Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym 3DMOSHBOND
Project Three-Dimensional Mapping Of a Single Hydrogen Bond
Researcher (PI) Adam Marc SWEETMAN
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Starting Grant (StG), PE3, ERC-2017-STG
Summary All properties of matter are ultimately governed by the forces between single atoms, but our knowledge of interatomic, and intermolecular, potentials is often derived indirectly.
In 3DMOSHBOND, I outline a program of work designed to create a paradigm shift in the direct measurement of complex interatomic potentials via a fundamental reimagining of how atomic resolution imaging, and force measurement, techniques are applied.
To provide a clear proof of principle demonstration of the power of this concept, I propose to map the strength, shape and extent of single hydrogen bonding (H-bonding) interactions in 3D with sub-Angstrom precision. H-bonding is a key component governing intermolecular interactions, particularly for biologically important molecules. Despite its critical importance, H-bonding is relatively poorly understood, and the IUPAC definition of the H-bond was changed as recently as 2011- highlighting the relevance of a new means to engage with these fundamental interactions.
Hitherto unprecedented resolution and accuracy will be achieved via a creation of a novel layer of vertically oriented H-bonding molecules, functionalisation of the tip of a scanning probe microscope with a single complementary H-bonding molecule, and by complete characterisation of the position of all atoms in the junction. This will place two H-bonding groups “end on” and map the extent, and magnitude, of the H-bond with sub-Angstrom precision for a variety of systems. This investigation of the H-bond will present us with an unparalleled level of information regarding its properties.
Experimental results will be compared with ab initio density functional theory (DFT) simulations, to investigate the extent to which state-of-the-art simulations are able to reproduce the behaviour of the H-bonding interaction. The project will create a new generalised probe for the study of single atomic and molecular interactions.
Summary
All properties of matter are ultimately governed by the forces between single atoms, but our knowledge of interatomic, and intermolecular, potentials is often derived indirectly.
In 3DMOSHBOND, I outline a program of work designed to create a paradigm shift in the direct measurement of complex interatomic potentials via a fundamental reimagining of how atomic resolution imaging, and force measurement, techniques are applied.
To provide a clear proof of principle demonstration of the power of this concept, I propose to map the strength, shape and extent of single hydrogen bonding (H-bonding) interactions in 3D with sub-Angstrom precision. H-bonding is a key component governing intermolecular interactions, particularly for biologically important molecules. Despite its critical importance, H-bonding is relatively poorly understood, and the IUPAC definition of the H-bond was changed as recently as 2011- highlighting the relevance of a new means to engage with these fundamental interactions.
Hitherto unprecedented resolution and accuracy will be achieved via a creation of a novel layer of vertically oriented H-bonding molecules, functionalisation of the tip of a scanning probe microscope with a single complementary H-bonding molecule, and by complete characterisation of the position of all atoms in the junction. This will place two H-bonding groups “end on” and map the extent, and magnitude, of the H-bond with sub-Angstrom precision for a variety of systems. This investigation of the H-bond will present us with an unparalleled level of information regarding its properties.
Experimental results will be compared with ab initio density functional theory (DFT) simulations, to investigate the extent to which state-of-the-art simulations are able to reproduce the behaviour of the H-bonding interaction. The project will create a new generalised probe for the study of single atomic and molecular interactions.
Max ERC Funding
1 971 468 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym ACB
Project The Analytic Conformal Bootstrap
Researcher (PI) Luis Fernando ALDAY
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Summary
The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Max ERC Funding
2 171 483 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym ACROSS
Project Australasian Colonization Research: Origins of Seafaring to Sahul
Researcher (PI) Rosemary Helen FARR
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary One of the most exciting research questions within archaeology is that of the peopling of Australasia by at least c.50,000 years ago. This represents some of the earliest evidence of modern human colonization outside Africa, yet, even at the greatest sea-level lowstand, this migration would have involved seafaring. It is the maritime nature of this dispersal which makes it so important to questions of technological, cognitive and social human development. These issues have traditionally been the preserve of archaeologists, but with a multidisciplinary approach that embraces cutting-edge marine geophysical, hydrodynamic and archaeogenetic analyses, we now have the opportunity to examine the When, Where, Who and How of the earliest seafaring in world history.
The voyage from Sunda (South East Asia) to Sahul (Australasia) provides evidence for the earliest ‘open water’ crossing in the world. A combination of the sparse number of early archaeological finds and the significant changes in the palaeolandscape and submergence of the broad north western Australian continental shelf, mean that little is known about the routes taken and what these crossings may have entailed.
This project will combine research of the submerged palaeolandscape of the continental shelf to refine our knowledge of the onshore/offshore environment, identify potential submerged prehistoric sites and enhance our understanding of the palaeoshoreline and tidal regime. This will be combined with archaeogenetic research targeting mtDNA and Y-chromosome data to resolve questions of demography and dating.
For the first time this project takes a truly multidisciplinary approach to address the colonization of Sahul, providing an unique opportunity to tackle some of the most important questions about human origins, the relationship between humans and the changing environment, population dynamics and migration, seafaring technology, social organisation and cognition.
Summary
One of the most exciting research questions within archaeology is that of the peopling of Australasia by at least c.50,000 years ago. This represents some of the earliest evidence of modern human colonization outside Africa, yet, even at the greatest sea-level lowstand, this migration would have involved seafaring. It is the maritime nature of this dispersal which makes it so important to questions of technological, cognitive and social human development. These issues have traditionally been the preserve of archaeologists, but with a multidisciplinary approach that embraces cutting-edge marine geophysical, hydrodynamic and archaeogenetic analyses, we now have the opportunity to examine the When, Where, Who and How of the earliest seafaring in world history.
The voyage from Sunda (South East Asia) to Sahul (Australasia) provides evidence for the earliest ‘open water’ crossing in the world. A combination of the sparse number of early archaeological finds and the significant changes in the palaeolandscape and submergence of the broad north western Australian continental shelf, mean that little is known about the routes taken and what these crossings may have entailed.
This project will combine research of the submerged palaeolandscape of the continental shelf to refine our knowledge of the onshore/offshore environment, identify potential submerged prehistoric sites and enhance our understanding of the palaeoshoreline and tidal regime. This will be combined with archaeogenetic research targeting mtDNA and Y-chromosome data to resolve questions of demography and dating.
For the first time this project takes a truly multidisciplinary approach to address the colonization of Sahul, providing an unique opportunity to tackle some of the most important questions about human origins, the relationship between humans and the changing environment, population dynamics and migration, seafaring technology, social organisation and cognition.
Max ERC Funding
1 134 928 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym activeFly
Project Circuit mechanisms of self-movement estimation during walking
Researcher (PI) M Eugenia CHIAPPE
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary The brain evolves, develops, and operates in the context of animal movements. As a consequence, fundamental brain functions such as spatial perception and motor control critically depend on the precise knowledge of the ongoing body motion. An accurate internal estimate of self-movement is thought to emerge from sensorimotor integration; nonetheless, which circuits perform this internal estimation, and exactly how motor-sensory coordination is implemented within these circuits are basic questions that remain to be poorly understood. There is growing evidence suggesting that, during locomotion, motor-related and visual signals interact at early stages of visual processing. In mammals, however, it is not clear what the function of this interaction is. Recently, we have shown that a population of Drosophila optic-flow processing neurons —neurons that are sensitive to self-generated visual flow, receives convergent visual and walking-related signals to form a faithful representation of the fly’s walking movements. Leveraging from these results, and combining quantitative analysis of behavior with physiology, optogenetics, and modelling, we propose to investigate circuit mechanisms of self-movement estimation during walking. We will:1) use cell specific manipulations to identify what cells are necessary to generate the motor-related activity in the population of visual neurons, 2) record from the identified neurons and correlate their activity with specific locomotor parameters, and 3) perturb the activity of different cell-types within the identified circuits to test their role in the dynamics of the visual neurons, and on the fly’s walking behavior. These experiments will establish unprecedented causal relationships among neural activity, the formation of an internal representation, and locomotor control. The identified sensorimotor principles will establish a framework that can be tested in other scenarios or animal systems with implications both in health and disease.
Summary
The brain evolves, develops, and operates in the context of animal movements. As a consequence, fundamental brain functions such as spatial perception and motor control critically depend on the precise knowledge of the ongoing body motion. An accurate internal estimate of self-movement is thought to emerge from sensorimotor integration; nonetheless, which circuits perform this internal estimation, and exactly how motor-sensory coordination is implemented within these circuits are basic questions that remain to be poorly understood. There is growing evidence suggesting that, during locomotion, motor-related and visual signals interact at early stages of visual processing. In mammals, however, it is not clear what the function of this interaction is. Recently, we have shown that a population of Drosophila optic-flow processing neurons —neurons that are sensitive to self-generated visual flow, receives convergent visual and walking-related signals to form a faithful representation of the fly’s walking movements. Leveraging from these results, and combining quantitative analysis of behavior with physiology, optogenetics, and modelling, we propose to investigate circuit mechanisms of self-movement estimation during walking. We will:1) use cell specific manipulations to identify what cells are necessary to generate the motor-related activity in the population of visual neurons, 2) record from the identified neurons and correlate their activity with specific locomotor parameters, and 3) perturb the activity of different cell-types within the identified circuits to test their role in the dynamics of the visual neurons, and on the fly’s walking behavior. These experiments will establish unprecedented causal relationships among neural activity, the formation of an internal representation, and locomotor control. The identified sensorimotor principles will establish a framework that can be tested in other scenarios or animal systems with implications both in health and disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym ADOR
Project Assembly-disassembly-organisation-reassembly of microporous materials
Researcher (PI) Russell MORRIS
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Summary
Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Max ERC Funding
2 489 220 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym AFIRMATIVE
Project Acoustic-Flow Interaction Models for Advancing Thermoacoustic Instability prediction in Very low Emission combustors
Researcher (PI) Aimee MORGANS
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary Gas turbines are an essential ingredient in the long-term energy and aviation mix. They are flexible, offer fast start-up and the ability to burn renewable-generated fuels. However, they generate NOx emissions, which cause air pollution and damage human health, and reducing these is an air quality imperative. A major hurdle to this is that lean premixed combustion, essential for further NOx emission reductions, is highly susceptible to thermoacoustic instability. This is caused by a two-way coupling between unsteady combustion and acoustic waves, and the resulting large pressure oscillations can cause severe mechanical damage. Computational methods for predicting thermoacoustic instability, fast and accurate enough to be used as part of the industrial design process, are urgently needed.
The only computational methods with the prospect of being fast enough are those based on coupled treatment of the acoustic waves and unsteady combustion. These exploit the amenity of the acoustic waves to analytical modelling, allowing costly simulations to be directed only at the more complex flame. They show real promise: my group recently demonstrated the first accurate coupled predictions for lab-scale combustors. The method does not yet extend to industrial combustors, the more complex flow-fields in these rendering current acoustic models overly-simplistic. I propose to comprehensively overhaul acoustic models across the entirety of the combustor, accounting for real and important acoustic-flow interactions. These new models will offer the breakthrough prospect of extending efficient, accurate predictive capability to industrial combustors, which has a real chance of facilitating future, instability free, very low NOx gas turbines.
Summary
Gas turbines are an essential ingredient in the long-term energy and aviation mix. They are flexible, offer fast start-up and the ability to burn renewable-generated fuels. However, they generate NOx emissions, which cause air pollution and damage human health, and reducing these is an air quality imperative. A major hurdle to this is that lean premixed combustion, essential for further NOx emission reductions, is highly susceptible to thermoacoustic instability. This is caused by a two-way coupling between unsteady combustion and acoustic waves, and the resulting large pressure oscillations can cause severe mechanical damage. Computational methods for predicting thermoacoustic instability, fast and accurate enough to be used as part of the industrial design process, are urgently needed.
The only computational methods with the prospect of being fast enough are those based on coupled treatment of the acoustic waves and unsteady combustion. These exploit the amenity of the acoustic waves to analytical modelling, allowing costly simulations to be directed only at the more complex flame. They show real promise: my group recently demonstrated the first accurate coupled predictions for lab-scale combustors. The method does not yet extend to industrial combustors, the more complex flow-fields in these rendering current acoustic models overly-simplistic. I propose to comprehensively overhaul acoustic models across the entirety of the combustor, accounting for real and important acoustic-flow interactions. These new models will offer the breakthrough prospect of extending efficient, accurate predictive capability to industrial combustors, which has a real chance of facilitating future, instability free, very low NOx gas turbines.
Max ERC Funding
1 985 288 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym AirKit
Project Citizen Sense Air Monitoring Kit
Researcher (PI) Jennifer Chloe GABRYS
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary In January 2013, the five-year ERC funded project Citizen Sense was launched, investigating the role of low-cost and digital monitoring technologies in facilitating and organising new types of environmental engagement. This proposal brings together a comprehensive citizen-sensing toolkit for users to undertake air quality monitoring that realises the social and environmental potential of these technologies. With the benefit of five years of intensive and cutting-edge research, the Citizen Sense research project is exceptionally well positioned to develop an AirKit, thereby bridging the gap between our research and the early stages of innovation in order to realise the innovation potential of the project. Our research pioneers new strategies of citizen-led monitoring and data analysis that join up hardware and software developments along with social innovations in order to produce an AirKit toolkit that has the potential to revolutionise community monitoring infrastructures and practices. This PoC will help to establish the viability of the AirKit, to refine and address technical issues, and to consolidate the overall direction of the AirKit.
Summary
In January 2013, the five-year ERC funded project Citizen Sense was launched, investigating the role of low-cost and digital monitoring technologies in facilitating and organising new types of environmental engagement. This proposal brings together a comprehensive citizen-sensing toolkit for users to undertake air quality monitoring that realises the social and environmental potential of these technologies. With the benefit of five years of intensive and cutting-edge research, the Citizen Sense research project is exceptionally well positioned to develop an AirKit, thereby bridging the gap between our research and the early stages of innovation in order to realise the innovation potential of the project. Our research pioneers new strategies of citizen-led monitoring and data analysis that join up hardware and software developments along with social innovations in order to produce an AirKit toolkit that has the potential to revolutionise community monitoring infrastructures and practices. This PoC will help to establish the viability of the AirKit, to refine and address technical issues, and to consolidate the overall direction of the AirKit.
Max ERC Funding
150 000 €
Duration
Start date: 2019-01-01, End date: 2020-06-30
Project acronym ANTNAM
Project Optical NanoActuators for Nanomachines and Microfluidic Chips
Researcher (PI) JEREMY JOHN BAUMBERG
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary Over the past 2 years we have developed and patented a new actuator which is based on composite polymer/metal nanoparticles. Originally designed to create strong reversible colour changes, we found that the forces generated in the actuation exceed current microscale devices by nearly two orders of magnitude (weight for weight). We have thus protected and developed this possibility using my Advanced ERC project, LINASS, together with Cambridge Enterprise (CE, the commercialisation arm of the University of Cambridge). We have now reached the stage where we believe that this can become commercially interesting, have progressed to a better understanding of the fundamental processes, and have some idea of the applications that it might enable. The PoC project here is thus conceived to create demonstrators in two related domains: one offers new possibilities in advancing the established technology of microfluidic chips, while the other opens up a new space entirely, by making DNA nano-machines active and feasibly exploitable.
Summary
Over the past 2 years we have developed and patented a new actuator which is based on composite polymer/metal nanoparticles. Originally designed to create strong reversible colour changes, we found that the forces generated in the actuation exceed current microscale devices by nearly two orders of magnitude (weight for weight). We have thus protected and developed this possibility using my Advanced ERC project, LINASS, together with Cambridge Enterprise (CE, the commercialisation arm of the University of Cambridge). We have now reached the stage where we believe that this can become commercially interesting, have progressed to a better understanding of the fundamental processes, and have some idea of the applications that it might enable. The PoC project here is thus conceived to create demonstrators in two related domains: one offers new possibilities in advancing the established technology of microfluidic chips, while the other opens up a new space entirely, by making DNA nano-machines active and feasibly exploitable.
Max ERC Funding
144 549 €
Duration
Start date: 2018-01-01, End date: 2019-06-30
Project acronym APRA
Project Active Polymers for Renewable Functional Actuators
Researcher (PI) Eugene TERENTJEV
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary The idea of mechanical actuator based on intrinsic material properties of liquid-crystalline elastomers (rather than complex engineering of interacting components) has been understood for 20+ years. The remarkable characteristics of LCE actuation (fully reversible action; large-amplitude, with a stroke of 5%-300%; stress-strain-speed response almost exactly matching the human muscle) make it highly attractive in biomedical engineering, robotics, smart textiles, and other fields. Yet, there is a profound difficulty (bottleneck), which remains the reason why this concept has not found its way into any practical devices & applications. LCE actuation requires alignment (monodomain structure) of the local anisotropy in the permanently crosslinked polymer network - which has been impossible to achieve in any useful large-scale configuration except the flat film, due to the unavoidable restrictions of two competing processes: orientational alignment and network crosslinking.
Recently, we made a breakthrough, developing LCE vitrimers (polymer networks covalently crosslinked by a bond-exchange reaction). Vitrimers are much more stable than other transient elastomer networks, allow easy thermal re-moulding (making the material fully renewable), and permit molding of complex shapes with intricate local alignment (which are impossible in traditional elastomers). This project will bridge from the concept to technology, tuning the material design for robust nematic LCE vitrimers, imparting photo-actuation capacity with a controlled wavelength, and finally utilising them in practical-engineering actuator applications where the reversible mechanical action is stimulated by light, solvent exposure, or more traditionally - heat. These applications include (but not limited to): continuous spinning light-driven motor, tactile dynamic Braille display, capillary pump and toggle flow switch for microfuidics, active textile fibre, and heliotracking filament that always points at the Sun.
Summary
The idea of mechanical actuator based on intrinsic material properties of liquid-crystalline elastomers (rather than complex engineering of interacting components) has been understood for 20+ years. The remarkable characteristics of LCE actuation (fully reversible action; large-amplitude, with a stroke of 5%-300%; stress-strain-speed response almost exactly matching the human muscle) make it highly attractive in biomedical engineering, robotics, smart textiles, and other fields. Yet, there is a profound difficulty (bottleneck), which remains the reason why this concept has not found its way into any practical devices & applications. LCE actuation requires alignment (monodomain structure) of the local anisotropy in the permanently crosslinked polymer network - which has been impossible to achieve in any useful large-scale configuration except the flat film, due to the unavoidable restrictions of two competing processes: orientational alignment and network crosslinking.
Recently, we made a breakthrough, developing LCE vitrimers (polymer networks covalently crosslinked by a bond-exchange reaction). Vitrimers are much more stable than other transient elastomer networks, allow easy thermal re-moulding (making the material fully renewable), and permit molding of complex shapes with intricate local alignment (which are impossible in traditional elastomers). This project will bridge from the concept to technology, tuning the material design for robust nematic LCE vitrimers, imparting photo-actuation capacity with a controlled wavelength, and finally utilising them in practical-engineering actuator applications where the reversible mechanical action is stimulated by light, solvent exposure, or more traditionally - heat. These applications include (but not limited to): continuous spinning light-driven motor, tactile dynamic Braille display, capillary pump and toggle flow switch for microfuidics, active textile fibre, and heliotracking filament that always points at the Sun.
Max ERC Funding
2 012 136 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym ASA
Project Understanding Statehood through Architecture: a comparative study of Africa's state buildings
Researcher (PI) Julia Catherine GALLAGHER
Host Institution (HI) SCHOOL OF ORIENTAL AND AFRICAN STUDIES ROYAL CHARTER
Call Details Consolidator Grant (CoG), SH2, ERC-2017-COG
Summary The project will develop a new ethnography of statehood through architecture. It goes beyond conventional approaches to statehood, which describe states as an objectively existing set of tools used to run a country, and critical approaches that understand them as discursive constructs. Instead, this research understands statehood as a result of the relationship between functions and symbols, and will read it through an innovative new methodology, namely a study of state architecture.
The study will focus on state buildings in Africa. African statehood, uncertain and often ambiguous, in many cases profoundly shaped by colonial heritages and post-colonial relationships, is reflected in classical-colonial, modernist-nationalist and post-modern or vernacular styles of architecture. African state buildings reveal the complex interplay of ideas, activities and relationships that together constitute an often uncomfortable statehood. They symbolise the state, embodying and projecting ideas of it through their aesthetics; they enable its concrete functions and processes; and they reveal what citizens think about the state in the ways they describe and negotiate them.
The study is comparative, multi-layered and interdisciplinary. It focuses on seven countries (South Africa, Tanzania, DR Congo, Ethiopia, Ghana, Côte d’Ivoire and Guinea Bissau), exploring politics and statehood on domestic, regional and international levels, and drawing on theory and methods from political science, history, sociology, art and architecture theory. It employs innovative ethnographic methods, including the collection and display of photographs in interactive exhibitions staged in Africa to explore the ways citizens think about and use state buildings.
This project will provide an innovative reading of how African statehood is expressed and how it looks and feels to African citizens. In doing this, it will make a distinctive new contribution to understanding how statehood works everywhere.
Summary
The project will develop a new ethnography of statehood through architecture. It goes beyond conventional approaches to statehood, which describe states as an objectively existing set of tools used to run a country, and critical approaches that understand them as discursive constructs. Instead, this research understands statehood as a result of the relationship between functions and symbols, and will read it through an innovative new methodology, namely a study of state architecture.
The study will focus on state buildings in Africa. African statehood, uncertain and often ambiguous, in many cases profoundly shaped by colonial heritages and post-colonial relationships, is reflected in classical-colonial, modernist-nationalist and post-modern or vernacular styles of architecture. African state buildings reveal the complex interplay of ideas, activities and relationships that together constitute an often uncomfortable statehood. They symbolise the state, embodying and projecting ideas of it through their aesthetics; they enable its concrete functions and processes; and they reveal what citizens think about the state in the ways they describe and negotiate them.
The study is comparative, multi-layered and interdisciplinary. It focuses on seven countries (South Africa, Tanzania, DR Congo, Ethiopia, Ghana, Côte d’Ivoire and Guinea Bissau), exploring politics and statehood on domestic, regional and international levels, and drawing on theory and methods from political science, history, sociology, art and architecture theory. It employs innovative ethnographic methods, including the collection and display of photographs in interactive exhibitions staged in Africa to explore the ways citizens think about and use state buildings.
This project will provide an innovative reading of how African statehood is expressed and how it looks and feels to African citizens. In doing this, it will make a distinctive new contribution to understanding how statehood works everywhere.
Max ERC Funding
1 870 665 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym Asterochronometry
Project Galactic archeology with high temporal resolution
Researcher (PI) Andrea MIGLIO
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Consolidator Grant (CoG), PE9, ERC-2017-COG
Summary The Milky Way is a complex system, with dynamical and chemical substructures, where several competing processes such as mergers, internal secular evolution, gas accretion and gas flows take place. To study in detail how such a giant spiral galaxy was formed and evolved, we need to reconstruct the sequence of its main formation events with high (~10%) temporal resolution.
Asterochronometry will determine accurate, precise ages for tens of thousands of stars in the Galaxy. We will take an approach distinguished by a number of key aspects including, developing novel star-dating methods that fully utilise the potential of individual pulsation modes, coupled with a careful appraisal of systematic uncertainties on age deriving from our limited understanding of stellar physics.
We will then capitalise on opportunities provided by the timely availability of astrometric, spectroscopic, and asteroseismic data to build and data-mine chrono-chemo-dynamical maps of regions of the Milky Way probed by the space missions CoRoT, Kepler, K2, and TESS. We will quantify, by comparison with predictions of chemodynamical models, the relative importance of various processes which play a role in shaping the Galaxy, for example mergers and dynamical processes. We will use chrono-chemical tagging to look for evidence of aggregates, and precise and accurate ages to reconstruct the early star formation history of the Milky Way’s main constituents.
The Asterochronometry project will also provide stringent observational tests of stellar structure and answer some of the long-standing open questions in stellar modelling (e.g. efficiency of transport processes, mass loss on the giant branch, the occurrence of products of coalescence / mass exchange). These tests will improve our ability to determine stellar ages and chemical yields, with wide impact e.g. on the characterisation and ensemble studies of exoplanets, on evolutionary population synthesis, integrated colours and thus ages of galaxies.
Summary
The Milky Way is a complex system, with dynamical and chemical substructures, where several competing processes such as mergers, internal secular evolution, gas accretion and gas flows take place. To study in detail how such a giant spiral galaxy was formed and evolved, we need to reconstruct the sequence of its main formation events with high (~10%) temporal resolution.
Asterochronometry will determine accurate, precise ages for tens of thousands of stars in the Galaxy. We will take an approach distinguished by a number of key aspects including, developing novel star-dating methods that fully utilise the potential of individual pulsation modes, coupled with a careful appraisal of systematic uncertainties on age deriving from our limited understanding of stellar physics.
We will then capitalise on opportunities provided by the timely availability of astrometric, spectroscopic, and asteroseismic data to build and data-mine chrono-chemo-dynamical maps of regions of the Milky Way probed by the space missions CoRoT, Kepler, K2, and TESS. We will quantify, by comparison with predictions of chemodynamical models, the relative importance of various processes which play a role in shaping the Galaxy, for example mergers and dynamical processes. We will use chrono-chemical tagging to look for evidence of aggregates, and precise and accurate ages to reconstruct the early star formation history of the Milky Way’s main constituents.
The Asterochronometry project will also provide stringent observational tests of stellar structure and answer some of the long-standing open questions in stellar modelling (e.g. efficiency of transport processes, mass loss on the giant branch, the occurrence of products of coalescence / mass exchange). These tests will improve our ability to determine stellar ages and chemical yields, with wide impact e.g. on the characterisation and ensemble studies of exoplanets, on evolutionary population synthesis, integrated colours and thus ages of galaxies.
Max ERC Funding
1 958 863 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym ATG9_SOLVES_IT
Project In vitro high resolution reconstitution of autophagosome nucleation and expansion catalyzed byATG9
Researcher (PI) Sharon TOOZE
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Autophagy is a conserved, lysosomal-mediated pathway required for cell homeostasis and survival. It is controlled by the master regulators of energy (AMPK) and growth (TORC1) and mediated by the ATG (autophagy) proteins. Deregulation of autophagy is implicated in cancer, immunity, infection, aging and neurodegeneration. Autophagosomes form and expand using membranes from the secretory and endocytic pathways but how this occurs is not understood. ATG9, the only transmembrane ATG protein traffics through the cell in vesicles, and is essential for rapid initiation and expansion of the membranes which form the autophagosome. Crucially, how ATG9 functions is unknown. I will determine how ATG9 initiates the formation and expansion of the autophagosome by amino acid starvation through a molecular dissection of proteins resident in ATG9 vesicles which modulate the composition and property of the initiating membrane. I will employ high resolution light and electron microscopy to characterize the nucleation of the autophagosome, proximity-specific biotinylation and quantitative Mass Spectrometry to uncover the proteome required for the function of the ATG9, and optogenetic tools to acutely regulate signaling lipids. Lastly, with our tools and knowledge I will develop an in vitro reconstitution system to define at a molecular level how ATG9 vesicle proteins, membranes that interact with ATG9 vesicles, and other accessory ATG components nucleate and form an autophagosome. In vitro reconstitution of autophagosomes will be assayed biochemically, and by correlative light and cryo-EM and cryo-EM tomography, while functional reconstitution of autophagy will be tested by selective cargo recruitment. The development of a reconstituted system and identification proteins and lipids which are key components for autophagosome formation will provide a means to identify a new generation of targets for translational work leading to manipulation of autophagy for disease related therapies.
Summary
Autophagy is a conserved, lysosomal-mediated pathway required for cell homeostasis and survival. It is controlled by the master regulators of energy (AMPK) and growth (TORC1) and mediated by the ATG (autophagy) proteins. Deregulation of autophagy is implicated in cancer, immunity, infection, aging and neurodegeneration. Autophagosomes form and expand using membranes from the secretory and endocytic pathways but how this occurs is not understood. ATG9, the only transmembrane ATG protein traffics through the cell in vesicles, and is essential for rapid initiation and expansion of the membranes which form the autophagosome. Crucially, how ATG9 functions is unknown. I will determine how ATG9 initiates the formation and expansion of the autophagosome by amino acid starvation through a molecular dissection of proteins resident in ATG9 vesicles which modulate the composition and property of the initiating membrane. I will employ high resolution light and electron microscopy to characterize the nucleation of the autophagosome, proximity-specific biotinylation and quantitative Mass Spectrometry to uncover the proteome required for the function of the ATG9, and optogenetic tools to acutely regulate signaling lipids. Lastly, with our tools and knowledge I will develop an in vitro reconstitution system to define at a molecular level how ATG9 vesicle proteins, membranes that interact with ATG9 vesicles, and other accessory ATG components nucleate and form an autophagosome. In vitro reconstitution of autophagosomes will be assayed biochemically, and by correlative light and cryo-EM and cryo-EM tomography, while functional reconstitution of autophagy will be tested by selective cargo recruitment. The development of a reconstituted system and identification proteins and lipids which are key components for autophagosome formation will provide a means to identify a new generation of targets for translational work leading to manipulation of autophagy for disease related therapies.
Max ERC Funding
2 121 055 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym BADASS
Project Barrel Array Diagnostics And SenSing
Researcher (PI) Derek Neil WOOLFSON
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary In array-based sensing, synthetic receptors are appended with chromophores (reporters) and arrayed in various formats. The arrays are treated with analytes that displace the reporter to different extents and the outputs are interpreted by computers to identify the analyte. This has not been demonstrated for arrays of structured de novo designed peptides, which have many advantages over the synthetic small molecules currently used. Through an ERC Advanced Grant, ABEL (340764), we have designed peptides that form novel protein barrels.
We have proof of principle results that show that protein barrels can be used for this kind of array sensing. Through this award, we will employ an expert peptide design chemist to address technical issues needed to translate the protein barrels into a technology platform. They will: make and test many variants of the barrels in array formats; establish the best surfaces and attachment chemistries for barrel arrays; and develop algorithms for analysing the outputs. Second, we would employ an expert in biotechnology innovation and management to conduct customer discovery to understand better the market and potential route to exploitation for our technology.
Summary
In array-based sensing, synthetic receptors are appended with chromophores (reporters) and arrayed in various formats. The arrays are treated with analytes that displace the reporter to different extents and the outputs are interpreted by computers to identify the analyte. This has not been demonstrated for arrays of structured de novo designed peptides, which have many advantages over the synthetic small molecules currently used. Through an ERC Advanced Grant, ABEL (340764), we have designed peptides that form novel protein barrels.
We have proof of principle results that show that protein barrels can be used for this kind of array sensing. Through this award, we will employ an expert peptide design chemist to address technical issues needed to translate the protein barrels into a technology platform. They will: make and test many variants of the barrels in array formats; establish the best surfaces and attachment chemistries for barrel arrays; and develop algorithms for analysing the outputs. Second, we would employ an expert in biotechnology innovation and management to conduct customer discovery to understand better the market and potential route to exploitation for our technology.
Max ERC Funding
150 000 €
Duration
Start date: 2018-06-01, End date: 2019-11-30
Project acronym BAHAMAS
Project A holistic approach to large-scale structure cosmology
Researcher (PI) Ian MCCARTHY
Host Institution (HI) LIVERPOOL JOHN MOORES UNIVERSITY
Call Details Consolidator Grant (CoG), PE9, ERC-2017-COG
Summary The standard model of cosmology, the ɅCDM model, is remarkably successful at explaining a wide range of observations of our Universe. However, it is now being subjected to much more stringent tests than ever before, and recent large-scale structure (LSS) measurements appear to be in tension with its predictions. Is this tension signalling that new physics is required? For example, time-varying dark energy, or perhaps a modified theory of gravity? A contribution from massive neutrinos? Before coming to such bold conclusions we must be certain that all of the important systematic errors in the LSS tests have been accounted for.
Presently, the largest source of systematic uncertainty is from the modelling of complicated astrophysical phenomena associated with galaxy formation. In particular, energetic feedback processes associated with star formation and black hole growth can heat and expel gas from collapsed structures and modify the large-scale distribution of matter. Furthermore, the LSS field is presently separated into many sub-fields (each using different models, that usually neglect feedback), preventing a coherent analysis.
Cosmological hydrodynamical simulations (are the only method which) can follow all the relevant matter components and self-consistently capture the effects of feedback. I have been leading the development of large-scale simulations with physically-motivated prescriptions for feedback that are unrivalled in their ability to reproduce the observed properties of massive systems. With ERC support, I will build a team to exploit these developments, to produce a suite of simulations designed specifically for LSS cosmology applications with the effects of feedback realistically accounted for and which will allow us to unite the different LSS tests. My team and I will make the first self-consistent comparisons with the full range of LSS cosmology tests, and critically assess the evidence for physics beyond the standard model.
Summary
The standard model of cosmology, the ɅCDM model, is remarkably successful at explaining a wide range of observations of our Universe. However, it is now being subjected to much more stringent tests than ever before, and recent large-scale structure (LSS) measurements appear to be in tension with its predictions. Is this tension signalling that new physics is required? For example, time-varying dark energy, or perhaps a modified theory of gravity? A contribution from massive neutrinos? Before coming to such bold conclusions we must be certain that all of the important systematic errors in the LSS tests have been accounted for.
Presently, the largest source of systematic uncertainty is from the modelling of complicated astrophysical phenomena associated with galaxy formation. In particular, energetic feedback processes associated with star formation and black hole growth can heat and expel gas from collapsed structures and modify the large-scale distribution of matter. Furthermore, the LSS field is presently separated into many sub-fields (each using different models, that usually neglect feedback), preventing a coherent analysis.
Cosmological hydrodynamical simulations (are the only method which) can follow all the relevant matter components and self-consistently capture the effects of feedback. I have been leading the development of large-scale simulations with physically-motivated prescriptions for feedback that are unrivalled in their ability to reproduce the observed properties of massive systems. With ERC support, I will build a team to exploit these developments, to produce a suite of simulations designed specifically for LSS cosmology applications with the effects of feedback realistically accounted for and which will allow us to unite the different LSS tests. My team and I will make the first self-consistent comparisons with the full range of LSS cosmology tests, and critically assess the evidence for physics beyond the standard model.
Max ERC Funding
1 725 982 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BANK-LASH
Project Banks, Popular Backlash, and the Post-Crisis Politics of Financial Regulation
Researcher (PI) Pepper CULPEPPER
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH2, ERC-2017-ADG
Summary Driven by public outrage at bank bailouts during the financial crisis, many governments have since then tried to rewrite the rules governing finance. Yet the anger provoked by the bailouts has not subsided. In Europe and in North America, citizen fury against bankers continues to structure battles over financial regulation. It also affects broader perceptions of fairness in the political system and feeds anti-elite populism. Scholars of political economy have chronicled the clashes between states and large banks, and scholars of political behaviour have noted the failings of governments to respond to the will of democratic majorities. No one has explored the feedback loops between policies regulating banks, the public anger towards banking elites, and media discussions of finance. BANK-LASH fills this gap, using a cutting-edge, high-risk research design comprising three work packages to link policy outcomes with public opinion and media coverage. BANK-LASH 1will collect the first cross-nationally comparable data on public attitudes towards finance, including a series of innovative survey experiments that assess how different media frames affect emotions and preferences. BANK-LASH 2 will use supervised machine learning to measure the overall media environment of these countries for the last decade, assessing how much different national media systems discuss finance and how different national media systems frame the discussion of banking regulation. BANK-LASH 3 links the micro-level study of attitudes and macro-level media coverage with episodes of policy intervention in each country in order to determine when democracies have imposed significant new regulation on their banks. By harnessing these different intellectual tools within a single study, BANK-LASH brings together the concerns of political economy, behavioral research and policy studies to untangle the relationship between banks, public policy, and anti-elite sentiment in the wake of the financial crisis.
Summary
Driven by public outrage at bank bailouts during the financial crisis, many governments have since then tried to rewrite the rules governing finance. Yet the anger provoked by the bailouts has not subsided. In Europe and in North America, citizen fury against bankers continues to structure battles over financial regulation. It also affects broader perceptions of fairness in the political system and feeds anti-elite populism. Scholars of political economy have chronicled the clashes between states and large banks, and scholars of political behaviour have noted the failings of governments to respond to the will of democratic majorities. No one has explored the feedback loops between policies regulating banks, the public anger towards banking elites, and media discussions of finance. BANK-LASH fills this gap, using a cutting-edge, high-risk research design comprising three work packages to link policy outcomes with public opinion and media coverage. BANK-LASH 1will collect the first cross-nationally comparable data on public attitudes towards finance, including a series of innovative survey experiments that assess how different media frames affect emotions and preferences. BANK-LASH 2 will use supervised machine learning to measure the overall media environment of these countries for the last decade, assessing how much different national media systems discuss finance and how different national media systems frame the discussion of banking regulation. BANK-LASH 3 links the micro-level study of attitudes and macro-level media coverage with episodes of policy intervention in each country in order to determine when democracies have imposed significant new regulation on their banks. By harnessing these different intellectual tools within a single study, BANK-LASH brings together the concerns of political economy, behavioral research and policy studies to untangle the relationship between banks, public policy, and anti-elite sentiment in the wake of the financial crisis.
Max ERC Funding
2 454 198 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym BHSandAADS
Project The Black Hole Stability Problem and the Analysis of asymptotically anti-de Sitter spacetimes
Researcher (PI) Gustav HOLZEGEL
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), PE1, ERC-2017-COG
Summary The present proposal is concerned with the analysis of the Einstein equations of general relativity, a non-linear system of geometric partial differential equations describing phenomena from the bending of light to the dynamics of black holes. The theory has recently been confirmed in a spectacular fashion with the detection of gravitational waves.
The main objective of the proposal is to consolidate my research group based at Imperial College by developing novel mathematical techniques that will fundamentally advance our understanding of the Einstein equations. Here the proposal builds on mathematical progress in the last decade resulting from achievements in the fields of partial differential equations, differential geometry, microlocal analysis and theoretical physics.
The Black Hole Stability Problem
A major open problem in general relativity is to prove the non-linear stability of the Kerr family of black hole solutions. Recent advances in the problem of linear stability made by the PI and collaborators open the door to finally address a complete resolution of the stability problem. In this proposal we will describe what non-linear techniques will need to be developed in addition to achieve this goal. A successful resolution of this program would conclude an almost 50-year-old problem.
The Analysis of asymptotically anti-de Sitter (aAdS) spacetimes
We propose to prove the stability of pure AdS if so-called dissipative boundary conditions are imposed at the boundary. This result would align with the well-known stability results for the other maximally-symmetric solutions of the Einstein equations, Minkowski space and de Sitter space.
As a second -- related -- theme we propose to formulate and prove a unique continuation principle for the full non-linear Einstein equations on aAdS spacetimes. This goal will be achieved by advancing techniques that have recently been developed by the PI and collaborators for non-linear wave equations on aAdS spacetimes.
Summary
The present proposal is concerned with the analysis of the Einstein equations of general relativity, a non-linear system of geometric partial differential equations describing phenomena from the bending of light to the dynamics of black holes. The theory has recently been confirmed in a spectacular fashion with the detection of gravitational waves.
The main objective of the proposal is to consolidate my research group based at Imperial College by developing novel mathematical techniques that will fundamentally advance our understanding of the Einstein equations. Here the proposal builds on mathematical progress in the last decade resulting from achievements in the fields of partial differential equations, differential geometry, microlocal analysis and theoretical physics.
The Black Hole Stability Problem
A major open problem in general relativity is to prove the non-linear stability of the Kerr family of black hole solutions. Recent advances in the problem of linear stability made by the PI and collaborators open the door to finally address a complete resolution of the stability problem. In this proposal we will describe what non-linear techniques will need to be developed in addition to achieve this goal. A successful resolution of this program would conclude an almost 50-year-old problem.
The Analysis of asymptotically anti-de Sitter (aAdS) spacetimes
We propose to prove the stability of pure AdS if so-called dissipative boundary conditions are imposed at the boundary. This result would align with the well-known stability results for the other maximally-symmetric solutions of the Einstein equations, Minkowski space and de Sitter space.
As a second -- related -- theme we propose to formulate and prove a unique continuation principle for the full non-linear Einstein equations on aAdS spacetimes. This goal will be achieved by advancing techniques that have recently been developed by the PI and collaborators for non-linear wave equations on aAdS spacetimes.
Max ERC Funding
1 999 755 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BIGlobal
Project Firm Growth and Market Power in the Global Economy
Researcher (PI) Swati DHINGRA
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), SH1, ERC-2017-STG
Summary According to the European Commission, to design effective policies for ensuring a “more dynamic, innovative and competitive” economy, it is essential to understand the decision-making process of firms as they differ a lot in terms of their capacities and policy responses (EC 2007). The objective of my future research is to provide such an analysis. BIGlobal will examine the sources of firm growth and market power to provide new insights into welfare and policy in a globalized world.
Much of analysis of the global economy is set in the paradigm of markets that allocate resources efficiently and there is little role for policy. But big firms dominate economic activity, especially across borders. How do firms grow and what is the effect of their market power on the welfare impact of globalization? This project will determine how firm decisions matter for the aggregate gains from globalization, the division of these gains across different individuals and their implications for policy design.
Over the next five years, I will incorporate richer firms behaviour in models of international trade to understand how trade and industrial policies impact the growth process, especially in less developed markets. The specific questions I will address include: how can trade and competition policy ensure consumers benefit from globalization when firms engaged in international trade have market power, how do domestic policies to encourage agribusiness firms affect the extent to which small farmers gain from trade, how do industrial policies affect firm growth through input linkages, and what is the impact of banking globalization on the growth of firms in the real sector.
Each project will combine theoretical work with rich data from developing economies to expand the frontier of knowledge on trade and industrial policy, and to provide a basis for informed policymaking.
Summary
According to the European Commission, to design effective policies for ensuring a “more dynamic, innovative and competitive” economy, it is essential to understand the decision-making process of firms as they differ a lot in terms of their capacities and policy responses (EC 2007). The objective of my future research is to provide such an analysis. BIGlobal will examine the sources of firm growth and market power to provide new insights into welfare and policy in a globalized world.
Much of analysis of the global economy is set in the paradigm of markets that allocate resources efficiently and there is little role for policy. But big firms dominate economic activity, especially across borders. How do firms grow and what is the effect of their market power on the welfare impact of globalization? This project will determine how firm decisions matter for the aggregate gains from globalization, the division of these gains across different individuals and their implications for policy design.
Over the next five years, I will incorporate richer firms behaviour in models of international trade to understand how trade and industrial policies impact the growth process, especially in less developed markets. The specific questions I will address include: how can trade and competition policy ensure consumers benefit from globalization when firms engaged in international trade have market power, how do domestic policies to encourage agribusiness firms affect the extent to which small farmers gain from trade, how do industrial policies affect firm growth through input linkages, and what is the impact of banking globalization on the growth of firms in the real sector.
Each project will combine theoretical work with rich data from developing economies to expand the frontier of knowledge on trade and industrial policy, and to provide a basis for informed policymaking.
Max ERC Funding
1 313 103 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym BIOELE
Project Functional Biointerface Elements via Biomicrofabrication
Researcher (PI) YANYAN HUANG
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Imagine in the future, bionic devices that can merge device and biology which can perform molecular sensing, simulate the functions of grown-organs in the lab, or even replace or improve parts of the organ as smart implants? Such bionic devices is set to transform a number of emerging fields, including synthetic biotechnology, regenerative medicine, and human-machine interfaces. Merging biology and man-made devices also mean that materials of vastly different properties need to be seamlessly integrated. One of the promising strategies to manufacture these devices is through 3D printing, which can structure different materials into functional devices, and simultaneously intertwining with biological matters. However, the requirement for biocompatibility, miniaturisation, portability and high performance in bionic devices pushes the current limit for micro- nanoscale 3D printing.
This proposal aims to develop a new multi-material, cross-length scale biofabrication platform, with specific focus in making future smart bionic devices. In particular, a new mechanism is proposed to smoothly interface diverse classes of materials, such that an active device component can be ‘shrunk’ into a single small fibre. This mechanism utilises the polymeric materials’ flow property under applied tensile forces, and their abilities to combine with other classes of materials, such as semi-conductors and metals to impart further functionalities. This smart device fibre can be custom-made to perform different tasks, such as light emission or energy harvesting, to bridge 3D bioprinting for the future creation of high performance, compact, and cell-friendly bionic and medical devices.
Summary
Imagine in the future, bionic devices that can merge device and biology which can perform molecular sensing, simulate the functions of grown-organs in the lab, or even replace or improve parts of the organ as smart implants? Such bionic devices is set to transform a number of emerging fields, including synthetic biotechnology, regenerative medicine, and human-machine interfaces. Merging biology and man-made devices also mean that materials of vastly different properties need to be seamlessly integrated. One of the promising strategies to manufacture these devices is through 3D printing, which can structure different materials into functional devices, and simultaneously intertwining with biological matters. However, the requirement for biocompatibility, miniaturisation, portability and high performance in bionic devices pushes the current limit for micro- nanoscale 3D printing.
This proposal aims to develop a new multi-material, cross-length scale biofabrication platform, with specific focus in making future smart bionic devices. In particular, a new mechanism is proposed to smoothly interface diverse classes of materials, such that an active device component can be ‘shrunk’ into a single small fibre. This mechanism utilises the polymeric materials’ flow property under applied tensile forces, and their abilities to combine with other classes of materials, such as semi-conductors and metals to impart further functionalities. This smart device fibre can be custom-made to perform different tasks, such as light emission or energy harvesting, to bridge 3D bioprinting for the future creation of high performance, compact, and cell-friendly bionic and medical devices.
Max ERC Funding
1 486 938 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BioMagMat
Project Functional magnetic materials for biomedical applications
Researcher (PI) Russell COWBURN
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary A range of new medical therapies and diagnostics based on magnetic nanomaterials have recently been proposed. These include cancer therapies, stem cell therapies, microfluidic diagnostic devices and immunoassays. However, very few biotechnology magnetic nanomaterials are currently available commercially; most investigators fabricate their own. This is a serious limitation to the development of this emerging area within nanomedicine. This proposal aims to transfer a number of magnetic nanomaterials from the University physics laboratory where they were developed as part of an ERC AdG grant into an existing small company where they can then be made available to researchers across the world on a commercial basis.
Summary
A range of new medical therapies and diagnostics based on magnetic nanomaterials have recently been proposed. These include cancer therapies, stem cell therapies, microfluidic diagnostic devices and immunoassays. However, very few biotechnology magnetic nanomaterials are currently available commercially; most investigators fabricate their own. This is a serious limitation to the development of this emerging area within nanomedicine. This proposal aims to transfer a number of magnetic nanomaterials from the University physics laboratory where they were developed as part of an ERC AdG grant into an existing small company where they can then be made available to researchers across the world on a commercial basis.
Max ERC Funding
149 997 €
Duration
Start date: 2017-12-01, End date: 2019-05-31
Project acronym BioMusic
Project BioMusical Instrument
Researcher (PI) Atau TANAKA
Host Institution (HI) GOLDSMITHS' COLLEGE
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary The BioMusical Instrument project will create a product prototype of a wearable digital musical instrument based on biosignals from the performer’s muscles. It will allow musicians to perform electronic sounds from bodily gestures. Muscle tension will be sensed by innovative new electromyogram sensing hardware packaged in an ergonomic housing and coupled to wireless communication. Sophisticated machine learning methods developed in the ERC MetaGesture Music and H2020 Rapid-Mix projects will track musician gesture and create meaningful relationships with computer-based synthesized sound. The BioMusical Instrument will be marketed to three distinct application areas: First, it will enable “hands-free” performance of electronic music. Second, the visualization of body states will make it a useful training tool in traditional musical instrument pedagogy. Finally, the sonification of physiological signals will allow the instrument to be used in the health sector in physical rehabilitation exercises. The BioMusical Instrument will be the first product to combine EMG sensing, machine learning, and advanced audio signal processing. We have identified partners in the biomedical hardware field, the music technology industry, and rehabilitation research with whom we will benchmark and evaluate the product prototype.
Summary
The BioMusical Instrument project will create a product prototype of a wearable digital musical instrument based on biosignals from the performer’s muscles. It will allow musicians to perform electronic sounds from bodily gestures. Muscle tension will be sensed by innovative new electromyogram sensing hardware packaged in an ergonomic housing and coupled to wireless communication. Sophisticated machine learning methods developed in the ERC MetaGesture Music and H2020 Rapid-Mix projects will track musician gesture and create meaningful relationships with computer-based synthesized sound. The BioMusical Instrument will be marketed to three distinct application areas: First, it will enable “hands-free” performance of electronic music. Second, the visualization of body states will make it a useful training tool in traditional musical instrument pedagogy. Finally, the sonification of physiological signals will allow the instrument to be used in the health sector in physical rehabilitation exercises. The BioMusical Instrument will be the first product to combine EMG sensing, machine learning, and advanced audio signal processing. We have identified partners in the biomedical hardware field, the music technology industry, and rehabilitation research with whom we will benchmark and evaluate the product prototype.
Max ERC Funding
149 901 €
Duration
Start date: 2018-05-01, End date: 2019-10-31
Project acronym BioNet
Project Dynamical Redesign of Biomolecular Networks
Researcher (PI) Edina ROSTA
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary Enzymes created by Nature are still more selective and can be orders of magnitude more efficient than man-made catalysts, in spite of recent advances in the design of de novo catalysts and in enzyme redesign. The optimal engineering of either small molecular or of complex biological catalysts requires both (i) accurate quantitative computational methods capable of a priori assessing catalytic efficiency, and (ii) molecular design principles and corresponding algorithms to achieve, understand and control biomolecular catalytic function and mechanisms. Presently, the computational design of biocatalysts is challenging due to the need for accurate yet computationally-intensive quantum mechanical calculations of bond formation and cleavage, as well as to the requirement for proper statistical sampling over very many degrees of freedom. Pioneering enhanced sampling and analysis methods have been developed to address crucial challenges bridging the gap between the available simulation length and the biologically relevant timescales. However, biased simulations do not generally permit the direct calculation of kinetic information. Recently, I and others pioneered simulation tools that can enable not only accurate calculations of free energies, but also of the intrinsic molecular kinetics and the underlying reaction mechanisms as well. I propose to develop more robust, automatic, and system-tailored sampling algorithms that are optimal in each case. I will use our kinetics-based methods to develop a novel theoretical framework to address catalytic efficiency and to establish molecular design principles to key design problems for new bio-inspired nanocatalysts, and to identify and characterize small molecule modulators of enzyme activity. This is a highly interdisciplinary project that will enable fundamental advances in molecular simulations and will unveil the physical principles that will lead to design and control of catalysis with Nature-like efficiency.
Summary
Enzymes created by Nature are still more selective and can be orders of magnitude more efficient than man-made catalysts, in spite of recent advances in the design of de novo catalysts and in enzyme redesign. The optimal engineering of either small molecular or of complex biological catalysts requires both (i) accurate quantitative computational methods capable of a priori assessing catalytic efficiency, and (ii) molecular design principles and corresponding algorithms to achieve, understand and control biomolecular catalytic function and mechanisms. Presently, the computational design of biocatalysts is challenging due to the need for accurate yet computationally-intensive quantum mechanical calculations of bond formation and cleavage, as well as to the requirement for proper statistical sampling over very many degrees of freedom. Pioneering enhanced sampling and analysis methods have been developed to address crucial challenges bridging the gap between the available simulation length and the biologically relevant timescales. However, biased simulations do not generally permit the direct calculation of kinetic information. Recently, I and others pioneered simulation tools that can enable not only accurate calculations of free energies, but also of the intrinsic molecular kinetics and the underlying reaction mechanisms as well. I propose to develop more robust, automatic, and system-tailored sampling algorithms that are optimal in each case. I will use our kinetics-based methods to develop a novel theoretical framework to address catalytic efficiency and to establish molecular design principles to key design problems for new bio-inspired nanocatalysts, and to identify and characterize small molecule modulators of enzyme activity. This is a highly interdisciplinary project that will enable fundamental advances in molecular simulations and will unveil the physical principles that will lead to design and control of catalysis with Nature-like efficiency.
Max ERC Funding
1 499 999 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym BOTFIND
Project BOTFIND: Finding Bots, Detect Harassing Automation, and Restoring Trust in Social Media Civic Engagement
Researcher (PI) Philip Edward HOWARD
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary Social media platforms have become tools for manipulating public opinion during elections. In particular, “bots” are algorithms that automate rapid, widespread interactions with citizens, often with deleterious effects on public knowledge of science, social inequality, and public policy options. Through the ERC COMPROP Consolidator award, researchers have demonstrated that even simple bots (i) effectively keep negative messages and fake news in circulation longer (ii) target journalists and civil society groups and (iii) operate with little oversight from social media firms. Such algorithms have negative consequences both for public trust in technology innovation and for the quality of public deliberation in Europe’s democracies. ERC researchers have been able to identify highly automated, politically-manipulative social media accounts post hoc. This project will allow researchers to take what we have learned and produce an online tool that allows people to evaluate suspicious social media accounts. Most social media platforms are slow to address troll and bot activity, so this innovative tool will put ERC research into public service in Europe—and around the world.
Summary
Social media platforms have become tools for manipulating public opinion during elections. In particular, “bots” are algorithms that automate rapid, widespread interactions with citizens, often with deleterious effects on public knowledge of science, social inequality, and public policy options. Through the ERC COMPROP Consolidator award, researchers have demonstrated that even simple bots (i) effectively keep negative messages and fake news in circulation longer (ii) target journalists and civil society groups and (iii) operate with little oversight from social media firms. Such algorithms have negative consequences both for public trust in technology innovation and for the quality of public deliberation in Europe’s democracies. ERC researchers have been able to identify highly automated, politically-manipulative social media accounts post hoc. This project will allow researchers to take what we have learned and produce an online tool that allows people to evaluate suspicious social media accounts. Most social media platforms are slow to address troll and bot activity, so this innovative tool will put ERC research into public service in Europe—and around the world.
Max ERC Funding
149 921 €
Duration
Start date: 2017-08-01, End date: 2019-01-31
Project acronym Brain2Bee
Project How dopamine affects social and motor ability - from the human brain to the honey bee
Researcher (PI) Jennifer COOK
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), SH4, ERC-2017-STG
Summary Parkinson’s Disease is usually characterised by motor impairment, and Autism by social difficulties. However, the co-occurrence of social and motor symptoms is critically underappreciated; Parkinson’s Disease patients exhibit social symptoms, and motor difficulties are common in Autism. At present, the biological basis of co-occurring social and motor impairment is unclear. Notably, both Autism and Parkinson’s Disease have been associated with dopamine (DA) system dysfunction and, in non-clinical populations, DA has been linked with social and motor ability. These disparate strands of research have never been combined.
Brain2Bee will use psychopharmacology in typical individuals to develop a model of the relationship between DA, Motor, and Social behaviour – the DAMS model. Brain2Bee will use sophisticated genetic analysis to refine DAMS, elucidating the contributions of DA-related biological processes (e.g. synthesis, receptor expression, reuptake). Brain2Bee will then test DAMS’ predictions in patients with Parkinson’s Disease and Autism. Finally, Brain2Bee will investigate whether DAMS generalises to an animal model, the honey bee, enabling future research to unpack the cascade of biological events linking DA-related genes with social and motor behaviour.
Brain2Bee will unite disparate research fields and establish the DAMS model. The causal structure of DAMS will identify the impact of dopaminergic variation on social and motor function in clinical and non-clinical populations, elucidating, for example, whether social difficulties in Parkinson’s Disease are a product of the motor difficulties caused by DA dysfunction. DAMS’ biological specificity will provide unique insight into the DA-related processes linking social and motor difficulties in Autism. Thus, Brain2Bee will determine the type of dopaminergic drugs (e.g. receptor blockers, reuptake inhibitors) most likely to improve both social and motor function.
Summary
Parkinson’s Disease is usually characterised by motor impairment, and Autism by social difficulties. However, the co-occurrence of social and motor symptoms is critically underappreciated; Parkinson’s Disease patients exhibit social symptoms, and motor difficulties are common in Autism. At present, the biological basis of co-occurring social and motor impairment is unclear. Notably, both Autism and Parkinson’s Disease have been associated with dopamine (DA) system dysfunction and, in non-clinical populations, DA has been linked with social and motor ability. These disparate strands of research have never been combined.
Brain2Bee will use psychopharmacology in typical individuals to develop a model of the relationship between DA, Motor, and Social behaviour – the DAMS model. Brain2Bee will use sophisticated genetic analysis to refine DAMS, elucidating the contributions of DA-related biological processes (e.g. synthesis, receptor expression, reuptake). Brain2Bee will then test DAMS’ predictions in patients with Parkinson’s Disease and Autism. Finally, Brain2Bee will investigate whether DAMS generalises to an animal model, the honey bee, enabling future research to unpack the cascade of biological events linking DA-related genes with social and motor behaviour.
Brain2Bee will unite disparate research fields and establish the DAMS model. The causal structure of DAMS will identify the impact of dopaminergic variation on social and motor function in clinical and non-clinical populations, elucidating, for example, whether social difficulties in Parkinson’s Disease are a product of the motor difficulties caused by DA dysfunction. DAMS’ biological specificity will provide unique insight into the DA-related processes linking social and motor difficulties in Autism. Thus, Brain2Bee will determine the type of dopaminergic drugs (e.g. receptor blockers, reuptake inhibitors) most likely to improve both social and motor function.
Max ERC Funding
1 783 147 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym C-POS
Project Children's Palliative care Outcome Scale
Researcher (PI) RICHARD HARDING-SWALE
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Consolidator Grant (CoG), LS7, ERC-2017-COG
Summary Person-centred care is a core health value of modern health care. The overarching aim of C-POS (Children's Palliative care Outcome Scale) is to develop and validate a person-centred outcome measure for children, young people (CYP) and their families affected by life-limiting & life-threatening conditions (LLLTC). International systematic reviews, and clinical guides have highlighted that currently none exists. This novel study will draw together a unique multidisciplinary collaboration to pioneer new methods, enabling engagement in outcome measurement by a population currently neglected in research.
C-POS builds on an international program of work. The sequential mixed methods will collect substantive data through objectives to determine i) the primary concerns of CYP and their families affected by LLLTC & preferences to enable participation in ethical person-centred measurement (n=50); ii) view of clinicians and commissioners on optimal implementation methods (national Delphi study); iii) a systematic review of current data collection tools for CYP regardless of condition; iv) integration of objectives i-iii to develop a tool (C-POS) with face and content validity; v) cognitive interviews to determine interpretability (n=40); vi) longitudinal cohort of CYP and families to determine test-retest reliability, internal consistency, construct validity and responsiveness (n=151); vii) development of resources for routine implementation viii) translation and interpretation protocols for international adoption.
C-POS is an ambitious study that, for the first time, will enable measurement of person-centred outcomes of care. This will be a turning point in the scientific study of a hitherto neglected group.
Summary
Person-centred care is a core health value of modern health care. The overarching aim of C-POS (Children's Palliative care Outcome Scale) is to develop and validate a person-centred outcome measure for children, young people (CYP) and their families affected by life-limiting & life-threatening conditions (LLLTC). International systematic reviews, and clinical guides have highlighted that currently none exists. This novel study will draw together a unique multidisciplinary collaboration to pioneer new methods, enabling engagement in outcome measurement by a population currently neglected in research.
C-POS builds on an international program of work. The sequential mixed methods will collect substantive data through objectives to determine i) the primary concerns of CYP and their families affected by LLLTC & preferences to enable participation in ethical person-centred measurement (n=50); ii) view of clinicians and commissioners on optimal implementation methods (national Delphi study); iii) a systematic review of current data collection tools for CYP regardless of condition; iv) integration of objectives i-iii to develop a tool (C-POS) with face and content validity; v) cognitive interviews to determine interpretability (n=40); vi) longitudinal cohort of CYP and families to determine test-retest reliability, internal consistency, construct validity and responsiveness (n=151); vii) development of resources for routine implementation viii) translation and interpretation protocols for international adoption.
C-POS is an ambitious study that, for the first time, will enable measurement of person-centred outcomes of care. This will be a turning point in the scientific study of a hitherto neglected group.
Max ERC Funding
1 799 820 €
Duration
Start date: 2018-09-01, End date: 2023-02-28
Project acronym CAD4FACE
Project Computational modelling for personalised treatment of congenital craniofacial abnormalities
Researcher (PI) Silvia SCHIEVANO
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Craniosynostosis is a group of congenital craniofacial abnormalities consisting in premature fusion (ossification) of one or more cranial sutures during infancy. This results in growth restriction perpendicular to the axis of the suture and promotes growth parallel to it, causing physical deformation of the cranial and facial skeleton, as well as distortion of the underling brain, with potential detrimental effects on its function: visual loss, sleep apnoea, feeding and breathing difficulties, and neurodevelopment delay. Conventional management of craniosynostosis involves craniofacial surgery delivered by excision of the prematurely fused sutures, multiple bone cuts and remodelling of the skull deformities, with the primary goal of improving patient function, while normalising their appearance. Cranial vault remodelling surgical procedures, aided by internal and external devices, have proven functionally and aesthetically effective in correcting skull deformities, but final results remain unpredictable and often suboptimal because of an incomplete understanding of the biomechanical interaction between the device and the skull.
The overall aim of this grant is to create a validated and robust computational framework that integrates patient information and device design to deliver personalised care in paediatric craniofacial surgery in order to improve clinical outcomes. A virtual model of the infant skull with craniosynostosis, including viscoelastic properties and mechano-biology regulation, will be developed to simulate device implantation and performance over time, and will be validated using clinical data from patient populations treated with current devices. Bespoke new devices will be designed allowing for pre-programmed 3D shapes to be delivered with continuous force during the implantation period. Patient specific skull models will be used to virtually test and optimise the personalised devices, and to tailor the surgical approach for each individual case.
Summary
Craniosynostosis is a group of congenital craniofacial abnormalities consisting in premature fusion (ossification) of one or more cranial sutures during infancy. This results in growth restriction perpendicular to the axis of the suture and promotes growth parallel to it, causing physical deformation of the cranial and facial skeleton, as well as distortion of the underling brain, with potential detrimental effects on its function: visual loss, sleep apnoea, feeding and breathing difficulties, and neurodevelopment delay. Conventional management of craniosynostosis involves craniofacial surgery delivered by excision of the prematurely fused sutures, multiple bone cuts and remodelling of the skull deformities, with the primary goal of improving patient function, while normalising their appearance. Cranial vault remodelling surgical procedures, aided by internal and external devices, have proven functionally and aesthetically effective in correcting skull deformities, but final results remain unpredictable and often suboptimal because of an incomplete understanding of the biomechanical interaction between the device and the skull.
The overall aim of this grant is to create a validated and robust computational framework that integrates patient information and device design to deliver personalised care in paediatric craniofacial surgery in order to improve clinical outcomes. A virtual model of the infant skull with craniosynostosis, including viscoelastic properties and mechano-biology regulation, will be developed to simulate device implantation and performance over time, and will be validated using clinical data from patient populations treated with current devices. Bespoke new devices will be designed allowing for pre-programmed 3D shapes to be delivered with continuous force during the implantation period. Patient specific skull models will be used to virtually test and optimise the personalised devices, and to tailor the surgical approach for each individual case.
Max ERC Funding
1 498 772 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CatDT
Project Categorified Donaldson-Thomas Theory
Researcher (PI) Nicholas David James (Ben) DAVISON
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), PE1, ERC-2017-STG
Summary According to string theory, coherent sheaves on three-dimensional Calabi-Yau spaces encode fundamental properties of the universe. On the other hand, they have a purely mathematical definition. We will develop and use the new field of categorified Donaldson-Thomas (DT) theory, which counts these objects. Via the powerful perspective of noncommutative algebraic geometry, this theory has found application in recent years in a wide variety of contexts, far from classical algebraic geometry.
Categorification has proved tremendously powerful across mathematics, for example the entire subject of algebraic topology was started by the categorification of Betti numbers. The categorification of DT theory leads to the replacement of the numbers of DT theory by vector spaces, of which these numbers are the dimensions. In the area of categorified DT theory we have been able to prove fundamental conjectures upgrading the famous wall crossing formula and integrality conjecture in noncommutative algebraic geometry. The first three projects involve applications of the resulting new subject:
1. Complete the categorification of quantum cluster algebras, proving the strong positivity conjecture.
2. Use cohomological DT theory to prove the outstanding conjectures in the nonabelian Hodge theory of Riemann surfaces, and the subject of Higgs bundles.
3. Prove the comparison conjecture, realising the study of Yangian quantum groups and the geometric representation theory around them as a special case of DT theory.
The final objective involves coming full circle, and applying our recent advances in noncommutative DT theory to the original theory that united string theory with algebraic geometry:
4. Develop a generalised theory of categorified DT theory extending our results in noncommutative DT theory, proving the integrality conjecture for categories of coherent sheaves on Calabi-Yau 3-folds.
Summary
According to string theory, coherent sheaves on three-dimensional Calabi-Yau spaces encode fundamental properties of the universe. On the other hand, they have a purely mathematical definition. We will develop and use the new field of categorified Donaldson-Thomas (DT) theory, which counts these objects. Via the powerful perspective of noncommutative algebraic geometry, this theory has found application in recent years in a wide variety of contexts, far from classical algebraic geometry.
Categorification has proved tremendously powerful across mathematics, for example the entire subject of algebraic topology was started by the categorification of Betti numbers. The categorification of DT theory leads to the replacement of the numbers of DT theory by vector spaces, of which these numbers are the dimensions. In the area of categorified DT theory we have been able to prove fundamental conjectures upgrading the famous wall crossing formula and integrality conjecture in noncommutative algebraic geometry. The first three projects involve applications of the resulting new subject:
1. Complete the categorification of quantum cluster algebras, proving the strong positivity conjecture.
2. Use cohomological DT theory to prove the outstanding conjectures in the nonabelian Hodge theory of Riemann surfaces, and the subject of Higgs bundles.
3. Prove the comparison conjecture, realising the study of Yangian quantum groups and the geometric representation theory around them as a special case of DT theory.
The final objective involves coming full circle, and applying our recent advances in noncommutative DT theory to the original theory that united string theory with algebraic geometry:
4. Develop a generalised theory of categorified DT theory extending our results in noncommutative DT theory, proving the integrality conjecture for categories of coherent sheaves on Calabi-Yau 3-folds.
Max ERC Funding
1 239 435 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym CATENA
Project Commentary Manuscripts in the History and Transmission of the Greek New Testament
Researcher (PI) HUGH ALEXANDER GERVASE HOUGHTON
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Consolidator Grant (CoG), SH5, ERC-2017-COG
Summary Manuscripts which contain commentary alongside the biblical text are some of the most significant and complicated witnesses to the Greek New Testament. First compiled around the fifth century, the commentaries consist of chains of extracts from earlier writers (catenae). These manuscripts became the main way in which users encountered both the text and the interpretation of the New Testament; revised editions produced in the eleventh and twelfth centuries continued to hold the field until the invention of printing.
Recent advances have shown that commentary manuscripts play a much more important role than previously thought in the history of the New Testament. The number of known copies has increased by 20% following a preliminary survey last year which identified 100 additional manuscripts. A recent comprehensive textual analysis of the Catholic Epistles indicated that all witnesses from the third generation onwards (some 72% of the total) could stem from the biblical text of three commentary manuscripts occupying a key place in the textual tradition. Investigation of the catena on Mark has shown that the selection of extracts could offer a new approach to understanding the theology of the compilers and the transmission of the commentaries.
The CATENA Project will use digital tools to undertake a fuller examination of Greek New Testament commentary manuscripts than has ever before been possible. This will include an exhaustive survey to establish a complete list of witnesses; a database of extracts to examine their principles of organisation and relationships; and electronic transcriptions to determine their role in the transmission of the biblical text. The results will have a direct impact on editions of the Greek New Testament, providing a new understanding of its text and reception and leading to broader insights into history and culture.
Summary
Manuscripts which contain commentary alongside the biblical text are some of the most significant and complicated witnesses to the Greek New Testament. First compiled around the fifth century, the commentaries consist of chains of extracts from earlier writers (catenae). These manuscripts became the main way in which users encountered both the text and the interpretation of the New Testament; revised editions produced in the eleventh and twelfth centuries continued to hold the field until the invention of printing.
Recent advances have shown that commentary manuscripts play a much more important role than previously thought in the history of the New Testament. The number of known copies has increased by 20% following a preliminary survey last year which identified 100 additional manuscripts. A recent comprehensive textual analysis of the Catholic Epistles indicated that all witnesses from the third generation onwards (some 72% of the total) could stem from the biblical text of three commentary manuscripts occupying a key place in the textual tradition. Investigation of the catena on Mark has shown that the selection of extracts could offer a new approach to understanding the theology of the compilers and the transmission of the commentaries.
The CATENA Project will use digital tools to undertake a fuller examination of Greek New Testament commentary manuscripts than has ever before been possible. This will include an exhaustive survey to establish a complete list of witnesses; a database of extracts to examine their principles of organisation and relationships; and electronic transcriptions to determine their role in the transmission of the biblical text. The results will have a direct impact on editions of the Greek New Testament, providing a new understanding of its text and reception and leading to broader insights into history and culture.
Max ERC Funding
1 756 928 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym CCLAD
Project The Politics of Climate Change Loss and Damage
Researcher (PI) Lisa VANHALA
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), SH2, ERC-2017-STG
Summary The way in which normative principles (“norms”) matter in world politics is now a key area of international relations research. Yet we have limited understanding of why some norms emerge and gain traction globally whereas others do not. The politics of loss and damage related to climate change offers a paradigm case for studying the emergence of - and contestation over - norms, specifically justice norms. The parties to the UN Framework Convention on Climate Change (UNFCCC) have recently acknowledged that there is an urgent need to address the inevitable, irreversible consequences of climate change. Yet within this highly contested policy area - which includes work on disaster risk reduction; non-economic losses (e.g. loss of sovereignty); finance and climate-related migration - there is little consensus about what loss and damage policy means or what it requires of the global community, of states and of the (current and future) victims of climate change. Relying on an interdisciplinary theoretical approach and an ethnographic methodology that traverses scales of governance, my project - The Politics of Climate Change Loss and Damage (CCLAD) - will elucidate the conditions under which a norm is likely to become hegemonic, influential, contested or reversed by introducing a new understanding of the fluid nature of norm-content. I argue that norms are partly constituted through the practices of policy-making and implementation at the international and national level. The research will examine the micro-politics of the international negotiations and implementation of loss and damage policy and also involves cross-national comparative research on domestic loss and damage policy practices. Bringing these two streams of work together will allow me to show how and why policy practices shape the evolution of climate justice norms. CCLAD will also make an important methodological contribution through the development of political ethnography and “practice-tracing” methods.
Summary
The way in which normative principles (“norms”) matter in world politics is now a key area of international relations research. Yet we have limited understanding of why some norms emerge and gain traction globally whereas others do not. The politics of loss and damage related to climate change offers a paradigm case for studying the emergence of - and contestation over - norms, specifically justice norms. The parties to the UN Framework Convention on Climate Change (UNFCCC) have recently acknowledged that there is an urgent need to address the inevitable, irreversible consequences of climate change. Yet within this highly contested policy area - which includes work on disaster risk reduction; non-economic losses (e.g. loss of sovereignty); finance and climate-related migration - there is little consensus about what loss and damage policy means or what it requires of the global community, of states and of the (current and future) victims of climate change. Relying on an interdisciplinary theoretical approach and an ethnographic methodology that traverses scales of governance, my project - The Politics of Climate Change Loss and Damage (CCLAD) - will elucidate the conditions under which a norm is likely to become hegemonic, influential, contested or reversed by introducing a new understanding of the fluid nature of norm-content. I argue that norms are partly constituted through the practices of policy-making and implementation at the international and national level. The research will examine the micro-politics of the international negotiations and implementation of loss and damage policy and also involves cross-national comparative research on domestic loss and damage policy practices. Bringing these two streams of work together will allow me to show how and why policy practices shape the evolution of climate justice norms. CCLAD will also make an important methodological contribution through the development of political ethnography and “practice-tracing” methods.
Max ERC Funding
1 471 530 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym CELL HORMONE
Project Bringing into focus the cellular dynamics of the plant growth hormone gibberellin
Researcher (PI) Alexander Morgan JONES
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS3, ERC-2017-STG
Summary During an organism’s development it must integrate internal and external information. An example in plants, whose development stretches across their lifetime, is the coordination between environmental stimuli and endogenous cues on regulating the key hormone gibberellin (GA). The present challenge is to understand how these diverse signals influence GA levels and how GA signalling leads to diverse GA responses. This challenge is deepened by a fundamental problem in hormone research: the specific responses directed by a given hormone often depend on the cell-type, timing, and amount of hormone accumulation, but hormone concentrations are most often assessed at the organism or tissue level. Our approach, based on a novel optogenetic biosensor, GA Perception Sensor 1 (GPS1), brings the goal of high-resolution quantification of GA in vivo within reach. In plants expressing GPS1, we observe gradients of GA in elongating root and shoot tissues. We now aim to understand how a series of independently tunable enzymatic and transport activities combine to articulate the GA gradients that we observe. We further aim to discover the mechanisms by which endogenous and environmental signals regulate these GA enzymes and transporters. Finally, we aim to understand how one of these signals, light, regulates GA patterns to influence dynamic cell growth and organ behavior. Our overarching goal is a systems level understanding of the signal integration upstream and growth programming downstream of GA. The groundbreaking aspect of this proposal is our focus at the cellular level, and we are uniquely positioned to carry out our multidisciplinary aims involving biosensor engineering, innovative imaging, and multiscale modelling. We anticipate that the discoveries stemming from this project will provide the detailed understanding necessary to make strategic interventions into GA dynamic patterning in crop plants for specific improvements in growth, development, and environmental responses.
Summary
During an organism’s development it must integrate internal and external information. An example in plants, whose development stretches across their lifetime, is the coordination between environmental stimuli and endogenous cues on regulating the key hormone gibberellin (GA). The present challenge is to understand how these diverse signals influence GA levels and how GA signalling leads to diverse GA responses. This challenge is deepened by a fundamental problem in hormone research: the specific responses directed by a given hormone often depend on the cell-type, timing, and amount of hormone accumulation, but hormone concentrations are most often assessed at the organism or tissue level. Our approach, based on a novel optogenetic biosensor, GA Perception Sensor 1 (GPS1), brings the goal of high-resolution quantification of GA in vivo within reach. In plants expressing GPS1, we observe gradients of GA in elongating root and shoot tissues. We now aim to understand how a series of independently tunable enzymatic and transport activities combine to articulate the GA gradients that we observe. We further aim to discover the mechanisms by which endogenous and environmental signals regulate these GA enzymes and transporters. Finally, we aim to understand how one of these signals, light, regulates GA patterns to influence dynamic cell growth and organ behavior. Our overarching goal is a systems level understanding of the signal integration upstream and growth programming downstream of GA. The groundbreaking aspect of this proposal is our focus at the cellular level, and we are uniquely positioned to carry out our multidisciplinary aims involving biosensor engineering, innovative imaging, and multiscale modelling. We anticipate that the discoveries stemming from this project will provide the detailed understanding necessary to make strategic interventions into GA dynamic patterning in crop plants for specific improvements in growth, development, and environmental responses.
Max ERC Funding
1 499 616 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CellFateTech
Project Biotechnology for investigating cell fate choice
Researcher (PI) Kevin CHALUT
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), LS9, ERC-2017-COG
Summary The evolution from a stem cell to differentiated progeny underpins tissue development and homeostasis, which are driven by a multitude of cell fate choices. The transitions underlying these choices are not well understood. There are a number of challenges that must be overcome to achieve this understanding. In the proposed research we will tackle two of the challenges: first, the dynamics of fate choices, i.e. the dependence of transitions on time and inductive signals, remains cryptic; second, mechanical signalling regulates instructive cues for transitions but its role in the process is uncertain. One of the primary reasons these important aspects of cell fate choice remain a mystery is because the biology has not been coupled to the biotechnology appropriate to unravel it. This is the purpose of the proposed research: we will develop tools based in microfluidics, microfabrication and hydrogels and integrate them with our stem cell biology expertise to illuminate the process of cell fate choice. We will develop single cell microfluidic technology that possesses unprecedented temporal resolution and control over the signalling environment to study cell fate dynamics. We will also synthesize hydrogel substrates to exert complete control over the mechanical microenvironment of stem cells. Finally, we will advance tools to apply reproducible and defined forces to cells in order to study the role mechanical signalling in cell fate choice. Developing the proposed technology kit hand-in-hand with its biological applications will allow us to delve into the mechanisms of biological transitions in multiple stem cell systems, allowing us to uncover universal phenomena governing cell fate choice.
Summary
The evolution from a stem cell to differentiated progeny underpins tissue development and homeostasis, which are driven by a multitude of cell fate choices. The transitions underlying these choices are not well understood. There are a number of challenges that must be overcome to achieve this understanding. In the proposed research we will tackle two of the challenges: first, the dynamics of fate choices, i.e. the dependence of transitions on time and inductive signals, remains cryptic; second, mechanical signalling regulates instructive cues for transitions but its role in the process is uncertain. One of the primary reasons these important aspects of cell fate choice remain a mystery is because the biology has not been coupled to the biotechnology appropriate to unravel it. This is the purpose of the proposed research: we will develop tools based in microfluidics, microfabrication and hydrogels and integrate them with our stem cell biology expertise to illuminate the process of cell fate choice. We will develop single cell microfluidic technology that possesses unprecedented temporal resolution and control over the signalling environment to study cell fate dynamics. We will also synthesize hydrogel substrates to exert complete control over the mechanical microenvironment of stem cells. Finally, we will advance tools to apply reproducible and defined forces to cells in order to study the role mechanical signalling in cell fate choice. Developing the proposed technology kit hand-in-hand with its biological applications will allow us to delve into the mechanisms of biological transitions in multiple stem cell systems, allowing us to uncover universal phenomena governing cell fate choice.
Max ERC Funding
1 876 618 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym CellTrainer
Project Low Cost Real-time Multi-Physics Virtual Reality Training System For In-vitro Fertilisation Microinjection Tasks
Researcher (PI) Mandayam SRINIVASAN
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary The ability to operate on cells is a fundamental capability when developing novel cell based therapies. In this context, the skills needed to manually inspect, prepare and modify cells in-vitro with repeatable micro-nano precision are essential; enabling the creation of new biomedical solutions to fight disease more effectively. Highlighted by the Innovate UK Cell Therapy Catapult, the market opportunity for improved micromanipulation techniques is valued to be >€4.5billion in 2017 and applicable to a wide range of fields from biotechnology, pharmacology to embryology. To realise this opportunity, it is vital to have a well-trained workforce capable of performing repeatable high precision manipulations at a cellular level. However, current training techniques are laborious, vary in quality, and do not take advantage of the inexpensive technologies available today that can improve the expertise of the clinical operators without the need for expensive learning facilities. To address these unmet needs, we present CellTrainer, a virtual reality simulation based training system. Based on the empirical data and biomechanical models gained through our novel micro/nano telehaptic systems that were developed as part of our ERC-AdG grant, in this ERC-PoC project we propose to develop a real-time Virtual Reality (VR) physics engine to simulate different micro/nano training environments and objectively monitor user performance whilst providing clinical learning feedback. In collaboration with spin out company Yantric, UCL Business and identified first customers, we will conduct the necessary commercial activities to translate CellTrainer into the real world. At first, we envisage CellTrainer to be an indispensable tool in reducing the time needed to train up expert clinical users for the in-vitro fertilisation (IVF) market. Lessons learnt here will then be used to access the broader cell based therapy domain and overcoming challenges related workforce productivity.
Summary
The ability to operate on cells is a fundamental capability when developing novel cell based therapies. In this context, the skills needed to manually inspect, prepare and modify cells in-vitro with repeatable micro-nano precision are essential; enabling the creation of new biomedical solutions to fight disease more effectively. Highlighted by the Innovate UK Cell Therapy Catapult, the market opportunity for improved micromanipulation techniques is valued to be >€4.5billion in 2017 and applicable to a wide range of fields from biotechnology, pharmacology to embryology. To realise this opportunity, it is vital to have a well-trained workforce capable of performing repeatable high precision manipulations at a cellular level. However, current training techniques are laborious, vary in quality, and do not take advantage of the inexpensive technologies available today that can improve the expertise of the clinical operators without the need for expensive learning facilities. To address these unmet needs, we present CellTrainer, a virtual reality simulation based training system. Based on the empirical data and biomechanical models gained through our novel micro/nano telehaptic systems that were developed as part of our ERC-AdG grant, in this ERC-PoC project we propose to develop a real-time Virtual Reality (VR) physics engine to simulate different micro/nano training environments and objectively monitor user performance whilst providing clinical learning feedback. In collaboration with spin out company Yantric, UCL Business and identified first customers, we will conduct the necessary commercial activities to translate CellTrainer into the real world. At first, we envisage CellTrainer to be an indispensable tool in reducing the time needed to train up expert clinical users for the in-vitro fertilisation (IVF) market. Lessons learnt here will then be used to access the broader cell based therapy domain and overcoming challenges related workforce productivity.
Max ERC Funding
149 995 €
Duration
Start date: 2018-06-01, End date: 2019-11-30
Project acronym CerebralHominoids
Project Evolutionary biology of human and great ape brain development in cerebral organoids
Researcher (PI) Madeline LANCASTER
Host Institution (HI) UNITED KINGDOM RESEARCH AND INNOVATION
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary Humans are endowed with a number of advanced cognitive abilities not seen in other species. So what allows the human brain to stand out from the rest in these capabilities? In general, the brains of primates, including humans, have more neurons per unit volume than other mammals. But humans are also in the fortunate position of having the largest of the primate brains, making the number of neurons in the human cerebral cortex greatly expanded. Thus, the difference seems to be a matter of quantity, not quality. My laboratory is interested in understanding how neuron number, and thus brain size, is determined in human brain development.
The research proposed here is aimed at taking an evolutionary approach to this question and comparing brain development in an in vitro 3D model system, cerebral organoids. This method, which relies on self-organization from differentiating pluripotent stem cells, recapitulates remarkably well the endogenous developmental program of the human brain. Having previously established the brain organoid approach, and more recently improved upon it with the application of bioengineering, my laboratory is in a unique position to carry out functional studies of human brain development. I propose to use this approach to compare developing human brain tissue to that of other hominid species and tease apart unique features of human neural stem cells and progenitors that allow them to generate more neurons and therefore a greater cerebral cortical size. Furthermore, we will perform transcriptomic and functional screening to identify factors underlying this expansion, followed by careful genetic substitution to test the contributions of putative evolutionary changes. In this way, we will functionally test putative human evolutionary changes in a manner not previously possible.
Summary
Humans are endowed with a number of advanced cognitive abilities not seen in other species. So what allows the human brain to stand out from the rest in these capabilities? In general, the brains of primates, including humans, have more neurons per unit volume than other mammals. But humans are also in the fortunate position of having the largest of the primate brains, making the number of neurons in the human cerebral cortex greatly expanded. Thus, the difference seems to be a matter of quantity, not quality. My laboratory is interested in understanding how neuron number, and thus brain size, is determined in human brain development.
The research proposed here is aimed at taking an evolutionary approach to this question and comparing brain development in an in vitro 3D model system, cerebral organoids. This method, which relies on self-organization from differentiating pluripotent stem cells, recapitulates remarkably well the endogenous developmental program of the human brain. Having previously established the brain organoid approach, and more recently improved upon it with the application of bioengineering, my laboratory is in a unique position to carry out functional studies of human brain development. I propose to use this approach to compare developing human brain tissue to that of other hominid species and tease apart unique features of human neural stem cells and progenitors that allow them to generate more neurons and therefore a greater cerebral cortical size. Furthermore, we will perform transcriptomic and functional screening to identify factors underlying this expansion, followed by careful genetic substitution to test the contributions of putative evolutionary changes. In this way, we will functionally test putative human evolutionary changes in a manner not previously possible.
Max ERC Funding
1 444 911 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym CHAOS-PIQUANT
Project Universality and chaos in PT-symmetric quantum systems
Researcher (PI) Eva-Maria GRAEFE
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE2, ERC-2017-STG
Summary The world of our daily experiences, described by classical physics, is built out of fundamental particles, governed by the laws of quantum mechanics. The striking difference between quantum and classical behaviour becomes most apparent in the realm of chaos, an extreme sensitivity to initial conditions, which is common in classical systems but impossible under quantum laws. The investigation of characteristic features of quantum systems whose classical counterparts are chaotic has illuminated foundational problems and led to a variety of technological applications. Traditional quantum theory focuses on the description of closed systems without losses. Every realistic system, however, contains unwanted losses and dissipation, but the idea to engineer them to generate desirable effects has recently come into the focus of scientific attention. The surprising properties of quantum systems with balanced gain and loss (PT-symmetric systems) have sparked much interest. The first experiments on PT-symmetry in optics have been identified as one of the top ten physics discoveries of the past decade in Nature Physics. New experimental areas are rapidly emerging. Our understanding of PT-symmetric quantum systems, however, is still limited. One major shortcoming is that the emergence of chaos and universality in these systems is hitherto nearly unexplored. I propose to investigate PT-symmetric quantum chaos to establish this new research area and overturn some common perceptions in the existing fields of PT-symmetry and quantum chaos. Ultimately this will lead to new experimental applications and quantum technologies. Building on recent conceptual breakthroughs I have made, I will a) identify spectral and dynamical features of chaos in PT-symmetric quantum systems, b) establish new universality classes, c) provide powerful semiclassical tools for the simulation of generic quantum systems, and d) facilitate experimental applications in microwave cavities and cold atoms.
Summary
The world of our daily experiences, described by classical physics, is built out of fundamental particles, governed by the laws of quantum mechanics. The striking difference between quantum and classical behaviour becomes most apparent in the realm of chaos, an extreme sensitivity to initial conditions, which is common in classical systems but impossible under quantum laws. The investigation of characteristic features of quantum systems whose classical counterparts are chaotic has illuminated foundational problems and led to a variety of technological applications. Traditional quantum theory focuses on the description of closed systems without losses. Every realistic system, however, contains unwanted losses and dissipation, but the idea to engineer them to generate desirable effects has recently come into the focus of scientific attention. The surprising properties of quantum systems with balanced gain and loss (PT-symmetric systems) have sparked much interest. The first experiments on PT-symmetry in optics have been identified as one of the top ten physics discoveries of the past decade in Nature Physics. New experimental areas are rapidly emerging. Our understanding of PT-symmetric quantum systems, however, is still limited. One major shortcoming is that the emergence of chaos and universality in these systems is hitherto nearly unexplored. I propose to investigate PT-symmetric quantum chaos to establish this new research area and overturn some common perceptions in the existing fields of PT-symmetry and quantum chaos. Ultimately this will lead to new experimental applications and quantum technologies. Building on recent conceptual breakthroughs I have made, I will a) identify spectral and dynamical features of chaos in PT-symmetric quantum systems, b) establish new universality classes, c) provide powerful semiclassical tools for the simulation of generic quantum systems, and d) facilitate experimental applications in microwave cavities and cold atoms.
Max ERC Funding
1 293 023 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym CheSSTaG
Project Chemotactic Super-Selective Targeting of Gliomas
Researcher (PI) Giuseppe BATTAGLIA
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), PE5, ERC-2017-COG
Summary I propose here a research program aimed to the design a completely new platform for drug delivery. I will combine our existing repertoire of molecular engineering tools based around our established approach to design responsive nanoparticles known as Polymersomes to integrate new features using clinically safe and biodegradable components that will make them super-selective and chemotactic toward glucose gradients so to deliver large therapeutic payload into the central nervous systems and the brain in particular targeting cancer cells harbouring within the healthy. We will do so by engineering components using supramolecular interaction inspired by biological complexity equipping carriers with the ability to self-propelled as a function of glucose gradient. I will complement our proposed design with advanced biological characterisation associating functional information arising form the physiological barrier to structural parameters integrated into the final carrier design.
Summary
I propose here a research program aimed to the design a completely new platform for drug delivery. I will combine our existing repertoire of molecular engineering tools based around our established approach to design responsive nanoparticles known as Polymersomes to integrate new features using clinically safe and biodegradable components that will make them super-selective and chemotactic toward glucose gradients so to deliver large therapeutic payload into the central nervous systems and the brain in particular targeting cancer cells harbouring within the healthy. We will do so by engineering components using supramolecular interaction inspired by biological complexity equipping carriers with the ability to self-propelled as a function of glucose gradient. I will complement our proposed design with advanced biological characterisation associating functional information arising form the physiological barrier to structural parameters integrated into the final carrier design.
Max ERC Funding
2 081 747 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym ChronosAntibiotics
Project Exploring the bacterial cell cycle to re-sensitize antibiotic-resistant bacteria
Researcher (PI) MARIANA LUISA TOMAS GOMES DE PINHO
Host Institution (HI) UNIVERSIDADE NOVA DE LISBOA
Call Details Consolidator Grant (CoG), LS6, ERC-2017-COG
Summary Over the next 35 years, antibiotic resistant bacteria are expected to kill more than 300 million people. The need to find alternative strategies for antimicrobial therapies remains a global challenge with several bottlenecks in the antibiotic discovery process. Using Staphylococcus aureus, the most common multidrug-resistant bacterium in the European Union and an excellent model organism for cell division in cocci, we propose:
(i) to find new pathways to re-sensitize resistant bacteria. Bacteria undergo major morphology changes during the cell cycle. We hypothesize that these changes generate windows of opportunity during which bacteria are more susceptible or more tolerant to the action of antibiotics. We will identify key regulators of the cell cycle in order to manipulate the duration of windows of opportunity for the action of existing antibiotics.
(ii) to develop new fluorescence-based reporters for whole-cell screenings of antimicrobial compounds with new modes of action, including compounds that arrest or delay the cell cycle; compounds that target non-essential pathways that are required for expression of resistance against existing antibiotics and therefore can be used as synergistic drugs for combination therapies; compounds that inhibit the production of virulence factors and compounds that revert persister states that are phenotypically resistant to antibiotics.
(iii) to unravel new modes of action of antibiotics by using the constructed reporter strains as powerful tools to learn how antibiotics act at the single cell level.
Over the past years, my group has become expert on the biology of S. aureus, has constructed powerful biological tools to study cell division and synthesis of the cell surface and has studied mechanisms of action of various antimicrobial compounds. We are therefore in a privileged position to quickly unravel the function of new players in the bacterial cell cycle and simultaneously contribute to accelerate antibiotic discovery.
Summary
Over the next 35 years, antibiotic resistant bacteria are expected to kill more than 300 million people. The need to find alternative strategies for antimicrobial therapies remains a global challenge with several bottlenecks in the antibiotic discovery process. Using Staphylococcus aureus, the most common multidrug-resistant bacterium in the European Union and an excellent model organism for cell division in cocci, we propose:
(i) to find new pathways to re-sensitize resistant bacteria. Bacteria undergo major morphology changes during the cell cycle. We hypothesize that these changes generate windows of opportunity during which bacteria are more susceptible or more tolerant to the action of antibiotics. We will identify key regulators of the cell cycle in order to manipulate the duration of windows of opportunity for the action of existing antibiotics.
(ii) to develop new fluorescence-based reporters for whole-cell screenings of antimicrobial compounds with new modes of action, including compounds that arrest or delay the cell cycle; compounds that target non-essential pathways that are required for expression of resistance against existing antibiotics and therefore can be used as synergistic drugs for combination therapies; compounds that inhibit the production of virulence factors and compounds that revert persister states that are phenotypically resistant to antibiotics.
(iii) to unravel new modes of action of antibiotics by using the constructed reporter strains as powerful tools to learn how antibiotics act at the single cell level.
Over the past years, my group has become expert on the biology of S. aureus, has constructed powerful biological tools to study cell division and synthesis of the cell surface and has studied mechanisms of action of various antimicrobial compounds. We are therefore in a privileged position to quickly unravel the function of new players in the bacterial cell cycle and simultaneously contribute to accelerate antibiotic discovery.
Max ERC Funding
2 533 500 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym COBOM
Project Convective Boundary Mixing in Stars
Researcher (PI) Isabelle Baraffe
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Advanced Grant (AdG), PE9, ERC-2017-ADG
Summary Stellar evolution models are fundamental to nearly all fields of astrophysics, from exoplanet to galactic and extra-galactic research.
The heart of the COBOM project is to develop a global physical picture of fundamental mixing processes in stars in order to derive robust and predictive stellar evolution models.
The complex dynamics of flows at convective boundaries is a key process in stellar interiors that drives the transport of chemical species and heat, strongly affecting the structure and the evolution of many types of stars. The same physical processes can also drive transport of angular momentum, affecting the rotation evolution and the generation of magnetic field of stars. The treatment of mixing processes at convective boundaries (also referred to as overshooting) is currently one of the major uncertainties in stellar evolution theory. This mixing can dramatically affect the size of a convective core, the lifetime of major burning phases or the surface chemistry over a wide range of stellar masses.
The main objectives of this project are to (1) develop a global theoretical framework to describe mixing and heat transport at convective boundaries in stellar interiors, (2) derive new physically-based transport coefficients and parametrizations for one-dimensional stellar evolution models and (3) test the new formalisms against a wide range of observations.
We will accomplish these goals by performing the most comprehensive study ever performed of mixing processes in stars using a fundamentally new approach. We will combine the power of multi-dimensional fully compressible time implicit magneto-hydrodynamic simulations and rare event statistics, which are usually applied in finance or climate science.
The key strength of the project is to establish a direct link between multi-dimensional results and observations (asteroseismology, eclipsing binaries, color-magnitude diagrams) via the exploitation of 1D stellar evolution models.
Summary
Stellar evolution models are fundamental to nearly all fields of astrophysics, from exoplanet to galactic and extra-galactic research.
The heart of the COBOM project is to develop a global physical picture of fundamental mixing processes in stars in order to derive robust and predictive stellar evolution models.
The complex dynamics of flows at convective boundaries is a key process in stellar interiors that drives the transport of chemical species and heat, strongly affecting the structure and the evolution of many types of stars. The same physical processes can also drive transport of angular momentum, affecting the rotation evolution and the generation of magnetic field of stars. The treatment of mixing processes at convective boundaries (also referred to as overshooting) is currently one of the major uncertainties in stellar evolution theory. This mixing can dramatically affect the size of a convective core, the lifetime of major burning phases or the surface chemistry over a wide range of stellar masses.
The main objectives of this project are to (1) develop a global theoretical framework to describe mixing and heat transport at convective boundaries in stellar interiors, (2) derive new physically-based transport coefficients and parametrizations for one-dimensional stellar evolution models and (3) test the new formalisms against a wide range of observations.
We will accomplish these goals by performing the most comprehensive study ever performed of mixing processes in stars using a fundamentally new approach. We will combine the power of multi-dimensional fully compressible time implicit magneto-hydrodynamic simulations and rare event statistics, which are usually applied in finance or climate science.
The key strength of the project is to establish a direct link between multi-dimensional results and observations (asteroseismology, eclipsing binaries, color-magnitude diagrams) via the exploitation of 1D stellar evolution models.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym COLOURMIND
Project Colouring the Mind: the Impact of Visual Environment on Colour Perception
Researcher (PI) Anna FRANKLIN
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Consolidator Grant (CoG), SH4, ERC-2017-COG
Summary Visual perception is central to how we think and behave. However, there are major unresolved issues in understanding how the human mind draws on experience to perceive the dynamic and variable world. The COLOURMIND project, led by Franklin, will tackle these crucial issues with an ambitious investigation of the impact of the visual environment on colour perception that will provide a new theoretical framework for the field. The project will ask ground-breaking questions: What aspects of colour perception are affected by the visual environment, such that people from different environments perceive colour differently?; What processes enable colour perception to calibrate to visual experience and what is their nature and scope?; Does colour perception ‘tune-in’ to the visual input experienced during infancy? COLOURMIND will adopt a diverse range of innovative methods to address these questions, and will: i.) investigate the colour perception of people immersed in natural non-industrialised environments in some of the remotest parts of the world to identify the extent to which visual environment shapes colour perception; ii.) use innovative neuroimaging methods to identify how the visual cortex changes in response to chromatic experience; iii.) pioneer the use of ‘Altered-Reality' (next generation virtual reality) to elucidate calibrative processes in colour perception; and iv.) conduct carefully controlled experiments with infants to address the role of development. The cutting-edge questions, innovative approaches and theoretical power of the COLOURMIND project will lead to breakthroughs on issues that are fundamental to understanding the complexity of the human mind (e.g., learning, plasticity and inference; perceptual development; cultural relativity), and findings will have practical application. Overall, the ambitious project will push the frontiers of multidisciplinary research on colour perception, and will resonate throughout the cognitive and social sciences.
Summary
Visual perception is central to how we think and behave. However, there are major unresolved issues in understanding how the human mind draws on experience to perceive the dynamic and variable world. The COLOURMIND project, led by Franklin, will tackle these crucial issues with an ambitious investigation of the impact of the visual environment on colour perception that will provide a new theoretical framework for the field. The project will ask ground-breaking questions: What aspects of colour perception are affected by the visual environment, such that people from different environments perceive colour differently?; What processes enable colour perception to calibrate to visual experience and what is their nature and scope?; Does colour perception ‘tune-in’ to the visual input experienced during infancy? COLOURMIND will adopt a diverse range of innovative methods to address these questions, and will: i.) investigate the colour perception of people immersed in natural non-industrialised environments in some of the remotest parts of the world to identify the extent to which visual environment shapes colour perception; ii.) use innovative neuroimaging methods to identify how the visual cortex changes in response to chromatic experience; iii.) pioneer the use of ‘Altered-Reality' (next generation virtual reality) to elucidate calibrative processes in colour perception; and iv.) conduct carefully controlled experiments with infants to address the role of development. The cutting-edge questions, innovative approaches and theoretical power of the COLOURMIND project will lead to breakthroughs on issues that are fundamental to understanding the complexity of the human mind (e.g., learning, plasticity and inference; perceptual development; cultural relativity), and findings will have practical application. Overall, the ambitious project will push the frontiers of multidisciplinary research on colour perception, and will resonate throughout the cognitive and social sciences.
Max ERC Funding
1 999 975 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym CoMMaD
Project Computational Molecular Materials Discovery
Researcher (PI) Kim JELFS
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE5, ERC-2017-STG
Summary The objective of the project is to develop a computational approach to accelerate the discovery of molecular materials. These materials will include porous molecules, small organic molecules and macromolecular polymers, which have application as a result of either their porosity or optoelectronic properties. The applications that will be targeted include in molecular separations, sensing, (photo)catalysis and photovoltaics. To achieve my aims, I will screen libraries of building blocks through a combination of techniques including evolutionary algorithms and machine learning. Through the application of cheminformatics algorithms, I will target the most promising libraries, assess synthetic diversity and accessibility and analyse structure-property relationships. I will develop software that will predict the (macro)molecular structures and properties; the molecular property screening calculations will include void characterisation, binding energies, diffusion barriers, local assembly, charge transport and energy level assessment. A consideration of synthetic accessibility at every stage will be central to my approach, which will ensure the realisation of our predicted targets. I have several synthetic collaborators who can provide pathways to synthetic realisation. Improved materials in this field have the potential to either reduce our energy needs or provide renewable energy, helping the EU meet the targets of the 2030 Energy Strategy.
Summary
The objective of the project is to develop a computational approach to accelerate the discovery of molecular materials. These materials will include porous molecules, small organic molecules and macromolecular polymers, which have application as a result of either their porosity or optoelectronic properties. The applications that will be targeted include in molecular separations, sensing, (photo)catalysis and photovoltaics. To achieve my aims, I will screen libraries of building blocks through a combination of techniques including evolutionary algorithms and machine learning. Through the application of cheminformatics algorithms, I will target the most promising libraries, assess synthetic diversity and accessibility and analyse structure-property relationships. I will develop software that will predict the (macro)molecular structures and properties; the molecular property screening calculations will include void characterisation, binding energies, diffusion barriers, local assembly, charge transport and energy level assessment. A consideration of synthetic accessibility at every stage will be central to my approach, which will ensure the realisation of our predicted targets. I have several synthetic collaborators who can provide pathways to synthetic realisation. Improved materials in this field have the potential to either reduce our energy needs or provide renewable energy, helping the EU meet the targets of the 2030 Energy Strategy.
Max ERC Funding
1 499 390 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym CompactDating
Project A compact radioisotope dating device for rapid sample analysis
Researcher (PI) Kieran Thomas Joseph FLANAGAN
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary The FNPMLS project (ERC n.648381) has successfully demonstrated that resonance ionization spectroscopy can be performed efficiently and with high resolution on an accelerated beam (CRIS). This novel and versatile methodology has been used to measure exotic nuclei down to rates of less than 20 atoms/second. In order to achieve these results the CRIS method has had to efficiently remove interference isotopes that would otherwise saturate the detectors. The key advantages of the method are its high selectivity, interference suppression and compact size. In principle it can be combined with mass spectrometry techniques such as ICP-MS and IRMS to enhance their respective sensitivity by more than three orders of magnitude in a compact table top device. This would have applications in the industries that utilize radioisotope detection for molecular labelling and dating. We believe that our methodology has the potential to significantly reduce the costs associated detecting isotopes such as 14C. In this project we will define and develop a commercialization strategy and effective route to market as well as produce a well defined IP position. A prototype device with autosampling capabilities will be constructed and used for benchmarking and validation tests that will further inform the marketing strategy. The final deliverables of this project will be a package consisting of a working prototype that demonstrates the ability to rapidly analyse biological samples and a commercialization strategy that has a clearly defined route to market and IP position.
Summary
The FNPMLS project (ERC n.648381) has successfully demonstrated that resonance ionization spectroscopy can be performed efficiently and with high resolution on an accelerated beam (CRIS). This novel and versatile methodology has been used to measure exotic nuclei down to rates of less than 20 atoms/second. In order to achieve these results the CRIS method has had to efficiently remove interference isotopes that would otherwise saturate the detectors. The key advantages of the method are its high selectivity, interference suppression and compact size. In principle it can be combined with mass spectrometry techniques such as ICP-MS and IRMS to enhance their respective sensitivity by more than three orders of magnitude in a compact table top device. This would have applications in the industries that utilize radioisotope detection for molecular labelling and dating. We believe that our methodology has the potential to significantly reduce the costs associated detecting isotopes such as 14C. In this project we will define and develop a commercialization strategy and effective route to market as well as produce a well defined IP position. A prototype device with autosampling capabilities will be constructed and used for benchmarking and validation tests that will further inform the marketing strategy. The final deliverables of this project will be a package consisting of a working prototype that demonstrates the ability to rapidly analyse biological samples and a commercialization strategy that has a clearly defined route to market and IP position.
Max ERC Funding
149 924 €
Duration
Start date: 2017-10-01, End date: 2018-09-30
Project acronym COMPLEXORDER
Project The Complexity Revolution: Exploiting Unconventional Order in Next-Generation Materials Design
Researcher (PI) Andrew GOODWIN
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary The fundamental objective of the research described in this proposal is to lay the foundations for understanding how structural complexity can give rise to materials properties inaccessible to structurally-simple states. The long-term vision is a paradigm shift in the way we as chemists design materials—the “Complexity Revolution”—where we move to thinking beyond the unit cell and harness unconventional order to generate emergent states with entirely novel behaviour. The key methodologies of the project are (i) exploitation of the rich structural information accessible using 3D-PDF / diffuse scattering techniques, (ii) exploration of the phase behaviour of unconventional ordered states using computational methods, and (iii) experimental/computational studies of a broad range of materials in which complexity arises from a large variety of different phenemona. In this way, the project will establish how we might controllably introduce complexity into materials by varying chemical composition and synthesis, how we might then characterise these complex states, and how we might exploit this complexity when designing next-generation materials with unprecedented electronic, catalytic, photonic, information storage, dielectric, topological, and magnetic properties.
Summary
The fundamental objective of the research described in this proposal is to lay the foundations for understanding how structural complexity can give rise to materials properties inaccessible to structurally-simple states. The long-term vision is a paradigm shift in the way we as chemists design materials—the “Complexity Revolution”—where we move to thinking beyond the unit cell and harness unconventional order to generate emergent states with entirely novel behaviour. The key methodologies of the project are (i) exploitation of the rich structural information accessible using 3D-PDF / diffuse scattering techniques, (ii) exploration of the phase behaviour of unconventional ordered states using computational methods, and (iii) experimental/computational studies of a broad range of materials in which complexity arises from a large variety of different phenemona. In this way, the project will establish how we might controllably introduce complexity into materials by varying chemical composition and synthesis, how we might then characterise these complex states, and how we might exploit this complexity when designing next-generation materials with unprecedented electronic, catalytic, photonic, information storage, dielectric, topological, and magnetic properties.
Max ERC Funding
3 362 635 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym CONNEC
Project CONNECTED CLERICS. BUILDING A UNIVERSAL CHURCH IN THE LATE ANTIQUE WEST (380-604 CE)
Researcher (PI) David NATAL VILLAZALA
Host Institution (HI) ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary In 380 CE, the Emperor Theodosius (d. 395) ordered all Roman subjects to follow Catholic Christianity and limited imperial patronage to the Catholic Church. Theodosius was the last ruler to reign over a united empire. At his death the realm was divided into two halves, and by the end of Gregory the Great’s papacy (d. 604), a mosaic of independent kingdoms had replaced the western part of the empire. Yet despite the political division, during this period western clerics built a supra-regional ecclesiastical structure with substantial levels of hierarchy and cohesion.
Up to the 1950s historians have largely conceived of these ecclesiastical institutions as organizations with widely accepted power. More recent scholarship, however, has revealed the social origin and fallibility of clerical authority. Nonetheless, this move away from the study of institutions has left unanswered the fundamental questions of how a ‘universal’ church was built at a time of political fragmentation, and how the transition from informal mutual aid to more formal hierarchical structures of law- and policy-making came about.
With innovative methods of social inquiry we can offer new answers to these historiographical questions. Our project (CONNEC) will use social network analysis and new institutional theory to trace four processes: how clerical networks adapted to the new secular contexts, how these interactions shaped the development of ecclesiastical law, how clerics constructed and disseminated discourses that supported different structures of the church, and how networks fostered compliance and a sense of accountability among clerics. CONNEC’s use of state-of-the-art methods will be enhanced by the implementation of cutting-edge digital technologies, adapting network analysis software for late antique sources. By bringing together digital tools with qualitative textual analysis, CONNEC will provide a more nuanced understanding of a key process of world history.
Summary
In 380 CE, the Emperor Theodosius (d. 395) ordered all Roman subjects to follow Catholic Christianity and limited imperial patronage to the Catholic Church. Theodosius was the last ruler to reign over a united empire. At his death the realm was divided into two halves, and by the end of Gregory the Great’s papacy (d. 604), a mosaic of independent kingdoms had replaced the western part of the empire. Yet despite the political division, during this period western clerics built a supra-regional ecclesiastical structure with substantial levels of hierarchy and cohesion.
Up to the 1950s historians have largely conceived of these ecclesiastical institutions as organizations with widely accepted power. More recent scholarship, however, has revealed the social origin and fallibility of clerical authority. Nonetheless, this move away from the study of institutions has left unanswered the fundamental questions of how a ‘universal’ church was built at a time of political fragmentation, and how the transition from informal mutual aid to more formal hierarchical structures of law- and policy-making came about.
With innovative methods of social inquiry we can offer new answers to these historiographical questions. Our project (CONNEC) will use social network analysis and new institutional theory to trace four processes: how clerical networks adapted to the new secular contexts, how these interactions shaped the development of ecclesiastical law, how clerics constructed and disseminated discourses that supported different structures of the church, and how networks fostered compliance and a sense of accountability among clerics. CONNEC’s use of state-of-the-art methods will be enhanced by the implementation of cutting-edge digital technologies, adapting network analysis software for late antique sources. By bringing together digital tools with qualitative textual analysis, CONNEC will provide a more nuanced understanding of a key process of world history.
Max ERC Funding
1 465 316 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CounterLIGHT
Project Interaction and Symmetry Breaking of Counterpropagating Light
Researcher (PI) Pascal Del Haye
Host Institution (HI) NPL MANAGEMENT LIMITED
Call Details Starting Grant (StG), PE2, ERC-2017-STG
Summary Light is generally expected to travel through media independent of its direction. Exceptions can be achieved eg. through polarization changes induced by magnetic fields (known as the Faraday effect) together with polarization-sensitive birefringent materials. However, light can also be influenced by the presence of a counterpropagating light wave. We have recently shown that this leads to the surprising consequence that light sent into tiny glass rings (microresonators) can only propagate in one direction, clockwise or counterclockwise, but not in both directions simultaneously. When sending exactly the same state of light (same power and polarization) into a microresonator, nonlinear interaction induces a spontaneous symmetry breaking in the propagation of light. In this proposal we plan to investigate the fundamental physics and a variety of ground-breaking applications of this effect. In one proposed application, this effect will be used for optical nonreciprocity and the realization of optical diodes in integrated photonic circuits that do not rely on magnetic fields (an important key element in integrated photonics). In another proposed experiment we plan to use the spontaneous symmetry breaking to demonstrate microresonator-based optical gyroscopes that have the potential to beat state-of-the-art sensors in both size and sensitivity. Additional research projects include experiments with all-optical logic gates, photonic memories, and near field sensors based on counterpropagating light states. Finally, we plan to demonstrate a microresonator-based system for the generation of dual-optical frequency combs that can be used for real-time precision spectroscopy in future lab-on-a-chip applications. On the fundamental physics side, our experiments investigate the interaction of counterpropagating light in a system with periodic boundary conditions. The fundamental nature of this system has the potential to impact other fields of science far beyond optical physics.
Summary
Light is generally expected to travel through media independent of its direction. Exceptions can be achieved eg. through polarization changes induced by magnetic fields (known as the Faraday effect) together with polarization-sensitive birefringent materials. However, light can also be influenced by the presence of a counterpropagating light wave. We have recently shown that this leads to the surprising consequence that light sent into tiny glass rings (microresonators) can only propagate in one direction, clockwise or counterclockwise, but not in both directions simultaneously. When sending exactly the same state of light (same power and polarization) into a microresonator, nonlinear interaction induces a spontaneous symmetry breaking in the propagation of light. In this proposal we plan to investigate the fundamental physics and a variety of ground-breaking applications of this effect. In one proposed application, this effect will be used for optical nonreciprocity and the realization of optical diodes in integrated photonic circuits that do not rely on magnetic fields (an important key element in integrated photonics). In another proposed experiment we plan to use the spontaneous symmetry breaking to demonstrate microresonator-based optical gyroscopes that have the potential to beat state-of-the-art sensors in both size and sensitivity. Additional research projects include experiments with all-optical logic gates, photonic memories, and near field sensors based on counterpropagating light states. Finally, we plan to demonstrate a microresonator-based system for the generation of dual-optical frequency combs that can be used for real-time precision spectroscopy in future lab-on-a-chip applications. On the fundamental physics side, our experiments investigate the interaction of counterpropagating light in a system with periodic boundary conditions. The fundamental nature of this system has the potential to impact other fields of science far beyond optical physics.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym Couplet
Project Transient climate change in the coupled atmosphere--ocean system
Researcher (PI) Jonathan GREGORY
Host Institution (HI) THE UNIVERSITY OF READING
Call Details Advanced Grant (AdG), PE10, ERC-2017-ADG
Summary The magnitude and impacts of many aspects of projected climate change due to anthropogenic emissions of greenhouse gases are expected to be greater for larger global mean surface temperature change. Although climate models have hugely improved, knowledge has grown and confidence increased, the climate feedback parameter, which determines the amount of global warming that results at equilibrium for a given radiative forcing (the heating due to greenhouse gases and other agents) is still very uncertain; for example, the range of equilibrium warming for a CO2 concentration of twice the pre-industrial level is 1.5-4.5 K, the same as estimated 25 years ago. It is widely assumed that we can evaluate the climate feedback parameter from the observed past or from an idealised model experiment with increased CO2, then use it to estimate global warming for future scenarios. However, research has revealed that, as well as being uncertain, the climate feedback parameter is not constant; it depends on the nature and magnitude of the forcing agent, it changes over time under constant forcing, it does not apply equally to spontaneous unforced climate variability, and it is not the same in the historical record and projections. The hypothesis of this project is that these reflect inadequacies of the global energy balance framework, which relates radiative forcing, climate feedback and ocean heat uptake to transient climate change. The objectives are therefore to develop a new framework for describing the variations of the coupled atmosphere--ocean climate system, by taking into account the relationships between the geographical patterns of change and its time-development in analyses of simulated and observed climate change, and to apply this framework to the analysis of historical climate change, in order to set refined constraints on the processes, pattern and magnitude of future CO2-forced climate change.
Summary
The magnitude and impacts of many aspects of projected climate change due to anthropogenic emissions of greenhouse gases are expected to be greater for larger global mean surface temperature change. Although climate models have hugely improved, knowledge has grown and confidence increased, the climate feedback parameter, which determines the amount of global warming that results at equilibrium for a given radiative forcing (the heating due to greenhouse gases and other agents) is still very uncertain; for example, the range of equilibrium warming for a CO2 concentration of twice the pre-industrial level is 1.5-4.5 K, the same as estimated 25 years ago. It is widely assumed that we can evaluate the climate feedback parameter from the observed past or from an idealised model experiment with increased CO2, then use it to estimate global warming for future scenarios. However, research has revealed that, as well as being uncertain, the climate feedback parameter is not constant; it depends on the nature and magnitude of the forcing agent, it changes over time under constant forcing, it does not apply equally to spontaneous unforced climate variability, and it is not the same in the historical record and projections. The hypothesis of this project is that these reflect inadequacies of the global energy balance framework, which relates radiative forcing, climate feedback and ocean heat uptake to transient climate change. The objectives are therefore to develop a new framework for describing the variations of the coupled atmosphere--ocean climate system, by taking into account the relationships between the geographical patterns of change and its time-development in analyses of simulated and observed climate change, and to apply this framework to the analysis of historical climate change, in order to set refined constraints on the processes, pattern and magnitude of future CO2-forced climate change.
Max ERC Funding
2 127 711 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym CRYOSTEM
Project Solvent free Cryopreservation of Hematopoietic Stem Cells
Researcher (PI) Matthew Ian GIBSON
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary This proof of concept grant will revolutionise how bone marrow stem cells are cryopreserved by translating ERC-grant developed technology, inspired by how organisms survive in extreme cold temperatures.
Bone marrow (haematopoietic) stem cells are used in life saving treatments, especially for blood cancers such as Leukaemia, but have potential for a wide range of diseases. The current method for storing stem cells involves addition of huge amounts of toxic organic solvents which leads to unwanted side-effects and not all the recovered cells are viable. There is also a rapidly growing market for stem-cell therapies, but with a major bottleneck being the logistics of transport: getting the cells from the (small number of) specialised production facilities to the patients, with minimum processing and within the cold chain.
We have established strong preliminary data demonstrating an entirely new concept in cryopreservation based on the use of (patent pending) synthetic polymers, which can control ice formation and growth. These are inspired by how antifreeze proteins protect organisms which live in sub-zero environments, but with the advantages of being; Highly tuneable; Low toxicity; Scalable synthesis. This is backed up by demonstration of function in immortalised cell lines, and is ready to be applied to real biomedical problems.
In this project we will obtain convincing data-sets demonstrating that our synthetic polymer can revolutionise the storage and transport of stem cells for current and emerging therapies. This will bring significant societal change through enabling new regenerative medicine therapies and bringing real commercial benefit by solving a supply chain challenge and improving on the current 50 year old method.
Summary
This proof of concept grant will revolutionise how bone marrow stem cells are cryopreserved by translating ERC-grant developed technology, inspired by how organisms survive in extreme cold temperatures.
Bone marrow (haematopoietic) stem cells are used in life saving treatments, especially for blood cancers such as Leukaemia, but have potential for a wide range of diseases. The current method for storing stem cells involves addition of huge amounts of toxic organic solvents which leads to unwanted side-effects and not all the recovered cells are viable. There is also a rapidly growing market for stem-cell therapies, but with a major bottleneck being the logistics of transport: getting the cells from the (small number of) specialised production facilities to the patients, with minimum processing and within the cold chain.
We have established strong preliminary data demonstrating an entirely new concept in cryopreservation based on the use of (patent pending) synthetic polymers, which can control ice formation and growth. These are inspired by how antifreeze proteins protect organisms which live in sub-zero environments, but with the advantages of being; Highly tuneable; Low toxicity; Scalable synthesis. This is backed up by demonstration of function in immortalised cell lines, and is ready to be applied to real biomedical problems.
In this project we will obtain convincing data-sets demonstrating that our synthetic polymer can revolutionise the storage and transport of stem cells for current and emerging therapies. This will bring significant societal change through enabling new regenerative medicine therapies and bringing real commercial benefit by solving a supply chain challenge and improving on the current 50 year old method.
Max ERC Funding
150 000 €
Duration
Start date: 2018-06-01, End date: 2019-11-30
Project acronym CuRE
Project Cardiac REgeneration from within
Researcher (PI) Mauro GIACCA
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Advanced Grant (AdG), LS4, ERC-2017-ADG
Summary Biotechnological therapies for patients with myocardial infarction and heart failure are urgently needed, in light of the breadth of these diseases and a lack of curative treatments. CuRE is an ambitious project aimed at identifying novel factors (cytokines, growth factors, microRNAs) that promote cardiomyocyte proliferation and can thus be transformed into innovative therapeutics to stimulate cardiac regeneration. The Project leads from two concepts: first, that cardiac regeneration can be obtained by stimulating the endogenous capacity of cardiomyocytes to proliferate, second that effective biotherapeutics might be identified through systematic screenings both in vivo and ex vivo. In the mouse, CuRE will take advantage of two unique arrayed libraries cloned in adeno-associated virus (AAV) vectors, one corresponding to the secretome (1200 factors) and the other to the miRNAome (800 pri-miRNA genes). Both libraries will be functionally screened in mice to search for factors that enhance cardiac regeneration. This in vivo selection approach will be complemented by a series of high throughput screenings on primary cardiomyocytes ex vivo, aimed at systematically assessing the involvement of all components of the ubiquitin/proteasome pathway, the cytoskeleton and the sarcomere on cell proliferation. Cytokines and miRNAs can both be developed to become therapeutic molecules, in the form of recombinant proteins and synthetic nucleic acids, respectively. Therefore, a key aim of CuRE will be to establish procedures for their production and administration in vivo, and to assess their efficacy in both small and large animal models of myocardial damage. In addition to this translational goal, the project will entail the successful achievement of several intermediate objectives, each of which possesses intrinsic validity in terms of basic discovery and is thus expected to extend technology and knowledge in the cardiovascular field beyond state-of-the art.
Summary
Biotechnological therapies for patients with myocardial infarction and heart failure are urgently needed, in light of the breadth of these diseases and a lack of curative treatments. CuRE is an ambitious project aimed at identifying novel factors (cytokines, growth factors, microRNAs) that promote cardiomyocyte proliferation and can thus be transformed into innovative therapeutics to stimulate cardiac regeneration. The Project leads from two concepts: first, that cardiac regeneration can be obtained by stimulating the endogenous capacity of cardiomyocytes to proliferate, second that effective biotherapeutics might be identified through systematic screenings both in vivo and ex vivo. In the mouse, CuRE will take advantage of two unique arrayed libraries cloned in adeno-associated virus (AAV) vectors, one corresponding to the secretome (1200 factors) and the other to the miRNAome (800 pri-miRNA genes). Both libraries will be functionally screened in mice to search for factors that enhance cardiac regeneration. This in vivo selection approach will be complemented by a series of high throughput screenings on primary cardiomyocytes ex vivo, aimed at systematically assessing the involvement of all components of the ubiquitin/proteasome pathway, the cytoskeleton and the sarcomere on cell proliferation. Cytokines and miRNAs can both be developed to become therapeutic molecules, in the form of recombinant proteins and synthetic nucleic acids, respectively. Therefore, a key aim of CuRE will be to establish procedures for their production and administration in vivo, and to assess their efficacy in both small and large animal models of myocardial damage. In addition to this translational goal, the project will entail the successful achievement of several intermediate objectives, each of which possesses intrinsic validity in terms of basic discovery and is thus expected to extend technology and knowledge in the cardiovascular field beyond state-of-the art.
Max ERC Funding
2 428 492 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym D5S
Project Direct Statistical Simulation of the Sun and Stars
Researcher (PI) Steven Tobias
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Advanced Grant (AdG), PE9, ERC-2017-ADG
Summary This proposal (D5S) addresses a key problem of astrophysics – the origin of magnetic activity in the sun and solar-type
stars. This is a problem not only of outstanding theoretical importance but also significant practical impact – solar activity has
major terrestrial consequences. An increase in activity can lead to an increase in the number and violence of solar flares and
coronal mass ejections, with profound consequences for our terrestrial environment, causing disruption to satellites and
power. Predictions of magnetic activity are highly desired by government and industry groups alike. A deep understanding of
the mechanisms leading to solar magnetic activity is required. The variable magnetic field is generated by a dynamo in the
solar interior. Though this mechanism is known to involve the interaction of magnetohydrodynamic (MHD) turbulence with
rotation, no realistic model for dynamo action currently exists. D5S utilises two recent significant breakthroughs to construct
new models for magnetic field generation in the sun and other solar-type stars. The first of these involves an entirely new
approach termed Direct Statistical Simulation (DSS) (developed by the PI), where the statistics of the astrophysical flows are
solved directly (enabling the construction of more realistic models). This approach is coupled to a breakthrough (recently
published by the PI in Nature) in our understanding of the physics of MHD turbulence at the extreme parameters relevant to
solar interiors. D5S also uses the methodology of DSS to provide statistical subgrid models for Direct Numerical Simulation
(DNS). This will increase the utility, fidelity and predictability of such models for solar magnetic activity. Either of these new
approaches, taken in isolation, would lead to significant progress in our understanding of magnetic field generation in stars.
Taken together, as in this proposal, they will provide a paradigm shift in our theories for solar magnetic activity.
Summary
This proposal (D5S) addresses a key problem of astrophysics – the origin of magnetic activity in the sun and solar-type
stars. This is a problem not only of outstanding theoretical importance but also significant practical impact – solar activity has
major terrestrial consequences. An increase in activity can lead to an increase in the number and violence of solar flares and
coronal mass ejections, with profound consequences for our terrestrial environment, causing disruption to satellites and
power. Predictions of magnetic activity are highly desired by government and industry groups alike. A deep understanding of
the mechanisms leading to solar magnetic activity is required. The variable magnetic field is generated by a dynamo in the
solar interior. Though this mechanism is known to involve the interaction of magnetohydrodynamic (MHD) turbulence with
rotation, no realistic model for dynamo action currently exists. D5S utilises two recent significant breakthroughs to construct
new models for magnetic field generation in the sun and other solar-type stars. The first of these involves an entirely new
approach termed Direct Statistical Simulation (DSS) (developed by the PI), where the statistics of the astrophysical flows are
solved directly (enabling the construction of more realistic models). This approach is coupled to a breakthrough (recently
published by the PI in Nature) in our understanding of the physics of MHD turbulence at the extreme parameters relevant to
solar interiors. D5S also uses the methodology of DSS to provide statistical subgrid models for Direct Numerical Simulation
(DNS). This will increase the utility, fidelity and predictability of such models for solar magnetic activity. Either of these new
approaches, taken in isolation, would lead to significant progress in our understanding of magnetic field generation in stars.
Taken together, as in this proposal, they will provide a paradigm shift in our theories for solar magnetic activity.
Max ERC Funding
2 499 899 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym DATAJUSTICE
Project Data Justice: Understanding datafication in relation to social justice
Researcher (PI) Lina Maria Vendela DENCIK
Host Institution (HI) CARDIFF UNIVERSITY
Call Details Starting Grant (StG), SH3, ERC-2017-STG
Summary This project explores the meaning of social justice in an age of datafication. It is premised on two significant developments: 1) the shift to a focus on the collection and processing of massive amounts of data across social life and 2) the increasing concern with the societal implications of such processes. Whilst initial concern with the technical ability to ‘datafy’ and collect information on ever-more social activity focused on surveillance and privacy, increasing emphasis is being placed on the fact that data processes are not ‘flat’ and do not implicate everyone in the same way, but, rather, are part of a system of ‘social sorting’, creating new categories of citizens, and premised on an emerging order of ‘have’ and ‘have nots’ between data profilers and data subjects. In such a context, questions of social justice and datafication require detailed study. This project frames this research agenda around the notion of ‘data justice’. It will provide a European framework of study and take a holistic approach by situating research on data processes in the context of a) the concrete experiences and practices of particular communities; b) technological analyses of data sources, algorithmic process and data output; c) policy frameworks that relate to the interplay between digital rights and social and economic rights; and d) conceptual engagement with new social stratifications emerging with datafication. The project is ground-breaking in five different respects: i) it conceptually advances the meaning of social justice in a datafied society; ii) it shifts and challenges dominant understandings of data by highlighting its relation to social and economic rights; iii) it addresses an uncharted but rapidly growing response to datafication in civil society; iv) it breaks down disciplinary boundaries in understandings of technology, power, politics and social change; and v) it pursues a combination of engaged research and socio-technical modes of investigation.
Summary
This project explores the meaning of social justice in an age of datafication. It is premised on two significant developments: 1) the shift to a focus on the collection and processing of massive amounts of data across social life and 2) the increasing concern with the societal implications of such processes. Whilst initial concern with the technical ability to ‘datafy’ and collect information on ever-more social activity focused on surveillance and privacy, increasing emphasis is being placed on the fact that data processes are not ‘flat’ and do not implicate everyone in the same way, but, rather, are part of a system of ‘social sorting’, creating new categories of citizens, and premised on an emerging order of ‘have’ and ‘have nots’ between data profilers and data subjects. In such a context, questions of social justice and datafication require detailed study. This project frames this research agenda around the notion of ‘data justice’. It will provide a European framework of study and take a holistic approach by situating research on data processes in the context of a) the concrete experiences and practices of particular communities; b) technological analyses of data sources, algorithmic process and data output; c) policy frameworks that relate to the interplay between digital rights and social and economic rights; and d) conceptual engagement with new social stratifications emerging with datafication. The project is ground-breaking in five different respects: i) it conceptually advances the meaning of social justice in a datafied society; ii) it shifts and challenges dominant understandings of data by highlighting its relation to social and economic rights; iii) it addresses an uncharted but rapidly growing response to datafication in civil society; iv) it breaks down disciplinary boundaries in understandings of technology, power, politics and social change; and v) it pursues a combination of engaged research and socio-technical modes of investigation.
Max ERC Funding
1 383 920 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym DCPOIESIS
Project Steady-state and demand-driven dendritic cell generation
Researcher (PI) Caetano Maria Pacheco Pais Dos Reis e Sousa
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS6, ERC-2017-ADG
Summary Classical dendritic cells (cDCs) are leucocytes that play a key role in innate immunity as well as the initiation and regulation of T cell responses. cDCpoiesis starts with commitment of a bone marrow (BM) haematopoietic progenitor, known as the classical DC precursor (CDP), to the cDC lineage. CDPs then give rise to pre-cDCs that exit the BM via the blood and seed tissues to give rise to the two major types of fully-differentiated cDCs, the cDC1 and cDC2 subsets. The key parameters of cDCpoiesis are poorly understood. We propose to characterise the niche in which cDCs develop within the BM and to study how pre-cDCs seed tissues and establish local clones of differentiated cDC1 and cDC2. We further wish to ask how the activity of CDPs and pre-cDCs is altered following infection, inflammation or tissue damage. Finally, we want to know to what extent cDCpoiesis is affected by direct sensing of infection or cell damage by cDC precursors. All these objectives will be addressed in a mouse lineage tracing model in which cDC precursors are genetically labelled through the activity of a Cre recombinase driven by the Clec9a locus. These mice will be crossed to fluorescent protein reporter mice, including Confetti mice that allow for clonal analysis, and the appearance of labelled cDCs and cDC clones in tissues will be followed over time in the steady-state or after induction of infection or inflammation. The dependence of cDC precursor activity on specific pathogen and damage sensing pathways will be assessed by loss-of-function experiments. The interactions of cDC precursors with their BM niche will be analysed in steady-state or inflammatory conditions by visualising the cells in situ. Finally, the consequences of demand-driven cDCpoiesis for immunity will be assessed. The results from this project will lead to a greater understanding of the influence of environmental signals on cDCpoiesis and may have applications in the design of better vaccines and immunotherapies.
Summary
Classical dendritic cells (cDCs) are leucocytes that play a key role in innate immunity as well as the initiation and regulation of T cell responses. cDCpoiesis starts with commitment of a bone marrow (BM) haematopoietic progenitor, known as the classical DC precursor (CDP), to the cDC lineage. CDPs then give rise to pre-cDCs that exit the BM via the blood and seed tissues to give rise to the two major types of fully-differentiated cDCs, the cDC1 and cDC2 subsets. The key parameters of cDCpoiesis are poorly understood. We propose to characterise the niche in which cDCs develop within the BM and to study how pre-cDCs seed tissues and establish local clones of differentiated cDC1 and cDC2. We further wish to ask how the activity of CDPs and pre-cDCs is altered following infection, inflammation or tissue damage. Finally, we want to know to what extent cDCpoiesis is affected by direct sensing of infection or cell damage by cDC precursors. All these objectives will be addressed in a mouse lineage tracing model in which cDC precursors are genetically labelled through the activity of a Cre recombinase driven by the Clec9a locus. These mice will be crossed to fluorescent protein reporter mice, including Confetti mice that allow for clonal analysis, and the appearance of labelled cDCs and cDC clones in tissues will be followed over time in the steady-state or after induction of infection or inflammation. The dependence of cDC precursor activity on specific pathogen and damage sensing pathways will be assessed by loss-of-function experiments. The interactions of cDC precursors with their BM niche will be analysed in steady-state or inflammatory conditions by visualising the cells in situ. Finally, the consequences of demand-driven cDCpoiesis for immunity will be assessed. The results from this project will lead to a greater understanding of the influence of environmental signals on cDCpoiesis and may have applications in the design of better vaccines and immunotherapies.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym DECAF
Project Deforestation – Climate –Atmospheric composition – Fire interactions and feedbacks
Researcher (PI) Dominick SPRACKLEN
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Consolidator Grant (CoG), PE10, ERC-2017-COG
Summary Extensive and ongoing tropical deforestation and degradation have important environmental impacts. Smoke aerosol from deforestation fires degrades air quality, but the effects are poorly quantified. Deforestation alters rainfall through changes in the land surface and through changes to atmospheric aerosol. The magnitude and the sign of the rainfall response is not clear, because of poor process-level understanding and because previous attempts have studied land surface and aerosol responses separately. The impacts of deforestation on atmospheric composition and climate cause a complex set of biosphere interactions resulting in potential Earth system feedbacks. These feedbacks have not yet been quantified and so their importance is not known. The full impact of deforestation on air quality, climate and the Earth System may have been underestimated because there have been no integrated studies of the combined interactions and feedbacks between deforestation and the Earth system. DECAF is the first integrated study of the combined interactions and feedbacks between tropical deforestation, fire, atmospheric composition and climate. To address this important challenge, DECAF will exploit new information from in-situ and satellite observations in combination with state-of-the-art numerical models. DECAF will deliver improved process-level knowledge of the impacts of deforestation on atmospheric composition and climate and a step change in our understanding of the interactions and feedbacks between deforestation, atmospheric composition and climate. New understanding will inform the development of climate and Earth System Models and will facilitate new climate and Earth system assessments.
Summary
Extensive and ongoing tropical deforestation and degradation have important environmental impacts. Smoke aerosol from deforestation fires degrades air quality, but the effects are poorly quantified. Deforestation alters rainfall through changes in the land surface and through changes to atmospheric aerosol. The magnitude and the sign of the rainfall response is not clear, because of poor process-level understanding and because previous attempts have studied land surface and aerosol responses separately. The impacts of deforestation on atmospheric composition and climate cause a complex set of biosphere interactions resulting in potential Earth system feedbacks. These feedbacks have not yet been quantified and so their importance is not known. The full impact of deforestation on air quality, climate and the Earth System may have been underestimated because there have been no integrated studies of the combined interactions and feedbacks between deforestation and the Earth system. DECAF is the first integrated study of the combined interactions and feedbacks between tropical deforestation, fire, atmospheric composition and climate. To address this important challenge, DECAF will exploit new information from in-situ and satellite observations in combination with state-of-the-art numerical models. DECAF will deliver improved process-level knowledge of the impacts of deforestation on atmospheric composition and climate and a step change in our understanding of the interactions and feedbacks between deforestation, atmospheric composition and climate. New understanding will inform the development of climate and Earth System Models and will facilitate new climate and Earth system assessments.
Max ERC Funding
1 965 623 €
Duration
Start date: 2018-03-01, End date: 2023-02-28