain barrier and of the mechanisms leading to its disruption
2. Analysis of the role of the microbiota in the formation and maintenance of the Gut vascular barrier (GVB).
3. Elucidation of the activity of TSLP short isoform.
This is a multidisciplinary project requiring expertise in mucosal immunology, microbiology, bioinformatics and endothelium.
Summary
This project stems from an ERC STG grant that I received in 2007 (DENDROworld) in which we analyzed several aspects of the homeostasis of the gut and how defects in controlling this process could result in different pathologies, including inflammatory bowel disease (IBD) and cancer. In the present project, we will continue working on the immune homeostasis of the gut and we will focus on fundamental questions in mucosal immunity.
Three important and novel questions will be addressed in this project. The first aims at understanding how the gut microbiota is restrained from reaching systemic sites and hence it is tolerated only locally. We think that we have identified a new barrier at mucosal sites that avoids systemic spreading of bacteria via the blood stream. This is a very selective barrier that resembles the blood brain barrier and occurs at the level of enteric endothelial cells. The second question is closely related and tries to identify the role of the microbiota in the establishment/maintenance of this barrier and to understand its role during infection with enteric pathogens or in other circumstances (like pregnancy, liver disease). Finally, we want to characterize the activity of an anti-inflammatory mediator that we have identified. This is a short isoform of the well-known cytokine called TSLP. We think that this isoform is the one involved in the homeostasis of the intestine as it is the only one produced by epithelial cells in health and is downregulated during chronic inflammation.
This project is divided into three major aims.
1. Analysis of a putative gut vascular barrier that resembles the blood brain barrier and of the mechanisms leading to its disruption
2. Analysis of the role of the microbiota in the formation and maintenance of the Gut vascular barrier (GVB).
3. Elucidation of the activity of TSLP short isoform.
This is a multidisciplinary project requiring expertise in mucosal immunology, microbiology, bioinformatics and endothelium.
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym HostingTOXO
Project Toxoplasma gondii secretes an armada of effector proteins to co-opt its host cell transcriptome and microRNome to promote sustained parasitism
Researcher (PI) Mohamed-Ali Hakimi
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary Toxoplasma gondii is a widespread obligate intracellular protozoan parasite causing toxoplasmosis, a severe disease in immunocompromised or congenitally infected humans. It can infect any type of nucleated cells and grow inside a parasitophorous vacuole (PV) from where it directs profound changes in their transcriptome, proteome and microRNome. During invasion and creation of the PV membrane, apically oriented organelles called micronemes and rhoptries are discharged, followed later by release of dense granules content (DG). Recent advances have highlighted few strain-specific parasite effectors released from the rhoptry into the host cells where they neutralize cell autonomous immunity defences or subvert the host cell transcriptome thereby governing the fate of immune response and disease outcomes. Considering the magnitude of the repertoire of mRNA- and microRNA-encoding genes that is differentially regulated in host cells, it seems certain that other critical rhoptry- and DG-resident proteins that interact with host signaling pathways await discovery. By integrating diverse genomic-scale analyses and using reverse genetic, we identify novel DG proteins that are singularly exported beyond the tachyzoites-hosting PV to the host cell nucleus, thus extending the scope of the function of DG proteins beyond their dedicated role in vacuole formation. This collection of novel parasite effectors will be invaluable towards our goal of understanding how T. gondii actively remodels the genome expression of its hosting cell with profound and coupled impact on both parasite developmental process and the host immune response. We propose i) to characterize thoroughly the function of novel effector proteins secreted by T. gondii and ii) to explore how their synergistic or antagonist effects on host gene regulation contribute to promote sustained parasitism. An original line of research will be dedicated to determine by which means T. gondii re-programs the host microRNome.
Summary
Toxoplasma gondii is a widespread obligate intracellular protozoan parasite causing toxoplasmosis, a severe disease in immunocompromised or congenitally infected humans. It can infect any type of nucleated cells and grow inside a parasitophorous vacuole (PV) from where it directs profound changes in their transcriptome, proteome and microRNome. During invasion and creation of the PV membrane, apically oriented organelles called micronemes and rhoptries are discharged, followed later by release of dense granules content (DG). Recent advances have highlighted few strain-specific parasite effectors released from the rhoptry into the host cells where they neutralize cell autonomous immunity defences or subvert the host cell transcriptome thereby governing the fate of immune response and disease outcomes. Considering the magnitude of the repertoire of mRNA- and microRNA-encoding genes that is differentially regulated in host cells, it seems certain that other critical rhoptry- and DG-resident proteins that interact with host signaling pathways await discovery. By integrating diverse genomic-scale analyses and using reverse genetic, we identify novel DG proteins that are singularly exported beyond the tachyzoites-hosting PV to the host cell nucleus, thus extending the scope of the function of DG proteins beyond their dedicated role in vacuole formation. This collection of novel parasite effectors will be invaluable towards our goal of understanding how T. gondii actively remodels the genome expression of its hosting cell with profound and coupled impact on both parasite developmental process and the host immune response. We propose i) to characterize thoroughly the function of novel effector proteins secreted by T. gondii and ii) to explore how their synergistic or antagonist effects on host gene regulation contribute to promote sustained parasitism. An original line of research will be dedicated to determine by which means T. gondii re-programs the host microRNome.
Max ERC Funding
1 968 644 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym iDysChart
Project Charting key molecules and mechanisms of human immune Dysregulation
Researcher (PI) Ahmet Kaan BOZTUG
Host Institution (HI) LUDWIG BOLTZMANN GESELLSCHAFT GMBH
Call Details Consolidator Grant (CoG), LS6, ERC-2018-COG
Summary The central challenge for the immune system is to efficiently recognize and neutralize foreign antigen while protecting self. If the latter fails, autoimmunity and/or autoinflammation may occur, as observed in many human diseases. Though several human genes involved in the process have been identified we still lack: i) a comprehensive appreciation of all contributing molecular pathways, ii) an understanding of the interplay and epistatic relationships among the various elements and iii) a satisfactory strategy to counteract dysregulation based on an understanding of the regulatory logic.
I hypothesize that there is only a finite number of pathways involved and that it should be possible to mount a synergistic strategy to create a first chart of the entire “territory”. Key to this endeavor is the identification of sufficient elements by mapping immune dysregulation genes to “anchor” the chart onto signposts of which the human pathophysiological relevance is certain. From these signposts, contextualization and integration is achieved by interaction proteomics and network informatics mining the existing data universe, validated through biochemical and imaging tools to power an established set of immune assays. While it may be preposterous to claim feasibility with one ERC grant, I propose that once such a chart exists, even at initial low resolution, it can help reconcile disconnected observations and coalesce future work while being immensely improved in accuracy and mechanistic understanding by the entire community. iDysChart will work towards these goals by 1) identifying novel monogenic causes of autoimmune/autoinflammatory diseases, enabling elucidation of fundamental mechanisms, 2) creating a network-level understanding of molecular pathways of immune dysregulation and 3) employing chemical and genetic screens to complement human disease gene discovery in predicting the core human immune dysregulome and investigating potential avenues for therapeutic modulation.
Summary
The central challenge for the immune system is to efficiently recognize and neutralize foreign antigen while protecting self. If the latter fails, autoimmunity and/or autoinflammation may occur, as observed in many human diseases. Though several human genes involved in the process have been identified we still lack: i) a comprehensive appreciation of all contributing molecular pathways, ii) an understanding of the interplay and epistatic relationships among the various elements and iii) a satisfactory strategy to counteract dysregulation based on an understanding of the regulatory logic.
I hypothesize that there is only a finite number of pathways involved and that it should be possible to mount a synergistic strategy to create a first chart of the entire “territory”. Key to this endeavor is the identification of sufficient elements by mapping immune dysregulation genes to “anchor” the chart onto signposts of which the human pathophysiological relevance is certain. From these signposts, contextualization and integration is achieved by interaction proteomics and network informatics mining the existing data universe, validated through biochemical and imaging tools to power an established set of immune assays. While it may be preposterous to claim feasibility with one ERC grant, I propose that once such a chart exists, even at initial low resolution, it can help reconcile disconnected observations and coalesce future work while being immensely improved in accuracy and mechanistic understanding by the entire community. iDysChart will work towards these goals by 1) identifying novel monogenic causes of autoimmune/autoinflammatory diseases, enabling elucidation of fundamental mechanisms, 2) creating a network-level understanding of molecular pathways of immune dysregulation and 3) employing chemical and genetic screens to complement human disease gene discovery in predicting the core human immune dysregulome and investigating potential avenues for therapeutic modulation.
Max ERC Funding
1 999 263 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym InflamCellDeath
Project Mechanism and function of gasdermin-induced inflammatory cell death
Researcher (PI) Petr BROZ
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Consolidator Grant (CoG), LS6, ERC-2017-COG
Summary Pyroptosis is a lytic pro-inflammatory type of programmed cell death that is induced by inflammatory caspases, a family of proteases that control the innate immune response to infection, injury or noxious substances. Inflammatory caspases are activated within so-called inflammasomes, cytosolic signalling platforms that are assembled by pattern recognition receptors upon the detection of pathogen- or host-derived danger signals. Pyroptosis is essential for antimicrobial host defense, but also promotes the concomitant release of inflammatory danger signals and leaderless cytokines that is detrimental during chronic inflammatory disease.
Recently it was found that pyroptosis is caused by the cleavage of a single caspase substrate called gasdermin-D. This cleavage generates a cytotoxic N-terminal fragment of gasdermin-D that targets the plasma membrane, where it forms large permeability pores and thus causes pyroptotic cell death. Gasdermin-D is only one member of the larger gasdermin protein family, an emerging group of cell death effectors that share its pore-forming cytotoxic activity and that appear to be major regulators of inflammatory necrotic cell death.
The main goal of this proposal is to comprehensively characterize the function of gasdermins in anti-microbial host defense, to investigate the consequences of gasdermin-D pore formation to the host cell and to elucidate the pathways that regulate gasdermin activation. My objectives are:
1) to define the role of gasdermin-D in inflammasome-dependent anti-bacterial host defense
2) to study the role of membrane repair in restricting gasdermin-D-induced membrane
3) to characterize the function and regulation of other gasdermin family members during infection
By characterizing the mechanism and function of gasdermin-induced cell death in host-defense and inflammation this project may contribute to the development of novel therapies for infectious as well as inflammatory diseases.
Summary
Pyroptosis is a lytic pro-inflammatory type of programmed cell death that is induced by inflammatory caspases, a family of proteases that control the innate immune response to infection, injury or noxious substances. Inflammatory caspases are activated within so-called inflammasomes, cytosolic signalling platforms that are assembled by pattern recognition receptors upon the detection of pathogen- or host-derived danger signals. Pyroptosis is essential for antimicrobial host defense, but also promotes the concomitant release of inflammatory danger signals and leaderless cytokines that is detrimental during chronic inflammatory disease.
Recently it was found that pyroptosis is caused by the cleavage of a single caspase substrate called gasdermin-D. This cleavage generates a cytotoxic N-terminal fragment of gasdermin-D that targets the plasma membrane, where it forms large permeability pores and thus causes pyroptotic cell death. Gasdermin-D is only one member of the larger gasdermin protein family, an emerging group of cell death effectors that share its pore-forming cytotoxic activity and that appear to be major regulators of inflammatory necrotic cell death.
The main goal of this proposal is to comprehensively characterize the function of gasdermins in anti-microbial host defense, to investigate the consequences of gasdermin-D pore formation to the host cell and to elucidate the pathways that regulate gasdermin activation. My objectives are:
1) to define the role of gasdermin-D in inflammasome-dependent anti-bacterial host defense
2) to study the role of membrane repair in restricting gasdermin-D-induced membrane
3) to characterize the function and regulation of other gasdermin family members during infection
By characterizing the mechanism and function of gasdermin-induced cell death in host-defense and inflammation this project may contribute to the development of novel therapies for infectious as well as inflammatory diseases.
Max ERC Funding
1 999 176 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym InflaMet
Project Mechanistic insights into the impact of tumor-associated neutrophils on metastatic breast cancer
Researcher (PI) Karina Elizabeth De Visser
Host Institution (HI) STICHTING HET NEDERLANDS KANKER INSTITUUT-ANTONI VAN LEEUWENHOEK ZIEKENHUIS
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary Metastatic disease is still largely unexplored, poorly understood and incurable. Accumulating evidence indicates that cells and mediators of the immune system can facilitate metastasis. Neutrophil accumulation in cancer patients has been associated with metastasis formation. In mouse tumor models, neutrophils have been reported to be pro- or anti- metastatic, but the underlying mechanisms involved in either function remain largely elusive. This proposal outlines a research program aimed at resolving the pro-metastatic role of neutrophils in breast cancer, as our preliminary data indicate that neutrophils proactively mediate breast cancer metastasis. Using a state-of-the art spontaneous breast cancer metastasis mouse model, we will mechanistically study how neutrophils facilitate metastasis formation and how mammary tumors provoke the metastasis-facilitating function of neutrophils. Building upon my previous studies and our current data, we will focus on the unexplored crosstalk between the adaptive immune system and neutrophils in facilitating spontaneous metastatic disease. These crucial questions will be addressed by undertaking a multidisciplinary approach, involving sophisticated mouse models for metastatic breast cancer, RNA sequencing on tumor-associated neutrophil populations, state-of-the-art mouse engineering, intravital imaging and in vivo neutrophil manipulations. Moreover, we will validate our findings from the mouse metastasis model in human breast cancer samples. We will determine the metastasis predicting power of the identified murine pro-metastatic neutrophil-specific pathways by immunohistochemistry and multi-parameter immunofluorescence on breast cancer samples and blood of untreated patients of which clinical follow-up is available. Thus, we will identify novel molecular pathways that can be targeted to selectively inhibit the pro-metastatic activity of the immune system.
Summary
Metastatic disease is still largely unexplored, poorly understood and incurable. Accumulating evidence indicates that cells and mediators of the immune system can facilitate metastasis. Neutrophil accumulation in cancer patients has been associated with metastasis formation. In mouse tumor models, neutrophils have been reported to be pro- or anti- metastatic, but the underlying mechanisms involved in either function remain largely elusive. This proposal outlines a research program aimed at resolving the pro-metastatic role of neutrophils in breast cancer, as our preliminary data indicate that neutrophils proactively mediate breast cancer metastasis. Using a state-of-the art spontaneous breast cancer metastasis mouse model, we will mechanistically study how neutrophils facilitate metastasis formation and how mammary tumors provoke the metastasis-facilitating function of neutrophils. Building upon my previous studies and our current data, we will focus on the unexplored crosstalk between the adaptive immune system and neutrophils in facilitating spontaneous metastatic disease. These crucial questions will be addressed by undertaking a multidisciplinary approach, involving sophisticated mouse models for metastatic breast cancer, RNA sequencing on tumor-associated neutrophil populations, state-of-the-art mouse engineering, intravital imaging and in vivo neutrophil manipulations. Moreover, we will validate our findings from the mouse metastasis model in human breast cancer samples. We will determine the metastasis predicting power of the identified murine pro-metastatic neutrophil-specific pathways by immunohistochemistry and multi-parameter immunofluorescence on breast cancer samples and blood of untreated patients of which clinical follow-up is available. Thus, we will identify novel molecular pathways that can be targeted to selectively inhibit the pro-metastatic activity of the immune system.
Max ERC Funding
1 999 360 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym InflammAct
Project Activation and Regulation of the NLRP3 Inflammasome
Researcher (PI) Eicke Latz
Host Institution (HI) UNIVERSITAETSKLINIKUM BONN
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary The innate immune system protects the host from infections, detects and repairs tissue damage and functions to maintain tissue homeostasis. Several families of signaling receptors can recognize microbial substances or altered host molecules and orchestrate a coordinated inflammatory response. Inflammasomes are signaling platforms that control proteolytic activation of highly proinflammatory cytokines of the IL-1β family and thus, are relevant for infection control and numerous inflammatory conditions. In addition to recognizing foreign signals, the NLRP3 inflammasome can sense sterile tissue damage and various endogenous danger signals that appear in many common chronic inflammatory conditions. NLRP3 can be triggered by material released from dying cells and aggregated or crystalline substances, and its activation has been implicated in the pathogenesis of prevalent diseases in Western societies, such as type 2 diabetes, COPD, atherosclerosis and Alzheimer’s disease. The NLRP3 inflammasome can be activated by diverse signals however, the molecular mechanisms leading to its activation remain poorly understood. Using chemical biology screens and proteomics analysis, we identified that NLRP3 activity is regulated by phosphorylation and ubiquitination. This project aims to identify the enzymes and signaling mechanisms leading to NLRP3 activation. In an integrated, multidisciplinary approach, we will employ chemical biology screening to identify novel targets that act to regulate NLRP3, and will describe the NLRP3 interactome in response to various triggers. Data obtained by these approaches will be analyzed by bioinformatics, and signaling mechanisms identified will be confirmed by RNA interference and gain-of-function studies. Utilizing a range of biochemical, biophysical and immunological techniques, we will determine the mechanisms by which the identified molecules can activate the NLRP3 inflammasome and assess their physiological relevance in models of inflammation.
Summary
The innate immune system protects the host from infections, detects and repairs tissue damage and functions to maintain tissue homeostasis. Several families of signaling receptors can recognize microbial substances or altered host molecules and orchestrate a coordinated inflammatory response. Inflammasomes are signaling platforms that control proteolytic activation of highly proinflammatory cytokines of the IL-1β family and thus, are relevant for infection control and numerous inflammatory conditions. In addition to recognizing foreign signals, the NLRP3 inflammasome can sense sterile tissue damage and various endogenous danger signals that appear in many common chronic inflammatory conditions. NLRP3 can be triggered by material released from dying cells and aggregated or crystalline substances, and its activation has been implicated in the pathogenesis of prevalent diseases in Western societies, such as type 2 diabetes, COPD, atherosclerosis and Alzheimer’s disease. The NLRP3 inflammasome can be activated by diverse signals however, the molecular mechanisms leading to its activation remain poorly understood. Using chemical biology screens and proteomics analysis, we identified that NLRP3 activity is regulated by phosphorylation and ubiquitination. This project aims to identify the enzymes and signaling mechanisms leading to NLRP3 activation. In an integrated, multidisciplinary approach, we will employ chemical biology screening to identify novel targets that act to regulate NLRP3, and will describe the NLRP3 interactome in response to various triggers. Data obtained by these approaches will be analyzed by bioinformatics, and signaling mechanisms identified will be confirmed by RNA interference and gain-of-function studies. Utilizing a range of biochemical, biophysical and immunological techniques, we will determine the mechanisms by which the identified molecules can activate the NLRP3 inflammasome and assess their physiological relevance in models of inflammation.
Max ERC Funding
1 995 906 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym INVADIS
Project Microbial invasion and dissemination within the host, mechanisms and effects
Researcher (PI) Marc Lecuit
Host Institution (HI) INSTITUT PASTEUR
Call Details Consolidator Grant (CoG), LS6, ERC-2015-CoG
Summary An infection is defined by the deleterious consequences of the interactions between a pathogen and a host. Thus, studying the biology of infection reveals critical properties of hosts and pathogens, and is a way forward to address basic biological questions and improve health.
We study listeriosis, a systemic infection caused by Listeria monocytogenes (Lm). Lm is a human foodborne pathogen that crosses the intestinal barrier, disseminates systemically, replicates in liver and spleen and reaches the central nervous system (CNS) and fetoplacental unit. Given the remarkable journey Lm makes in its host, studying listeriosis offers unprecedented opportunities to understand host cell biology, physiology and immune responses, guided by Lm. The mucosal, CNS and fetoplacental tropisms of Lm are shared by other microbes which pathogenesis is far less understood. Lm therefore stands as a unique model microorganism of general biological and medical significance.
The major challenge of this project is to go beyond reductionist approaches and embrace the complexity of actual infections.
We will use stem cell-derived organoids, live imaging, genetically engineered mouse models, the clinical and biological data from a unique cohort of 900 patients and the corresponding causative Lm strains, to investigate the molecular mechanisms of Lm tissue invasion, dissemination and host responses.
Specifically, we will (i) decipher the cell biology of microbial translocation across the intestinal epithelium; (ii) study the impact of microbial portal of entry on microbial fate, dissemination and host responses; (iii) harness Lm biodiversity to identify novel virulence factors and (iv) discover new host factors predisposing to invasive infections.
Building on the unique combination of advanced experimental systems and exclusive clinical data, this integrative and innovative project will reveal novel, physiologically relevant mechanisms of infection, with scientific and biomedical implications.
Summary
An infection is defined by the deleterious consequences of the interactions between a pathogen and a host. Thus, studying the biology of infection reveals critical properties of hosts and pathogens, and is a way forward to address basic biological questions and improve health.
We study listeriosis, a systemic infection caused by Listeria monocytogenes (Lm). Lm is a human foodborne pathogen that crosses the intestinal barrier, disseminates systemically, replicates in liver and spleen and reaches the central nervous system (CNS) and fetoplacental unit. Given the remarkable journey Lm makes in its host, studying listeriosis offers unprecedented opportunities to understand host cell biology, physiology and immune responses, guided by Lm. The mucosal, CNS and fetoplacental tropisms of Lm are shared by other microbes which pathogenesis is far less understood. Lm therefore stands as a unique model microorganism of general biological and medical significance.
The major challenge of this project is to go beyond reductionist approaches and embrace the complexity of actual infections.
We will use stem cell-derived organoids, live imaging, genetically engineered mouse models, the clinical and biological data from a unique cohort of 900 patients and the corresponding causative Lm strains, to investigate the molecular mechanisms of Lm tissue invasion, dissemination and host responses.
Specifically, we will (i) decipher the cell biology of microbial translocation across the intestinal epithelium; (ii) study the impact of microbial portal of entry on microbial fate, dissemination and host responses; (iii) harness Lm biodiversity to identify novel virulence factors and (iv) discover new host factors predisposing to invasive infections.
Building on the unique combination of advanced experimental systems and exclusive clinical data, this integrative and innovative project will reveal novel, physiologically relevant mechanisms of infection, with scientific and biomedical implications.
Max ERC Funding
2 750 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym KupfferCellNiche
Project Determining the instructive tissue signals and the master transcription factors driving Kupffer cell differentiation
Researcher (PI) Martin Wim V GUILLIAMS
Host Institution (HI) VIB
Call Details Consolidator Grant (CoG), LS6, ERC-2016-COG
Summary We have recently shown that contrary to common hypotheses, circulating monocytes can efficiently differentiate into Kupffer cells (KCs), the liver-resident macrophages. Using self-generated knock-in mice that allow specific KC depletion, we found that monocytes colonize the KC niche in a single wave upon KC depletion and rapidly differentiate into self-maintaining KCs that are transcriptionally and functionally identical to their embryonic counterparts. This implies that: (i) access to the KC niche is tightly regulated, ensuring that monocytes do not differentiate into KCs when the KC niche is full but differentiate very efficiently into KCs upon temporary niche availability, and (ii) imprinting by the KC niche is the dominant factor conferring KC identity. Understanding which cells represent the macrophage niche, which signals produced by these cells imprint the tissue-specific macrophage gene expression profile and through which transcription factors (TxFs) this is mediated is emerging as the next challenge in the field. We here propose an original strategy combining state-of-the-art in silico approaches and unique in vivo transgenic mouse models to tackle this challenge specifically for KCs, the most abundant macrophage in the body. We hypothesize that the liver sinusoidal endothelial cell (LSEC) to which the KC is attached represents the most likely candidate to sense KC loss, recruit new monocytes and drive their differentiation into KCs. Thus, this proposal aims to: (I) determine the TxFs through which the niche imprints KC identity, (II) map the LSEC-KC crosstalk during KC development, (III) generate LSEC-specific knock-in mice to study LSECs in vivo, (IV) demonstrate which LSEC factors influence KC development and function. Importantly, understanding how the KC-TxFs and the LSEC-KC crosstalk control KC development and function will be essential for the development of novel therapeutic interventions for hepatic disorders in which KCs play a central role.
Summary
We have recently shown that contrary to common hypotheses, circulating monocytes can efficiently differentiate into Kupffer cells (KCs), the liver-resident macrophages. Using self-generated knock-in mice that allow specific KC depletion, we found that monocytes colonize the KC niche in a single wave upon KC depletion and rapidly differentiate into self-maintaining KCs that are transcriptionally and functionally identical to their embryonic counterparts. This implies that: (i) access to the KC niche is tightly regulated, ensuring that monocytes do not differentiate into KCs when the KC niche is full but differentiate very efficiently into KCs upon temporary niche availability, and (ii) imprinting by the KC niche is the dominant factor conferring KC identity. Understanding which cells represent the macrophage niche, which signals produced by these cells imprint the tissue-specific macrophage gene expression profile and through which transcription factors (TxFs) this is mediated is emerging as the next challenge in the field. We here propose an original strategy combining state-of-the-art in silico approaches and unique in vivo transgenic mouse models to tackle this challenge specifically for KCs, the most abundant macrophage in the body. We hypothesize that the liver sinusoidal endothelial cell (LSEC) to which the KC is attached represents the most likely candidate to sense KC loss, recruit new monocytes and drive their differentiation into KCs. Thus, this proposal aims to: (I) determine the TxFs through which the niche imprints KC identity, (II) map the LSEC-KC crosstalk during KC development, (III) generate LSEC-specific knock-in mice to study LSECs in vivo, (IV) demonstrate which LSEC factors influence KC development and function. Importantly, understanding how the KC-TxFs and the LSEC-KC crosstalk control KC development and function will be essential for the development of novel therapeutic interventions for hepatic disorders in which KCs play a central role.
Max ERC Funding
1 996 705 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym M-Imm
Project Novel etiology of autoimmune disorders: the role of acquired somatic mutations in lymphoid cells
Researcher (PI) Satu Maarit Mustjoki
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary Molecular pathogenesis of most immune-mediated disorders, such as of autoimmune diseases, is poorly understood. These common maladies carry a heavy burden both on patients and on society. Current therapy is non-targeted and results in significant short- and long-term adverse effects.
Large granular lymphocyte (LGL) leukemia is characterized by expansion of cytotoxic T- or NK-cells and represents an intriguing clinical continuum between a neoplastic and an autoimmune disorder. Patients suffer from autoimmune cytopenias and rheumatoid arthritis (RA), which are thought to be mediated by LGL cells targeting host tissues. My group recently discovered that 40-50% of LGL leukemia patients carry in their lymphoid cells acquired, activating mutations in the STAT3 gene – a key regulator of immune and oncogenic processes (Koskela et al, N Engl J Med, 2012). This breakthrough discovery gives insight to the pathogenesis of autoimmune disorders at large.
I present here a hypothesis that a strong antigen-induced proliferation is a mutational driver, which causes somatic mutations in lymphoid cells. When mutations hit key activating pathways, autoreactive cells acquire functional advantage and expand. The target antigen of the expanded clone determines the clinical characteristics of the autoimmune disease induced.
To prove this hypothesis, we will separate small lymphocyte clones from patients with autoimmune diseases and use sensitive next-generation sequencing methods to characterize the spectrum of somatic mutations in lymphoid cells. Further, we will study the function of mutated lymphocytes and examine the mechanisms of autocytotoxicity and end-organ/tissue damage. Finally, we aim to understand factors, which induce somatic mutations in lymphoid cells, such as the role of viral infections.
The results will transform our understanding of molecular pathogenesis of autoimmune diseases and lead to accurate diagnostics and discovery of novel drug targets.
Summary
Molecular pathogenesis of most immune-mediated disorders, such as of autoimmune diseases, is poorly understood. These common maladies carry a heavy burden both on patients and on society. Current therapy is non-targeted and results in significant short- and long-term adverse effects.
Large granular lymphocyte (LGL) leukemia is characterized by expansion of cytotoxic T- or NK-cells and represents an intriguing clinical continuum between a neoplastic and an autoimmune disorder. Patients suffer from autoimmune cytopenias and rheumatoid arthritis (RA), which are thought to be mediated by LGL cells targeting host tissues. My group recently discovered that 40-50% of LGL leukemia patients carry in their lymphoid cells acquired, activating mutations in the STAT3 gene – a key regulator of immune and oncogenic processes (Koskela et al, N Engl J Med, 2012). This breakthrough discovery gives insight to the pathogenesis of autoimmune disorders at large.
I present here a hypothesis that a strong antigen-induced proliferation is a mutational driver, which causes somatic mutations in lymphoid cells. When mutations hit key activating pathways, autoreactive cells acquire functional advantage and expand. The target antigen of the expanded clone determines the clinical characteristics of the autoimmune disease induced.
To prove this hypothesis, we will separate small lymphocyte clones from patients with autoimmune diseases and use sensitive next-generation sequencing methods to characterize the spectrum of somatic mutations in lymphoid cells. Further, we will study the function of mutated lymphocytes and examine the mechanisms of autocytotoxicity and end-organ/tissue damage. Finally, we aim to understand factors, which induce somatic mutations in lymphoid cells, such as the role of viral infections.
The results will transform our understanding of molecular pathogenesis of autoimmune diseases and lead to accurate diagnostics and discovery of novel drug targets.
Max ERC Funding
2 047 337 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym MADEFUN
Project Regulation of Brain Macrophage Development and Function
Researcher (PI) Melanie GRETER
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), LS6, ERC-2018-COG
Summary Macrophages are part of the mononuclear phagocyte system and play critical roles in innate immune responses. They further exert crucial organ-specific functions to warrant tissue homeostasis. Most macrophages are long-lived and derive from embryonic precursors. The central nervous system (CNS) contains several macrophage populations, of which microglia are the most prominent and abundant population residing in the CNS parenchyma. Besides being implicated in CNS pathologies, microglia guide neuronal development, are critical for neurogenesis and contribute to the maintenance of tissue homeostasis. At the interface between the brain and the periphery reside choroid plexus, perivascular and meningeal macrophages (‘border-associated’ macrophages, BAMs). While they mostly also originate from embryonic precursors, the differentiation cues and their specific roles in development and in health and disease are poorly understood. Here we will delineate the spatiotemporal emergence of BAMs and microglia, the impact of the local microenvironment on their phenotype and function, and their role in brain development. We will further analyze the role of BAMs and microglia in physiological and neuropathological conditions (neurodegeneration, CNS infection and inflammation). We have recently described a novel ‘microglia-specific’ conditional mouse and we are currently establishing an inducible system to specifically manipulate BAMs. We will use these to genetically intervene in different cytokine signaling pathways in combination with fate-mapping in vivo. The proposed research project will provide a deeper insight into microglia and BAM biology and their functional specializations at different stages of life.
Summary
Macrophages are part of the mononuclear phagocyte system and play critical roles in innate immune responses. They further exert crucial organ-specific functions to warrant tissue homeostasis. Most macrophages are long-lived and derive from embryonic precursors. The central nervous system (CNS) contains several macrophage populations, of which microglia are the most prominent and abundant population residing in the CNS parenchyma. Besides being implicated in CNS pathologies, microglia guide neuronal development, are critical for neurogenesis and contribute to the maintenance of tissue homeostasis. At the interface between the brain and the periphery reside choroid plexus, perivascular and meningeal macrophages (‘border-associated’ macrophages, BAMs). While they mostly also originate from embryonic precursors, the differentiation cues and their specific roles in development and in health and disease are poorly understood. Here we will delineate the spatiotemporal emergence of BAMs and microglia, the impact of the local microenvironment on their phenotype and function, and their role in brain development. We will further analyze the role of BAMs and microglia in physiological and neuropathological conditions (neurodegeneration, CNS infection and inflammation). We have recently described a novel ‘microglia-specific’ conditional mouse and we are currently establishing an inducible system to specifically manipulate BAMs. We will use these to genetically intervene in different cytokine signaling pathways in combination with fate-mapping in vivo. The proposed research project will provide a deeper insight into microglia and BAM biology and their functional specializations at different stages of life.
Max ERC Funding
1 995 500 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym MALMASQ
Project Understanding immune evasion by malaria parasites
Researcher (PI) Ron Dzikowski
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary "The deadliest form of human malaria is caused by the protozoan parasite, Plasmodium falciparum, which annually infects millions worldwide. Its virulence is attributed to its ability to evade the human immune system, by modifying the host red blood cell surface to adhere to the vascular endothelium and to undergo antigenic variation. Antigenic variation is achieved through switches in expression of hypervariable surface ligands named PfEMP1. These proteins are encoded by a multi-copy gene family called var. Each individual parasite expresses a single var gene at a time, whereas the remaining ~60 var genes found in its genome are maintained in a transcriptionally silent state, a phenomenon known as ""allelic exclusion"". These antigenic switches allow the parasite to avoid the human immune response and maintain a long-term infection. How mutually exclusive expression is regulated is still elusive.
The rationale of the proposed study is that understanding the molecular mechanisms by which the parasite evade human immune attack would lead to the development of therapeutic approaches that disrupt this ability and would give the human immune system an opportunity to clear the infection and overcome the disease.
I will focus this research project on understanding one of the unsolved mysteries in gene expression which is responsible for regulating antigenic variation in P. falciparum: the nature of ""communication"" between genes that allows expression of only a single gene at a time and the selection of the ""chosen one"" for activation while the rest of the gene family remains silent.
The expected outcome of this knowledge is new concepts for disrupting the parasite’s ability to evade immune attack which will be exploited for the discovery of novel targets for drug and vaccine development. In addition, it will unravel mechanisms of allelic exclusion that extend beyond malaria virulence into fundamental aspect of gene expression in other organisms."
Summary
"The deadliest form of human malaria is caused by the protozoan parasite, Plasmodium falciparum, which annually infects millions worldwide. Its virulence is attributed to its ability to evade the human immune system, by modifying the host red blood cell surface to adhere to the vascular endothelium and to undergo antigenic variation. Antigenic variation is achieved through switches in expression of hypervariable surface ligands named PfEMP1. These proteins are encoded by a multi-copy gene family called var. Each individual parasite expresses a single var gene at a time, whereas the remaining ~60 var genes found in its genome are maintained in a transcriptionally silent state, a phenomenon known as ""allelic exclusion"". These antigenic switches allow the parasite to avoid the human immune response and maintain a long-term infection. How mutually exclusive expression is regulated is still elusive.
The rationale of the proposed study is that understanding the molecular mechanisms by which the parasite evade human immune attack would lead to the development of therapeutic approaches that disrupt this ability and would give the human immune system an opportunity to clear the infection and overcome the disease.
I will focus this research project on understanding one of the unsolved mysteries in gene expression which is responsible for regulating antigenic variation in P. falciparum: the nature of ""communication"" between genes that allows expression of only a single gene at a time and the selection of the ""chosen one"" for activation while the rest of the gene family remains silent.
The expected outcome of this knowledge is new concepts for disrupting the parasite’s ability to evade immune attack which will be exploited for the discovery of novel targets for drug and vaccine development. In addition, it will unravel mechanisms of allelic exclusion that extend beyond malaria virulence into fundamental aspect of gene expression in other organisms."
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-06-01, End date: 2020-05-31
Project acronym META-BIOME
Project Deciphering the molecular language orchestrating host-microbiome interactions and their effects on health and disease
Researcher (PI) Eran Elinav
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary The gastrointestinal tract hosts the microbiome, one of the highest microbial densities on earth. Diverse host-microbiome interactions influence a multitude of physiological and pathological processes, yet the basic mechanisms regulating host-microbiome interactions remain unknown. Deciphering the codes comprising the host-microbiome communication network and factors initiating loss of homeostasis (termed dysbiosis) will enable the recognition of pathways and signals critically important to initiation and progression of common immune and metabolic disorders. We recently identified the NLRP6 inflammasome as a critical innate immune regulator of colonic microbial ecology, with its disruption resulting in auto-inflammation and tumorigenesis. We will use this unique system, coupled with innovative robotic high-throughput modalities, gnotobiotics, metagenomics and multiple genetically altered mouse models to generalize our studies and decipher the critical principles governing host-microbiome interactions. We will elucidate the host-derived microbiome recognition signaling pathway at its entirety, from its upstream activators to the downstream effector molecules controlling microbial ecology; uncover the principles generating a stable microbiota composition; and develop and apply computational modelling to dissect the general mechanisms disrupting microbiome stability leading to dysbiosis. Using this innovative experimental and computational toolbox we will study the impact of dysbiosis on key components of the metabolic syndrome, and apply our findings to devise the first rational proof-of-concept approach for individualized microbiome-based treatment for these common disorders. At the basic science level, unraveling the principles of host-microbiota interactions will lead to a conceptual leap forward in our understanding of physiology and disease. Concomitantly, it may generate a platform for microbiome-based personalized therapy against common idiopathic illnesses.
Summary
The gastrointestinal tract hosts the microbiome, one of the highest microbial densities on earth. Diverse host-microbiome interactions influence a multitude of physiological and pathological processes, yet the basic mechanisms regulating host-microbiome interactions remain unknown. Deciphering the codes comprising the host-microbiome communication network and factors initiating loss of homeostasis (termed dysbiosis) will enable the recognition of pathways and signals critically important to initiation and progression of common immune and metabolic disorders. We recently identified the NLRP6 inflammasome as a critical innate immune regulator of colonic microbial ecology, with its disruption resulting in auto-inflammation and tumorigenesis. We will use this unique system, coupled with innovative robotic high-throughput modalities, gnotobiotics, metagenomics and multiple genetically altered mouse models to generalize our studies and decipher the critical principles governing host-microbiome interactions. We will elucidate the host-derived microbiome recognition signaling pathway at its entirety, from its upstream activators to the downstream effector molecules controlling microbial ecology; uncover the principles generating a stable microbiota composition; and develop and apply computational modelling to dissect the general mechanisms disrupting microbiome stability leading to dysbiosis. Using this innovative experimental and computational toolbox we will study the impact of dysbiosis on key components of the metabolic syndrome, and apply our findings to devise the first rational proof-of-concept approach for individualized microbiome-based treatment for these common disorders. At the basic science level, unraveling the principles of host-microbiota interactions will lead to a conceptual leap forward in our understanding of physiology and disease. Concomitantly, it may generate a platform for microbiome-based personalized therapy against common idiopathic illnesses.
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym miRNA in Immunity
Project Testing the role of miRNA-mediated non-cell autonomous gene regulation in type-2 immunity
Researcher (PI) Mark Wilson
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary MicroRNAs (miRNAs) can be transferred between cells, representing an exciting new dimension to intercellular communication, referred to as non-cell-autonomous gene regulation. We recently identified that distinct miRNAs are packaged and exported from TREG cells and delivered directly to TH1 cells, suppressing T cell-mediated disease. Different T cell populations express different miRNAs and release a distinctive set of extracellular miRNAs. In this proposal we will identify whether the transfer of miRNAs between cells contributes to T cell development, T cell differentiation and TH2-mediated allergy and anti-helminth immunity. miRNA-mediated gene silencing requires one of four catalytically active Argonaut (Ago) proteins to regulate gene expression. To investigate miRNA transport between cells, we have generated novel mice with miRNA-deficient T cells that can (Dicer–/–) or cannot (Dicer–/–Ago-1,-3,-4–/– Ago-2fl/fl) respond to exogenous miRNAs. Using these novel mice we will identify which Ago protein(s) specific miRNAs associate with and which Ago proteins are required for miRNA-mediated gene regulation in T cells. TH2 cells express unique miRNAs, which can be found within TH2 cells and in extracellular vesicles released from TH2 cells. We have generated several new TH2-associated miRNA-deficient mice to investigate the cell intrinsic (cell-autonomous) and extrinsic (non-cell-autonomous) role of these miRNAs in TH2-mediated allergy and anti-helminth immunity. Studies in plants and worms have identified various mechanisms of RNA transfer between cells, involving cell-contact dependent and independent mechanisms. We will translate these observations into mammalian systems and identify the mechanisms of miRNA transfer. Results from this work will identify novel miRNA-mediated pathways and incentivise state-of-the-art approaches for novel therapeutic intervention to treat inflammatory diseases.
Summary
MicroRNAs (miRNAs) can be transferred between cells, representing an exciting new dimension to intercellular communication, referred to as non-cell-autonomous gene regulation. We recently identified that distinct miRNAs are packaged and exported from TREG cells and delivered directly to TH1 cells, suppressing T cell-mediated disease. Different T cell populations express different miRNAs and release a distinctive set of extracellular miRNAs. In this proposal we will identify whether the transfer of miRNAs between cells contributes to T cell development, T cell differentiation and TH2-mediated allergy and anti-helminth immunity. miRNA-mediated gene silencing requires one of four catalytically active Argonaut (Ago) proteins to regulate gene expression. To investigate miRNA transport between cells, we have generated novel mice with miRNA-deficient T cells that can (Dicer–/–) or cannot (Dicer–/–Ago-1,-3,-4–/– Ago-2fl/fl) respond to exogenous miRNAs. Using these novel mice we will identify which Ago protein(s) specific miRNAs associate with and which Ago proteins are required for miRNA-mediated gene regulation in T cells. TH2 cells express unique miRNAs, which can be found within TH2 cells and in extracellular vesicles released from TH2 cells. We have generated several new TH2-associated miRNA-deficient mice to investigate the cell intrinsic (cell-autonomous) and extrinsic (non-cell-autonomous) role of these miRNAs in TH2-mediated allergy and anti-helminth immunity. Studies in plants and worms have identified various mechanisms of RNA transfer between cells, involving cell-contact dependent and independent mechanisms. We will translate these observations into mammalian systems and identify the mechanisms of miRNA transfer. Results from this work will identify novel miRNA-mediated pathways and incentivise state-of-the-art approaches for novel therapeutic intervention to treat inflammatory diseases.
Max ERC Funding
1 762 510 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym MitoFun
Project Mitochondria as regulators of fungal virulence
Researcher (PI) Robin Charles May
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary Fungal diseases represent a significant and growing threat to human health, particularly since the AIDS pandemic and increasing use of immunosuppressive drugs has produced a massive population of people with impaired immunity who are vulnerable to fungal infections. A great challenge in medical mycology is to understand how fungal virulence evolves. The vast majority of fungal species are not human pathogens and, for those that are, virulence appears to have evolved independently on many different occasions. Identifying the step(s) that convert an environmental fungus into a human pathogen, as well as subsequent changes in virulence within a pathogenic lineage, is therefore of fundamental importance. Based on a number of lines of evidence, I hypothesise that a critical regulator of fungal virulence in animal hosts is the activity of the fungal mitochondrion, an energy-generating organelle present in almost all eukaryotes. I propose to test this hypothesis comprehensively by combining genetic and cell biological approaches with high-resolution imaging methods.
Summary
Fungal diseases represent a significant and growing threat to human health, particularly since the AIDS pandemic and increasing use of immunosuppressive drugs has produced a massive population of people with impaired immunity who are vulnerable to fungal infections. A great challenge in medical mycology is to understand how fungal virulence evolves. The vast majority of fungal species are not human pathogens and, for those that are, virulence appears to have evolved independently on many different occasions. Identifying the step(s) that convert an environmental fungus into a human pathogen, as well as subsequent changes in virulence within a pathogenic lineage, is therefore of fundamental importance. Based on a number of lines of evidence, I hypothesise that a critical regulator of fungal virulence in animal hosts is the activity of the fungal mitochondrion, an energy-generating organelle present in almost all eukaryotes. I propose to test this hypothesis comprehensively by combining genetic and cell biological approaches with high-resolution imaging methods.
Max ERC Funding
1 991 629 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym MITOMAD
Project Functional characterisation of mitochondrial metabolic adaptations to innate sensing in dendritic cell subsets
Researcher (PI) David SANCHO MADRID
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.)
Call Details Consolidator Grant (CoG), LS6, ERC-2016-COG
Summary Immunometabolism is an emerging research field that promises to generate novel targets for manipulation of functional responses in immune cells. Pioneering studies are beginning to unveil how innate sensing leads to metabolic reprogramming of immune cells. We became interested in the possible metabolic consequences of innate sensing by myeloid cells because of our previous work showing how mouse and human dendritic cell (DC) subsets detect danger signals from microbes and damaged tissues. Our current data show that sensing of live bacteria triggers a profound reorganisation of the mitochondrial electron transport chain (ETC) in macrophages, with a switch in the relative contribution of ETC complexes I and II to mitochondrial respiration that impacts immune response. As we pursue novel strategies to manipulate DC function, and supported by our preliminary data in DCs, we hypothesise that innate sensing induces mitochondrial adaptations in DCs and that targeting mitochondrial metabolism will affect DC function. Our goals are: 1) to characterise how innate sensing of danger signals from microbes or from tissue damage modulate mitochondrial adaptations and metabolic reprogramming in mouse and human DC subsets; 2) to dissect the molecular mechanisms that connect innate sensing and mitochondrial adaptations in DCs, using biased and unbiased cutting-edge proteomics approaches; 3) to address the impact of manipulating mitochondrial biology on mouse and human DC metabolism and function; and 4) to assess the functional in vivo effects of targeting mitochondrial biology in DCs in homeostasis and disease. The characterisation of the molecular mechanisms that link innate sensing and mitochondrial metabolism with DC function will open new avenues for basic research in mitochondrial biology and for the emerging field of immunometabolism. Functional targeting of DC mitochondrial metabolism has great potential for the discovery of new strategies to modulate immunity and tolerance.
Summary
Immunometabolism is an emerging research field that promises to generate novel targets for manipulation of functional responses in immune cells. Pioneering studies are beginning to unveil how innate sensing leads to metabolic reprogramming of immune cells. We became interested in the possible metabolic consequences of innate sensing by myeloid cells because of our previous work showing how mouse and human dendritic cell (DC) subsets detect danger signals from microbes and damaged tissues. Our current data show that sensing of live bacteria triggers a profound reorganisation of the mitochondrial electron transport chain (ETC) in macrophages, with a switch in the relative contribution of ETC complexes I and II to mitochondrial respiration that impacts immune response. As we pursue novel strategies to manipulate DC function, and supported by our preliminary data in DCs, we hypothesise that innate sensing induces mitochondrial adaptations in DCs and that targeting mitochondrial metabolism will affect DC function. Our goals are: 1) to characterise how innate sensing of danger signals from microbes or from tissue damage modulate mitochondrial adaptations and metabolic reprogramming in mouse and human DC subsets; 2) to dissect the molecular mechanisms that connect innate sensing and mitochondrial adaptations in DCs, using biased and unbiased cutting-edge proteomics approaches; 3) to address the impact of manipulating mitochondrial biology on mouse and human DC metabolism and function; and 4) to assess the functional in vivo effects of targeting mitochondrial biology in DCs in homeostasis and disease. The characterisation of the molecular mechanisms that link innate sensing and mitochondrial metabolism with DC function will open new avenues for basic research in mitochondrial biology and for the emerging field of immunometabolism. Functional targeting of DC mitochondrial metabolism has great potential for the discovery of new strategies to modulate immunity and tolerance.
Max ERC Funding
1 995 000 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym MitoVin
Project Mechanism and Consequences of the Interplay between Mitosis and Human Papillomavirus Initial Infection
Researcher (PI) Mario Schelhaas
Host Institution (HI) WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER
Call Details Consolidator Grant (CoG), LS6, ERC-2015-CoG
Summary Human Papillomavirus Type 16 (HPV16), the paradigm cancer-causing HPV type, is a small, nonenveloped, DNA virus characterized by its complex life cycle coupled to differentiation of squamous epithelia. Due to this complexity, how HPV16 infects cells is an understudied field of research. Our previous work to define the cellular pathways that are hijacked for initial infection revealed uptake by a novel endocytosis mechanism, and the requirement for mitosis for nuclear delivery. Our findings indicated that nuclear envelope breakdown was required to access the nuclear space, and that the virus associated with mitotic chromatin during metaphase. This prolonged mitosis, a process beneficiary for infection. The viral L2 protein as part of incoming viruses mimics this on its own. The aim of this proposal is to reveal how HPV16 differentially modulates or takes advantage of the mitotic machinery for nuclear import in cells, tissues or during aging, and whether malignant cellular consequences arise. On the viral side, we will define the minimal properties of L2 to mediate association with cell chromatin and mitosis prolongation. On the cellular side, we will identify the protein(s) that mediate recruitment, and how it occurs in a detailed temporal/spatial manner. To elucidate the mechanism of mitotic prolongation and consequences thereof, we will identify which regulatory complex of mitosis is targeted, how it is induced, and whether it causes DNA damage or segregation errors. Finally, we will ascertain the influence of tissue differentiation and aging on this process. Using systems biology, proteomics, virology, cell biology, biochemistry, and a wide range of microscopy approaches we will unravel the complex interactions between HPV and the host cell mitosis machinery. In turn, as viruses often serve as valuable tools to study cell function, this work is likely to uncover new insights into how cells spatially and temporally regulate mitosis in differentiation and aging.
Summary
Human Papillomavirus Type 16 (HPV16), the paradigm cancer-causing HPV type, is a small, nonenveloped, DNA virus characterized by its complex life cycle coupled to differentiation of squamous epithelia. Due to this complexity, how HPV16 infects cells is an understudied field of research. Our previous work to define the cellular pathways that are hijacked for initial infection revealed uptake by a novel endocytosis mechanism, and the requirement for mitosis for nuclear delivery. Our findings indicated that nuclear envelope breakdown was required to access the nuclear space, and that the virus associated with mitotic chromatin during metaphase. This prolonged mitosis, a process beneficiary for infection. The viral L2 protein as part of incoming viruses mimics this on its own. The aim of this proposal is to reveal how HPV16 differentially modulates or takes advantage of the mitotic machinery for nuclear import in cells, tissues or during aging, and whether malignant cellular consequences arise. On the viral side, we will define the minimal properties of L2 to mediate association with cell chromatin and mitosis prolongation. On the cellular side, we will identify the protein(s) that mediate recruitment, and how it occurs in a detailed temporal/spatial manner. To elucidate the mechanism of mitotic prolongation and consequences thereof, we will identify which regulatory complex of mitosis is targeted, how it is induced, and whether it causes DNA damage or segregation errors. Finally, we will ascertain the influence of tissue differentiation and aging on this process. Using systems biology, proteomics, virology, cell biology, biochemistry, and a wide range of microscopy approaches we will unravel the complex interactions between HPV and the host cell mitosis machinery. In turn, as viruses often serve as valuable tools to study cell function, this work is likely to uncover new insights into how cells spatially and temporally regulate mitosis in differentiation and aging.
Max ERC Funding
1 868 993 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym MOMAAV
Project Molecular signatures and Modulation of immunity to Adeno-Associated Virus vectors
Researcher (PI) Federico Mingozzi
Host Institution (HI) UNIVERSITE PIERRE ET MARIE CURIE - PARIS 6
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary Experience with adeno-associated virus (AAV) vector-mediated gene transfer in human trials has unveiled the therapeutic potential of this approach, with some of the most exciting results coming from clinical studies of gene transfer for hemophilia B, congenital blindness, and the recent market approval of the first AAV-based gene therapy in Europe. Follow-up data of subjects treated with AAV vectors is showing sustained correction of the disease phenotype for several years after gene transfer, and recent data confirmed that AAV vectors can drive expression of a transgene in humans for >10 years. With clinical development, however, some of the limitations of the approach, not entirely identified in preclinical studies, became obvious; in particular it is well established that the host immune system represents an important obstacle to be overcome in terms of both safety and efficacy of gene transfer in vivo with AAV vectors. The overall goal of this proposal is to gain critical, missing knowledge on the interactions between AAV vectors and the immune system in order to develop strategies to achieve safe, effective, and long-lasting gene transfer in humans.
In this proposal we will: 1) Define the molecular signatures of the immune system in humans undergoing gene transfer with AAV vectors using cutting-edge, high-content immunophenotyping technologies; 2) Study the role of anti-AAV antibodies as determinants of AAV capsid immunogenicity using both in vitro and in vivo systems; 3) Identify novel pharmacological and cellular approaches to overcome T cell immunity to AAV; 4) Develop novel strategies to overcome pre-existing antibody responses to AAV.
This proposal exploits the knowledge and the skills available in our lab to develop new tools and to provide novel, basic insights into the human immune responses to AAV that will have a direct impact on the quality of life of patients affected by inherited disorders.
Summary
Experience with adeno-associated virus (AAV) vector-mediated gene transfer in human trials has unveiled the therapeutic potential of this approach, with some of the most exciting results coming from clinical studies of gene transfer for hemophilia B, congenital blindness, and the recent market approval of the first AAV-based gene therapy in Europe. Follow-up data of subjects treated with AAV vectors is showing sustained correction of the disease phenotype for several years after gene transfer, and recent data confirmed that AAV vectors can drive expression of a transgene in humans for >10 years. With clinical development, however, some of the limitations of the approach, not entirely identified in preclinical studies, became obvious; in particular it is well established that the host immune system represents an important obstacle to be overcome in terms of both safety and efficacy of gene transfer in vivo with AAV vectors. The overall goal of this proposal is to gain critical, missing knowledge on the interactions between AAV vectors and the immune system in order to develop strategies to achieve safe, effective, and long-lasting gene transfer in humans.
In this proposal we will: 1) Define the molecular signatures of the immune system in humans undergoing gene transfer with AAV vectors using cutting-edge, high-content immunophenotyping technologies; 2) Study the role of anti-AAV antibodies as determinants of AAV capsid immunogenicity using both in vitro and in vivo systems; 3) Identify novel pharmacological and cellular approaches to overcome T cell immunity to AAV; 4) Develop novel strategies to overcome pre-existing antibody responses to AAV.
This proposal exploits the knowledge and the skills available in our lab to develop new tools and to provide novel, basic insights into the human immune responses to AAV that will have a direct impact on the quality of life of patients affected by inherited disorders.
Max ERC Funding
2 730 800 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym MyeloSHOCK
Project Role of myeloid cells, their mediators and their antibody receptors in allergic shock (anaphylaxis) using humanized mouse models and clinical samples
Researcher (PI) Pierre Bruhns
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary Anaphylaxis is a hyperacute allergic reaction of increasing incidence that can be of fatal consequence and that has no specific treatment. Anaphylaxis is thought to rely on mechanisms involving mast cells that bear allergen-specific IgE and that release histamine when encountering allergen. Clinical cases, however, report anaphylaxis in the absence of specific IgE or medical history of allergy. We reported that murine models of anaphylaxis rely on IgG, rather than on IgE, that enable neutrophils, monocytes and basophils, rather than mast cells, to release Platelet Activating Factor following engagement of their IgG receptors. Supporting these findings, allergen-specific IgG are found in anaphylactic patients, and we reported that anaphylaxis in mice expressing a human IgG receptor relies also on circulating myeloid cells.
We aim at unravelling the parameters that control anaphylaxis in a novel clinically-relevant model of drug-induced anaphylaxis, strengthened by human-based studies involved patients undergoing drug-induced anaphylaxis in collaboration with clinicians and, altogether, rethink the principles of anaphylaxis. Do allergen-specific IgG concur to anaphylaxis in humans? Do these IgG antibodies regulate IgE-induced reactions? Which IgG receptors are involved? In which tissue does the anaphylactic reaction start? Which cell type(s) are responsible? Among the mediators that are released, which ones are responsible for the shock? Can an anaphylactic reaction be stopped specifically for an allergen? We propose to address these questions by exploiting humanized mice we obtained and by establishing novel models, by visualizing anaphylactic reactions in real time in vivo, by dissecting the cascade of events leading to the shock. Finally, we aim at establishing the proof of concept of allergen capture/encapsulation and propose the first allergen-specific strategy for treating the life-threatening clinical situation that represents drug-induced anaphylaxis.
Summary
Anaphylaxis is a hyperacute allergic reaction of increasing incidence that can be of fatal consequence and that has no specific treatment. Anaphylaxis is thought to rely on mechanisms involving mast cells that bear allergen-specific IgE and that release histamine when encountering allergen. Clinical cases, however, report anaphylaxis in the absence of specific IgE or medical history of allergy. We reported that murine models of anaphylaxis rely on IgG, rather than on IgE, that enable neutrophils, monocytes and basophils, rather than mast cells, to release Platelet Activating Factor following engagement of their IgG receptors. Supporting these findings, allergen-specific IgG are found in anaphylactic patients, and we reported that anaphylaxis in mice expressing a human IgG receptor relies also on circulating myeloid cells.
We aim at unravelling the parameters that control anaphylaxis in a novel clinically-relevant model of drug-induced anaphylaxis, strengthened by human-based studies involved patients undergoing drug-induced anaphylaxis in collaboration with clinicians and, altogether, rethink the principles of anaphylaxis. Do allergen-specific IgG concur to anaphylaxis in humans? Do these IgG antibodies regulate IgE-induced reactions? Which IgG receptors are involved? In which tissue does the anaphylactic reaction start? Which cell type(s) are responsible? Among the mediators that are released, which ones are responsible for the shock? Can an anaphylactic reaction be stopped specifically for an allergen? We propose to address these questions by exploiting humanized mice we obtained and by establishing novel models, by visualizing anaphylactic reactions in real time in vivo, by dissecting the cascade of events leading to the shock. Finally, we aim at establishing the proof of concept of allergen capture/encapsulation and propose the first allergen-specific strategy for treating the life-threatening clinical situation that represents drug-induced anaphylaxis.
Max ERC Funding
1 999 704 €
Duration
Start date: 2014-09-01, End date: 2019-08-31
Project acronym NEURIMMUNE
Project Neural regulation of immunity
Researcher (PI) Sophie Ugolini
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary Survival of living organisms depends on their capacity to develop defence mechanisms against environmental challenges that cause tissue damage and infections. These protective functions involve the nervous system and the immune system, two systems traditionally considered as independent. However anatomical and cellular bases for bidirectional interactions between them have been established and a new paradigm on a regulatory role of the nervous system on immune functions is emerging.
Pain is one of the major signs of inflammation. Upon acute injury, inflammation or infections noxious signals are perceived by nociceptors present in tissues, such as the skin. These sensory neurons convey the damaging information to the brain and release a number of mediators locally that could modulate immunity. The goal of this project is to decipher the functional role of sensory neurons and pain sensitivity on immune responses. We will tackle this highly challenging question by studying the immune responses to vaccination in genetic mouse models in which skin innervation by nociceptors is deficient. Our preliminary results are very promising as we already demonstrated that deficits in sensory skin innervation affect both the innate and adaptive immune responses to intradermal vaccine. We will further study the cellular and molecular mechanisms involved in this local and systemic modulation of the immune response by the nervous system. As a complementary approach, we will address the role of an exacerbated pain response on immunity through the selective stimulation of nociceptive neurons in wild type animals.
This interdisciplinary study is designed to provide new insights into how the nervous system instructs the immune system. Results from NEURIMMUNE are expected to open new avenues of research on the integrated host response to pathogens with important implications for the design of innovative prophylactic vaccines and therapies.
Summary
Survival of living organisms depends on their capacity to develop defence mechanisms against environmental challenges that cause tissue damage and infections. These protective functions involve the nervous system and the immune system, two systems traditionally considered as independent. However anatomical and cellular bases for bidirectional interactions between them have been established and a new paradigm on a regulatory role of the nervous system on immune functions is emerging.
Pain is one of the major signs of inflammation. Upon acute injury, inflammation or infections noxious signals are perceived by nociceptors present in tissues, such as the skin. These sensory neurons convey the damaging information to the brain and release a number of mediators locally that could modulate immunity. The goal of this project is to decipher the functional role of sensory neurons and pain sensitivity on immune responses. We will tackle this highly challenging question by studying the immune responses to vaccination in genetic mouse models in which skin innervation by nociceptors is deficient. Our preliminary results are very promising as we already demonstrated that deficits in sensory skin innervation affect both the innate and adaptive immune responses to intradermal vaccine. We will further study the cellular and molecular mechanisms involved in this local and systemic modulation of the immune response by the nervous system. As a complementary approach, we will address the role of an exacerbated pain response on immunity through the selective stimulation of nociceptive neurons in wild type animals.
This interdisciplinary study is designed to provide new insights into how the nervous system instructs the immune system. Results from NEURIMMUNE are expected to open new avenues of research on the integrated host response to pathogens with important implications for the design of innovative prophylactic vaccines and therapies.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym PlasmoCycle
Project DNA dynamics in the unusual cell cycle of the malaria parasite Plasmodium falciparum
Researcher (PI) Catherine Jill Merrick
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), LS6, ERC-2016-COG
Summary This proposal promises to transform our understanding of the basic biology of the malaria parasite Plasmodium, and of how that biology affects virulence. Remarkably little is known about the Plasmodium cell cycle, despite a wealth of knowledge on the subject in model cells. This project will reveal, with unprecedented resolution, how DNA replication is organised in Plasmodium and how changing conditions in the human host and exposure to antimalarial drugs affect it.
Plasmodium is an early-diverging protozoan with a complex lifecycle & unusual cell-biological features. It replicates in its human host by ‘schizogony’: a single parasite generates many nuclei via independent, asynchronous rounds of genome replication prior to cytokinesis. This occurs over ~24hrs inside infected erythrocytes. However, the genome can also be copied extremely rapidly during the sexual cycle in the malaria-transmitting mosquito. Here 8 male gametes are produced from a single gametocyte in less than 10mins, necessitating extraordinarily rapid DNA synthesis.
This project will first elucidate the spatio-temporal dynamics of DNA replication in these contrasting cell cycles. To do this, I have developed a method for labelling nascent DNA replication, which was not previously possible in Plasmodium. It will permit: a) a detailed characterisation, at the whole-cell level, of the asynchronous genome replication that occurs in schizogony; b) a study of replication origin spacing & DNA synthesis speed at single-molecule resolution on DNA fibres, comparing these parameters in schizogony & gametogenesis; c) mapping sequences with replication origin activity in the Plasmodium genome; d) investigation of cell-cycle checkpoints & replicative responses to the changing environment in the human host and to antimalarial drugs. These are crucial issues for understanding parasite virulence and drug-resistance, and the work will inform vital new research into transmission-blocking interventions for malaria.
Summary
This proposal promises to transform our understanding of the basic biology of the malaria parasite Plasmodium, and of how that biology affects virulence. Remarkably little is known about the Plasmodium cell cycle, despite a wealth of knowledge on the subject in model cells. This project will reveal, with unprecedented resolution, how DNA replication is organised in Plasmodium and how changing conditions in the human host and exposure to antimalarial drugs affect it.
Plasmodium is an early-diverging protozoan with a complex lifecycle & unusual cell-biological features. It replicates in its human host by ‘schizogony’: a single parasite generates many nuclei via independent, asynchronous rounds of genome replication prior to cytokinesis. This occurs over ~24hrs inside infected erythrocytes. However, the genome can also be copied extremely rapidly during the sexual cycle in the malaria-transmitting mosquito. Here 8 male gametes are produced from a single gametocyte in less than 10mins, necessitating extraordinarily rapid DNA synthesis.
This project will first elucidate the spatio-temporal dynamics of DNA replication in these contrasting cell cycles. To do this, I have developed a method for labelling nascent DNA replication, which was not previously possible in Plasmodium. It will permit: a) a detailed characterisation, at the whole-cell level, of the asynchronous genome replication that occurs in schizogony; b) a study of replication origin spacing & DNA synthesis speed at single-molecule resolution on DNA fibres, comparing these parameters in schizogony & gametogenesis; c) mapping sequences with replication origin activity in the Plasmodium genome; d) investigation of cell-cycle checkpoints & replicative responses to the changing environment in the human host and to antimalarial drugs. These are crucial issues for understanding parasite virulence and drug-resistance, and the work will inform vital new research into transmission-blocking interventions for malaria.
Max ERC Funding
1 998 696 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym PneumoCaTChER
Project The role of cell-to-cell variability in pneumococcal virulence and antibiotic resistance
Researcher (PI) Jan-Willem VEENING
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Consolidator Grant (CoG), LS6, ERC-2017-COG
Summary Within clonal bacterial populations not all cells exhibit the same phenotype, even though they grow in the same environment. The molecular sources contributing to phenotypic variation are diverse and can originate from noise in gene expression to heterogeneity in growth rates or cell cycle state. Phenotypic variation helps pathogenic bacteria to elude the host immune response or resist antibiotic pressure. Vice versa, there is cell-to-cell variability in the host’s response towards pathogens that can be exploited by bacteria. How the combined cellular heterogeneity of both host and microbe contribute to infection outcome is poorly understood. The role of phenotypic variation on antibiotic resistance development is also unclear.
Recently, we developed novel single cell imaging systems as well as genetic engineering and screening platforms for application to the important opportunistic human pathogen Streptococcus pneumoniae. In addition, we generated a dual-transcriptomics overview of pneumococcal infection of human lung epithelial cells and setup collaborations to perform several infection models. This now places us in an excellent position to investigate the mechanisms and the importance of single cell behaviour for pneumococcal virulence and antibiotic resistance.
The driving hypothesis of this application is that the combined heterogeneity of host cells and pneumococci influences infection and antibiotic therapy outcome. To test this, we will use innovative approaches for infection biology by combining synthetic biology and quantitative single cell biology including single cell RNA-seq, CRISPRi, engineered bistable switches and microfluidics. We will reveal the molecular mechanisms underlying cell-to-cell variability and its importance in virulence and antibiotic resistance.
Insights obtained in this project will lead to a better understanding of phenotypic variation and might result in new treatment strategies for pneumococcal infections.
Summary
Within clonal bacterial populations not all cells exhibit the same phenotype, even though they grow in the same environment. The molecular sources contributing to phenotypic variation are diverse and can originate from noise in gene expression to heterogeneity in growth rates or cell cycle state. Phenotypic variation helps pathogenic bacteria to elude the host immune response or resist antibiotic pressure. Vice versa, there is cell-to-cell variability in the host’s response towards pathogens that can be exploited by bacteria. How the combined cellular heterogeneity of both host and microbe contribute to infection outcome is poorly understood. The role of phenotypic variation on antibiotic resistance development is also unclear.
Recently, we developed novel single cell imaging systems as well as genetic engineering and screening platforms for application to the important opportunistic human pathogen Streptococcus pneumoniae. In addition, we generated a dual-transcriptomics overview of pneumococcal infection of human lung epithelial cells and setup collaborations to perform several infection models. This now places us in an excellent position to investigate the mechanisms and the importance of single cell behaviour for pneumococcal virulence and antibiotic resistance.
The driving hypothesis of this application is that the combined heterogeneity of host cells and pneumococci influences infection and antibiotic therapy outcome. To test this, we will use innovative approaches for infection biology by combining synthetic biology and quantitative single cell biology including single cell RNA-seq, CRISPRi, engineered bistable switches and microfluidics. We will reveal the molecular mechanisms underlying cell-to-cell variability and its importance in virulence and antibiotic resistance.
Insights obtained in this project will lead to a better understanding of phenotypic variation and might result in new treatment strategies for pneumococcal infections.
Max ERC Funding
1 999 735 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym PREG-LAB
Project Distinctive characterization of regulatory plasma cells and pro-inflammatory B cells in immunity: their origins, molecular properties, and cellular fates.
Researcher (PI) Simon Fillatreau
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary B cells can act both as negative regulators and as drivers of immunity through the production of cytokines. Through secretion of interleukin (IL)-10 B cells inhibited immunity in autoimmune and infectious diseases. For instance, IL-10 from B cells drove complete recovery from disease in experimental autoimmune encephalomyelitis (EAE), the primary animal model for multiple sclerosis (MS), while a lack of IL-10 production by B cells resulted in a severe chronic EAE. B cells can also suppress immunity via IL-35. Human B cells might similarly play inhibitory roles. In few patients with immune-mediated diseases B cell depletion therapy with Rituximab was associated with exacerbation of symptoms, or onset of new pathologies. Conversely, an opposite role of B cells as drivers of immunity was highlighted by the beneficial effect of Rituximab in some patients with rheumatoid arthritis or MS. Clinical improvement often precedes reduction in autoantibody levels in Rituximab treated patients, indicating that B cell-mediated pathogenesis is largely antibody-independent. A candidate factor for the deleterious effects of B cells in MS is IL-6. IL-6 secretion is a major mechanism of B cell-mediated pathogenesis in EAE, and B cells from MS patients produced more IL-6 than cells from healthy individuals. There is now an urgent need for the characterization of the phenotypes of the B cells producing IL-6, IL-10, and IL-35 in vivo at single cell and molecular levels. Markers for these cells might allow understanding the paradoxical effects of B cell-depletion therapy, and guide the development of novel agents depleting distinctively pro-inflammatory B cells, while sparing the remaining of the B cell compartment. Using advanced genetic models to identify and track cytokine-expressing cells, our project aims at characterizing B cells with pro- and anti-inflammatory functions in mice in vivo, to subsequently guide the identification of comparable markers in human.
Summary
B cells can act both as negative regulators and as drivers of immunity through the production of cytokines. Through secretion of interleukin (IL)-10 B cells inhibited immunity in autoimmune and infectious diseases. For instance, IL-10 from B cells drove complete recovery from disease in experimental autoimmune encephalomyelitis (EAE), the primary animal model for multiple sclerosis (MS), while a lack of IL-10 production by B cells resulted in a severe chronic EAE. B cells can also suppress immunity via IL-35. Human B cells might similarly play inhibitory roles. In few patients with immune-mediated diseases B cell depletion therapy with Rituximab was associated with exacerbation of symptoms, or onset of new pathologies. Conversely, an opposite role of B cells as drivers of immunity was highlighted by the beneficial effect of Rituximab in some patients with rheumatoid arthritis or MS. Clinical improvement often precedes reduction in autoantibody levels in Rituximab treated patients, indicating that B cell-mediated pathogenesis is largely antibody-independent. A candidate factor for the deleterious effects of B cells in MS is IL-6. IL-6 secretion is a major mechanism of B cell-mediated pathogenesis in EAE, and B cells from MS patients produced more IL-6 than cells from healthy individuals. There is now an urgent need for the characterization of the phenotypes of the B cells producing IL-6, IL-10, and IL-35 in vivo at single cell and molecular levels. Markers for these cells might allow understanding the paradoxical effects of B cell-depletion therapy, and guide the development of novel agents depleting distinctively pro-inflammatory B cells, while sparing the remaining of the B cell compartment. Using advanced genetic models to identify and track cytokine-expressing cells, our project aims at characterizing B cells with pro- and anti-inflammatory functions in mice in vivo, to subsequently guide the identification of comparable markers in human.
Max ERC Funding
1 999 375 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym PRinTERs
Project Post-transcriptional regulation of effector function in T cells by RNA binding proteins
Researcher (PI) Monika WOLKERS
Host Institution (HI) Stichting Sanquin Bloedvoorziening
Call Details Consolidator Grant (CoG), LS6, ERC-2018-COG
Summary CD8+ T cells are critical to fight infections and to clear tumor cells through the production of inflammatory cytokines and cytotoxic molecules. These effector molecules must be tightly controlled: too little leads to the inability to control the pathogen, and too much can result in a life-threatening cytokine storm and tissue damage. While transcriptional control of effector genes is well-studied, regulation at the levels of RNA stability and translation efficiency by RNA-binding proteins (RBPs) has remained underappreciated. We recently found that several cytokines are tightly regulated through these processes, and we identified ZFP36L2 as one of the responsible RBPs. However, much is still to be learned about the underlying molecular mechanisms. Moreover, there are >1000 putative RBPs, and a systematic analysis of their regulatory activity in T cells is lacking, particularly with regard to the control of effector proteins.
Here, we will use a combination of mouse genetics, and molecular and cellular biology to gain a deep understanding of the control of cytokine production by RBPs, using ZFP36L2 as a paradigm. Next, we will take a novel, highly sensitive proteomics approach to systematically identify the RBP repertoire in resting and activated primary human T cells. Complementary functional screens will identify those RBPs that control specific effectors. Selected RBPs identified in these screens will be studied in-depth to understand their roles in T cell responses to acute infection and in tumor models. Lastly, we will define how RBPs can imprint and/or maintain the killer phenotype of human CD8+ T cells.
This research will significantly advance our understanding of post-transcriptional regulation of T cell effector activity, and it should help us to develop novel tools to drive effective T cell responses against pathogens and malignant cells.
Summary
CD8+ T cells are critical to fight infections and to clear tumor cells through the production of inflammatory cytokines and cytotoxic molecules. These effector molecules must be tightly controlled: too little leads to the inability to control the pathogen, and too much can result in a life-threatening cytokine storm and tissue damage. While transcriptional control of effector genes is well-studied, regulation at the levels of RNA stability and translation efficiency by RNA-binding proteins (RBPs) has remained underappreciated. We recently found that several cytokines are tightly regulated through these processes, and we identified ZFP36L2 as one of the responsible RBPs. However, much is still to be learned about the underlying molecular mechanisms. Moreover, there are >1000 putative RBPs, and a systematic analysis of their regulatory activity in T cells is lacking, particularly with regard to the control of effector proteins.
Here, we will use a combination of mouse genetics, and molecular and cellular biology to gain a deep understanding of the control of cytokine production by RBPs, using ZFP36L2 as a paradigm. Next, we will take a novel, highly sensitive proteomics approach to systematically identify the RBP repertoire in resting and activated primary human T cells. Complementary functional screens will identify those RBPs that control specific effectors. Selected RBPs identified in these screens will be studied in-depth to understand their roles in T cell responses to acute infection and in tumor models. Lastly, we will define how RBPs can imprint and/or maintain the killer phenotype of human CD8+ T cells.
This research will significantly advance our understanding of post-transcriptional regulation of T cell effector activity, and it should help us to develop novel tools to drive effective T cell responses against pathogens and malignant cells.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym ProDAP
Project Protein Dynamics in Antiviral Processes
Researcher (PI) Andreas PICHLMAIR
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Consolidator Grant (CoG), LS6, ERC-2018-COG
Summary The innate antiviral defense system is of central importance to protect from viral pathogens. Its ability to mitigate a detrimental outcome of an infectious event relies on interactions that happen between viral and host-derived proteins as well as on signalling cascades that regulate the cellular response. However, despite the importance of these interactions, the involved processes and proteins are not yet fully understood.
We established state of the art mass spectrometry techniques and statistical modelling to characterise protein-protein interactions that are affected by viruses. We identified a class of proteins we name “viral affected proteins changing their interaction” (iVAPs). In addition, we established protein turnover rates of >6900 proteins in virus infected cells and identified a group of “viral affected proteins changing turnover rates” (tVAPs). tVAPs are regulated on basis of protein stabilisation, degradation or translation. Preliminary experiments show critical importance of iVAPs and tVAPs in antiviral immunity, suggesting functional similarities to Interferon stimulated genes (ISGs). Alike ISGs, VAPs therefore represent a critical component of the immune system.
ProDAP will establish the function of iVAPs and tVAPs in the antiviral immune response. Systematic screens employing depletion and overexpression experiments, integration of these data in functional networks and mechanistic follow up studies will be performed. Already identified and new candidate proteins will be tested mechanistically for their immune-regulatory capacity and their influence on virus infections in vitro and in vivo.
ProDAP will allow insights in yet unstudied modulators of host-pathogen interplay and will influence our current understanding of immune regulation in general. It is well established that ISGs are of central importance to defend virus infections and we hypothesize that VAPs may fulfil a similarly important protective function that has yet not been elucid
Summary
The innate antiviral defense system is of central importance to protect from viral pathogens. Its ability to mitigate a detrimental outcome of an infectious event relies on interactions that happen between viral and host-derived proteins as well as on signalling cascades that regulate the cellular response. However, despite the importance of these interactions, the involved processes and proteins are not yet fully understood.
We established state of the art mass spectrometry techniques and statistical modelling to characterise protein-protein interactions that are affected by viruses. We identified a class of proteins we name “viral affected proteins changing their interaction” (iVAPs). In addition, we established protein turnover rates of >6900 proteins in virus infected cells and identified a group of “viral affected proteins changing turnover rates” (tVAPs). tVAPs are regulated on basis of protein stabilisation, degradation or translation. Preliminary experiments show critical importance of iVAPs and tVAPs in antiviral immunity, suggesting functional similarities to Interferon stimulated genes (ISGs). Alike ISGs, VAPs therefore represent a critical component of the immune system.
ProDAP will establish the function of iVAPs and tVAPs in the antiviral immune response. Systematic screens employing depletion and overexpression experiments, integration of these data in functional networks and mechanistic follow up studies will be performed. Already identified and new candidate proteins will be tested mechanistically for their immune-regulatory capacity and their influence on virus infections in vitro and in vivo.
ProDAP will allow insights in yet unstudied modulators of host-pathogen interplay and will influence our current understanding of immune regulation in general. It is well established that ISGs are of central importance to defend virus infections and we hypothesize that VAPs may fulfil a similarly important protective function that has yet not been elucid
Max ERC Funding
2 169 555 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym REGiREG
Project Regulating the immune regulators: targeting adaptive immune control
Researcher (PI) Markus Feuerer
Host Institution (HI) KLINIKUM DER UNIVERSITAET REGENSBURG
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary The immune system with its complex interactions of cells and molecules needs a very tight and specific interplay of control elements to ensure the establishment and re-establishment of immune homeostasis after challenges. Regulatory T cells (Tregs) are key-players in this regulatory network. It is now well accepted that deficiency or dysfunction of Tregs causes various severe immune disorders due to immune hyperactivation. Conversely, an increased number of Tregs in tumor-bearing individuals suppresses efficient anti-tumor immunity and, thereby, is often associated with poor prognosis. Cancer immunology is now one of the most exciting and promising frontiers in cancer research, and recent clinical trials have proven that immunotherapies driving to activate T cells can induce durable responses. In this sense, harnessing the potential of Tregs is one of the most promising new approaches to control immune function and to treat cancer. This proposal has two objectives: 1, the identification and characterization of tissue-resident Tregs to principally understand the unique features of Treg specialization in tissues and their function in organ-homeostasis, a phenomenon that is hardly understood, but holds great promise for local, tissue-specific immune intervention. 2, to globally target Tregs, including the lymphoid organ Treg pool, by interfering with their survival and or suppression function. We expect from these studies new basic insights into a fascinating and still arcane aspect of organ-homeostasis as maintained by Tregs, as well as novel small molecule inhibitors and candidate molecules that target Tregs at the systemic level, and eventually at a tissue-specific level.
Summary
The immune system with its complex interactions of cells and molecules needs a very tight and specific interplay of control elements to ensure the establishment and re-establishment of immune homeostasis after challenges. Regulatory T cells (Tregs) are key-players in this regulatory network. It is now well accepted that deficiency or dysfunction of Tregs causes various severe immune disorders due to immune hyperactivation. Conversely, an increased number of Tregs in tumor-bearing individuals suppresses efficient anti-tumor immunity and, thereby, is often associated with poor prognosis. Cancer immunology is now one of the most exciting and promising frontiers in cancer research, and recent clinical trials have proven that immunotherapies driving to activate T cells can induce durable responses. In this sense, harnessing the potential of Tregs is one of the most promising new approaches to control immune function and to treat cancer. This proposal has two objectives: 1, the identification and characterization of tissue-resident Tregs to principally understand the unique features of Treg specialization in tissues and their function in organ-homeostasis, a phenomenon that is hardly understood, but holds great promise for local, tissue-specific immune intervention. 2, to globally target Tregs, including the lymphoid organ Treg pool, by interfering with their survival and or suppression function. We expect from these studies new basic insights into a fascinating and still arcane aspect of organ-homeostasis as maintained by Tregs, as well as novel small molecule inhibitors and candidate molecules that target Tregs at the systemic level, and eventually at a tissue-specific level.
Max ERC Funding
1 955 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym RegulRNA
Project Modulation of RNA-based regulatory processes by viruses
Researcher (PI) Sebastien Jean Pfeffer
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary Small and large non-coding RNAs are essential components at the heart of gene expression regulation. The past fifteen years have witnessed the emergence of a new field of research impacting diverse domains of biology. Among these, virology is no exception and discoveries such as the antiviral role of RNA silencing, virus-encoded microRNAs (miRNAs), or miRNA-based regulation of viruses have notably shifted our views of host-virus interactions. Although we know a lot about the mechanisms of action of ncRNAs, and their role in the context of viral infections, we know much less regarding the control of the regulatory RNAs themselves. In other words, how are the regulators regulated? To provide answers to this burning question, we propose to use different viruses as models to investigate the various levels where modulation of regulatory RNA can occur. Thus, we will study the importance of RNA secondary and tertiary structure as well as accessory proteins in the regulation of miRNA primary transcript processing. In a second axis, we propose to investigate how the functional, mature miRNAs can be controlled. To this end, we will focus on the mechanisms of target-mediated miRNA decay and the role of competing endogenous RNAs. We will finally turn to the regulation of antiviral RNA silencing. Although it seems that this kind of defence mechanism exist in mammalian cells, it is not yet clear how physiologically relevant it is and how it interfaces with other innate immune mechanisms. In this multidisciplinary project, we will use a combination of techniques ranging from bioinformatics to cellular biology to achieve our goal to get a comprehensive view of how RNA silencing processes are regulated during virus infection.
Summary
Small and large non-coding RNAs are essential components at the heart of gene expression regulation. The past fifteen years have witnessed the emergence of a new field of research impacting diverse domains of biology. Among these, virology is no exception and discoveries such as the antiviral role of RNA silencing, virus-encoded microRNAs (miRNAs), or miRNA-based regulation of viruses have notably shifted our views of host-virus interactions. Although we know a lot about the mechanisms of action of ncRNAs, and their role in the context of viral infections, we know much less regarding the control of the regulatory RNAs themselves. In other words, how are the regulators regulated? To provide answers to this burning question, we propose to use different viruses as models to investigate the various levels where modulation of regulatory RNA can occur. Thus, we will study the importance of RNA secondary and tertiary structure as well as accessory proteins in the regulation of miRNA primary transcript processing. In a second axis, we propose to investigate how the functional, mature miRNAs can be controlled. To this end, we will focus on the mechanisms of target-mediated miRNA decay and the role of competing endogenous RNAs. We will finally turn to the regulation of antiviral RNA silencing. Although it seems that this kind of defence mechanism exist in mammalian cells, it is not yet clear how physiologically relevant it is and how it interfaces with other innate immune mechanisms. In this multidisciplinary project, we will use a combination of techniques ranging from bioinformatics to cellular biology to achieve our goal to get a comprehensive view of how RNA silencing processes are regulated during virus infection.
Max ERC Funding
1 998 291 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym RNAEDIT
Project RNA EDITING IN HEALTH AND DISEASE
Researcher (PI) Fotini Nina Papavasiliou
Host Institution (HI) DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERG
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary "RNA editing is a type of programmed RNA sequence alteration that can result in a range of proteomic changes, from subtle fluctuations in output, to specific alterations in protein content. Editing is catalyzed by two classes of deaminases: those which convert adenosine to inosine (ADARs) and those which convert cytosine to uracil (APOBEC1). We have previously shown that APOBEC1-catalyzed editing in the transcriptome of macrophages leads to the generation of populations that are heterogeneous, and functionally diverse, enabling rapid population adaptation to different environmental settings.
Our first aim for this proposal is to extend our studies to additional immune cell subsets, focusing on cells that are recently recognized as ""plastic"" to define the contribution of editing to this plasticity of fate and function.
RNA editing of the type we study has also been demonstrated to be crucial for cancer progression. For instance, APOBEC1-deficiency significantly reduces tumour burden on cells of the intestine and colon that are prone to adenocarcinomas in the context of the APC-min mutation. This is also the case for testicular carcinomas in mouse models of such tumours. Thus, there is genetic evidence for a requirement for APOBEC1 and RNA editing to drive tumour progression, in two tumour contexts. Based on these data and on our recently deciphered role for APOBEC1 as a ""stealthy"" diversifier of cellular transcriptomes (and proteomic outcomes), we hypothesize that APOBEC1 drives tumour progression by editing select transcripts in tumour cells (or tumour stem cells), thus enabling the rapid adaptation of the tumour to the onslaught of the immune response.
Our second aim is to characterize the subset of edited transcripts in these model tumours (either at the population or at the single cell level) and understand their role to tumour survival and progression, both in mouse models of disease, and in human tumour samples (in collaboration with QP Hammarstrom, KI)."
Summary
"RNA editing is a type of programmed RNA sequence alteration that can result in a range of proteomic changes, from subtle fluctuations in output, to specific alterations in protein content. Editing is catalyzed by two classes of deaminases: those which convert adenosine to inosine (ADARs) and those which convert cytosine to uracil (APOBEC1). We have previously shown that APOBEC1-catalyzed editing in the transcriptome of macrophages leads to the generation of populations that are heterogeneous, and functionally diverse, enabling rapid population adaptation to different environmental settings.
Our first aim for this proposal is to extend our studies to additional immune cell subsets, focusing on cells that are recently recognized as ""plastic"" to define the contribution of editing to this plasticity of fate and function.
RNA editing of the type we study has also been demonstrated to be crucial for cancer progression. For instance, APOBEC1-deficiency significantly reduces tumour burden on cells of the intestine and colon that are prone to adenocarcinomas in the context of the APC-min mutation. This is also the case for testicular carcinomas in mouse models of such tumours. Thus, there is genetic evidence for a requirement for APOBEC1 and RNA editing to drive tumour progression, in two tumour contexts. Based on these data and on our recently deciphered role for APOBEC1 as a ""stealthy"" diversifier of cellular transcriptomes (and proteomic outcomes), we hypothesize that APOBEC1 drives tumour progression by editing select transcripts in tumour cells (or tumour stem cells), thus enabling the rapid adaptation of the tumour to the onslaught of the immune response.
Our second aim is to characterize the subset of edited transcripts in these model tumours (either at the population or at the single cell level) and understand their role to tumour survival and progression, both in mouse models of disease, and in human tumour samples (in collaboration with QP Hammarstrom, KI)."
Max ERC Funding
2 270 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym RNAiMMUNITY
Project Dynamics of the RNAi-mediated antiviral immunity
Researcher (PI) Maria Carla Saleh Bottegoni
Host Institution (HI) INSTITUT PASTEUR
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA (dsRNA). Double-stranded RNA is commonly generated during viral replication and is considered to be a molecular pattern associated with viral infection. Our previous work demonstrated that viral infections in the fruit fly Drosophila melanogaster are countered by an antiviral RNAi response: the small interfering RNA (siRNA) pathway is the major antiviral defence mechanism in insects. Recently, another RNAi pathway was also suggested to be involved in antiviral defence, the piwi-interacting RNA (piRNA) pathway.
The field of insect immunity has been largely dominated by studies on antimicrobial immunity, while antiviral immunity has received relatively little attention. Based on a combination of basic and applied science as well as bioinformatic approaches, we propose to investigate the molecular and cellular aspects underlying the immune dynamics of the antiviral response. We want to uncover fully the mechanism of antiviral RNAi in insects and its main attributes, such as memory, long-lasting immunity, specificity, and effect on the virus.
The “nucleic-acid based” immune system that we are deciphering points to the concerted effort of multiple defence pathways from both partners as a new perspective in immunity and host-pathogen relationships.
Summary
RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA (dsRNA). Double-stranded RNA is commonly generated during viral replication and is considered to be a molecular pattern associated with viral infection. Our previous work demonstrated that viral infections in the fruit fly Drosophila melanogaster are countered by an antiviral RNAi response: the small interfering RNA (siRNA) pathway is the major antiviral defence mechanism in insects. Recently, another RNAi pathway was also suggested to be involved in antiviral defence, the piwi-interacting RNA (piRNA) pathway.
The field of insect immunity has been largely dominated by studies on antimicrobial immunity, while antiviral immunity has received relatively little attention. Based on a combination of basic and applied science as well as bioinformatic approaches, we propose to investigate the molecular and cellular aspects underlying the immune dynamics of the antiviral response. We want to uncover fully the mechanism of antiviral RNAi in insects and its main attributes, such as memory, long-lasting immunity, specificity, and effect on the virus.
The “nucleic-acid based” immune system that we are deciphering points to the concerted effort of multiple defence pathways from both partners as a new perspective in immunity and host-pathogen relationships.
Max ERC Funding
1 442 600 €
Duration
Start date: 2015-01-01, End date: 2019-12-31
Project acronym STEP 2
Project Spatiotemporal regulation of T-cell Priming
Researcher (PI) Wolfgang Kastenmüller
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Consolidator Grant (CoG), LS6, ERC-2018-COG
Summary The initiation of adaptive cellular immunity requires antigen-specific interactions between Dendritic cells (DC) and naive CD8 T cells in secondary lymphoid organs. We aim to understand how the dynamic migratory behavior of myeloid and lymphoid cells is coordinated to ensure that “the right cells” communicate at “the right time” in “the right place” to enable robust immune responses. Using intravital microscopy, we have recently identified a critical phase (“Step 2”) of T cell priming that follows the initial encounter of DC and CD8 T cells and is essential to develop protective immunity.
The aim of this proposal is to identify the cellular and molecular mechanisms regulating T cell differentiation during Step 2. We will employ a newly developed imaging method (“Net-Vis”) to investigate how key elements of Step 2 (XCR1 DC) receive antigenic and inflammatory “information” within a network of myeloid cells. Next, we will test a novel model of T cell priming in which stepwise relocalization to multicellular clusters within the LN orchestrates T cell differentiation. Combining deep-tissue intravital microscopy, “Niche-seq” and novel genetic approaches, we will identify the cellular players and molecules guiding these processes and test their mechanistic implications. Finally, we will investigate the identity and mechanisms of Foxp3+ T cells that co-regulate CD8 T cell activation and differentiation during Step 2.
In summary, we will exploit an array of innovative imaging, spatiotemporal transcriptomics and genetic approaches to investigate novel fundamental aspects of CD8 T cell priming during a newly discovered distinct phase of T cell activation and differentiation. Investigating the mechanisms that guide these central steps in adaptive immunity is anticipated to reveal new avenues for the therapeutic manipulation of immune responses against infection and cancer.
Summary
The initiation of adaptive cellular immunity requires antigen-specific interactions between Dendritic cells (DC) and naive CD8 T cells in secondary lymphoid organs. We aim to understand how the dynamic migratory behavior of myeloid and lymphoid cells is coordinated to ensure that “the right cells” communicate at “the right time” in “the right place” to enable robust immune responses. Using intravital microscopy, we have recently identified a critical phase (“Step 2”) of T cell priming that follows the initial encounter of DC and CD8 T cells and is essential to develop protective immunity.
The aim of this proposal is to identify the cellular and molecular mechanisms regulating T cell differentiation during Step 2. We will employ a newly developed imaging method (“Net-Vis”) to investigate how key elements of Step 2 (XCR1 DC) receive antigenic and inflammatory “information” within a network of myeloid cells. Next, we will test a novel model of T cell priming in which stepwise relocalization to multicellular clusters within the LN orchestrates T cell differentiation. Combining deep-tissue intravital microscopy, “Niche-seq” and novel genetic approaches, we will identify the cellular players and molecules guiding these processes and test their mechanistic implications. Finally, we will investigate the identity and mechanisms of Foxp3+ T cells that co-regulate CD8 T cell activation and differentiation during Step 2.
In summary, we will exploit an array of innovative imaging, spatiotemporal transcriptomics and genetic approaches to investigate novel fundamental aspects of CD8 T cell priming during a newly discovered distinct phase of T cell activation and differentiation. Investigating the mechanisms that guide these central steps in adaptive immunity is anticipated to reveal new avenues for the therapeutic manipulation of immune responses against infection and cancer.
Max ERC Funding
1 874 425 €
Duration
Start date: 2019-09-01, End date: 2024-08-31