Project acronym 5D Heart Patch
Project A Functional, Mature In vivo Human Ventricular Muscle Patch for Cardiomyopathy
Researcher (PI) Kenneth Randall Chien
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary Developing new therapeutic strategies for heart regeneration is a major goal for cardiac biology and medicine. While cardiomyocytes can be generated from human pluripotent stem (hPSC) cells in vitro, it has proven difficult to use these cells to generate a large scale, mature human heart ventricular muscle graft on the injured heart in vivo. The central objective of this proposal is to optimize the generation of a large-scale pure, fully functional human ventricular muscle patch in vivo through the self-assembly of purified human ventricular progenitors and the localized expression of defined paracrine factors that drive their expansion, differentiation, vascularization, matrix formation, and maturation. Recently, we have found that purified hPSC-derived ventricular progenitors (HVPs) can self-assemble in vivo on the epicardial surface into a 3D vascularized, and functional ventricular patch with its own extracellular matrix via a cell autonomous pathway. A two-step protocol and FACS purification of HVP receptors can generate billions of pure HVPs- The current proposal will lead to the identification of defined paracrine pathways to enhance the survival, grafting/implantation, expansion, differentiation, matrix formation, vascularization and maturation of the graft in vivo. We will captalize on our unique HVP system and our novel modRNA technology to deliver therapeutic strategies by using the in vivo human ventricular muscle to model in vivo arrhythmogenic cardiomyopathy, and optimize the ability of the graft to compensate for the massive loss of functional muscle during ischemic cardiomyopathy and post-myocardial infarction. The studies will lead to new in vivo chimeric models of human cardiac disease and an experimental paradigm to optimize organ-on-organ cardiac tissue engineers of an in vivo, functional mature ventricular patch for cardiomyopathy
Summary
Developing new therapeutic strategies for heart regeneration is a major goal for cardiac biology and medicine. While cardiomyocytes can be generated from human pluripotent stem (hPSC) cells in vitro, it has proven difficult to use these cells to generate a large scale, mature human heart ventricular muscle graft on the injured heart in vivo. The central objective of this proposal is to optimize the generation of a large-scale pure, fully functional human ventricular muscle patch in vivo through the self-assembly of purified human ventricular progenitors and the localized expression of defined paracrine factors that drive their expansion, differentiation, vascularization, matrix formation, and maturation. Recently, we have found that purified hPSC-derived ventricular progenitors (HVPs) can self-assemble in vivo on the epicardial surface into a 3D vascularized, and functional ventricular patch with its own extracellular matrix via a cell autonomous pathway. A two-step protocol and FACS purification of HVP receptors can generate billions of pure HVPs- The current proposal will lead to the identification of defined paracrine pathways to enhance the survival, grafting/implantation, expansion, differentiation, matrix formation, vascularization and maturation of the graft in vivo. We will captalize on our unique HVP system and our novel modRNA technology to deliver therapeutic strategies by using the in vivo human ventricular muscle to model in vivo arrhythmogenic cardiomyopathy, and optimize the ability of the graft to compensate for the massive loss of functional muscle during ischemic cardiomyopathy and post-myocardial infarction. The studies will lead to new in vivo chimeric models of human cardiac disease and an experimental paradigm to optimize organ-on-organ cardiac tissue engineers of an in vivo, functional mature ventricular patch for cardiomyopathy
Max ERC Funding
2 149 228 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym ARMOR-T
Project Armoring multifunctional T cells for cancer therapy
Researcher (PI) Sebastian Kobold
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS7, ERC-2017-STG
Summary Adoptive T cell therapy (ACT) is a powerful approach to treat even advanced cancer diseases where poor prognosis calls for innovative treatments. However ACT is critically limited by insufficient T cell infiltration into the tumor, T cell activation at the tumor site and local T cell suppression. Few advances have been made in the field to tackle these limitations besides increasing T cell activation. My group has focussed on these unaddressed issues but came to realise that tackling these one by one will not be sufficient. I have developed a panel of unpublished chemokine receptors and innovative modular antibody-activated receptors which have the potential to overcome the limitations of ACT against solid tumors. This ground-breaking portfolio places my group in the unique position to address combination of synergistic receptors and enable cellular therapies in previously unsuccessful indications. My project will provide the rationale for provision of an effective cancer treatment. The goal is to develop the next generation of ACT through T cell engineering both by forced expression of migratory and activating receptors and simultaneous deletion of immune suppressive molecules by gene editing. ARMOR-T will provide the basis for further preclinical and clinical development of a pioneering cellular product devoid of the limitations of available products to date. I will prove 1) synergy between migratory and modular activating receptors, 2) feasibility to integrate gene editing into a T cell expansion protocol, 3) synergy between gene editing, migratory and modular receptors and 4) efficacy, safety and mode of action. The main work of the project will be carried out in models of pancreatic cancer. The ARMOR-T platform will subsequently be translated to other cancer entities where response to ACT is likely such as melanoma, breast or colon cancer, providing less toxic and more effective therapies to otherwise untreatable disease.
Summary
Adoptive T cell therapy (ACT) is a powerful approach to treat even advanced cancer diseases where poor prognosis calls for innovative treatments. However ACT is critically limited by insufficient T cell infiltration into the tumor, T cell activation at the tumor site and local T cell suppression. Few advances have been made in the field to tackle these limitations besides increasing T cell activation. My group has focussed on these unaddressed issues but came to realise that tackling these one by one will not be sufficient. I have developed a panel of unpublished chemokine receptors and innovative modular antibody-activated receptors which have the potential to overcome the limitations of ACT against solid tumors. This ground-breaking portfolio places my group in the unique position to address combination of synergistic receptors and enable cellular therapies in previously unsuccessful indications. My project will provide the rationale for provision of an effective cancer treatment. The goal is to develop the next generation of ACT through T cell engineering both by forced expression of migratory and activating receptors and simultaneous deletion of immune suppressive molecules by gene editing. ARMOR-T will provide the basis for further preclinical and clinical development of a pioneering cellular product devoid of the limitations of available products to date. I will prove 1) synergy between migratory and modular activating receptors, 2) feasibility to integrate gene editing into a T cell expansion protocol, 3) synergy between gene editing, migratory and modular receptors and 4) efficacy, safety and mode of action. The main work of the project will be carried out in models of pancreatic cancer. The ARMOR-T platform will subsequently be translated to other cancer entities where response to ACT is likely such as melanoma, breast or colon cancer, providing less toxic and more effective therapies to otherwise untreatable disease.
Max ERC Funding
1 636 710 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym ASTRODYN
Project Astrophysical Dynamos
Researcher (PI) Axel Brandenburg
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Advanced Grant (AdG), PE9, ERC-2008-AdG
Summary Magnetic fields in stars, planets, accretion discs, and galaxies are believed to be the result of a dynamo process converting kinetic energy into magnetic energy. This work focuses on the solar dynamo, but dynamos in other astrophysical systems will also be addressed. In particular, direct high-resolution three-dimensional simulations are used to understand particular aspects of the solar dynamo and ultimately to simulate the solar dynamo as a whole. Phenomenological approaches will be avoided in favor of obtaining rigorous results. A major problem is catastrophic quenching, i.e. the decline of dynamo effects in inverse proportion to the magnetic Reynolds number, which is huge. Tremendous advances have been made in the last few years since the cause of catastrophic quenching in dynamos has been understood in terms of magnetic helicity evolution. The numerical tools are now in place to allow for magnetic helicity fluxes via coronal mass ejections, thus alleviating catastrophic quenching. This work employs simulations in spherical shells, augmented by Cartesian simulations in special cases. The roles of the near-surface shear layer, the tachocline, as well as pumping in the bulk of the convection zone are to be clarified. The Pencil Code will be used for most applications. The code is third order in time and sixth order in space and is used for solving the hydromagnetic equations. It is a public domain code developed by roughly 20 scientists world wide and maintained under an a central versioning system at Nordita. Automatic nightly tests of currently 30 applications ensure the integrity of the code. It is used for a wide range of applications and may include the effects of radiation, self-gravity, dust, chemistry, variable ionization, cosmic rays, in addition to those of magnetohydrodynamics. The code with its infrastructure offers a good opportunity for individuals within a broad group of people to develop new tools that may automatically be useful to others.
Summary
Magnetic fields in stars, planets, accretion discs, and galaxies are believed to be the result of a dynamo process converting kinetic energy into magnetic energy. This work focuses on the solar dynamo, but dynamos in other astrophysical systems will also be addressed. In particular, direct high-resolution three-dimensional simulations are used to understand particular aspects of the solar dynamo and ultimately to simulate the solar dynamo as a whole. Phenomenological approaches will be avoided in favor of obtaining rigorous results. A major problem is catastrophic quenching, i.e. the decline of dynamo effects in inverse proportion to the magnetic Reynolds number, which is huge. Tremendous advances have been made in the last few years since the cause of catastrophic quenching in dynamos has been understood in terms of magnetic helicity evolution. The numerical tools are now in place to allow for magnetic helicity fluxes via coronal mass ejections, thus alleviating catastrophic quenching. This work employs simulations in spherical shells, augmented by Cartesian simulations in special cases. The roles of the near-surface shear layer, the tachocline, as well as pumping in the bulk of the convection zone are to be clarified. The Pencil Code will be used for most applications. The code is third order in time and sixth order in space and is used for solving the hydromagnetic equations. It is a public domain code developed by roughly 20 scientists world wide and maintained under an a central versioning system at Nordita. Automatic nightly tests of currently 30 applications ensure the integrity of the code. It is used for a wide range of applications and may include the effects of radiation, self-gravity, dust, chemistry, variable ionization, cosmic rays, in addition to those of magnetohydrodynamics. The code with its infrastructure offers a good opportunity for individuals within a broad group of people to develop new tools that may automatically be useful to others.
Max ERC Funding
2 220 000 €
Duration
Start date: 2009-02-01, End date: 2014-01-31
Project acronym ASTROLAB
Project Cold Collisions and the Pathways Toward Life in Interstellar Space
Researcher (PI) Holger Kreckel
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Modern telescopes like Herschel and ALMA open up a new window into molecular astrophysics to investigate a surprisingly rich chemistry that operates even at low densities and low temperatures. Observations with these instruments have the potential of unraveling key questions of astrobiology, like the accumulation of water and pre-biotic organic molecules on (exo)planets from asteroids and comets. Hand-in-hand with the heightened observational activities comes a strong demand for a thorough understanding of the molecular formation mechanisms. The vast majority of interstellar molecules are formed in ion-neutral reactions that remain efficient even at low temperatures. Unfortunately, the unusual nature of these processes under terrestrial conditions makes their laboratory study extremely difficult.
To address these issues, I propose to build a versatile merged beams setup for laboratory studies of ion-neutral collisions at the Cryogenic Storage Ring (CSR), the most ambitious of the next-generation storage devices under development worldwide. With this experimental setup, I will make use of a low-temperature and low-density environment that is ideal to simulate the conditions prevailing in interstellar space. The cryogenic surrounding, in combination with laser-generated ground state atom beams, will allow me to perform precise energy-resolved rate coefficient measurements for reactions between cold molecular ions (like, e.g., H2+, H3+, HCO+, CH2+, CH3+, etc.) and neutral atoms (H, D, C or O) in order to shed light on long-standing problems of astrochemistry and the formation of organic molecules in space.
With the large variability of the collision energy (corresponding to 40-40000 K), I will be able to provide data that are crucial for the interpretation of molecular observations in a variety of objects, ranging from cold molecular clouds to warm layers in protoplanetary disks.
Summary
Modern telescopes like Herschel and ALMA open up a new window into molecular astrophysics to investigate a surprisingly rich chemistry that operates even at low densities and low temperatures. Observations with these instruments have the potential of unraveling key questions of astrobiology, like the accumulation of water and pre-biotic organic molecules on (exo)planets from asteroids and comets. Hand-in-hand with the heightened observational activities comes a strong demand for a thorough understanding of the molecular formation mechanisms. The vast majority of interstellar molecules are formed in ion-neutral reactions that remain efficient even at low temperatures. Unfortunately, the unusual nature of these processes under terrestrial conditions makes their laboratory study extremely difficult.
To address these issues, I propose to build a versatile merged beams setup for laboratory studies of ion-neutral collisions at the Cryogenic Storage Ring (CSR), the most ambitious of the next-generation storage devices under development worldwide. With this experimental setup, I will make use of a low-temperature and low-density environment that is ideal to simulate the conditions prevailing in interstellar space. The cryogenic surrounding, in combination with laser-generated ground state atom beams, will allow me to perform precise energy-resolved rate coefficient measurements for reactions between cold molecular ions (like, e.g., H2+, H3+, HCO+, CH2+, CH3+, etc.) and neutral atoms (H, D, C or O) in order to shed light on long-standing problems of astrochemistry and the formation of organic molecules in space.
With the large variability of the collision energy (corresponding to 40-40000 K), I will be able to provide data that are crucial for the interpretation of molecular observations in a variety of objects, ranging from cold molecular clouds to warm layers in protoplanetary disks.
Max ERC Funding
1 486 800 €
Duration
Start date: 2012-09-01, End date: 2017-11-30
Project acronym Beacon
Project Beacons in the Dark
Researcher (PI) Paulo César Carvalho Freire
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary BEACON aims at performing an ambitious multi-disciplinary (optical, radio astronomy and theoretical physics) study to enable a fundamentally improved understanding of gravitation and space-time. For almost a century Einstein's general relativity has been the last word on gravity. However, superstring theory predicts new gravitational phenomena beyond relativity. In this proposal I will attempt to detect these new phenomena, with a sensitivity 20 times better than state-of-the-art attempts. A successful detection would take physics beyond its current understanding of the Universe.
These new gravitational phenomena are emission of dipolar gravitational waves and the violation of the strong equivalence principle (SEP). I plan to look for them by timing newly discovered binary pulsars. I will improve upon the best current limits on dipolar gravitational wave emission by a factor of 20 within the time of this proposal. I also plan to develop a test of the Strong Equivalence Principle using a new pulsar/main-sequence star binary. The precision of this test is likely to surpass the current best limits within the time frame of this proposal and then keep improving indefinitely with time. This happens because this is the cleanest gravitational experiment ever carried out.
In order to further these goals, I plan to build the ultimate pulsar observing system. By taking advantage of recent technological advances in microwave engineering (particularly sensitive ultra-wide band receivers) digital electronics (fast analogue-to-digital converters and digital spectrometers) and computing, my team and me will be able to greatly improve the sensitivity and precision for pulsar timing experiments and exploit the capabilities of modern radio telescopes to their limits.
Pulsars are the beacons that will guide me in these new, uncharted seas.
Summary
BEACON aims at performing an ambitious multi-disciplinary (optical, radio astronomy and theoretical physics) study to enable a fundamentally improved understanding of gravitation and space-time. For almost a century Einstein's general relativity has been the last word on gravity. However, superstring theory predicts new gravitational phenomena beyond relativity. In this proposal I will attempt to detect these new phenomena, with a sensitivity 20 times better than state-of-the-art attempts. A successful detection would take physics beyond its current understanding of the Universe.
These new gravitational phenomena are emission of dipolar gravitational waves and the violation of the strong equivalence principle (SEP). I plan to look for them by timing newly discovered binary pulsars. I will improve upon the best current limits on dipolar gravitational wave emission by a factor of 20 within the time of this proposal. I also plan to develop a test of the Strong Equivalence Principle using a new pulsar/main-sequence star binary. The precision of this test is likely to surpass the current best limits within the time frame of this proposal and then keep improving indefinitely with time. This happens because this is the cleanest gravitational experiment ever carried out.
In order to further these goals, I plan to build the ultimate pulsar observing system. By taking advantage of recent technological advances in microwave engineering (particularly sensitive ultra-wide band receivers) digital electronics (fast analogue-to-digital converters and digital spectrometers) and computing, my team and me will be able to greatly improve the sensitivity and precision for pulsar timing experiments and exploit the capabilities of modern radio telescopes to their limits.
Pulsars are the beacons that will guide me in these new, uncharted seas.
Max ERC Funding
1 892 376 €
Duration
Start date: 2011-09-01, End date: 2016-08-31
Project acronym BIO-IRT
Project Biologically individualized, model-based radiotherapy on the basis of multi-parametric molecular tumour profiling
Researcher (PI) Daniela Thorwarth
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary High precision radiotherapy (RT) allows extremely flexible tumour treatments achieving highly conformal radiation doses while sparing surrounding organs at risk. Nevertheless, failure rates of up to 50% are reported for head and neck cancer (HNC) due to radiation resistance induced by pathophysiologic factors such as hypoxia and other clinical factors as HPV-status, stage and tumour volume.
This project aims at developing a multi-parametric model for individualized RT (iRT) dose prescriptions in HNC based on biological markers and functional PET/MR imaging. This project goes far beyond current research standards and clinical practice as it aims for establishing hypoxia PET and f-MRI as well as biological markers in HNC as a role model for a novel concept from anatomy-based to biologically iRT.
During this project, a multi-parametric model will be developed on a preclinical basis that combines biological markers such as different oncogenes and hypoxia gene classifier with functional PET/MR imaging, such as FMISO PET in combination with different f-MRI techniques, like DW-, DCE- and BOLD-MRI in addition to MR spectroscopy. The ultimate goal of this project is a multi-parametric model to predict therapy outcome and guide iRT.
In a second part, a clinical study will be carried out to validate the preclinical model in patients. Based on the most informative radiobiological and imaging parameters as identified during the pre-clinical phase, biological markers and advanced PET/MR imaging will be evaluated in terms of their potential for iRT dose prescription.
Successful development of a model for biologically iRT prescription on the basis of multi-parametric molecular profiling would provide a unique basis for personalized cancer treatment. A validated multi-parametric model for RT outcome would represent a paradigm shift from anatomy-based to biologically iRT concepts with the ultimate goal of improving cancer cure rates.
Summary
High precision radiotherapy (RT) allows extremely flexible tumour treatments achieving highly conformal radiation doses while sparing surrounding organs at risk. Nevertheless, failure rates of up to 50% are reported for head and neck cancer (HNC) due to radiation resistance induced by pathophysiologic factors such as hypoxia and other clinical factors as HPV-status, stage and tumour volume.
This project aims at developing a multi-parametric model for individualized RT (iRT) dose prescriptions in HNC based on biological markers and functional PET/MR imaging. This project goes far beyond current research standards and clinical practice as it aims for establishing hypoxia PET and f-MRI as well as biological markers in HNC as a role model for a novel concept from anatomy-based to biologically iRT.
During this project, a multi-parametric model will be developed on a preclinical basis that combines biological markers such as different oncogenes and hypoxia gene classifier with functional PET/MR imaging, such as FMISO PET in combination with different f-MRI techniques, like DW-, DCE- and BOLD-MRI in addition to MR spectroscopy. The ultimate goal of this project is a multi-parametric model to predict therapy outcome and guide iRT.
In a second part, a clinical study will be carried out to validate the preclinical model in patients. Based on the most informative radiobiological and imaging parameters as identified during the pre-clinical phase, biological markers and advanced PET/MR imaging will be evaluated in terms of their potential for iRT dose prescription.
Successful development of a model for biologically iRT prescription on the basis of multi-parametric molecular profiling would provide a unique basis for personalized cancer treatment. A validated multi-parametric model for RT outcome would represent a paradigm shift from anatomy-based to biologically iRT concepts with the ultimate goal of improving cancer cure rates.
Max ERC Funding
1 370 799 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym BIOFINDER
Project New biomarkers for Alzheimer’s & Parkinson’s diseases - key tools for early diagnosis and drug development
Researcher (PI) Oskar Hansson
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary Alzheimer’s disease (AD) and Parkinson’s disease (PD) are common in elderly and the prevalence of these is increasing. AD and PD have distinct pathogenesis, which precede the overt clinical symptoms by 10-15 years, opening a window for early diagnosis and treatment. New disease-modifying therapies are likely to be most efficient if initiated before the patients exhibit overt symptoms, making biomarkers for early diagnosis crucial for future clinical trials. Validated biomarkers would speed up initiation of treatment, avoid unnecessary investigations, and reduce patient insecurity.
AIMS: (1) identify and validate accurate and cost-effective blood-based biomarkers for early identification of those at high risk to develop AD and PD, (2) develop algorithms using advanced imaging and cerebrospinal fluid biomarkers for earlier more accurate diagnoses, and (3) better understand the underlying pathology and early progression of AD and PD, aiming at finding new relevant drug targets.
We will assess well-characterized and clinically relevant populations of patients and healthy elderly. We will use population- and clinic-based cohorts and follow them prospectively for 4 year. Participants will undergo neurocognitive evaluation, provide blood and cerebrospinal fluid, and have brain imaging using advanced MRI protocols and a newly developed PET-tracer visualizing brain amyloid. Sample will be analyzed with quantitative mass spectrometry and high sensitivity immunoassays.
New biomarkers and brain imaging techniques will aid early diagnosis and facilitate the development of disease-modifying therapies, since treatment can start earlier in the disease process. New methods to quantify relevant drug targets, such as oligomers of β-amyloid and α-synuclein, will be vital when selecting drug candidates for large-scale clinical trials. By improving both diagnosis and therapies the social and economic burden of dementia might be reduced by expanding the period of healthy and active aging
Summary
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are common in elderly and the prevalence of these is increasing. AD and PD have distinct pathogenesis, which precede the overt clinical symptoms by 10-15 years, opening a window for early diagnosis and treatment. New disease-modifying therapies are likely to be most efficient if initiated before the patients exhibit overt symptoms, making biomarkers for early diagnosis crucial for future clinical trials. Validated biomarkers would speed up initiation of treatment, avoid unnecessary investigations, and reduce patient insecurity.
AIMS: (1) identify and validate accurate and cost-effective blood-based biomarkers for early identification of those at high risk to develop AD and PD, (2) develop algorithms using advanced imaging and cerebrospinal fluid biomarkers for earlier more accurate diagnoses, and (3) better understand the underlying pathology and early progression of AD and PD, aiming at finding new relevant drug targets.
We will assess well-characterized and clinically relevant populations of patients and healthy elderly. We will use population- and clinic-based cohorts and follow them prospectively for 4 year. Participants will undergo neurocognitive evaluation, provide blood and cerebrospinal fluid, and have brain imaging using advanced MRI protocols and a newly developed PET-tracer visualizing brain amyloid. Sample will be analyzed with quantitative mass spectrometry and high sensitivity immunoassays.
New biomarkers and brain imaging techniques will aid early diagnosis and facilitate the development of disease-modifying therapies, since treatment can start earlier in the disease process. New methods to quantify relevant drug targets, such as oligomers of β-amyloid and α-synuclein, will be vital when selecting drug candidates for large-scale clinical trials. By improving both diagnosis and therapies the social and economic burden of dementia might be reduced by expanding the period of healthy and active aging
Max ERC Funding
1 500 000 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym BIOMENDELIAN
Project Linking Cardiometabolic Disease and Cancer in the Level of Genetics, Circulating Biomarkers, Microbiota and Environmental Risk Factors
Researcher (PI) Marju Orho-Melander
Host Institution (HI) LUNDS UNIVERSITET
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary Cardiovascular disease (CVD), type 2 diabetes (T2D) and obesity, collectively referred to as cardiometabolic disease, together with cancer are the major morbidities and causes of death. With few exceptions, research on cardiometabolic disease and cancer is funded, studied and clinically applied separately without fully taking advantage of knowledge on common pathways and treatment targets through interdisciplinary synergies. The purpose of this proposal is to reveal causal factors connecting and disconnecting cardiometabolic diseases and cancer, and to understand interactions between gut microbiota, host diet and genetic susceptibility in a comprehensive prospective cohort study design to subsequently allow design of intervention strategies to guide more personalized disease prevention.
1. We investigate causality between genetic risk factors for cardiometabolic disease associated traits and future incidence of T2D, CVD, cancer (total/breast/colon/prostate) and mortality (total, CVD- and cancer mortality), searching for causal factors in a prospective cohort with >15 y follow-up (N>30,000, incident cases N=3550, 4713, 5975, 6115 for T2D, CVD, cancer, mortality)
2. For the first time in a large population (N=6000), we investigate how gut and oral microbiome are regulated by dietary factors, gut satiety peptides and host genetics, and how such connections relate to cardiometabolic disease associated traits and cancer
3. We investigate the role of diet and gene-diet interactions of importance for cardiometabolic disease and cancer
4. We perform genotype, biomarker and gut microbiota based diet intervention studies.
This inter-disciplinary project contributes to biological understanding of basic disease mechanisms and takes steps towards better possibilities to prevent and treat individuals at high risk for cardiometabolic disease, cancer and death.
Summary
Cardiovascular disease (CVD), type 2 diabetes (T2D) and obesity, collectively referred to as cardiometabolic disease, together with cancer are the major morbidities and causes of death. With few exceptions, research on cardiometabolic disease and cancer is funded, studied and clinically applied separately without fully taking advantage of knowledge on common pathways and treatment targets through interdisciplinary synergies. The purpose of this proposal is to reveal causal factors connecting and disconnecting cardiometabolic diseases and cancer, and to understand interactions between gut microbiota, host diet and genetic susceptibility in a comprehensive prospective cohort study design to subsequently allow design of intervention strategies to guide more personalized disease prevention.
1. We investigate causality between genetic risk factors for cardiometabolic disease associated traits and future incidence of T2D, CVD, cancer (total/breast/colon/prostate) and mortality (total, CVD- and cancer mortality), searching for causal factors in a prospective cohort with >15 y follow-up (N>30,000, incident cases N=3550, 4713, 5975, 6115 for T2D, CVD, cancer, mortality)
2. For the first time in a large population (N=6000), we investigate how gut and oral microbiome are regulated by dietary factors, gut satiety peptides and host genetics, and how such connections relate to cardiometabolic disease associated traits and cancer
3. We investigate the role of diet and gene-diet interactions of importance for cardiometabolic disease and cancer
4. We perform genotype, biomarker and gut microbiota based diet intervention studies.
This inter-disciplinary project contributes to biological understanding of basic disease mechanisms and takes steps towards better possibilities to prevent and treat individuals at high risk for cardiometabolic disease, cancer and death.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym BIOSENSORIMAGING
Project Hyperpolarized Biosensors in Molecular Imaging
Researcher (PI) Leif Schröder
Host Institution (HI) FORSCHUNGSVERBUND BERLIN EV
Call Details Starting Grant (StG), LS7, ERC-2009-StG
Summary Xenon biosensors have an outstanding potential to increase the significance of magnetic resonance imaging (MRI) in molecular imaging and to combine the advantages of MRI with the high sensitivity of hyperpolarized Xe-129 and the specificity of a functionalized contrast agent. Based on new detection schemes (Hyper-CEST method) in Xe MRI, this novel concept in molecular diagnostics will be made available for biomedical applications. The advancement focuses on high-sensitivity in vitro diagnostics for localization of tumour cells in cell cultures and first demonstrations on animal models based on a transferrin-functionalized biosensor. Such a sensor will enable detection of subcutaneous tumours at high sensitivity without any background signal. More detailed work on the different available Hyper-CEST contrast parameters focuses on an absolute quantification of new molecular markers that will improve non-invasive tumour diagnostics significantly. NMR detection of functionalized Xe biosensors have the potential to close the sensitivity gap between modalities of nuclear medicine like PET/SPECT and MRI without using ionizing radiation or making compromises in penetration depth like in optical methods.
Summary
Xenon biosensors have an outstanding potential to increase the significance of magnetic resonance imaging (MRI) in molecular imaging and to combine the advantages of MRI with the high sensitivity of hyperpolarized Xe-129 and the specificity of a functionalized contrast agent. Based on new detection schemes (Hyper-CEST method) in Xe MRI, this novel concept in molecular diagnostics will be made available for biomedical applications. The advancement focuses on high-sensitivity in vitro diagnostics for localization of tumour cells in cell cultures and first demonstrations on animal models based on a transferrin-functionalized biosensor. Such a sensor will enable detection of subcutaneous tumours at high sensitivity without any background signal. More detailed work on the different available Hyper-CEST contrast parameters focuses on an absolute quantification of new molecular markers that will improve non-invasive tumour diagnostics significantly. NMR detection of functionalized Xe biosensors have the potential to close the sensitivity gap between modalities of nuclear medicine like PET/SPECT and MRI without using ionizing radiation or making compromises in penetration depth like in optical methods.
Max ERC Funding
1 848 600 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym BLAST
Project Eclipsing binary stars as cutting edge laboratories for astrophysics of stellar
structure, stellar evolution and planet formation
Researcher (PI) Maciej Konacki
Host Institution (HI) CENTRUM ASTRONOMICZNE IM. MIKOLAJAKOPERNIKA POLSKIEJ AKADEMII NAUK
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary Spectroscopic binary stars (SB2s) and in particular spectroscopic eclipsing binaries are one of the most useful objects in astrophysics. Their photometric and spectroscopic observations allow one to determine basic parameters of stars and carry out a wide range of tests of stellar structure, evolution and dynamics. Perhaps somewhat surprisingly, they can also contribute to our understanding of the formation and evolution of (extrasolar) planets. We will study eclipsing binary stars by combining the classic - stellar astronomy - and the modern - extrasolar planets - subjects into a cutting edge project.
We propose to search for and subsequently characterize circumbinary planets around ~350 eclipsing SB2s using our own novel cutting edge radial velocity technique for binary stars and a modern version of the photometry based eclipse timing of eclipsing binary stars employing 0.5-m robotic telescopes. We will also derive basic parameters of up to ~700 stars (~350 binaries) with an unprecedented precision. In particular for about 50% of our sample we expect to deliver masses of the components with an accuracy ~10-100 times better than the current state of the art.
Our project will provide unique constraints for the theories of planet formation and evolution and an unprecedented in quality set of the basic parameters of stars to test the theories of the stellar structure and evolution.
Summary
Spectroscopic binary stars (SB2s) and in particular spectroscopic eclipsing binaries are one of the most useful objects in astrophysics. Their photometric and spectroscopic observations allow one to determine basic parameters of stars and carry out a wide range of tests of stellar structure, evolution and dynamics. Perhaps somewhat surprisingly, they can also contribute to our understanding of the formation and evolution of (extrasolar) planets. We will study eclipsing binary stars by combining the classic - stellar astronomy - and the modern - extrasolar planets - subjects into a cutting edge project.
We propose to search for and subsequently characterize circumbinary planets around ~350 eclipsing SB2s using our own novel cutting edge radial velocity technique for binary stars and a modern version of the photometry based eclipse timing of eclipsing binary stars employing 0.5-m robotic telescopes. We will also derive basic parameters of up to ~700 stars (~350 binaries) with an unprecedented precision. In particular for about 50% of our sample we expect to deliver masses of the components with an accuracy ~10-100 times better than the current state of the art.
Our project will provide unique constraints for the theories of planet formation and evolution and an unprecedented in quality set of the basic parameters of stars to test the theories of the stellar structure and evolution.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-12-01, End date: 2016-11-30
Project acronym BloodVariome
Project Genetic variation exposes regulators of blood cell formation in vivo in humans
Researcher (PI) Björn Erik Ake NILSSON
Host Institution (HI) LUNDS UNIVERSITET
Call Details Consolidator Grant (CoG), LS7, ERC-2017-COG
Summary The human hematopoietic system is a paradigmatic, stem cell-maintained organ with enormous cell turnover. Hundreds of billions of new blood cells are produced each day. The process is tightly regulated, and susceptible to perturbation due to genetic variation.
In this project, we will explore an innovative, population-genetic approach to find regulators of blood cell formation. Unlike traditional studies on hematopoiesis in vitro or in animal models, we will exploit natural genetic variation to identify DNA sequence variants and genes that influence blood cell formation in vivo in humans. Instead of inserting artificial mutations in mice, we will read out ripples from the experiments that nature has performed during evolution.
Building on our previous work, unique population-based materials, mathematical modeling, and the latest genomics and genome editing techniques, we will:
1. Develop high-resolution association data and analysis methods to find DNA sequence variants influencing human hematopoiesis, including stem- and progenitor stages.
2. Identify sequence variants and genes influencing specific stages of adult and fetal/perinatal hematopoiesis.
3. Define the function, and disease associations, of identified variants and genes.
Led by the applicant, the project will involve researchers at Lund University, Royal Institute of Technology and deCODE Genetics, and will be carried out in strong environments. It has been preceded by significant preparatory work. It will provide a first detailed analysis of how genetic variation influences human hematopoiesis, potentially increasing our understanding, and abilities to control, diseases marked by abnormal blood cell formation (e.g., leukemia).
Summary
The human hematopoietic system is a paradigmatic, stem cell-maintained organ with enormous cell turnover. Hundreds of billions of new blood cells are produced each day. The process is tightly regulated, and susceptible to perturbation due to genetic variation.
In this project, we will explore an innovative, population-genetic approach to find regulators of blood cell formation. Unlike traditional studies on hematopoiesis in vitro or in animal models, we will exploit natural genetic variation to identify DNA sequence variants and genes that influence blood cell formation in vivo in humans. Instead of inserting artificial mutations in mice, we will read out ripples from the experiments that nature has performed during evolution.
Building on our previous work, unique population-based materials, mathematical modeling, and the latest genomics and genome editing techniques, we will:
1. Develop high-resolution association data and analysis methods to find DNA sequence variants influencing human hematopoiesis, including stem- and progenitor stages.
2. Identify sequence variants and genes influencing specific stages of adult and fetal/perinatal hematopoiesis.
3. Define the function, and disease associations, of identified variants and genes.
Led by the applicant, the project will involve researchers at Lund University, Royal Institute of Technology and deCODE Genetics, and will be carried out in strong environments. It has been preceded by significant preparatory work. It will provide a first detailed analysis of how genetic variation influences human hematopoiesis, potentially increasing our understanding, and abilities to control, diseases marked by abnormal blood cell formation (e.g., leukemia).
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym BREATHE
Project Biochemically modified messenger RNA encoding nucleases for in vivo gene correction of severe inherited lung diseases
Researcher (PI) Michael Kormann
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Starting Grant (StG), LS7, ERC-2014-STG
Summary Surfactant Protein B (SP-B) deficiency and Cystic Fibrosis (CF) are severe, fatal inherited diseases affecting the lungs of ten thousands of people, for which there is currently no available cure. Although gene therapy is a promising therapeutic approach, various technical problems, including numerous physical and immune-mediated barriers, have prevented successful application to date. My recent studies were the first to demonstrate the life-saving efficacy of repeated pulmonary delivery of chemically modified messenger RNA (mRNA) in a mouse model of congenital SP-B deficiency. By incorporating balanced amounts of modified nucleotides to mimic endogenous transcripts, I developed a safe and therapeutically efficient vehicle for lung transfection that eliminates the risk of genomic integration commonly associated with DNA-based vectors. I also assessed the delivery of mRNA-encoded site-specific nucleases to the lung to facilitate targeted gene correction of the underlying disease-causing mutations. In comprehensive studies, we show that a single application of nucleases encoded by nucleotide-modified RNA (nec-mRNA) can generate in vivo correction of terminally differentiated alveolar type II cells, which more than quadrupled the life span of SP-B deficient mice. Together with my working group, I aim to further develop this technology to enhance the efficiency and safety of nec-mRNA-mediated in vivo lung stem cell targeting, providing an ultimate cure by permanent correction. Specifically, we will test this approach in humanized mouse models of SP-B deficiency and CF. Developing and genetically engineering humanized models in vivo will be a critical step towards the safe translation of mRNA based nuclease technology to the clinic. With my competitive edge in lung-transfection technology and strong data, I feel that my group is uniquely suited to achieve these goals and to make a highly valuable contribution to the development of an efficient treatment.
Summary
Surfactant Protein B (SP-B) deficiency and Cystic Fibrosis (CF) are severe, fatal inherited diseases affecting the lungs of ten thousands of people, for which there is currently no available cure. Although gene therapy is a promising therapeutic approach, various technical problems, including numerous physical and immune-mediated barriers, have prevented successful application to date. My recent studies were the first to demonstrate the life-saving efficacy of repeated pulmonary delivery of chemically modified messenger RNA (mRNA) in a mouse model of congenital SP-B deficiency. By incorporating balanced amounts of modified nucleotides to mimic endogenous transcripts, I developed a safe and therapeutically efficient vehicle for lung transfection that eliminates the risk of genomic integration commonly associated with DNA-based vectors. I also assessed the delivery of mRNA-encoded site-specific nucleases to the lung to facilitate targeted gene correction of the underlying disease-causing mutations. In comprehensive studies, we show that a single application of nucleases encoded by nucleotide-modified RNA (nec-mRNA) can generate in vivo correction of terminally differentiated alveolar type II cells, which more than quadrupled the life span of SP-B deficient mice. Together with my working group, I aim to further develop this technology to enhance the efficiency and safety of nec-mRNA-mediated in vivo lung stem cell targeting, providing an ultimate cure by permanent correction. Specifically, we will test this approach in humanized mouse models of SP-B deficiency and CF. Developing and genetically engineering humanized models in vivo will be a critical step towards the safe translation of mRNA based nuclease technology to the clinic. With my competitive edge in lung-transfection technology and strong data, I feel that my group is uniquely suited to achieve these goals and to make a highly valuable contribution to the development of an efficient treatment.
Max ERC Funding
1 497 125 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym CARDIOMICS
Project Cardiomics: Use of -omics methods in large populations for identification of novel drug targets and clinical biomarkers for coronary heart disease
Researcher (PI) Erik Ingelsson
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary There is a large need for revitalization of the research on coronary heart disease (CHD) including: a) improved risk prediction and more adequate individually-tailored treatment; and b) new targets for drug development based on pathways previously unknown to be involved in CHD pathophysiology.
The overall goal of this proposal is to improve prevention and treatment of CHD through better understanding of the biology underlying disease development, identification of new biomarkers for improved risk prediction, and discovery of novel targets for drug development.
The specific aims are to:
1) Establish and characterize causal genes in known CHD loci (gene regions) through: a) resequencing of known CHD loci; b) expression profiling in liver, arteries, myocardium and skeletal muscle; c) high-throughput protein profiling; and d) experimental follow-up in zebrafish (Danio rerio) models.
2) Discover new proteins, metabolites and pathways involved in CHD pathophysiology using global proteomic and metabolomic profiling to provide new biomarkers and drug targets.
We will integrate genomic, transcriptomic, metabolomic and proteomic data from five longitudinal, population-based cohort studies with detailed phenotyping and one study with tissue collections for expression studies. The cohort studies include 36,907 individuals; there are 3,093 prevalent CHD cases at baseline and the estimated number of incident (new) events in previously healthy by 2016 is 2,202. In addition, we work with zebrafish model systems to establish causal CHD genes and characterize their mechanisms of action.
We have access to unique study materials, state-of-the art methods, and a strong track record of successful projects in this field. To our knowledge, there are no other groups combining -omics methods to elucidate the whole chain from DNA variation to overt CHD in such large and well-characterized study samples. Further, we are unaware of other groups using zebrafish models to screen for and characterize causal CHD genes. Our work is anticipated to lead to new important insights into the pathophysiology of CHD, identification of new biomarkers for improved risk prediction, and discovery of novel targets for drug development.
Summary
There is a large need for revitalization of the research on coronary heart disease (CHD) including: a) improved risk prediction and more adequate individually-tailored treatment; and b) new targets for drug development based on pathways previously unknown to be involved in CHD pathophysiology.
The overall goal of this proposal is to improve prevention and treatment of CHD through better understanding of the biology underlying disease development, identification of new biomarkers for improved risk prediction, and discovery of novel targets for drug development.
The specific aims are to:
1) Establish and characterize causal genes in known CHD loci (gene regions) through: a) resequencing of known CHD loci; b) expression profiling in liver, arteries, myocardium and skeletal muscle; c) high-throughput protein profiling; and d) experimental follow-up in zebrafish (Danio rerio) models.
2) Discover new proteins, metabolites and pathways involved in CHD pathophysiology using global proteomic and metabolomic profiling to provide new biomarkers and drug targets.
We will integrate genomic, transcriptomic, metabolomic and proteomic data from five longitudinal, population-based cohort studies with detailed phenotyping and one study with tissue collections for expression studies. The cohort studies include 36,907 individuals; there are 3,093 prevalent CHD cases at baseline and the estimated number of incident (new) events in previously healthy by 2016 is 2,202. In addition, we work with zebrafish model systems to establish causal CHD genes and characterize their mechanisms of action.
We have access to unique study materials, state-of-the art methods, and a strong track record of successful projects in this field. To our knowledge, there are no other groups combining -omics methods to elucidate the whole chain from DNA variation to overt CHD in such large and well-characterized study samples. Further, we are unaware of other groups using zebrafish models to screen for and characterize causal CHD genes. Our work is anticipated to lead to new important insights into the pathophysiology of CHD, identification of new biomarkers for improved risk prediction, and discovery of novel targets for drug development.
Max ERC Funding
1 498 224 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CARDIOPREVENT
Project INTEGRATION OF GENOMICS AND CARDIOMETABOLIC PLASMA BIOMARKERS FOR IMPROVED PREDICTION AND PRIMARY PREVENTION OF CARDIOVASCULAR DISEASE
Researcher (PI) Olle Sten Melander
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2011-StG_20101109
Summary "By taking advantage of great experience in genetic and cardiovascular epidemiology and some of the largest cohorts in the world including 60 000 unique individuals, the applicant aims at (1) improving CVD risk prediction and (2) identifying mechanisms causally related to CVD development in order to provide novel targets for drug discovery and targeted life style interventions for use in primary prevention.
In SUBPROJECT 1 we aim at identifying disease causing alleles of loci implicated in CVD by Genome Wide Association Studies (GWAS) and to identify rare alleles with large impact on human CVD. We thus perform whole exome and targeted sequencing in early CVD cases and healthy controls and evaluate all identified variants by relating them to incident CVD in 60.000 individuals. Further, we will create a score of all validated CVD gene variants and test whether such a score improves clinical risk assessment over and above traditional risk factors.
In SUBPROJECT 2 we test whether the plasma metabolome- a phenotype representing the product of dietary intake and inherent (e.g. genetic) metabolism- differs between incident CVD cases and controls and between individuals with high and low CVD genetic risk. We further test whether a life style intervention differentially alters the plasma metabolome between individuals with high and low CVD genetic risk. Finally, we will elucidate the mechanisms underlying CVD genetic associations by testing whether myocardial expression of such genes are affected by experimental myocardial infarction (MI) and whether heart function, MI size and the plasma metabolome are affected by adenoviral myocardial CVD gene transfer in rats.
In SUBPROJECT 3 we test whether glucose metabolism and CVD risk factors can be ameliorated by suppressing vasopressin (VP) by increased water intake in humans. Finally, we test which of the 3 VP receptors is responsible for adverse glucometabolic VP effects in rats by specific VP receptor pharmacological studies."
Summary
"By taking advantage of great experience in genetic and cardiovascular epidemiology and some of the largest cohorts in the world including 60 000 unique individuals, the applicant aims at (1) improving CVD risk prediction and (2) identifying mechanisms causally related to CVD development in order to provide novel targets for drug discovery and targeted life style interventions for use in primary prevention.
In SUBPROJECT 1 we aim at identifying disease causing alleles of loci implicated in CVD by Genome Wide Association Studies (GWAS) and to identify rare alleles with large impact on human CVD. We thus perform whole exome and targeted sequencing in early CVD cases and healthy controls and evaluate all identified variants by relating them to incident CVD in 60.000 individuals. Further, we will create a score of all validated CVD gene variants and test whether such a score improves clinical risk assessment over and above traditional risk factors.
In SUBPROJECT 2 we test whether the plasma metabolome- a phenotype representing the product of dietary intake and inherent (e.g. genetic) metabolism- differs between incident CVD cases and controls and between individuals with high and low CVD genetic risk. We further test whether a life style intervention differentially alters the plasma metabolome between individuals with high and low CVD genetic risk. Finally, we will elucidate the mechanisms underlying CVD genetic associations by testing whether myocardial expression of such genes are affected by experimental myocardial infarction (MI) and whether heart function, MI size and the plasma metabolome are affected by adenoviral myocardial CVD gene transfer in rats.
In SUBPROJECT 3 we test whether glucose metabolism and CVD risk factors can be ameliorated by suppressing vasopressin (VP) by increased water intake in humans. Finally, we test which of the 3 VP receptors is responsible for adverse glucometabolic VP effects in rats by specific VP receptor pharmacological studies."
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym CAstRA
Project Comet and Asteroid Re-Shaping through Activity
Researcher (PI) Jessica AGARWAL
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2017-STG
Summary The proposed project will significantly improve the insight in the processes that have changed a comet nucleus or asteroid since their formation. These processes typically go along with activity, the observable release of gas and/or dust. Understanding the evolutionary processes of comets and asteroids will allow us to answer the crucial question which aspects of these present-day bodies still provide essential clues to their formation in the protoplanetary disc of the early solar system.
Ground-breaking progress in understanding these fundamental questions can now be made thanks to the huge and unprecedented data set returned between 2014 and 2016 by the European Space Agency’s Rosetta mission to comet 67P/Churyumov-Gerasimenko, and by recent major advances in the observational study of active asteroids facilitated by the increased availability of sky surveys and follow-on observations with world-class telescopes.
The key aims of this proposal are to
- Obtain a unified quantitative picture of the different erosion processes active in comets and asteroids,
- Investigate how ice is stored in comets and asteroids,
- Characterize the ejected dust (size distribution, optical and thermal properties) and relate it to dust around other stars,
- Understand in which respects comet 67P can be considered as representative of a wider sample of comets or even asteroids.
We will follow a highly multi-disciplinary approach analyzing data from many Rosetta instruments, ground- and space-based telescopes, and connect these through numerical models of the dust dynamics and thermal properties.
Summary
The proposed project will significantly improve the insight in the processes that have changed a comet nucleus or asteroid since their formation. These processes typically go along with activity, the observable release of gas and/or dust. Understanding the evolutionary processes of comets and asteroids will allow us to answer the crucial question which aspects of these present-day bodies still provide essential clues to their formation in the protoplanetary disc of the early solar system.
Ground-breaking progress in understanding these fundamental questions can now be made thanks to the huge and unprecedented data set returned between 2014 and 2016 by the European Space Agency’s Rosetta mission to comet 67P/Churyumov-Gerasimenko, and by recent major advances in the observational study of active asteroids facilitated by the increased availability of sky surveys and follow-on observations with world-class telescopes.
The key aims of this proposal are to
- Obtain a unified quantitative picture of the different erosion processes active in comets and asteroids,
- Investigate how ice is stored in comets and asteroids,
- Characterize the ejected dust (size distribution, optical and thermal properties) and relate it to dust around other stars,
- Understand in which respects comet 67P can be considered as representative of a wider sample of comets or even asteroids.
We will follow a highly multi-disciplinary approach analyzing data from many Rosetta instruments, ground- and space-based telescopes, and connect these through numerical models of the dust dynamics and thermal properties.
Max ERC Funding
1 484 688 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CellTrack
Project Cellular Position Tracking Using DNA Origami Barcodes
Researcher (PI) Björn HÖGBERG
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary The research I propose here will provide an enabling technology; spatially resolved transcriptomics, to address important problems in cell- and developmental-biology, in particular: How are stem cells in the skin and gut proliferating without turning into cancers? How are differentiated cells related, in their transcriptome and spatial positions, to their progenitors?
To investigate these problems on a molecular level and open up paths to find completely new spatiotemporal interdependencies in complex biological systems, I propose to use our newly developed DNA-origami strategy (Benson et al, Nature, 523 p. 441 (2015) ), combined with a combinatorial cloning technique, to build a new method for deep mRNA sequencing of tissue with single-cell resolution. These new types of origami are stable in physiological salt conditions and opens up their use in in-vivo applications.
In DNA-origami we can control the exact spatial position of all nucleotides. By folding the scaffold to display sequences for hybridization of fluorophores conjugated to DNA, we can create optical nano-barcodes. By using structures made out of DNA, the patterns of the optical barcodes will be readable both by imaging and by sequencing, thus enabling the creation of a mapping between cell locations in an organ and the mRNA expression of those cells.
We will use the method to perform spatially resolved transcriptomics in small organs: the mouse hair follicle, and small intestine crypt, and also perform the procedure for multiple samples collected at different time points. This will enable a high-dimensional data analysis that most likely will expose previously unknown dependencies that would provide completely new knowledge about how these biological systems work. By studying these systems, we will uncover much more information on how stem cells contribute to regeneration, the issue of de-differentiation that is a common theme in these organs and the effect this might have on the origin of cancer.
Summary
The research I propose here will provide an enabling technology; spatially resolved transcriptomics, to address important problems in cell- and developmental-biology, in particular: How are stem cells in the skin and gut proliferating without turning into cancers? How are differentiated cells related, in their transcriptome and spatial positions, to their progenitors?
To investigate these problems on a molecular level and open up paths to find completely new spatiotemporal interdependencies in complex biological systems, I propose to use our newly developed DNA-origami strategy (Benson et al, Nature, 523 p. 441 (2015) ), combined with a combinatorial cloning technique, to build a new method for deep mRNA sequencing of tissue with single-cell resolution. These new types of origami are stable in physiological salt conditions and opens up their use in in-vivo applications.
In DNA-origami we can control the exact spatial position of all nucleotides. By folding the scaffold to display sequences for hybridization of fluorophores conjugated to DNA, we can create optical nano-barcodes. By using structures made out of DNA, the patterns of the optical barcodes will be readable both by imaging and by sequencing, thus enabling the creation of a mapping between cell locations in an organ and the mRNA expression of those cells.
We will use the method to perform spatially resolved transcriptomics in small organs: the mouse hair follicle, and small intestine crypt, and also perform the procedure for multiple samples collected at different time points. This will enable a high-dimensional data analysis that most likely will expose previously unknown dependencies that would provide completely new knowledge about how these biological systems work. By studying these systems, we will uncover much more information on how stem cells contribute to regeneration, the issue of de-differentiation that is a common theme in these organs and the effect this might have on the origin of cancer.
Max ERC Funding
1 923 263 €
Duration
Start date: 2017-08-01, End date: 2022-07-31
Project acronym CepBin
Project A sub-percent distance scale from binaries and Cepheids
Researcher (PI) Grzegorz PIETRZYNSKI
Host Institution (HI) CENTRUM ASTRONOMICZNE IM. MIKOLAJAKOPERNIKA POLSKIEJ AKADEMII NAUK
Call Details Advanced Grant (AdG), PE9, ERC-2015-AdG
Summary We propose to carry out a project which will produce a decisive step towards improving the accuracy of the Hubble constant as determined from the Cepheid-SN Ia method to 1%, by using 28 extremely rare eclipsing binary systems in the LMC which offer the potential to determine their distances to 1%. To achieve this accuracy we will reduce the main error in the binary method by interferometric angular diameter measurements of a sample of red clump stars which resemble the stars in our binary systems. We will check on our calibration with similar binary systems close enough to determine their orbits from interferometry. We already showed the feasibility of our method which yielded the best-ever distance determination to the LMC of 2.2% from 8 such binary systems. With 28 systems and the improved angular diameter calibration we will push the LMC distance uncertainty down to 1% which will allow to set the zero point of the Cepheid PL relation with the same accuracy using the large available LMC Cepheid sample. We will determine the metallicity effect on Cepheid luminosities by a) determining a 2% distance to the more metal-poor SMC with our binary method, and by b) measuring the distances to LMC and SMC with an improved Baade-Wesselink (BW) method. We will achieve this improvement by analyzing 9 unique Cepheids in eclipsing binaries in the LMC our group has discovered which allow factor- of-ten improvements in the determination of all basic physical parameters of Cepheids. These studies will also increase our confidence in the Cepheid-based H0 determination. Our project bears strong synergy to the Gaia mission by providing the best checks on possible systematic uncertainties on Gaia parallaxes with 200 binary systems whose distances we will measure to 1-2%. We will provide two unique tools for 1-3 % distance determinations to individual objects in a volume of 1 Mpc, being competitive to Gaia already at a distance of 1 kpc from the Sun.
Summary
We propose to carry out a project which will produce a decisive step towards improving the accuracy of the Hubble constant as determined from the Cepheid-SN Ia method to 1%, by using 28 extremely rare eclipsing binary systems in the LMC which offer the potential to determine their distances to 1%. To achieve this accuracy we will reduce the main error in the binary method by interferometric angular diameter measurements of a sample of red clump stars which resemble the stars in our binary systems. We will check on our calibration with similar binary systems close enough to determine their orbits from interferometry. We already showed the feasibility of our method which yielded the best-ever distance determination to the LMC of 2.2% from 8 such binary systems. With 28 systems and the improved angular diameter calibration we will push the LMC distance uncertainty down to 1% which will allow to set the zero point of the Cepheid PL relation with the same accuracy using the large available LMC Cepheid sample. We will determine the metallicity effect on Cepheid luminosities by a) determining a 2% distance to the more metal-poor SMC with our binary method, and by b) measuring the distances to LMC and SMC with an improved Baade-Wesselink (BW) method. We will achieve this improvement by analyzing 9 unique Cepheids in eclipsing binaries in the LMC our group has discovered which allow factor- of-ten improvements in the determination of all basic physical parameters of Cepheids. These studies will also increase our confidence in the Cepheid-based H0 determination. Our project bears strong synergy to the Gaia mission by providing the best checks on possible systematic uncertainties on Gaia parallaxes with 200 binary systems whose distances we will measure to 1-2%. We will provide two unique tools for 1-3 % distance determinations to individual objects in a volume of 1 Mpc, being competitive to Gaia already at a distance of 1 kpc from the Sun.
Max ERC Funding
2 360 500 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym COCO2CASA
Project Modeling Stellar Collapse and Explosion: Evolving Progenitor Stars to Supernova Remnants
Researcher (PI) Hans-Thomas Janka
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE9, ERC-2013-ADG
Summary "This project intends to make groundbreaking progress towards the solution of one of the most pestering and long-standing riddles of stellar astrophysics, namely the question how massive stars explode as supernovae (SNe).
State-of-the-art simulations in two dimensions (2D) now yield neutrino-powered (through underenergetic) explosions for a growing variety of progenitors and thus support the delayed neutrino-heating mechanism. However, sophisticated, fully self-consistent, 3D simulations are still lacking, the spherical symmetry of the progenitor star models is becoming a serious handicap, and better exploitation of observational constraints of the SN mechanism is urgently needed.
For these reasons we plan a novel, comprehensive modeling approach, in which 3D hydrodynamics including all relevant microphysics will not only be employed for the launch phase of the SN blast wave by neutrino-energy deposition. Different from previous initiatives, 3D hydrodynamics will also be applied to the final stages of convective shell burning in the progenitor core before collapse in order to derive --for the first time-- self-consistent, multidimensional progenitor data for adopting them as initial conditions in the SN modeling. Moreover, the 3D explosion simulations will be continued consistently through the long-time evolution of the SN outburst into the gaseous remnant phase. This challenging approach promises fundamentally new insights into the processes that trigger and shape SN explosions and will revise our understanding of how SNe depend on the properties of their progenitor stars. Moreover, heading for a direct comparison of the derived theoretical models with nearby young SN remnants like Crab, Cassiopeia A, and SN 1987A, whose 3D morphology and composition are currently unfolded in stunning detail by multiwavelength observations, the project will lay the foundations of a powerful, innovative, and so far not exploited way of probing the physics deep inside the SN core."
Summary
"This project intends to make groundbreaking progress towards the solution of one of the most pestering and long-standing riddles of stellar astrophysics, namely the question how massive stars explode as supernovae (SNe).
State-of-the-art simulations in two dimensions (2D) now yield neutrino-powered (through underenergetic) explosions for a growing variety of progenitors and thus support the delayed neutrino-heating mechanism. However, sophisticated, fully self-consistent, 3D simulations are still lacking, the spherical symmetry of the progenitor star models is becoming a serious handicap, and better exploitation of observational constraints of the SN mechanism is urgently needed.
For these reasons we plan a novel, comprehensive modeling approach, in which 3D hydrodynamics including all relevant microphysics will not only be employed for the launch phase of the SN blast wave by neutrino-energy deposition. Different from previous initiatives, 3D hydrodynamics will also be applied to the final stages of convective shell burning in the progenitor core before collapse in order to derive --for the first time-- self-consistent, multidimensional progenitor data for adopting them as initial conditions in the SN modeling. Moreover, the 3D explosion simulations will be continued consistently through the long-time evolution of the SN outburst into the gaseous remnant phase. This challenging approach promises fundamentally new insights into the processes that trigger and shape SN explosions and will revise our understanding of how SNe depend on the properties of their progenitor stars. Moreover, heading for a direct comparison of the derived theoretical models with nearby young SN remnants like Crab, Cassiopeia A, and SN 1987A, whose 3D morphology and composition are currently unfolded in stunning detail by multiwavelength observations, the project will lay the foundations of a powerful, innovative, and so far not exploited way of probing the physics deep inside the SN core."
Max ERC Funding
2 898 600 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym COMBIOSCOPY
Project Computational Biophotonics for Endoscopic Cancer Diagnosis and Therapy
Researcher (PI) Lena Maier-Hein
Host Institution (HI) DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERG
Call Details Starting Grant (StG), LS7, ERC-2014-STG
Summary Key challenges in endoscopic tumor diagnosis and therapy consist of the detection and discrimination of malignant tissue as well as the precise navigation of medical instruments. Currently, a low level of sensitivity and specificity in tumor detection and lack of global orientation lead to both over- and undertreatment, tumor recurrence, intra-operative complications, and high costs. The goal of this multidisciplinary project is to revolutionize clinical endoscopic imaging based on the systematic integration of two new but independant fields of research up until this point: Biophotonics and computer-assisted interventions (COMputational BIOphotonics in endoSCOPY).
For the first time, quantitative multi-modal imaging biomarkers based on structural and functional data are being developed to enhance the physician’s view by providing information that cannot be seen with the naked eye. To this extent, white light images co-registered with multispectral optical and photoacoustic images will be processed in a combined manner to dynamically reconstruct not only the visible surface in 3D but also subsurface anatomical and functional detail such as 3D vessel topology, blood volume and oxygenation. Spatio-temporal registration of multi-modal data acquired before and during the procedure will enable (1) the highly specific local tissue classification and discrimination based on tissue shape, texture, function and radiological contrast imagery as well as (2) global context-aware instrument guidance.
This innovative approach to radiation-free real-time imaging will be implemented and evaluated by means of computer-assisted colonoscopy and laparoscopy. The potential socioeconomic impact of providing high precision minimally-invasive tumor diagnosis and therapy at low cost is extremely high.
Summary
Key challenges in endoscopic tumor diagnosis and therapy consist of the detection and discrimination of malignant tissue as well as the precise navigation of medical instruments. Currently, a low level of sensitivity and specificity in tumor detection and lack of global orientation lead to both over- and undertreatment, tumor recurrence, intra-operative complications, and high costs. The goal of this multidisciplinary project is to revolutionize clinical endoscopic imaging based on the systematic integration of two new but independant fields of research up until this point: Biophotonics and computer-assisted interventions (COMputational BIOphotonics in endoSCOPY).
For the first time, quantitative multi-modal imaging biomarkers based on structural and functional data are being developed to enhance the physician’s view by providing information that cannot be seen with the naked eye. To this extent, white light images co-registered with multispectral optical and photoacoustic images will be processed in a combined manner to dynamically reconstruct not only the visible surface in 3D but also subsurface anatomical and functional detail such as 3D vessel topology, blood volume and oxygenation. Spatio-temporal registration of multi-modal data acquired before and during the procedure will enable (1) the highly specific local tissue classification and discrimination based on tissue shape, texture, function and radiological contrast imagery as well as (2) global context-aware instrument guidance.
This innovative approach to radiation-free real-time imaging will be implemented and evaluated by means of computer-assisted colonoscopy and laparoscopy. The potential socioeconomic impact of providing high precision minimally-invasive tumor diagnosis and therapy at low cost is extremely high.
Max ERC Funding
1 499 699 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym COSMIC-LITMUS
Project Turning cosmic shear into a litmus test for the standard model of cosmology
Researcher (PI) Hendrik Jurgen HILDEBRANDT
Host Institution (HI) RUHR-UNIVERSITAET BOCHUM
Call Details Consolidator Grant (CoG), PE9, ERC-2017-COG
Summary The standard model of cosmology is impressively consistent with a large number of observations. Its parameters have been determined with great accuracy with the Planck CMB (cosmic microwave background) mission. However, recently local determinations of the Hubble constant as well as ob- servations of strong and weak gravitational lensing have found some tension with Planck. Are those observations first glimpses at a crack in the standard model and hints of an evolving dark energy com- ponent? With this ERC Consolidator Grant I will answer these questions by greatly increasing the robustness of one of those cosmological probes, the weak lensing effect of the large scale structure of the Universe also called cosmic shear.
In order to reach this goal I will concentrate on the largest outstanding source of systematic error: photometric redshifts (photo-z). I will exploit the unique combination of two European imaging surveys in the optical and infrared wavelength regime, an additional narrow-band imaging survey with extremely precise photo-z, and spectroscopic calibration data from a recently approved ESO large program on the VLT. Using angular cross-correlations and machine-learning I will calibrate the photo- z in a two-stage process making sure that this crucial systematic uncertainty will keep pace with the growing statistical power of imaging surveys. This will yield an uncertainty on the amplitude of the clustering of dark matter that is smaller than the best constraints from the CMB.
I will also apply these methods to ESA’s Euclid mission launching in 2020, which will fail if photo-z are not better understood by then. If the discrepancy between lensing and CMB measurements holds this would potentially result in a revolution of our understanding of the Universe. Regardless of this spectacular short-term possibility I will turn cosmic shear – one of the most powerful cosmological probes of dark energy – into a litmus test for our cosmological paradigm.
Summary
The standard model of cosmology is impressively consistent with a large number of observations. Its parameters have been determined with great accuracy with the Planck CMB (cosmic microwave background) mission. However, recently local determinations of the Hubble constant as well as ob- servations of strong and weak gravitational lensing have found some tension with Planck. Are those observations first glimpses at a crack in the standard model and hints of an evolving dark energy com- ponent? With this ERC Consolidator Grant I will answer these questions by greatly increasing the robustness of one of those cosmological probes, the weak lensing effect of the large scale structure of the Universe also called cosmic shear.
In order to reach this goal I will concentrate on the largest outstanding source of systematic error: photometric redshifts (photo-z). I will exploit the unique combination of two European imaging surveys in the optical and infrared wavelength regime, an additional narrow-band imaging survey with extremely precise photo-z, and spectroscopic calibration data from a recently approved ESO large program on the VLT. Using angular cross-correlations and machine-learning I will calibrate the photo- z in a two-stage process making sure that this crucial systematic uncertainty will keep pace with the growing statistical power of imaging surveys. This will yield an uncertainty on the amplitude of the clustering of dark matter that is smaller than the best constraints from the CMB.
I will also apply these methods to ESA’s Euclid mission launching in 2020, which will fail if photo-z are not better understood by then. If the discrepancy between lensing and CMB measurements holds this would potentially result in a revolution of our understanding of the Universe. Regardless of this spectacular short-term possibility I will turn cosmic shear – one of the most powerful cosmological probes of dark energy – into a litmus test for our cosmological paradigm.
Max ERC Funding
1 931 493 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym COSMIC_DAWN
Project Cosmic Dawn – The Emergence of Black Holes and Galaxies
in the Universe
Researcher (PI) Fabian Walter
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Studying quasars (actively accreting supermassive black holes) and galaxies at the earliest cosmic epochs is one of the prime objectives in modern astrophysics. How the first luminous sources formed and reionized the universe is one of the most fundamental open questions in cosmology. Likewise, a detailed characterization of the evolution of the cosmic molecular gas density, which lies at the heart of galaxy evolution, is a fundamental goal in observational astrophysics. The proposed program capitalizes on current and upcoming facilities and encompasses three aspects: The first (I) will use the recently started Pan-STARRS1 survey to identify a sizeable sample of z>7 quasars, i.e. when the universe was less than 0.8 Gyr old (<1/15th of today’s age), to statistically probe black hole growth in the Epoch of Reionization. The second project (II) will characterize the physical properties of z~6 and z~7 quasar hosts selected from project (I) and the SDSS / VISTA VIKING surveys using new observational NIR/(sub)millimeter capabilities, including ALMA (observations approved in cycle 0). The last project (III) will use the IRAM Plateau de Bure Interferometer, and ALMA, to embark on the first molecular deep field which will provide a complete ‘blind’ census of the molecular gas density through cosmic times (from z~1 to z~8, approved pilot program). The overarching goal of this ERC proposal is thus to greatly increase our understanding of the physical properties of the earliest massive objects in the universe, and to shed first light on the evolution of the cosmic molecular gas density in galaxies after the universe emerged from the cosmic ‘dark ages’. The PI is internationally recognized as a leader in molecular gas studies of high-redshift galaxies, and through his track record and access to the needed combination of research facilities, is uniquely positioned to successfully lead this program.
Summary
Studying quasars (actively accreting supermassive black holes) and galaxies at the earliest cosmic epochs is one of the prime objectives in modern astrophysics. How the first luminous sources formed and reionized the universe is one of the most fundamental open questions in cosmology. Likewise, a detailed characterization of the evolution of the cosmic molecular gas density, which lies at the heart of galaxy evolution, is a fundamental goal in observational astrophysics. The proposed program capitalizes on current and upcoming facilities and encompasses three aspects: The first (I) will use the recently started Pan-STARRS1 survey to identify a sizeable sample of z>7 quasars, i.e. when the universe was less than 0.8 Gyr old (<1/15th of today’s age), to statistically probe black hole growth in the Epoch of Reionization. The second project (II) will characterize the physical properties of z~6 and z~7 quasar hosts selected from project (I) and the SDSS / VISTA VIKING surveys using new observational NIR/(sub)millimeter capabilities, including ALMA (observations approved in cycle 0). The last project (III) will use the IRAM Plateau de Bure Interferometer, and ALMA, to embark on the first molecular deep field which will provide a complete ‘blind’ census of the molecular gas density through cosmic times (from z~1 to z~8, approved pilot program). The overarching goal of this ERC proposal is thus to greatly increase our understanding of the physical properties of the earliest massive objects in the universe, and to shed first light on the evolution of the cosmic molecular gas density in galaxies after the universe emerged from the cosmic ‘dark ages’. The PI is internationally recognized as a leader in molecular gas studies of high-redshift galaxies, and through his track record and access to the needed combination of research facilities, is uniquely positioned to successfully lead this program.
Max ERC Funding
1 439 000 €
Duration
Start date: 2012-11-01, End date: 2017-10-31
Project acronym Cosmic_Gas
Project Mapping the Cosmic Gas Supply with ALMA
Researcher (PI) Fabian WALTER
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE9, ERC-2016-ADG
Summary The molecular gas phase is the material in galaxies out of which stars form. As such, it is the quantity that controls the star formation rate of a galaxy, thereby the overall stellar mass build-up, and ultimately galaxy evolution through cosmic times. In contrast to studies of the stellar mass and star formation, characterizing this fuel supply in galaxies as a function of cosmic epoch is still in its infancy. The ALMA facility now redefines our ability to map out the cosmic cold gas supply, essentially unknown at present. This ERC proposal is based on extensive approved observational ALMA programs, led by the PI: ASPECS is the first-ever approved ALMA large (150h) program, aimed at providing a comprehensive view of the baryon cycle from gas to stars over cosmic time. ASPECS will provide 3D molecular scans in two ALMA bands of the Hubble Ultra Deep Field -- the iconic cosmological deep field. A second focus is the detailed characterization of the molecular gas content at z>6 in host galaxies of the most distant quasars via ALMA. This will assess the role of cold gas in the build-up of the first (t_Universe < 1 Gyr) massive cosmic structures in the Universe, again through significant approved ALMA programs led by the PI’s group. The studies outlined here will fully capitalize on the unparalleled capabilities of ALMA to map out the cosmic gas supply through cosmic history, and will provide crucial insights to define observational strategies for JWST (the PI is member of the European JWST/MIRI science team). Through his track record, past achievements in the field of galaxy evolution studies, and through the available proprietary data, the PI is uniquely positioned to lead this ambitious program, which will define the global state-of-the-art in cosmological galaxy evolution through high-redshift ISM studies.
Summary
The molecular gas phase is the material in galaxies out of which stars form. As such, it is the quantity that controls the star formation rate of a galaxy, thereby the overall stellar mass build-up, and ultimately galaxy evolution through cosmic times. In contrast to studies of the stellar mass and star formation, characterizing this fuel supply in galaxies as a function of cosmic epoch is still in its infancy. The ALMA facility now redefines our ability to map out the cosmic cold gas supply, essentially unknown at present. This ERC proposal is based on extensive approved observational ALMA programs, led by the PI: ASPECS is the first-ever approved ALMA large (150h) program, aimed at providing a comprehensive view of the baryon cycle from gas to stars over cosmic time. ASPECS will provide 3D molecular scans in two ALMA bands of the Hubble Ultra Deep Field -- the iconic cosmological deep field. A second focus is the detailed characterization of the molecular gas content at z>6 in host galaxies of the most distant quasars via ALMA. This will assess the role of cold gas in the build-up of the first (t_Universe < 1 Gyr) massive cosmic structures in the Universe, again through significant approved ALMA programs led by the PI’s group. The studies outlined here will fully capitalize on the unparalleled capabilities of ALMA to map out the cosmic gas supply through cosmic history, and will provide crucial insights to define observational strategies for JWST (the PI is member of the European JWST/MIRI science team). Through his track record, past achievements in the field of galaxy evolution studies, and through the available proprietary data, the PI is uniquely positioned to lead this ambitious program, which will define the global state-of-the-art in cosmological galaxy evolution through high-redshift ISM studies.
Max ERC Funding
2 457 500 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym CRAGSMAN
Project The Impact of Cosmic Rays on Galaxy and Cluster Formation
Researcher (PI) Christoph Pfrommer
Host Institution (HI) LEIBNIZ-INSTITUT FUR ASTROPHYSIK POTSDAM (AIP)
Call Details Consolidator Grant (CoG), PE9, ERC-2014-CoG
Summary "Understanding the physics of galaxy formation is arguably among the greatest problems in modern astrophysics. Recent cosmological simulations have demonstrated that ""feedback"" by star formation, supernovae and active galactic nuclei appears to be critical in obtaining realistic disk galaxies, to slow down star formation to the small observed rates, to move gas and metals out of galaxies into the intergalactic medium, and to balance radiative cooling of the low-entropy gas at the centers of galaxy clusters. This progress still has the caveat that ""feedback"" was modeled empirically and involved tuning to observed global relations, substantially weakening the predictive power of hydrodynamic simulations. More problematic, these simulations neglected cosmic rays and magnetic fields, which provide a comparable pressure support in comparison to turbulence in our Galaxy, and are known to couple dynamically and thermally to the gas. Building on our previous successes in investigating these high-energy processes, we propose a comprehensive research program for studying the impact of cosmic rays on the formation of galaxies and clusters. To this end, we will study cosmic-ray propagation in magneto-hydrodynamic turbulence and improve the modeling of the plasma physics. This will enable us to perform the first consistent magneto-hydrodynamical and cosmic-ray simulations in a cosmological framework, something that has just now become technically feasible. Through the use of an advanced numerical technique that employs a moving mesh for calculating hydrodynamics, we will achieve an unprecedented combination of accuracy, resolution and physical completeness. We complement our theoretical efforts with a focused observational program on the non-thermal emission of galaxies and clusters, taking advantage of new capabilities at radio to gamma-ray wavelengths and neutrinos. This promises important and potentially transformative changes of our understanding of galaxy formation."
Summary
"Understanding the physics of galaxy formation is arguably among the greatest problems in modern astrophysics. Recent cosmological simulations have demonstrated that ""feedback"" by star formation, supernovae and active galactic nuclei appears to be critical in obtaining realistic disk galaxies, to slow down star formation to the small observed rates, to move gas and metals out of galaxies into the intergalactic medium, and to balance radiative cooling of the low-entropy gas at the centers of galaxy clusters. This progress still has the caveat that ""feedback"" was modeled empirically and involved tuning to observed global relations, substantially weakening the predictive power of hydrodynamic simulations. More problematic, these simulations neglected cosmic rays and magnetic fields, which provide a comparable pressure support in comparison to turbulence in our Galaxy, and are known to couple dynamically and thermally to the gas. Building on our previous successes in investigating these high-energy processes, we propose a comprehensive research program for studying the impact of cosmic rays on the formation of galaxies and clusters. To this end, we will study cosmic-ray propagation in magneto-hydrodynamic turbulence and improve the modeling of the plasma physics. This will enable us to perform the first consistent magneto-hydrodynamical and cosmic-ray simulations in a cosmological framework, something that has just now become technically feasible. Through the use of an advanced numerical technique that employs a moving mesh for calculating hydrodynamics, we will achieve an unprecedented combination of accuracy, resolution and physical completeness. We complement our theoretical efforts with a focused observational program on the non-thermal emission of galaxies and clusters, taking advantage of new capabilities at radio to gamma-ray wavelengths and neutrinos. This promises important and potentially transformative changes of our understanding of galaxy formation."
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym CSF
Project From Cloud to Star Formation
Researcher (PI) Henrik Beuther
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Consolidator Grant (CoG), PE9, ERC-2014-CoG
Summary Star Formation is a hierarchical process from the build-up of large clouds to the assembly of stars. This ERC project aims at studying the multi-scale processes of this conversion from diffuse gas to stars. The fundamental data are provided by two PI-led large observing programs at two of the most advanced radio and mm interferometers, the Very Large Array (VLA) and the Plateau de Bure Interferometer (PdBI). This combined approach is designed to address outstanding key questions in the field of cloud and star formation.
The 225 hours THOR program at the VLA investigates the cloud formation and conversion of atomic to molecular gas, as well as feedback processes back to the interstellar medium (ISM). To reach these goals, THOR observes the Milky Way in atomic HI, molecular OH, and cm continuum and radio recombination lines tracing the ionized components of the ISM.
At smaller spatial scales, the 300 hours PdBI project CORE will study the fragmentation of the gas clumps to form clusters, the formation of accretion disks and outflows, and the gas infall rates as proxy for the accretion rates. Therefore, assisted by Atacama Large Millimeter Array (ALMA) observations, we will investigate a sample of high-mass star-forming regions at the highest spatial resolution of 0.2'' to dissect the physical processes during the assembly of the highest mass stars.
The core aim of this ERC project is to study all spatial scales from molecular clouds to individual massive cores. This will be a decisive step in the understanding of the conversion of gas and dust into stars. Through his decade-long expertise and leadership in star/cloud formation, the PI is uniquely positioned to advance the field significantly. The surveys at the heart of the program are extremely computing and work intensive accumulating data in the 100 TByte regime. This proposals asks for a strong core group of three postdocs and one PhD student to conduct the project and fully exploit the scientific results.
Summary
Star Formation is a hierarchical process from the build-up of large clouds to the assembly of stars. This ERC project aims at studying the multi-scale processes of this conversion from diffuse gas to stars. The fundamental data are provided by two PI-led large observing programs at two of the most advanced radio and mm interferometers, the Very Large Array (VLA) and the Plateau de Bure Interferometer (PdBI). This combined approach is designed to address outstanding key questions in the field of cloud and star formation.
The 225 hours THOR program at the VLA investigates the cloud formation and conversion of atomic to molecular gas, as well as feedback processes back to the interstellar medium (ISM). To reach these goals, THOR observes the Milky Way in atomic HI, molecular OH, and cm continuum and radio recombination lines tracing the ionized components of the ISM.
At smaller spatial scales, the 300 hours PdBI project CORE will study the fragmentation of the gas clumps to form clusters, the formation of accretion disks and outflows, and the gas infall rates as proxy for the accretion rates. Therefore, assisted by Atacama Large Millimeter Array (ALMA) observations, we will investigate a sample of high-mass star-forming regions at the highest spatial resolution of 0.2'' to dissect the physical processes during the assembly of the highest mass stars.
The core aim of this ERC project is to study all spatial scales from molecular clouds to individual massive cores. This will be a decisive step in the understanding of the conversion of gas and dust into stars. Through his decade-long expertise and leadership in star/cloud formation, the PI is uniquely positioned to advance the field significantly. The surveys at the heart of the program are extremely computing and work intensive accumulating data in the 100 TByte regime. This proposals asks for a strong core group of three postdocs and one PhD student to conduct the project and fully exploit the scientific results.
Max ERC Funding
1 616 050 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym DIALOY
Project Mosaic loss of chromosome Y (LOY) in blood cells - a new biomarker for risk of cancer and Alzheimer’s disease in men
Researcher (PI) Lars Anders Forsberg
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary My recent discoveries show that mosaic loss of chromosome Y (LOY) in peripheral blood is associated with increased risks of cancer and Alzheimer’s disease (AD). These conditions are responsible for >50% of morbidity/mortality in aging men. More than 15% of men older than 70 show some degree of LOY and these men survive on average only half as long as men without LOY. Smoking is strongly associated with LOY and remarkably, the fraction of cells with LOY decreases after cessation of smoking. Cells with LOY can be detected, and disease risks predicted, many years before clinical manifestation of disease. These results of associations between LOY, cancer and smoking have been published in Nature Genetics and Science during 2014.
The overall objective of the proposal is to develop LOY as a new, strong and predictive biomarker. To this end, the research program focuses on three objectives: 1) expanding the study of LOY and associations with disease risks in still larger cohorts; 2) investigating functional aspects of LOY; and 3) develop improved technology for LOY-detection. The successful execution of the project is essential before LOY-testing in clinics can be realized.
Diagnosis of cancer and AD in modern medicine is based on clinical symptoms of disease. Through earlier identification of individuals at increased risk for disease, preventive strategies could be applied, before the severe stages appear. Preliminary results affirm the feasibility of the project and provide proof-of-concept that LOY-tests can be used for early identification of men with increased risks for these diseases. In addition to improving diagnostics and therapeutics; implementation of LOY-testing could prevent smoking-related disease and reduce the health care costs. In the end, LOY-testing could decrease male mortality rates and possibly eliminate the sex-difference in life expectancy. The project will therefore benefit individual patients as well as healthcare systems and society at large.
Summary
My recent discoveries show that mosaic loss of chromosome Y (LOY) in peripheral blood is associated with increased risks of cancer and Alzheimer’s disease (AD). These conditions are responsible for >50% of morbidity/mortality in aging men. More than 15% of men older than 70 show some degree of LOY and these men survive on average only half as long as men without LOY. Smoking is strongly associated with LOY and remarkably, the fraction of cells with LOY decreases after cessation of smoking. Cells with LOY can be detected, and disease risks predicted, many years before clinical manifestation of disease. These results of associations between LOY, cancer and smoking have been published in Nature Genetics and Science during 2014.
The overall objective of the proposal is to develop LOY as a new, strong and predictive biomarker. To this end, the research program focuses on three objectives: 1) expanding the study of LOY and associations with disease risks in still larger cohorts; 2) investigating functional aspects of LOY; and 3) develop improved technology for LOY-detection. The successful execution of the project is essential before LOY-testing in clinics can be realized.
Diagnosis of cancer and AD in modern medicine is based on clinical symptoms of disease. Through earlier identification of individuals at increased risk for disease, preventive strategies could be applied, before the severe stages appear. Preliminary results affirm the feasibility of the project and provide proof-of-concept that LOY-tests can be used for early identification of men with increased risks for these diseases. In addition to improving diagnostics and therapeutics; implementation of LOY-testing could prevent smoking-related disease and reduce the health care costs. In the end, LOY-testing could decrease male mortality rates and possibly eliminate the sex-difference in life expectancy. The project will therefore benefit individual patients as well as healthcare systems and society at large.
Max ERC Funding
1 525 000 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym DIAMONDCOR
Project A molecular approach to treat diabetes mellitus onset dependent coronaropathy
Researcher (PI) Rabea HINKEL
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Call Details Starting Grant (StG), LS7, ERC-2017-STG
Summary In Europe, 59 million patients suffer from diabetes mellitus with health costs of 142 billion Euros per year. As one of the most challenging consequences, diabetes inflicts cardiovascular disease leading to cardiomyopathy and cardiac death. A global, current aim lies in preventing cardiac complications in patients with diabetes mellitus.
In pathogenesis of diabetic cardiomyopathy, the role of microvascular processes remains largely elusive; my proposal aims at solving this key question – an impossible mission so far. As attractive therapeutic concept and overall objective, the present proposal aims at exploiting microvascular mechanisms for preventing and treating diabetic cardiomyopathy.
I will study a novel, unique transgenic pig model of diabetes mellitus combined with advanced, patient compatible molecular imaging. We pioneered distinct genetic manipulations in pigs, including adeno-associated viral vectors (AAV) for microvessel stabilization as well as AAV-based CrispR/Cas9 transduction for in vivo genome editing. Using this cutting edge technology, I could decipher an important role for microvascular capillary rarefaction in the development of diabetic cardiomyopathy in my previous work. In the present proposal, I aim at determining
1. novel, microvascular-focused therapeutic targets for diabetic cardiomyopathy
2. the effect of reduced microvascular damage on myocardial function in diabetes, both in the absence and presence of ischemia.
My approach will implement targeting microvessels as new paradigm for treating diabetic cardiomyopathy. I will identify novel therapeutic targets for tailored drug development by industry and academia. My planned work will improve the success rate of clinical trials for the benefit of patients suffering diabetic cardiomyopathy and putatively other cardiac diseases.
Summary
In Europe, 59 million patients suffer from diabetes mellitus with health costs of 142 billion Euros per year. As one of the most challenging consequences, diabetes inflicts cardiovascular disease leading to cardiomyopathy and cardiac death. A global, current aim lies in preventing cardiac complications in patients with diabetes mellitus.
In pathogenesis of diabetic cardiomyopathy, the role of microvascular processes remains largely elusive; my proposal aims at solving this key question – an impossible mission so far. As attractive therapeutic concept and overall objective, the present proposal aims at exploiting microvascular mechanisms for preventing and treating diabetic cardiomyopathy.
I will study a novel, unique transgenic pig model of diabetes mellitus combined with advanced, patient compatible molecular imaging. We pioneered distinct genetic manipulations in pigs, including adeno-associated viral vectors (AAV) for microvessel stabilization as well as AAV-based CrispR/Cas9 transduction for in vivo genome editing. Using this cutting edge technology, I could decipher an important role for microvascular capillary rarefaction in the development of diabetic cardiomyopathy in my previous work. In the present proposal, I aim at determining
1. novel, microvascular-focused therapeutic targets for diabetic cardiomyopathy
2. the effect of reduced microvascular damage on myocardial function in diabetes, both in the absence and presence of ischemia.
My approach will implement targeting microvessels as new paradigm for treating diabetic cardiomyopathy. I will identify novel therapeutic targets for tailored drug development by industry and academia. My planned work will improve the success rate of clinical trials for the benefit of patients suffering diabetic cardiomyopathy and putatively other cardiac diseases.
Max ERC Funding
1 490 529 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym DustPrints
Project Dusting for the Fingerprints of Planet Formation
Researcher (PI) Tilman David BIRNSTIEL
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE9, ERC-2016-STG
Summary With close to 2000 detected planets, it is striking that we still do not
understand how planets form. Their building blocks form in gas disks
around young stars, where colliding dust grains form ever-larger
aggregates. But this growth is not without limits: larger particles
quickly drift towards the star and collide at speeds that shatter them
to pieces, long before gravity can bind them together. The mechanisms
involved in the assembly and transport of these building blocks remain
some of the biggest mysteries of planet formation.
Solids in protoplanetary disks evolve differently than the gas, but not
independent of it. Observations allow us to directly probe particle
growth – the first stage of planet formation. But the gas-solids
coupling also enables us to probe the gas disk structure indirectly –
just like we cannot see the wind, but we see leaves being moved by it.
With this proposal I want to answer some of the key questions of planet
formation: (1) What mechanisms drive disk evolution? (2) What role do
solids play in the transport of volatiles and the pre-biotic building
blocks of life? We will for the first time couple detailed models of the
evolution of solids in protoplanetary disks with chemical models on the
one side and with hydrodynamical simulations on the other. We aim to
derive the unique observable fingerprints of these processes and link
those predictions to upcoming observations.
With the advent of the ALMA observatory, the prospects of finding these
fingerprints are excellent. ALMA will allow us to test our predictions
through a wide range of observables at unprecedented sensitivity and
resolution, including dust continuum emission, chemical abundance
patterns, and isotopic ratios in disks, comets, and our solar system.
With our work designed to interpret these observations, we will set the
stage for a future understanding of protoplanetary disks and planet
formation.
Summary
With close to 2000 detected planets, it is striking that we still do not
understand how planets form. Their building blocks form in gas disks
around young stars, where colliding dust grains form ever-larger
aggregates. But this growth is not without limits: larger particles
quickly drift towards the star and collide at speeds that shatter them
to pieces, long before gravity can bind them together. The mechanisms
involved in the assembly and transport of these building blocks remain
some of the biggest mysteries of planet formation.
Solids in protoplanetary disks evolve differently than the gas, but not
independent of it. Observations allow us to directly probe particle
growth – the first stage of planet formation. But the gas-solids
coupling also enables us to probe the gas disk structure indirectly –
just like we cannot see the wind, but we see leaves being moved by it.
With this proposal I want to answer some of the key questions of planet
formation: (1) What mechanisms drive disk evolution? (2) What role do
solids play in the transport of volatiles and the pre-biotic building
blocks of life? We will for the first time couple detailed models of the
evolution of solids in protoplanetary disks with chemical models on the
one side and with hydrodynamical simulations on the other. We aim to
derive the unique observable fingerprints of these processes and link
those predictions to upcoming observations.
With the advent of the ALMA observatory, the prospects of finding these
fingerprints are excellent. ALMA will allow us to test our predictions
through a wide range of observables at unprecedented sensitivity and
resolution, including dust continuum emission, chemical abundance
patterns, and isotopic ratios in disks, comets, and our solar system.
With our work designed to interpret these observations, we will set the
stage for a future understanding of protoplanetary disks and planet
formation.
Max ERC Funding
1 435 088 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym DYNAMIT
Project Deep Tissue Optoacoustic Imaging for Tracking of Dynamic Molecular and Functional Events
Researcher (PI) Daniel Razansky
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary The ability to visualize biological processes in living organisms continuously, instead of at discrete time points, holds a great promise for studies of functional and molecular events, disease progression and treatment monitoring. Optical spectrum is particularly attractive for biological interrogations as it can impart highly versatile contrast of cellular and sub-cellular function as well as employ highly specific contrast agents and markers not available for other modalities. However, technical limitations arising from intense light scattering in living tissues bound the main-stream of high resolution optical imaging applications to microscopic studies at shallow depths that do not allow the exploration of the full potential of novel classes of agents for volumetric imaging of entire organs, small animals or human tissues.
To overcome limitations of the current imaging techniques, this proposal aims to develop a novel high performance optoacoustic imaging technology and explore its groundbreaking potential for neuroimaging and monitoring of cardiovascular disease. I will undertake a substantial technological step that will bring optoacoustic imaging to a real time (video rate) high resolution performance level the like of which has not existed so far. The resulting technique will be able to image several millimeters to centimeters into living small animals and potentially humans, with both high spatial resolution and sensitivity, being independent of photon scattering. This will make it suitable for attaining high dynamic contrast in intact tissues and an ideal candidate for both intrinsic and targeted biomarker-based imaging. It is hypothesized that these unparalleled imaging capabilities will allow observations of new classes of dynamic interactions at different time scales, from relatively slow varying inflammation-related molecular events to video rate visualization of neuronal activity in deep brain regions, otherwise invisible with other imaging methods.
Summary
The ability to visualize biological processes in living organisms continuously, instead of at discrete time points, holds a great promise for studies of functional and molecular events, disease progression and treatment monitoring. Optical spectrum is particularly attractive for biological interrogations as it can impart highly versatile contrast of cellular and sub-cellular function as well as employ highly specific contrast agents and markers not available for other modalities. However, technical limitations arising from intense light scattering in living tissues bound the main-stream of high resolution optical imaging applications to microscopic studies at shallow depths that do not allow the exploration of the full potential of novel classes of agents for volumetric imaging of entire organs, small animals or human tissues.
To overcome limitations of the current imaging techniques, this proposal aims to develop a novel high performance optoacoustic imaging technology and explore its groundbreaking potential for neuroimaging and monitoring of cardiovascular disease. I will undertake a substantial technological step that will bring optoacoustic imaging to a real time (video rate) high resolution performance level the like of which has not existed so far. The resulting technique will be able to image several millimeters to centimeters into living small animals and potentially humans, with both high spatial resolution and sensitivity, being independent of photon scattering. This will make it suitable for attaining high dynamic contrast in intact tissues and an ideal candidate for both intrinsic and targeted biomarker-based imaging. It is hypothesized that these unparalleled imaging capabilities will allow observations of new classes of dynamic interactions at different time scales, from relatively slow varying inflammation-related molecular events to video rate visualization of neuronal activity in deep brain regions, otherwise invisible with other imaging methods.
Max ERC Funding
1 452 650 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym EMPIRE
Project Galaxy Evolution in the ALMA Era - The Baryon Cycle and Star Formation in Nearby Galaxies
Researcher (PI) Frank BIGIEL
Host Institution (HI) RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary A thorough understanding of the processes regulating the conversion of gas into stars is key to understand structure formation in the universe and the evolution of galaxies through cosmic time. Despite significant progress over the past years, the properties of the actual dense, star forming gas across normal disk galaxies remain largely unknown. This will be changed with EMPIRE, a comprehensive 500hr large program led by the PI at the IRAM 30m mm-wave telescope. EMPIRE will provide for the first time extended maps of a suite of dense gas tracers (e.g., HCN, HCO+, HNC) for a sample of nearby, star-forming, disk galaxies.
By means of detailed analysis, including radiative transfer and chemical modelling, we will constrain a variety of physical quantities (in particular gas densities). We will relate these directly to the local star formation efficiency and to a variety of other dynamical, stellar and local ISM properties from existing pan-chromatic mapping of these galaxies (HI, IR, CO, UV, optical) to answer the question: ``how is star formation regulated across galaxy disks?''. By determining true abundance variations, we will contribute key constraints to the nascent field of galaxy-scale astrochemistry. Detailed comparisons to data for star forming regions in the Milky Way will link core, cloud and galactic scales towards a coherent view of dense gas and star formation. These results will provide an essential anchor point to Milky Way and high redshift observations alike.
Analysis, interpretation and modelling of this complex data set requires a team of two postdocs and two PhD students. The PI has demonstrated his ability to successfully lead a research group through his current position as a DFG funded Emmy-Noether group leader. In combination with his widely recognized previous work and his expertise in mm-wave astronomy and ISM/star formation studies, the PI and the proposed group are uniquely positioned to make significant impact during this ERC grant.
Summary
A thorough understanding of the processes regulating the conversion of gas into stars is key to understand structure formation in the universe and the evolution of galaxies through cosmic time. Despite significant progress over the past years, the properties of the actual dense, star forming gas across normal disk galaxies remain largely unknown. This will be changed with EMPIRE, a comprehensive 500hr large program led by the PI at the IRAM 30m mm-wave telescope. EMPIRE will provide for the first time extended maps of a suite of dense gas tracers (e.g., HCN, HCO+, HNC) for a sample of nearby, star-forming, disk galaxies.
By means of detailed analysis, including radiative transfer and chemical modelling, we will constrain a variety of physical quantities (in particular gas densities). We will relate these directly to the local star formation efficiency and to a variety of other dynamical, stellar and local ISM properties from existing pan-chromatic mapping of these galaxies (HI, IR, CO, UV, optical) to answer the question: ``how is star formation regulated across galaxy disks?''. By determining true abundance variations, we will contribute key constraints to the nascent field of galaxy-scale astrochemistry. Detailed comparisons to data for star forming regions in the Milky Way will link core, cloud and galactic scales towards a coherent view of dense gas and star formation. These results will provide an essential anchor point to Milky Way and high redshift observations alike.
Analysis, interpretation and modelling of this complex data set requires a team of two postdocs and two PhD students. The PI has demonstrated his ability to successfully lead a research group through his current position as a DFG funded Emmy-Noether group leader. In combination with his widely recognized previous work and his expertise in mm-wave astronomy and ISM/star formation studies, the PI and the proposed group are uniquely positioned to make significant impact during this ERC grant.
Max ERC Funding
1 659 451 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym Epi4MS
Project Targeting the epigenome: towards a better understanding of disease pathogenesis and novel therapeutic strategies in Multiple Sclerosis
Researcher (PI) Maja JAGODIC
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Consolidator Grant (CoG), LS7, ERC-2018-COG
Summary Multiple Sclerosis (MS) is a leading cause of unpredictable and incurable progressive disability in young adults. Although the exact cause remains unknown, this immune-mediated disease is likely triggered by environmental factors in genetically predisposed individuals. I propose that epigenetic mechanisms, which regulate gene expression without affecting the genetic code, mediate the processes that cause MS and that aberrant epigenetic states can be corrected, spearheading the development of alternative therapies. We will exploit the stable and reversible nature of epigenetic marks, in particular DNA methylation, to gain insights into the novel modifiable disease mechanisms by studying the target organ in a way that has not been possible before. This highly ambitious project comprises three synergistic facets formulated in specific aims to: (i) identify epigenetic states that characterize the pathogenesis of MS, (ii) prioritize functional epigenetic states using high-throughput epigenome-screens, and (iii) develop novel approaches for precision medicine based on correcting causal epigenetic states. Our unique MS biobank combined with cutting-edge methodologies to capture pathogenic cells and measure their functional states provides a rational starting point to identify MS targets. I will complement this approach with studies of the functional impact of MS targets using innovative in vitro screens, with the added value of unbiased discovery of robust regulators of specific MS pathways. Finally, my laboratory has extensive experience with animal models of MS and I will utilize these powerful systems to dissect molecular mechanisms of MS targets and test the therapeutic potential of targeted epigenome editing in vivo. Our findings will set the stage for a paradigm-shift in studying and treating chronic inflammatory diseases based on preventing and modulating aggressive immune responses by inducing self-sustained reversal of aberrant epigenetic states.
Summary
Multiple Sclerosis (MS) is a leading cause of unpredictable and incurable progressive disability in young adults. Although the exact cause remains unknown, this immune-mediated disease is likely triggered by environmental factors in genetically predisposed individuals. I propose that epigenetic mechanisms, which regulate gene expression without affecting the genetic code, mediate the processes that cause MS and that aberrant epigenetic states can be corrected, spearheading the development of alternative therapies. We will exploit the stable and reversible nature of epigenetic marks, in particular DNA methylation, to gain insights into the novel modifiable disease mechanisms by studying the target organ in a way that has not been possible before. This highly ambitious project comprises three synergistic facets formulated in specific aims to: (i) identify epigenetic states that characterize the pathogenesis of MS, (ii) prioritize functional epigenetic states using high-throughput epigenome-screens, and (iii) develop novel approaches for precision medicine based on correcting causal epigenetic states. Our unique MS biobank combined with cutting-edge methodologies to capture pathogenic cells and measure their functional states provides a rational starting point to identify MS targets. I will complement this approach with studies of the functional impact of MS targets using innovative in vitro screens, with the added value of unbiased discovery of robust regulators of specific MS pathways. Finally, my laboratory has extensive experience with animal models of MS and I will utilize these powerful systems to dissect molecular mechanisms of MS targets and test the therapeutic potential of targeted epigenome editing in vivo. Our findings will set the stage for a paradigm-shift in studying and treating chronic inflammatory diseases based on preventing and modulating aggressive immune responses by inducing self-sustained reversal of aberrant epigenetic states.
Max ERC Funding
1 998 798 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym EPIScOPE
Project Reversing the epigenetic state of oligodendrocyte precursors cells in multiple sclerosis
Researcher (PI) Gonçalo DE SÁ E SOUSA DE CASTELO BRANCO
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Consolidator Grant (CoG), LS7, ERC-2015-CoG
Summary Oligodendrocytes (OL) are glial cells that mediate myelination of neurons, a process that is defective in multiple sclerosis (MS). Although OL precursor cells (OPCs) can initially promote remyelination in MS, this regenerative mechanism eventually fails in progressive MS. OPCs go through several epigenetic states that ultimately define their potential to differentiate and myelinate. OPCs in progressive MS stall in a distinct epigenetic state, incompatible with differentiation and remyelination. We hypothesize that these OPCs regress to an epigenetic state reminiscent of the state of embryonic OPCs, which remain undifferentiated.
In this proposal, we aim to uncover the causes behind the remyelination failure upon disease progression in MS. We will determine the epigenetic/transcriptional states of OPCs during development and in MS, using single cell and bulk RNA sequencing and quantitative proteomics. We will further investigate how the interplay between transcription factors (TFs), chromatin modifiers (ChMs) and non-coding RNAs (ncRNAs) contributes to the transition between epigenetic states of OPCs. The results will allow the identification of ChMs and ncRNAs that can modulate these states and thereby control OPC differentiation and myelination. We will use this knowledge to investigate whether we can reverse the epigenetic state of OPCs in MS, in order to promote their differentiation and remyelination. The unique combination of leading-edge techniques such as SILAC coupled with immunoprecipitation and mass-spectrometry, single-cell RNA sequencing, ChIP-Sequencing, among others, will allow us to provide insights into novel epigenetic mechanisms that might be underlying the effects of environmental and lifestyle risk factors for MS. Moreover, this project has the potential to lead to the discovery of new targets for epigenetic-based therapies for MS, which could provide major opportunities for improved clinical outcome of MS patients in the near future.
Summary
Oligodendrocytes (OL) are glial cells that mediate myelination of neurons, a process that is defective in multiple sclerosis (MS). Although OL precursor cells (OPCs) can initially promote remyelination in MS, this regenerative mechanism eventually fails in progressive MS. OPCs go through several epigenetic states that ultimately define their potential to differentiate and myelinate. OPCs in progressive MS stall in a distinct epigenetic state, incompatible with differentiation and remyelination. We hypothesize that these OPCs regress to an epigenetic state reminiscent of the state of embryonic OPCs, which remain undifferentiated.
In this proposal, we aim to uncover the causes behind the remyelination failure upon disease progression in MS. We will determine the epigenetic/transcriptional states of OPCs during development and in MS, using single cell and bulk RNA sequencing and quantitative proteomics. We will further investigate how the interplay between transcription factors (TFs), chromatin modifiers (ChMs) and non-coding RNAs (ncRNAs) contributes to the transition between epigenetic states of OPCs. The results will allow the identification of ChMs and ncRNAs that can modulate these states and thereby control OPC differentiation and myelination. We will use this knowledge to investigate whether we can reverse the epigenetic state of OPCs in MS, in order to promote their differentiation and remyelination. The unique combination of leading-edge techniques such as SILAC coupled with immunoprecipitation and mass-spectrometry, single-cell RNA sequencing, ChIP-Sequencing, among others, will allow us to provide insights into novel epigenetic mechanisms that might be underlying the effects of environmental and lifestyle risk factors for MS. Moreover, this project has the potential to lead to the discovery of new targets for epigenetic-based therapies for MS, which could provide major opportunities for improved clinical outcome of MS patients in the near future.
Max ERC Funding
1 895 155 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym EXAGAL
Project Hydrodynamical Simulations of Galaxy Formation at the Peta- and Exascale
Researcher (PI) Volker Springel
Host Institution (HI) HITS GGMBH
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Numerical simulations of galaxy formation provide a powerful technique for calculating the non-linear evolution of cosmic structure formation. In fact, they have played an instrumental role in establishing the current standard cosmological model known as LCDM. However, unlocking the predictive power of current petaflop and future exaflop computing platforms requires a targeted effort in developing new numerical methods that excel in accuracy, parallel scalability, and in physical fidelity to the processes relevant in galaxy formation. A new moving-mesh technique for hydrodynamics recently developed by us provides a significant opportunity for a paradigm shift in cosmological simulations of structure formation, replacing the established smoothed particle hydrodynamics technique with a much more accurate and flexible approach. Building on the first successes with this method, we here propose a comprehensive research program to apply this novel numerical framework in a new generation of hydrodynamical simulations of galaxy formation that aim to greatly expand the physical complexity and dynamic range of theoretical galaxy formation models. We will perform the first simulations of individual galaxies with several tens of billion hydrodynamical resolution elements and full adaptivity, allowing us to resolve the interstellar medium in global models of galaxies with an unprecedented combination of spatial resolution and volume. We will simultaneously and self-consistently follow the radiation field in galaxies down to very small scales, something that has never been attempted before. Through cosmological simulations of galaxy formation in representative regions of the Universe, we will shed light on the connection between galaxy formation and the large-scale distribution of gas in the Universe, and on the many facets of feedback processes that regulate galactic star formation, such as energy input from evolving and dying stars or from accreting supermassive black holes.
Summary
Numerical simulations of galaxy formation provide a powerful technique for calculating the non-linear evolution of cosmic structure formation. In fact, they have played an instrumental role in establishing the current standard cosmological model known as LCDM. However, unlocking the predictive power of current petaflop and future exaflop computing platforms requires a targeted effort in developing new numerical methods that excel in accuracy, parallel scalability, and in physical fidelity to the processes relevant in galaxy formation. A new moving-mesh technique for hydrodynamics recently developed by us provides a significant opportunity for a paradigm shift in cosmological simulations of structure formation, replacing the established smoothed particle hydrodynamics technique with a much more accurate and flexible approach. Building on the first successes with this method, we here propose a comprehensive research program to apply this novel numerical framework in a new generation of hydrodynamical simulations of galaxy formation that aim to greatly expand the physical complexity and dynamic range of theoretical galaxy formation models. We will perform the first simulations of individual galaxies with several tens of billion hydrodynamical resolution elements and full adaptivity, allowing us to resolve the interstellar medium in global models of galaxies with an unprecedented combination of spatial resolution and volume. We will simultaneously and self-consistently follow the radiation field in galaxies down to very small scales, something that has never been attempted before. Through cosmological simulations of galaxy formation in representative regions of the Universe, we will shed light on the connection between galaxy formation and the large-scale distribution of gas in the Universe, and on the many facets of feedback processes that regulate galactic star formation, such as energy input from evolving and dying stars or from accreting supermassive black holes.
Max ERC Funding
1 488 000 €
Duration
Start date: 2013-02-01, End date: 2018-07-31
Project acronym EYELETS
Project A regenerative medicine approach in diabetes.
Researcher (PI) Per-Olof BERGGREN
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary Pancreatic islet transplantation is essential for diabetes treatment. Outcome varies due to transplantation site, quality of islets and the fact that transplanted islets are affected by the same challenges as in situ islets. Tailor-making islets for transplantation by tissue engineering combined with a more favorable transplantation site that allows for both monitoring and local modulation of islet cells is thus instrumental. We have established the anterior chamber of the eye (ACE) as a favorable environment for long term survival of islet grafts and the cornea as a natural body window for non-invasive, longitudinal optical monitoring of islet function. ACE engrafted islets are able to maintain blood glucose homeostasis in diabetic animals. In addition to studies in non-human primates we are performing human clinical trials, the first patient already being transplanted. Tissue engineering of native islets is technically difficult. We will therefore apply genetically engineered islet organoids. This allows us to generate i) standardized material optimized for transplantation, function and survival, as well as ii) islet organoids suitable for monitoring (sensor islet organoids) and treating (metabolic islet organoids) insulin-dependent diabetes. We hypothesize that genetically engineered islet organoids transplanted to the ACE are superior to native pancreatic islets to monitor and treat insulin-dependent diabetes. Our overall aim is to create a platform allowing monitoring and treatment of insulin-dependent diabetes in mice that can be transferred to large animals for validation. The objective is to combine tissue engineering of islet cell organoids, transplantation to the ACE, synthetic biology, local pharmacological treatment strategies and the development of novel micro electronic/micro optical readout systems for islet cells. This regenerative medicine approach will follow our clinical trial programs and be transferred into the clinic to combat diabetes.
Summary
Pancreatic islet transplantation is essential for diabetes treatment. Outcome varies due to transplantation site, quality of islets and the fact that transplanted islets are affected by the same challenges as in situ islets. Tailor-making islets for transplantation by tissue engineering combined with a more favorable transplantation site that allows for both monitoring and local modulation of islet cells is thus instrumental. We have established the anterior chamber of the eye (ACE) as a favorable environment for long term survival of islet grafts and the cornea as a natural body window for non-invasive, longitudinal optical monitoring of islet function. ACE engrafted islets are able to maintain blood glucose homeostasis in diabetic animals. In addition to studies in non-human primates we are performing human clinical trials, the first patient already being transplanted. Tissue engineering of native islets is technically difficult. We will therefore apply genetically engineered islet organoids. This allows us to generate i) standardized material optimized for transplantation, function and survival, as well as ii) islet organoids suitable for monitoring (sensor islet organoids) and treating (metabolic islet organoids) insulin-dependent diabetes. We hypothesize that genetically engineered islet organoids transplanted to the ACE are superior to native pancreatic islets to monitor and treat insulin-dependent diabetes. Our overall aim is to create a platform allowing monitoring and treatment of insulin-dependent diabetes in mice that can be transferred to large animals for validation. The objective is to combine tissue engineering of islet cell organoids, transplantation to the ACE, synthetic biology, local pharmacological treatment strategies and the development of novel micro electronic/micro optical readout systems for islet cells. This regenerative medicine approach will follow our clinical trial programs and be transferred into the clinic to combat diabetes.
Max ERC Funding
2 500 000 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym FRAGMENT2DRUG
Project Jigsaw puzzles at atomic resolution: Computational design of GPCR drugs from fragments
Researcher (PI) Jens CARLSSON
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2016-STG
Summary Despite technological advances, industry struggles to develop new pharmaceuticals and therefore novel strategies for drug discovery are urgently needed. G protein-coupled receptors (GPCRs) play important roles in numerous physiological processes and are important drug targets for neurological diseases. My research focuses on modelling of GPCR-ligand interactions at the atomic level, with the goal to increase knowledge of receptor function and develop new methods for drug discovery. Breakthroughs in GPCR structural biology and access to sensitive screening assays provide opportunities to utilize fragment-based lead discovery (FBLD), a powerful approach for drug design. The objective of the project is to create a computational platform for FBLD, with a vision to transform the early drug discovery process for GPCRs. As structural information for these targets is limited, predictive models of receptor-fragment complexes will be crucial for the successful use of FBLD. In this project, computational structure-based methods for discovery of fragment ligands and further optimization of these to potent leads will be developed. These techniques will be applied to address two difficult problems in drug discovery. The first of these is to design ligands of peptide-binding GPCRs that have been challenging for existing methods. One of the promises of FBLD is to provide access to difficult targets, which will be explored by combining molecular docking and biophysical screening against peptide-GPCRs to identify novel lead candidates. A second challenge is that efficient treatment of neurological disorders often requires modulation of multiple targets, which also will be the focus of the project.
Summary
Despite technological advances, industry struggles to develop new pharmaceuticals and therefore novel strategies for drug discovery are urgently needed. G protein-coupled receptors (GPCRs) play important roles in numerous physiological processes and are important drug targets for neurological diseases. My research focuses on modelling of GPCR-ligand interactions at the atomic level, with the goal to increase knowledge of receptor function and develop new methods for drug discovery. Breakthroughs in GPCR structural biology and access to sensitive screening assays provide opportunities to utilize fragment-based lead discovery (FBLD), a powerful approach for drug design. The objective of the project is to create a computational platform for FBLD, with a vision to transform the early drug discovery process for GPCRs. As structural information for these targets is limited, predictive models of receptor-fragment complexes will be crucial for the successful use of FBLD. In this project, computational structure-based methods for discovery of fragment ligands and further optimization of these to potent leads will be developed. These techniques will be applied to address two difficult problems in drug discovery. The first of these is to design ligands of peptide-binding GPCRs that have been challenging for existing methods. One of the promises of FBLD is to provide access to difficult targets, which will be explored by combining molecular docking and biophysical screening against peptide-GPCRs to identify novel lead candidates. A second challenge is that efficient treatment of neurological disorders often requires modulation of multiple targets, which also will be the focus of the project.
Max ERC Funding
1 467 500 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym GALFORMOD
Project Galaxy formation models for the next generation of evolutionary and cosmological surveys
Researcher (PI) Simon David Manton White
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE9, ERC-2009-AdG
Summary Over the next decade, much effort on major astronomical facilities will be dedicated to large-scale surveys of the galaxy population. Their aim is two-fold: understanding the origin and evolution of galaxies and their central supermassive black holes, and clarifying the nature of dark matter, dark energy and the process that produced all cosmic structure. Achieving these goals will require powerful and flexible modelling tools that can simulate galaxy evolution in all viable cosmologies and under a wide variety of assumptions about the governing physical processes. Such capabilities do not currently exist. I propose to develop them through a major expansion of the functionality and scope of the Millennium Simulation archive. New simulations, new theoretical approaches and new web services will allow users to study galaxy formation across the full range of galaxy masses (from dwarf spheroidals to giant cDs). Remote users will be able to change parameters and modelling prescriptions at will, creating virtual surveys of universes with any chosen cosmology and galaxy formation model. Matching to multiwavelength surveys of real galaxies will make it possible to isolate the physical processes driving galaxy evolution, and to characterize the systematic errors that uncertain galaxy formation physics induce in precision estimates of cosmological parameters. Scientific problems where these new capabilities may be decisive in enabling progress include: the role of supermassive black holes in shaping galaxy formation; the origin of diversity in the forms of galaxies and in their nuclear activity; the effects of environment on galaxy structure; the formation history of our own Milky Way; the nature of the first galaxies and their effects on later and more easily observable generations of galaxies; the distribution and nature of dark matter; the origin of all cosmic structure; and the nature of dark energy.
Summary
Over the next decade, much effort on major astronomical facilities will be dedicated to large-scale surveys of the galaxy population. Their aim is two-fold: understanding the origin and evolution of galaxies and their central supermassive black holes, and clarifying the nature of dark matter, dark energy and the process that produced all cosmic structure. Achieving these goals will require powerful and flexible modelling tools that can simulate galaxy evolution in all viable cosmologies and under a wide variety of assumptions about the governing physical processes. Such capabilities do not currently exist. I propose to develop them through a major expansion of the functionality and scope of the Millennium Simulation archive. New simulations, new theoretical approaches and new web services will allow users to study galaxy formation across the full range of galaxy masses (from dwarf spheroidals to giant cDs). Remote users will be able to change parameters and modelling prescriptions at will, creating virtual surveys of universes with any chosen cosmology and galaxy formation model. Matching to multiwavelength surveys of real galaxies will make it possible to isolate the physical processes driving galaxy evolution, and to characterize the systematic errors that uncertain galaxy formation physics induce in precision estimates of cosmological parameters. Scientific problems where these new capabilities may be decisive in enabling progress include: the role of supermassive black holes in shaping galaxy formation; the origin of diversity in the forms of galaxies and in their nuclear activity; the effects of environment on galaxy structure; the formation history of our own Milky Way; the nature of the first galaxies and their effects on later and more easily observable generations of galaxies; the distribution and nature of dark matter; the origin of all cosmic structure; and the nature of dark energy.
Max ERC Funding
1 830 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym GENECADD
Project GEnetic NEtworks as a tool for anti-CAncer Drug Development
Researcher (PI) Ulf Thomas Edvard Helleday
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2010-AdG_20100317
Summary Although several therapies target cellular pathways, current small molecules drug discovery is based on identification of inhibitors to single proteins, without knowledge of whether they are the most advantageous target. The objective of this proposal is to develop a novel method for drug discovery, combining phenotypic cell based screens with functional genetic networks to determine the molecular mechanisms of numerous small molecule inhibitors. This method will enable identification of numerous distinct inhibitors of a particular pathway, as well as providing their molecular mechanism.
Cancer cells harbour gene mutations that make them more reliant on other cellular pathways for survival. Such cellular pathways can be targeted to selectively kill the cancer cells using the concept of synthetic lethality. In this project we want to identify inhibitors of homologous recombination to target cancer using synthetic lethality.
To establish a functional genetic network for homologous recombination, we will first identify all recombination proteins using multiple genome-wide RNAi screens. Then the synthetic sick or lethal interaction map between all recombination proteins is determined by co-depletion of these. Such synthetic sick or lethal network will identify numerous putative targets for anti-cancer treatment. Importantly, using this network for chemical-genetic functional interactions will assist in determinating of the molecular mechanisms of inhibitors. Chemical-genetic networks based on synthetic sickness or lethality can potentially change future drug discovery methods as well as providing new mechanistic insights into the field of toxicology.
Summary
Although several therapies target cellular pathways, current small molecules drug discovery is based on identification of inhibitors to single proteins, without knowledge of whether they are the most advantageous target. The objective of this proposal is to develop a novel method for drug discovery, combining phenotypic cell based screens with functional genetic networks to determine the molecular mechanisms of numerous small molecule inhibitors. This method will enable identification of numerous distinct inhibitors of a particular pathway, as well as providing their molecular mechanism.
Cancer cells harbour gene mutations that make them more reliant on other cellular pathways for survival. Such cellular pathways can be targeted to selectively kill the cancer cells using the concept of synthetic lethality. In this project we want to identify inhibitors of homologous recombination to target cancer using synthetic lethality.
To establish a functional genetic network for homologous recombination, we will first identify all recombination proteins using multiple genome-wide RNAi screens. Then the synthetic sick or lethal interaction map between all recombination proteins is determined by co-depletion of these. Such synthetic sick or lethal network will identify numerous putative targets for anti-cancer treatment. Importantly, using this network for chemical-genetic functional interactions will assist in determinating of the molecular mechanisms of inhibitors. Chemical-genetic networks based on synthetic sickness or lethality can potentially change future drug discovery methods as well as providing new mechanistic insights into the field of toxicology.
Max ERC Funding
2 500 000 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym GLOSTAR
Project A Global View of Star Formation in the Milky Way
Researcher (PI) Karl M. Menten
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE9, ERC-2009-AdG
Summary Stars with more than about ten solar masses dominate galactic ecosystems and understanding the circumstances of their formation is one of the great challenges of modern astronomy. The spectacular HII regions they excite delineate the spiral arms of galaxies such as our own when seen face on making it clear that star formation and Galactic structure are intimately related. We propose to attain a Global View of Star Formation in the Milky Way in a powerful multi-pronged approach. Using VLBI observations of maser sources associated with young protostars, we will measure distances by trigonometric parallax to most of the dominant star forming regions in the Galaxy, which will reveal its spiral structure as well as faithfully represent the luminosity and masses of its constituents. A survey for submillimeter emission from dust, which we are presently pursuing, will deliver the locations of unseen deeply embedded protostars and protoclusters. We plan to combine this data with a comprehensive program to study the gaseous content of the protostellar regions and a very sensitive survey of the Galactic plane with the newly Expanded Very Large Array to find masers and hypercompact HII regions, pinpointing the very centers of the earliest star-forming activity. We also propose to study the infrared emission from more developed massive star clusters, deriving distance with the classic spectro-photometric method, properly calibrated with trigonometric parallaxes, and for the first time adapted to an extensive IR dataset. Our synoptic approach will utilize Europe s premier telescopes including ESO s VLT, the European VLBI Network, the APEX telescope, and ALMA to create a coherent, unique dataset with true legacy value for a global perspective on star formation in our Galaxy.
Summary
Stars with more than about ten solar masses dominate galactic ecosystems and understanding the circumstances of their formation is one of the great challenges of modern astronomy. The spectacular HII regions they excite delineate the spiral arms of galaxies such as our own when seen face on making it clear that star formation and Galactic structure are intimately related. We propose to attain a Global View of Star Formation in the Milky Way in a powerful multi-pronged approach. Using VLBI observations of maser sources associated with young protostars, we will measure distances by trigonometric parallax to most of the dominant star forming regions in the Galaxy, which will reveal its spiral structure as well as faithfully represent the luminosity and masses of its constituents. A survey for submillimeter emission from dust, which we are presently pursuing, will deliver the locations of unseen deeply embedded protostars and protoclusters. We plan to combine this data with a comprehensive program to study the gaseous content of the protostellar regions and a very sensitive survey of the Galactic plane with the newly Expanded Very Large Array to find masers and hypercompact HII regions, pinpointing the very centers of the earliest star-forming activity. We also propose to study the infrared emission from more developed massive star clusters, deriving distance with the classic spectro-photometric method, properly calibrated with trigonometric parallaxes, and for the first time adapted to an extensive IR dataset. Our synoptic approach will utilize Europe s premier telescopes including ESO s VLT, the European VLBI Network, the APEX telescope, and ALMA to create a coherent, unique dataset with true legacy value for a global perspective on star formation in our Galaxy.
Max ERC Funding
2 355 079 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym GreatMoves
Project General Relativistic Moving-Mesh Simulations of Neutron-Star Mergers
Researcher (PI) Andreas BAUSWEIN
Host Institution (HI) GSI HELMHOLTZZENTRUM FUER SCHWERIONENFORSCHUNG GMBH
Call Details Starting Grant (StG), PE9, ERC-2017-STG
Summary In the arising era of gravitational-wave (GW) astronomy the demand for the next-generation of neutron-star (NS) merger models has never been so great. By developing the first relativistic moving-mesh simulations of NS mergers, we will be able to reliably link observables of these spectacular events to fundamental questions of physics. Our approach will allow us to maximize the information that can be obtained from different GW oscillations of the postmerger remnant. In this way we will demonstrate the scientific potential of future postmerger GW detections to unravel unknown properties of NSs and high-density matter. Based on our models we will work out the optimal GW data analysis strategy towards this goal.
Employing a revolutionary numerical technique we will be able to achieve an unprecedented resolution of the merger outflow. High-resolution simulations of these ejecta are critical to uncover the detailed conditions for nucleosynthesis, specifically, for the rapid-neutron capture process (r-process). The r-process forges the heaviest elements such as gold and uranium, but its astrophysical production site still has to be clarified. Moreover, the nuclear decays in the expanding outflow power electromagnetic counterparts, which are targets of optical survey telescopes (iPTF, ZTF, BlackGEM, LSST). Our multi-disciplinary approach combines hydrodynamical models, nuclear network calculations and light-curve computations to facilitate the interpretation of future electromagnetic observations within a multi-messenger picture. Linking these observables to the underlying outflow properties is pivotal to unravel the still mysterious origin of heavy elements created by the r-process.
Summary
In the arising era of gravitational-wave (GW) astronomy the demand for the next-generation of neutron-star (NS) merger models has never been so great. By developing the first relativistic moving-mesh simulations of NS mergers, we will be able to reliably link observables of these spectacular events to fundamental questions of physics. Our approach will allow us to maximize the information that can be obtained from different GW oscillations of the postmerger remnant. In this way we will demonstrate the scientific potential of future postmerger GW detections to unravel unknown properties of NSs and high-density matter. Based on our models we will work out the optimal GW data analysis strategy towards this goal.
Employing a revolutionary numerical technique we will be able to achieve an unprecedented resolution of the merger outflow. High-resolution simulations of these ejecta are critical to uncover the detailed conditions for nucleosynthesis, specifically, for the rapid-neutron capture process (r-process). The r-process forges the heaviest elements such as gold and uranium, but its astrophysical production site still has to be clarified. Moreover, the nuclear decays in the expanding outflow power electromagnetic counterparts, which are targets of optical survey telescopes (iPTF, ZTF, BlackGEM, LSST). Our multi-disciplinary approach combines hydrodynamical models, nuclear network calculations and light-curve computations to facilitate the interpretation of future electromagnetic observations within a multi-messenger picture. Linking these observables to the underlying outflow properties is pivotal to unravel the still mysterious origin of heavy elements created by the r-process.
Max ERC Funding
1 499 485 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym GrInflaGal
Project Gravity, Inflation, and Galaxies: Fundamental Physics with Large-Scale Structure
Researcher (PI) Fabian Schmidt
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2015-STG
Summary Over the past two decades, a data-driven revolution has occurred in our understanding of the origin and evolution of our Universe and the structure within it. During this period, cosmology has evolved from a speculative branch of theoretical physics into precision science at the intersection of gravity, particle- and astrophysics. Despite all we have learned, we still do not understand why the Universe accelerates, and how the structure in the Universe originated. Recent breakthrough research, with leading contributions by the PI of this proposal, has shown that we can make progress on these questions using observations of the large-scale structure and its tracers, galaxies. This opens up a fascinating, new interdisciplinary research field: probing Gravity and Inflation with Galaxies. The goal of the proposed research is to first, probe our theory of gravity, General Relativity, on cosmological scales. Second, it aims to shed light on the origin of the initial seed fluctuations out of which all structure in the Universe formed, by constraining the physics and energy scale of inflation. While seemingly unrelated, the main challenge in both research directions consists in understanding the nonlinear physics of structure formation, which is dominated by gravity on scales larger than a few Mpc. By making progress in this understanding, we can unlock a rich trove of information on fundamental physics from large-scale structure. The research goals will be pursued on all three fronts of analytical theory, numerical simulations, and confrontation with data. With space missions, such as Planck and Euclid, as well as ground-based surveys delivering data sets of unprecedented size and quality at this very moment, the proposed research is especially timely. It will make key contributions towards maximizing the science output of these experiments, deepen our understanding of the laws of physics, and uncover our cosmological origins.
Summary
Over the past two decades, a data-driven revolution has occurred in our understanding of the origin and evolution of our Universe and the structure within it. During this period, cosmology has evolved from a speculative branch of theoretical physics into precision science at the intersection of gravity, particle- and astrophysics. Despite all we have learned, we still do not understand why the Universe accelerates, and how the structure in the Universe originated. Recent breakthrough research, with leading contributions by the PI of this proposal, has shown that we can make progress on these questions using observations of the large-scale structure and its tracers, galaxies. This opens up a fascinating, new interdisciplinary research field: probing Gravity and Inflation with Galaxies. The goal of the proposed research is to first, probe our theory of gravity, General Relativity, on cosmological scales. Second, it aims to shed light on the origin of the initial seed fluctuations out of which all structure in the Universe formed, by constraining the physics and energy scale of inflation. While seemingly unrelated, the main challenge in both research directions consists in understanding the nonlinear physics of structure formation, which is dominated by gravity on scales larger than a few Mpc. By making progress in this understanding, we can unlock a rich trove of information on fundamental physics from large-scale structure. The research goals will be pursued on all three fronts of analytical theory, numerical simulations, and confrontation with data. With space missions, such as Planck and Euclid, as well as ground-based surveys delivering data sets of unprecedented size and quality at this very moment, the proposed research is especially timely. It will make key contributions towards maximizing the science output of these experiments, deepen our understanding of the laws of physics, and uncover our cosmological origins.
Max ERC Funding
1 330 625 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym GUTSY
Project The gut microbiota and its systemic effects on metabolism and atherosclerotic disease
Researcher (PI) Tove Elisabet FALL
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2018-STG
Summary Atherosclerosis is the main pathological mechanism causing myocardial infarction and ischemic stroke. Evidence has mounted about the association between the gut microbiota and cardiovascular disease, but whether the associations are causal is largely unknown. For optimal prevention and treatment of cardiovascular disease, there is an urgent need to determine whether there are any true effects that might be targeted by interventions. The overall goal of this project is to assess causality between gut microbiota and atherosclerotic disease and to provide easily accessible biomarkers for an atherosclerosis-enhancing gut microbiota. To this end, the research program has three main objectives:
1.) Identification of gut microbiota characteristics associated with atherosclerosis measured by coronary computed tomography angiography and high-resolution carotid ultrasound in a population-based sample of 10,000 individuals and through prospective follow-up for myocardial infarction and ischemic stroke. The microbiota will be characterized by next-generation sequencing techniques in faecal samples.
2.) Identification of plasma biomarkers associated with an atherosclerosis- enhancing microbiota using comprehensive metabolomics profiling of 800 named metabolites in plasma from 800 individuals with replication in additional 800 individuals
3.) Clarification of the causal effects of gut microbiota characteristics on atherosclerosis, myocardial infarction and stroke by development of novel genetic instruments and applying Mendelian Randomization analysis
I have access to unique study materials and documented experience of successful projects using large scale -omics data and state-of-the-art epidemiological methodologies. My project is expected to lead to the identification of characteristics of an atherosclerosis-enhancing gut microbiota and associated plasma biomarkers that may open up new avenues for effective prevention of atherosclerotic disease.
Summary
Atherosclerosis is the main pathological mechanism causing myocardial infarction and ischemic stroke. Evidence has mounted about the association between the gut microbiota and cardiovascular disease, but whether the associations are causal is largely unknown. For optimal prevention and treatment of cardiovascular disease, there is an urgent need to determine whether there are any true effects that might be targeted by interventions. The overall goal of this project is to assess causality between gut microbiota and atherosclerotic disease and to provide easily accessible biomarkers for an atherosclerosis-enhancing gut microbiota. To this end, the research program has three main objectives:
1.) Identification of gut microbiota characteristics associated with atherosclerosis measured by coronary computed tomography angiography and high-resolution carotid ultrasound in a population-based sample of 10,000 individuals and through prospective follow-up for myocardial infarction and ischemic stroke. The microbiota will be characterized by next-generation sequencing techniques in faecal samples.
2.) Identification of plasma biomarkers associated with an atherosclerosis- enhancing microbiota using comprehensive metabolomics profiling of 800 named metabolites in plasma from 800 individuals with replication in additional 800 individuals
3.) Clarification of the causal effects of gut microbiota characteristics on atherosclerosis, myocardial infarction and stroke by development of novel genetic instruments and applying Mendelian Randomization analysis
I have access to unique study materials and documented experience of successful projects using large scale -omics data and state-of-the-art epidemiological methodologies. My project is expected to lead to the identification of characteristics of an atherosclerosis-enhancing gut microbiota and associated plasma biomarkers that may open up new avenues for effective prevention of atherosclerotic disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym GvHDCure
Project Understanding the dynamics of the immune system to cure graft-versus-host disease (GvHD).
Researcher (PI) Robert Franz Karl Zeiser
Host Institution (HI) UNIVERSITAETSKLINIKUM FREIBURG
Call Details Consolidator Grant (CoG), LS7, ERC-2015-CoG
Summary Acute graft-versus-host disease (GvHD) is the leading cause of the high mortality of patients having undergone allogeneic hematopoietic cell transplantation. A key event in the pathogenesis of GvHD is the injury and loss of epithelial cells in the intestinal tract. The overall goal of GvHDCure is to identify the pathophysiological mechanisms that initiate (1), propagate (2) and maintain (3) GvHD.
(1) We found that one of the earliest events during GvHD initiation is infiltration of the intestines by neutrophils. By using transgenic neutrophil cell lines carrying selective gene defects, we will systematically evaluate molecules in neutrophils that are critical for their sensing and effector function during GvHD in combination with novel imaging methods to track bacterial translocation. (2) The molecular programs propagating inflammation-induced epithelial apoptosis, endoplasmic reticulum stress and the sensing of DAMPs in GvHD are not understood. We will isolate enterocytes from GvHD mice to develop a precise quantitative genomic and micro RNA (miR) fingerprint of their death. The connection between ER stress and enterocyte death will be validated in intestinal organoid culture systems and in vivo in an XBP-1 mRNA splicing reporter mouse. In addition, we will make use of our human tissue bank, allowing the efficient genetic screening and verification of regulatory molecular networks in the cells from GvHD patients. (3) Maintenance of GvHD relies on continuous immune cell activation. Based on our miR array and phospho-proteomics data set, we will selectively analyze the role of several miRs and kinases in neutrophils, dendritic cells, T cells and enterocytes for GvHD maintenance by using multiple Cre-lox mice and kinase inhibitors to manipulate GvHD. Via a combination of murine and human studies GvHDCure aims to directly develop individualized therapeutic strategies to interfere with GvHD at multiple levels to make allo-HCT more safe for patients with blood cancer.
Summary
Acute graft-versus-host disease (GvHD) is the leading cause of the high mortality of patients having undergone allogeneic hematopoietic cell transplantation. A key event in the pathogenesis of GvHD is the injury and loss of epithelial cells in the intestinal tract. The overall goal of GvHDCure is to identify the pathophysiological mechanisms that initiate (1), propagate (2) and maintain (3) GvHD.
(1) We found that one of the earliest events during GvHD initiation is infiltration of the intestines by neutrophils. By using transgenic neutrophil cell lines carrying selective gene defects, we will systematically evaluate molecules in neutrophils that are critical for their sensing and effector function during GvHD in combination with novel imaging methods to track bacterial translocation. (2) The molecular programs propagating inflammation-induced epithelial apoptosis, endoplasmic reticulum stress and the sensing of DAMPs in GvHD are not understood. We will isolate enterocytes from GvHD mice to develop a precise quantitative genomic and micro RNA (miR) fingerprint of their death. The connection between ER stress and enterocyte death will be validated in intestinal organoid culture systems and in vivo in an XBP-1 mRNA splicing reporter mouse. In addition, we will make use of our human tissue bank, allowing the efficient genetic screening and verification of regulatory molecular networks in the cells from GvHD patients. (3) Maintenance of GvHD relies on continuous immune cell activation. Based on our miR array and phospho-proteomics data set, we will selectively analyze the role of several miRs and kinases in neutrophils, dendritic cells, T cells and enterocytes for GvHD maintenance by using multiple Cre-lox mice and kinase inhibitors to manipulate GvHD. Via a combination of murine and human studies GvHDCure aims to directly develop individualized therapeutic strategies to interfere with GvHD at multiple levels to make allo-HCT more safe for patients with blood cancer.
Max ERC Funding
1 987 500 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym Habitat-OASIS
Project Habitability of Oceans and Aqueous Systems on Icy Satellites
Researcher (PI) Frank Heinz POSTBERG
Host Institution (HI) FREIE UNIVERSITAET BERLIN
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary Icy moons in the outer solar system are prime candidates for harbouring alien life within their sub-surface oceans. Among them Enceladus and Europa are considered to have the largest astrobiological potential. Habitat-OASIS aims to explore the habitability of the ocean worlds of Enceladus, Europa, and other icy satellites using in situ mass spectrometry from on-going and future space missions. At Enceladus (and probably Europa) the ice grains expelled by active plumes carry matter previously dissolved and suspended in the subsurface oceans, allowing constraining their geochemistry. The mass spectrometers aboard the Cassini-Huygens spacecraft currently orbiting Saturn are analysing this material and already delivered spectacular science results. Project 1 of this proposal is the refined data analysis of the Enceladus plume material using novel techniques and is the first ever opportunity to explore in detail a potential ocean habitat outside Earth. Newly developed laser-assisted dispersion experiments will be used to acquire mass spectra on a wide variety of analogue materials, enabling the identification and quantification of inorganic, organic and possibly biogenic compounds embedded in the ice grains. Geochemical aqueous alteration experiments and numerical modelling will support further constraining the habitability of Enceladus and extrapolating the results to other ocean moons. Project 2 will leverage the laboratory capabilities from Project 1 to create a comprehensive library of mass spectra in preparation for the upcoming missions visiting Jupiter’s icy moons: ESA’s JUICE Mission and NASA’s Europa Mission. Even if no plume is present both spacecraft will encounter surface material residing in ejecta clouds around the moons that can be connected to subsurface processes. Having analogue measurements available early in the missions will be critical for exploiting their full potential and will maintain the leading edge of ocean world exploration in Europe.
Summary
Icy moons in the outer solar system are prime candidates for harbouring alien life within their sub-surface oceans. Among them Enceladus and Europa are considered to have the largest astrobiological potential. Habitat-OASIS aims to explore the habitability of the ocean worlds of Enceladus, Europa, and other icy satellites using in situ mass spectrometry from on-going and future space missions. At Enceladus (and probably Europa) the ice grains expelled by active plumes carry matter previously dissolved and suspended in the subsurface oceans, allowing constraining their geochemistry. The mass spectrometers aboard the Cassini-Huygens spacecraft currently orbiting Saturn are analysing this material and already delivered spectacular science results. Project 1 of this proposal is the refined data analysis of the Enceladus plume material using novel techniques and is the first ever opportunity to explore in detail a potential ocean habitat outside Earth. Newly developed laser-assisted dispersion experiments will be used to acquire mass spectra on a wide variety of analogue materials, enabling the identification and quantification of inorganic, organic and possibly biogenic compounds embedded in the ice grains. Geochemical aqueous alteration experiments and numerical modelling will support further constraining the habitability of Enceladus and extrapolating the results to other ocean moons. Project 2 will leverage the laboratory capabilities from Project 1 to create a comprehensive library of mass spectra in preparation for the upcoming missions visiting Jupiter’s icy moons: ESA’s JUICE Mission and NASA’s Europa Mission. Even if no plume is present both spacecraft will encounter surface material residing in ejecta clouds around the moons that can be connected to subsurface processes. Having analogue measurements available early in the missions will be critical for exploiting their full potential and will maintain the leading edge of ocean world exploration in Europe.
Max ERC Funding
1 995 250 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym HEART4FLOW
Project Improved Diagnosis and Management of Heart Disease by 4D Blood Flow Assessment
Researcher (PI) Antonius Hendrikus Gerardus Ebbers
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary The primary purpose of the cardiovascular system is to drive, control and maintain blood flow to all parts of the body. Despite the primacy of flow, cardiac diagnostics still rely almost exclusively on tools focused on morphological assessment.
The objective of the HEART4FLOW project is to develop the next generation of methods for the non-invasive quantitative assessment of cardiac diseases and therapies by focusing on blood flow dynamics, with the goals of earlier and more accurate detection and improved management of cardiac diseases.
Recently, a novel moment framework for flow quantification using magnetic resonance imaging (MRI) has been presented which allows for simultaneous measurement of time-resolved, three-dimensional (time + 3D = 4D) blood flow velocity and turbulence intensity. In the HEART4FLOW project, this framework is extended and exploited for assessment of intracardiac blood flow dynamics. A user-friendly quantitative assessment approach is obtained for intracardiac blood flow energetics and wall interaction, as well as stenotic and regurgitant blood flow. Furthermore, the accuracy, measurement time, and robustness of 4D flow MRI acquisition are optimized, allowing its use in large clinical trails. Studying intracardiac blood flow dynamics in patients and healthy subjects at rest and under stress will improve our understanding of the roles of flow dynamics in both health and disease, leading to improved cardiac diagnostics, novel assessments of pharmaceutical, interventional, and surgical therapies, and promoting exploration of new avenues for management of cardiac disorders.
Summary
The primary purpose of the cardiovascular system is to drive, control and maintain blood flow to all parts of the body. Despite the primacy of flow, cardiac diagnostics still rely almost exclusively on tools focused on morphological assessment.
The objective of the HEART4FLOW project is to develop the next generation of methods for the non-invasive quantitative assessment of cardiac diseases and therapies by focusing on blood flow dynamics, with the goals of earlier and more accurate detection and improved management of cardiac diseases.
Recently, a novel moment framework for flow quantification using magnetic resonance imaging (MRI) has been presented which allows for simultaneous measurement of time-resolved, three-dimensional (time + 3D = 4D) blood flow velocity and turbulence intensity. In the HEART4FLOW project, this framework is extended and exploited for assessment of intracardiac blood flow dynamics. A user-friendly quantitative assessment approach is obtained for intracardiac blood flow energetics and wall interaction, as well as stenotic and regurgitant blood flow. Furthermore, the accuracy, measurement time, and robustness of 4D flow MRI acquisition are optimized, allowing its use in large clinical trails. Studying intracardiac blood flow dynamics in patients and healthy subjects at rest and under stress will improve our understanding of the roles of flow dynamics in both health and disease, leading to improved cardiac diagnostics, novel assessments of pharmaceutical, interventional, and surgical therapies, and promoting exploration of new avenues for management of cardiac disorders.
Max ERC Funding
1 430 131 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym HEPASPHER
Project Mimicking liver disease and regeneration in vitro for drug development and liver transplantation
Researcher (PI) Magnus INGELMAN-SUNDBERG
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary The liver is a vital organ for synthesis and detoxification. The most significant liver diseases are hepatitis, non alcoholic fatty liver disease (NAFLD), non-alcoholic fatty liver steatohepatitis (NASH), carcinoma and cirrhosis. An additional and important cause of liver injury is adverse drug reactions (ADRs). In particular NAFLD is the most common liver disease affecting between 20% and 44% of European adults and 43-70% of patients with type 2 diabetes, and is one prime cause for chronic and end-stage liver disease, such as cirrhosis and primary hepatocellular carcinoma.
This proposal is based on recent findings in the laboratory: The development of novel 3D spheroid system with chemically defined media allowing studies of chronic drug toxicity, relevant liver disease and liver function for 5 weeks in vitro, the finding of the role of miRNA in hepatocyte dedifferentiation and that hepatocytes during spheroid formation first de-differentiate but later in spheroids re-differentiate to an in vivo relevant phenotype. This forms the basis for the main objectives: i) to study diseased liver in vitro with identification of mechanisms, biomarkers and novel drug candidates for treatment of NAFLD and fibrosis, ii) evaluate drug toxicity sensitivity and mechanisms in diseased liver systems and iii) further develop methods for hepatocyte proliferation and regeneration in vitro for transplantation purposes, including genetic editing in cases of hepatocytes obtained from patients with genetically inherited liver diseases.
This work is carried out in close contact with the Hepatology unit at the Karolinska Hospital partly using resources at the Science for Life Laboratory at Karolinska. It is anticipated that the project can provide with novel mechanisms, biomarkers and new targets for treatment of liver disease as well as novel methods for clinically applicable liver regeneration without the use of stem cells or transformed cells.
Summary
The liver is a vital organ for synthesis and detoxification. The most significant liver diseases are hepatitis, non alcoholic fatty liver disease (NAFLD), non-alcoholic fatty liver steatohepatitis (NASH), carcinoma and cirrhosis. An additional and important cause of liver injury is adverse drug reactions (ADRs). In particular NAFLD is the most common liver disease affecting between 20% and 44% of European adults and 43-70% of patients with type 2 diabetes, and is one prime cause for chronic and end-stage liver disease, such as cirrhosis and primary hepatocellular carcinoma.
This proposal is based on recent findings in the laboratory: The development of novel 3D spheroid system with chemically defined media allowing studies of chronic drug toxicity, relevant liver disease and liver function for 5 weeks in vitro, the finding of the role of miRNA in hepatocyte dedifferentiation and that hepatocytes during spheroid formation first de-differentiate but later in spheroids re-differentiate to an in vivo relevant phenotype. This forms the basis for the main objectives: i) to study diseased liver in vitro with identification of mechanisms, biomarkers and novel drug candidates for treatment of NAFLD and fibrosis, ii) evaluate drug toxicity sensitivity and mechanisms in diseased liver systems and iii) further develop methods for hepatocyte proliferation and regeneration in vitro for transplantation purposes, including genetic editing in cases of hepatocytes obtained from patients with genetically inherited liver diseases.
This work is carried out in close contact with the Hepatology unit at the Karolinska Hospital partly using resources at the Science for Life Laboratory at Karolinska. It is anticipated that the project can provide with novel mechanisms, biomarkers and new targets for treatment of liver disease as well as novel methods for clinically applicable liver regeneration without the use of stem cells or transformed cells.
Max ERC Funding
2 413 449 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym HEPATOPANCREATIC
Project MECHANISMS UNDERLYING CELL FATE DECISION BETWEEN PANCREAS AND LIVER
Researcher (PI) Francesca M Spagnoli
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Starting Grant (StG), LS7, ERC-2009-StG
Summary Diabetes is a degenerative disease affecting millions of persons worldwide. A cure for diabetes depends on replacing the insulin-producing ²-cells in the pancreas that are destroyed by the disease. An attractive strategy to attain this goal is to convert liver adult cells of the same patient into pancreatic ²-cells. The liver and pancreas share many aspects of their early development and are specified in adjacent regions of the endoderm, possibly from a common bipotent progenitor cell. Therefore, conversion of liver to pancreas is conceivable and should imply only few steps backward to a common progenitor and little epigenetic changes. However, how pancreatic versus hepatic fate decision occurs during development is still poorly understood. The aim of this proposal is two fold: to perform lineage analysis, and to study developmental regulators of pancreatic versus hepatic fate decision. We will use new genetic tools, based on the GFP and photoconvertible Kaede fluorescent proteins, to address: i. if the liver and pancreas arise from a common bipotent progenitor cell; ii. to trace in vivo; and iii. molecularly profile the presumptive precursor cell and its descendants in the mouse embryo. Our previous studies have identified target genes of the GATA factors that might act as intrinsic developmental regulators of the pancreatic versus hepatic fate decision. Both intrinsic factors together with extrinsic regulators, such as BMP, will be studied. We will test their potential to promote lineage reprogramming of liver to pancreas using the mouse as well as mouse embryonic stem cells as model systems. Understanding how distinct cell types arise from common multipotent progenitor cells is a major quest in developmental biology. Our findings will elucidate the spatiotemporal mechanisms that control pancreas versus liver fate decision. In addition, they will provide the blueprint for lineage reprogramming of adult hepatic cells to pancreas in diabetes cell-therapy.
Summary
Diabetes is a degenerative disease affecting millions of persons worldwide. A cure for diabetes depends on replacing the insulin-producing ²-cells in the pancreas that are destroyed by the disease. An attractive strategy to attain this goal is to convert liver adult cells of the same patient into pancreatic ²-cells. The liver and pancreas share many aspects of their early development and are specified in adjacent regions of the endoderm, possibly from a common bipotent progenitor cell. Therefore, conversion of liver to pancreas is conceivable and should imply only few steps backward to a common progenitor and little epigenetic changes. However, how pancreatic versus hepatic fate decision occurs during development is still poorly understood. The aim of this proposal is two fold: to perform lineage analysis, and to study developmental regulators of pancreatic versus hepatic fate decision. We will use new genetic tools, based on the GFP and photoconvertible Kaede fluorescent proteins, to address: i. if the liver and pancreas arise from a common bipotent progenitor cell; ii. to trace in vivo; and iii. molecularly profile the presumptive precursor cell and its descendants in the mouse embryo. Our previous studies have identified target genes of the GATA factors that might act as intrinsic developmental regulators of the pancreatic versus hepatic fate decision. Both intrinsic factors together with extrinsic regulators, such as BMP, will be studied. We will test their potential to promote lineage reprogramming of liver to pancreas using the mouse as well as mouse embryonic stem cells as model systems. Understanding how distinct cell types arise from common multipotent progenitor cells is a major quest in developmental biology. Our findings will elucidate the spatiotemporal mechanisms that control pancreas versus liver fate decision. In addition, they will provide the blueprint for lineage reprogramming of adult hepatic cells to pancreas in diabetes cell-therapy.
Max ERC Funding
1 186 746 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym HERA
Project Host-environment interactions in the protection from asthma and allergies
Researcher (PI) Erika Von Mutius
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), LS7, ERC-2009-AdG
Summary Asthma and allergies are chronic conditions affecting billions of Europeans. These complex diseases are determined by interplay of genetic and environmental factors. Treatments can control symptoms, but cannot cure or prevent the diseases. I, and my team, have shown that children are strongly protected from asthma and allergies when growing up in a farming environment rich in microbial exposures: the prevalence of asthma and hay fever is reduced over 5 fold. We have shown that environmental exposure to microbial compounds is inversely related to asthma and allergies. We have isolated microbes from animal sheds which protect mice from allergic airway inflammation. My team is now at a critical point to move this work forward to the next step, which is to systematically identify the microbes and their immuno-stimulatory compounds that protect from asthma and allergies. We have key resources in hand. In previous population based studies large numbers of environmental samples from farm and non farm children with and without asthma and allergies have been stored in biobanks. Genome wide genotyping data have also been gathered. The HERA project aims at applying the latest innovative high throughput sequencing techniques to comprehensively characterize the microbial ecology of these environmental samples. New methods for assessing microbial immuno-stimulatory substances will be used. These innovations will allow the HERA team to identify distinct asthma and allergy protective microbial exposures taking each individual s genetic susceptibility into account. Once protective microbial exposures have been identified, the responsible substances can be isolated. These substances can be developed into novel and effective prevention strategies to combat the asthma and allergy epidemic.
Summary
Asthma and allergies are chronic conditions affecting billions of Europeans. These complex diseases are determined by interplay of genetic and environmental factors. Treatments can control symptoms, but cannot cure or prevent the diseases. I, and my team, have shown that children are strongly protected from asthma and allergies when growing up in a farming environment rich in microbial exposures: the prevalence of asthma and hay fever is reduced over 5 fold. We have shown that environmental exposure to microbial compounds is inversely related to asthma and allergies. We have isolated microbes from animal sheds which protect mice from allergic airway inflammation. My team is now at a critical point to move this work forward to the next step, which is to systematically identify the microbes and their immuno-stimulatory compounds that protect from asthma and allergies. We have key resources in hand. In previous population based studies large numbers of environmental samples from farm and non farm children with and without asthma and allergies have been stored in biobanks. Genome wide genotyping data have also been gathered. The HERA project aims at applying the latest innovative high throughput sequencing techniques to comprehensively characterize the microbial ecology of these environmental samples. New methods for assessing microbial immuno-stimulatory substances will be used. These innovations will allow the HERA team to identify distinct asthma and allergy protective microbial exposures taking each individual s genetic susceptibility into account. Once protective microbial exposures have been identified, the responsible substances can be isolated. These substances can be developed into novel and effective prevention strategies to combat the asthma and allergy epidemic.
Max ERC Funding
2 155 697 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym HIDDeN
Project HIDDeN - Exploring the Hidden Dusty Nuclei of Galaxies
Researcher (PI) Eva Susanne AALTO
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Call Details Advanced Grant (AdG), PE9, ERC-2017-ADG
Summary Luminous infrared galaxies (LIRGs) emit most of their bolometric luminosity in the far-infrared. They are mainly powered by extreme bursts of star formation and/or Active Galactic Nuclei (AGNs; accreting supermassive black holes (SMBHs)) in their centres. LIRGs are the closest examples of rapid evolution in galaxies and a detailed study of LIRGs is critical for our understanding of the cosmic evolution of galaxies and SMBHs. Centres of some LIRGs are deeply obscured and unreachable at optical, IR and even X-ray wavelengths. These hidden nuclei therefore represent a largely unexplored phase of the growth of central regions with their SMBHs. Large growth spurts are suspected to occur when the SMBHs are deeply embedded. Obscured AGNs thus can provide new constraints on the AGN duty cycle, give the full range of environments and astrophysical processes that drive the growth of SMBHs, and help to complete the picture of connections between the host galaxy and SMBH. Many dust embedded AGNs are still to be discovered as studies suggest that a significant fraction of SMBHs may be obscured in the local and more distant Universe.
In the HIDDeN project we use mm and submm observational methods to reach behind the curtain of dust in the most embedded centres of LIRGs, allowing us to undertake ground-breaking studies of heretofore hidden rapid evolutionary phases of nearby galaxy nuclei. HIDDeN takes advantage of emerging opportunities to address the nature of near-field, and redshift z=1-2, obscured AGNs/starbursts and their associated molecular inflows and outflows in the context of their evolution and the starburst-AGN connection. In particular we use the ALMA and NOEMA telescopes, supported by JVLA, LOFAR, HST and future JWST observations, to address four interconnected goals: A. Probing the Dusty Interiors of Compact Obscured Nuclei (CONs), B. The cold winds of change - Molecular Outflows from LIRGs and AGNs, C. The Co-Evolution of Starbursts and AGNs and D. Are there hidden CONs at z=1-2
Summary
Luminous infrared galaxies (LIRGs) emit most of their bolometric luminosity in the far-infrared. They are mainly powered by extreme bursts of star formation and/or Active Galactic Nuclei (AGNs; accreting supermassive black holes (SMBHs)) in their centres. LIRGs are the closest examples of rapid evolution in galaxies and a detailed study of LIRGs is critical for our understanding of the cosmic evolution of galaxies and SMBHs. Centres of some LIRGs are deeply obscured and unreachable at optical, IR and even X-ray wavelengths. These hidden nuclei therefore represent a largely unexplored phase of the growth of central regions with their SMBHs. Large growth spurts are suspected to occur when the SMBHs are deeply embedded. Obscured AGNs thus can provide new constraints on the AGN duty cycle, give the full range of environments and astrophysical processes that drive the growth of SMBHs, and help to complete the picture of connections between the host galaxy and SMBH. Many dust embedded AGNs are still to be discovered as studies suggest that a significant fraction of SMBHs may be obscured in the local and more distant Universe.
In the HIDDeN project we use mm and submm observational methods to reach behind the curtain of dust in the most embedded centres of LIRGs, allowing us to undertake ground-breaking studies of heretofore hidden rapid evolutionary phases of nearby galaxy nuclei. HIDDeN takes advantage of emerging opportunities to address the nature of near-field, and redshift z=1-2, obscured AGNs/starbursts and their associated molecular inflows and outflows in the context of their evolution and the starburst-AGN connection. In particular we use the ALMA and NOEMA telescopes, supported by JVLA, LOFAR, HST and future JWST observations, to address four interconnected goals: A. Probing the Dusty Interiors of Compact Obscured Nuclei (CONs), B. The cold winds of change - Molecular Outflows from LIRGs and AGNs, C. The Co-Evolution of Starbursts and AGNs and D. Are there hidden CONs at z=1-2
Max ERC Funding
2 496 319 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym HOME
Project Habitability of Martian Environments: Exploring the Physiological and Environmental Limits of Life
Researcher (PI) Dirk Schulze-Makuch
Host Institution (HI) TECHNISCHE UNIVERSITAT BERLIN
Call Details Advanced Grant (AdG), PE9, ERC-2013-ADG
Summary The low average temperature and low water activity of the Martian near-surface environment makes it challenging for living organisms to persist and propagate. Nonetheless, recent mission results indicate that environmental conditions exceed locally and temporarily the lower thresholds for life to exist. Furthermore, specific soil minerals, or combinations thereof, appear to provide a suitable habitat for microbial life, especially if associated with low-temperature brines or hygroscopic salts. Thus, a quantitative understanding of the habitability potential of the Martian near-surface environment, past and present, is very much needed and the focus of this proposal. To achieve this objective, we will test different types of soils and some of Earth’s hardiest organisms, using them as models (‘Mars-analogues’), to see if they can survive and perhaps even grow under the various environmental stresses known to exist on Mars. A major tool of our laboratory investigations will be the experimentally proven state-of-the-art Mars Simulation Chamber at the German AeroSpace Center, to which various soils materials and microorganisms will be exposed. The planned experimental investigations and models will be concurrently updated by analyzed mission data, particularly from landers and rovers (e.g., Curiosity Rover), to adjust our work to the newest Martian geochemical and environmental data available. Results from our proposed work will timely provide critical scientific knowledge to interpret incoming data from ESA’s ExoMars mission, which is scheduled for launch in 2016/2018. As one important deliverable of our work we will also construct a Mars Soil Analyzer, an instrument which will be designed for a future mission to Mars with the objective to achieve Technology Readiness Level 6 at the completion of the proposed study.
Summary
The low average temperature and low water activity of the Martian near-surface environment makes it challenging for living organisms to persist and propagate. Nonetheless, recent mission results indicate that environmental conditions exceed locally and temporarily the lower thresholds for life to exist. Furthermore, specific soil minerals, or combinations thereof, appear to provide a suitable habitat for microbial life, especially if associated with low-temperature brines or hygroscopic salts. Thus, a quantitative understanding of the habitability potential of the Martian near-surface environment, past and present, is very much needed and the focus of this proposal. To achieve this objective, we will test different types of soils and some of Earth’s hardiest organisms, using them as models (‘Mars-analogues’), to see if they can survive and perhaps even grow under the various environmental stresses known to exist on Mars. A major tool of our laboratory investigations will be the experimentally proven state-of-the-art Mars Simulation Chamber at the German AeroSpace Center, to which various soils materials and microorganisms will be exposed. The planned experimental investigations and models will be concurrently updated by analyzed mission data, particularly from landers and rovers (e.g., Curiosity Rover), to adjust our work to the newest Martian geochemical and environmental data available. Results from our proposed work will timely provide critical scientific knowledge to interpret incoming data from ESA’s ExoMars mission, which is scheduled for launch in 2016/2018. As one important deliverable of our work we will also construct a Mars Soil Analyzer, an instrument which will be designed for a future mission to Mars with the objective to achieve Technology Readiness Level 6 at the completion of the proposed study.
Max ERC Funding
2 494 215 €
Duration
Start date: 2014-08-01, End date: 2019-07-31
Project acronym HotMol
Project Hot Molecules in Exoplanets and Inner Disks
Researcher (PI) Svetlana Berdyugina
Host Institution (HI) LEIBNIZ-INSTITUT FÜR SONNENPHYSIK (KIS)
Call Details Advanced Grant (AdG), PE9, ERC-2011-ADG_20110209
Summary Understanding the nature and distribution of habitable environments in the Universe is one of the fundamental goals of modern astrophysics. For the life we know, liquid water on the planetary surface is a prerequisite. However, a direct detection of liquid water on exoplanets, and especially on a potentially habitable Earth-size planet, is not yet possible. The existence of water almost certainly implies the presence of atmospheric water vapour which must evaporate under stellar irradiation from a cloud deck or from the surface, together with other related molecules. Therefore, devising sensitive methods to detect hot molecules on exoplanets is of high importance. This proposal develops several exploratory theoretical and observational aspects of precision spectropolarimetry for detecting water vapour and other volatiles on exoplanets and in the inner part of protoplanetary disks. These are new tools for making progress in our understanding which fraction of planets acquires water and how planet formation influences their habitability. As a “double differential” technique, spectropolarimetry has enormous advantages for dynamic range problems, like detection of weak line signals against a large stellar background and exploration at scales beyond the angular resolution of telescopes, which are crucial for both exoplanets and inner disks. Direct detection of polarized spectral lines enables recovering precise orbits of exoplanets (including non-transiting systems) and evaluating their masses as well as potentially their magnetic fields. First applied to hot Jupiters the developed tools will create a firm foundation for future exploration of Earth-like planets with larger telescopes. The same technique applied to planetesimals in the inner disks of young stars yields their orbits, temperature, and chemical composition. These will provide constraints on the formation of a planetary atmosphere in the vicinity of the star and its habitable zone.
Summary
Understanding the nature and distribution of habitable environments in the Universe is one of the fundamental goals of modern astrophysics. For the life we know, liquid water on the planetary surface is a prerequisite. However, a direct detection of liquid water on exoplanets, and especially on a potentially habitable Earth-size planet, is not yet possible. The existence of water almost certainly implies the presence of atmospheric water vapour which must evaporate under stellar irradiation from a cloud deck or from the surface, together with other related molecules. Therefore, devising sensitive methods to detect hot molecules on exoplanets is of high importance. This proposal develops several exploratory theoretical and observational aspects of precision spectropolarimetry for detecting water vapour and other volatiles on exoplanets and in the inner part of protoplanetary disks. These are new tools for making progress in our understanding which fraction of planets acquires water and how planet formation influences their habitability. As a “double differential” technique, spectropolarimetry has enormous advantages for dynamic range problems, like detection of weak line signals against a large stellar background and exploration at scales beyond the angular resolution of telescopes, which are crucial for both exoplanets and inner disks. Direct detection of polarized spectral lines enables recovering precise orbits of exoplanets (including non-transiting systems) and evaluating their masses as well as potentially their magnetic fields. First applied to hot Jupiters the developed tools will create a firm foundation for future exploration of Earth-like planets with larger telescopes. The same technique applied to planetesimals in the inner disks of young stars yields their orbits, temperature, and chemical composition. These will provide constraints on the formation of a planetary atmosphere in the vicinity of the star and its habitable zone.
Max ERC Funding
2 436 000 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym iAML-lncTARGET
Project Targeting the transcriptional landscape in infant AML
Researcher (PI) Jan-Henning Cornelius KLUSMANN
Host Institution (HI) MARTIN-LUTHER-UNIVERSITAET HALLE-WITTENBERG
Call Details Starting Grant (StG), LS7, ERC-2016-STG
Summary Infant acute myeloid leukemia (AML) has a dismal prognosis, with a high prevalence of unfavorable features and increased susceptibility to therapy-related toxicities, highlighting the need for innovative treatment approaches. Despite the discovery of an enormous number and diversity of transcriptional products arising from the previously presumed wastelands of the non-protein-coding genome, our knowledge of non-coding RNAs is far from being incorporated into standards of AML diagnosis and treatment. I hypothesize that the highly developmental stage- and cell-specific expression of long non-coding RNAs shapes a chromatin and transcriptional landscape in fetal hematopoietic stem cells that renders them permissive towards transformation. I predict this landscape to synergize with particular oncogenes that are otherwise not oncogenic in adult cells, by providing a fertile transcriptional background for establishing and maintaining oncogenic programs. Therefore, the non-coding transcriptome, inherited from the fetal cell of origin, may reflect a previously unrecognized Achilles heel of infant AML, which I will identify with my expertise to understand and edit the AML genome and transcriptome.
I will apply recent breakthroughs from various research areas to i) create a comprehensive transcriptomic atlas of infant AML and fetal stem cells, ii) define aberrant or fetal stage-specific non-coding RNAs that drive leukemia progression, and iii) resolve their features to probe the oncogenic interactome. After iv) establishing a biobank of patient-derived xenografts, I will v) evaluate preclinical RNA-centered therapeutic interventions to overcome current obstacles in the treatment of infant AML. Targeting the vulnerable fetal stage-specific background of infant AML inherited from the cell of origin may set a paradigm shift for cancer treatment, by focusing on the permissive basis required by the oncogene for inducing and sustaining cancer, rather than on the oncogene itself.
Summary
Infant acute myeloid leukemia (AML) has a dismal prognosis, with a high prevalence of unfavorable features and increased susceptibility to therapy-related toxicities, highlighting the need for innovative treatment approaches. Despite the discovery of an enormous number and diversity of transcriptional products arising from the previously presumed wastelands of the non-protein-coding genome, our knowledge of non-coding RNAs is far from being incorporated into standards of AML diagnosis and treatment. I hypothesize that the highly developmental stage- and cell-specific expression of long non-coding RNAs shapes a chromatin and transcriptional landscape in fetal hematopoietic stem cells that renders them permissive towards transformation. I predict this landscape to synergize with particular oncogenes that are otherwise not oncogenic in adult cells, by providing a fertile transcriptional background for establishing and maintaining oncogenic programs. Therefore, the non-coding transcriptome, inherited from the fetal cell of origin, may reflect a previously unrecognized Achilles heel of infant AML, which I will identify with my expertise to understand and edit the AML genome and transcriptome.
I will apply recent breakthroughs from various research areas to i) create a comprehensive transcriptomic atlas of infant AML and fetal stem cells, ii) define aberrant or fetal stage-specific non-coding RNAs that drive leukemia progression, and iii) resolve their features to probe the oncogenic interactome. After iv) establishing a biobank of patient-derived xenografts, I will v) evaluate preclinical RNA-centered therapeutic interventions to overcome current obstacles in the treatment of infant AML. Targeting the vulnerable fetal stage-specific background of infant AML inherited from the cell of origin may set a paradigm shift for cancer treatment, by focusing on the permissive basis required by the oncogene for inducing and sustaining cancer, rather than on the oncogene itself.
Max ERC Funding
1 499 750 €
Duration
Start date: 2017-06-01, End date: 2022-05-31