Project acronym aCROBAT
Project Circadian Regulation Of Brown Adipose Thermogenesis
Researcher (PI) Zachary Philip Gerhart-Hines
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Summary
Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Max ERC Funding
1 497 008 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym ADAPT
Project Origins and factors governing adaptation: Insights from experimental evolution and population genomic data
Researcher (PI) Thomas, Martin Jean Bataillon
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary "I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Summary
"I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Max ERC Funding
1 159 857 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym ANTS
Project Attine ANT SymbiomeS
Researcher (PI) Jacobus Jan Boomsma
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), LS8, ERC-2012-ADG_20120314
Summary "The attine fungus-growing ants are prime models for understanding phenotypic adaptations in social evolution and symbiosis. The mutualism has many hallmarks of advanced cooperation in its mating system commitments and functional complementarity between multiple symbiont partners, but potential conflicts between sexes and castes over reproductive priorities, and between hosts and symbionts over symbiont mixing have also been documented. With collaborators at BGI-Shenzhen and the Smithsonian Institution my group has obtained six reference genomes representing all genus-level branches of the higher attine ants and a lower attine outgroup. With collaborators in Denmark and Australia we have pioneered proteomic approaches to understand the preservation of sperm viability in spite of sperm competition and the enzymatic decomposition of plant substrates that the ants use to make their fungus gardens grow.
Here, I propose an integrated study focusing on four major areas of attine ant biology that are particularly inviting for in depth molecular approaches: 1. The protein-level networks that secure life-time (up to 20 years) sperm storage in specialized ant-queen organs and the genetic mechanisms that shape and adjust these “sexual symbiome” networks. 2. The ant-fungal symbiome, i.e. the dynamics of fungal enzyme production for plant substrate degradation and the redistribution of these enzymes in fungus gardens through fecal deposition after they are ingested but not digested by the ants. 3. The microbial symbiome of ant guts and other tissues with obligate bacterial mutualists, of which we have identified some and will characterize a wider collection across the different branches of the attine ant phylogeny. 4. The genome-wide frequency of genomic imprinting and the significance of these imprints for the expression of caste phenotypes and the regulation of potential reproductive conflicts."
Summary
"The attine fungus-growing ants are prime models for understanding phenotypic adaptations in social evolution and symbiosis. The mutualism has many hallmarks of advanced cooperation in its mating system commitments and functional complementarity between multiple symbiont partners, but potential conflicts between sexes and castes over reproductive priorities, and between hosts and symbionts over symbiont mixing have also been documented. With collaborators at BGI-Shenzhen and the Smithsonian Institution my group has obtained six reference genomes representing all genus-level branches of the higher attine ants and a lower attine outgroup. With collaborators in Denmark and Australia we have pioneered proteomic approaches to understand the preservation of sperm viability in spite of sperm competition and the enzymatic decomposition of plant substrates that the ants use to make their fungus gardens grow.
Here, I propose an integrated study focusing on four major areas of attine ant biology that are particularly inviting for in depth molecular approaches: 1. The protein-level networks that secure life-time (up to 20 years) sperm storage in specialized ant-queen organs and the genetic mechanisms that shape and adjust these “sexual symbiome” networks. 2. The ant-fungal symbiome, i.e. the dynamics of fungal enzyme production for plant substrate degradation and the redistribution of these enzymes in fungus gardens through fecal deposition after they are ingested but not digested by the ants. 3. The microbial symbiome of ant guts and other tissues with obligate bacterial mutualists, of which we have identified some and will characterize a wider collection across the different branches of the attine ant phylogeny. 4. The genome-wide frequency of genomic imprinting and the significance of these imprints for the expression of caste phenotypes and the regulation of potential reproductive conflicts."
Max ERC Funding
2 290 102 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym ARCHADAPT
Project The architecture of adaptation to novel environments
Researcher (PI) Christian Werner Schlötterer
Host Institution (HI) VETERINAERMEDIZINISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary One of the central goals in evolutionary biology is to understand adaptation. Experimental evolution represents a highly promising approach to study adaptation. In this proposal, a freshly collected D. simulans population will be allowed to adapt to laboratory conditions under two different temperature regimes: hot (27°C) and cold (18°C). The trajectories of adaptation to these novel environments will be monitored on three levels: 1) genomic, 2) transcriptomic, 3) phenotypic. Allele frequency changes during the experiment will be measured by next generation sequencing of DNA pools (Pool-Seq) to identify targets of selection. RNA-Seq will be used to trace adaptation on the transcriptomic level during three developmental stages. Eight different phenotypes will be scored to measure the phenotypic consequences of adaptation. Combining the adaptive trajectories on these three levels will provide a picture of adaptation for a multicellular, outcrossing organism that is far more detailed than any previous results.
Furthermore, the proposal addresses the question of how adaptation on these three levels is reversible if the environment reverts to ancestral conditions. The third aspect of adaptation covered in the proposal is the question of repeatability of adaptation. Again, this question will be addressed on the three levels: genomic, transcriptomic and phenotypic. Using replicates with different degrees of genetic similarity, as well as closely related species, we will test how similar the adaptive response is.
This large-scale study will provide new insights into the importance of standing variation for the adaptation to novel environments. Hence, apart from providing significant evolutionary insights on the trajectories of adaptation, the results we will obtain will have important implications for conservation genetics and commercial breeding.
Summary
One of the central goals in evolutionary biology is to understand adaptation. Experimental evolution represents a highly promising approach to study adaptation. In this proposal, a freshly collected D. simulans population will be allowed to adapt to laboratory conditions under two different temperature regimes: hot (27°C) and cold (18°C). The trajectories of adaptation to these novel environments will be monitored on three levels: 1) genomic, 2) transcriptomic, 3) phenotypic. Allele frequency changes during the experiment will be measured by next generation sequencing of DNA pools (Pool-Seq) to identify targets of selection. RNA-Seq will be used to trace adaptation on the transcriptomic level during three developmental stages. Eight different phenotypes will be scored to measure the phenotypic consequences of adaptation. Combining the adaptive trajectories on these three levels will provide a picture of adaptation for a multicellular, outcrossing organism that is far more detailed than any previous results.
Furthermore, the proposal addresses the question of how adaptation on these three levels is reversible if the environment reverts to ancestral conditions. The third aspect of adaptation covered in the proposal is the question of repeatability of adaptation. Again, this question will be addressed on the three levels: genomic, transcriptomic and phenotypic. Using replicates with different degrees of genetic similarity, as well as closely related species, we will test how similar the adaptive response is.
This large-scale study will provide new insights into the importance of standing variation for the adaptation to novel environments. Hence, apart from providing significant evolutionary insights on the trajectories of adaptation, the results we will obtain will have important implications for conservation genetics and commercial breeding.
Max ERC Funding
2 452 084 €
Duration
Start date: 2012-07-01, End date: 2018-06-30
Project acronym AutoRecon
Project Molecular mechanisms of autophagosome formation during selective autophagy
Researcher (PI) Sascha Martens
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), LS3, ERC-2014-CoG
Summary I propose to study how eukaryotic cells generate autophagosomes, organelles bounded by a double membrane. These are formed during autophagy and mediate the degradation of cytoplasmic substances within the lysosomal compartment. Autophagy thereby protects the organism from pathological conditions such as neurodegeneration, cancer and infections. Many core factors required for autophagosome formation have been identified but the order in which they act and their mode of action is still unclear. We will use a combination of biochemical and cell biological approaches to elucidate the choreography and mechanism of these core factors. In particular, we will focus on selective autophagy and determine how the autophagic machinery generates an autophagosome that selectively contains the cargo.
To this end we will focus on the cytoplasm-to-vacuole-targeting pathway in S. cerevisiae that mediates the constitutive delivery of the prApe1 enzyme into the vacuole. We will use cargo mimetics or prApe1 complexes in combination with purified autophagy proteins and vesicles to reconstitute the process and so determine which factors are both necessary and sufficient for autophagosome formation, as well as elucidating their mechanism of action.
In parallel we will study selective autophagosome formation in human cells. This will reveal common principles and special adaptations. In particular, we will use cell lysates from genome-edited cells in combination with purified autophagy proteins to reconstitute selective autophagosome formation around ubiquitin-positive cargo material. The insights and hypotheses obtained from these reconstituted systems will be validated using cell biological approaches.
Taken together, our experiments will allow us to delineate the major steps of autophagosome formation during selective autophagy. Our results will yield detailed insights into how cells form and shape organelles in a de novo manner, which is major question in cell- and developmental biology.
Summary
I propose to study how eukaryotic cells generate autophagosomes, organelles bounded by a double membrane. These are formed during autophagy and mediate the degradation of cytoplasmic substances within the lysosomal compartment. Autophagy thereby protects the organism from pathological conditions such as neurodegeneration, cancer and infections. Many core factors required for autophagosome formation have been identified but the order in which they act and their mode of action is still unclear. We will use a combination of biochemical and cell biological approaches to elucidate the choreography and mechanism of these core factors. In particular, we will focus on selective autophagy and determine how the autophagic machinery generates an autophagosome that selectively contains the cargo.
To this end we will focus on the cytoplasm-to-vacuole-targeting pathway in S. cerevisiae that mediates the constitutive delivery of the prApe1 enzyme into the vacuole. We will use cargo mimetics or prApe1 complexes in combination with purified autophagy proteins and vesicles to reconstitute the process and so determine which factors are both necessary and sufficient for autophagosome formation, as well as elucidating their mechanism of action.
In parallel we will study selective autophagosome formation in human cells. This will reveal common principles and special adaptations. In particular, we will use cell lysates from genome-edited cells in combination with purified autophagy proteins to reconstitute selective autophagosome formation around ubiquitin-positive cargo material. The insights and hypotheses obtained from these reconstituted systems will be validated using cell biological approaches.
Taken together, our experiments will allow us to delineate the major steps of autophagosome formation during selective autophagy. Our results will yield detailed insights into how cells form and shape organelles in a de novo manner, which is major question in cell- and developmental biology.
Max ERC Funding
1 999 640 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym AuxinER
Project Mechanisms of Auxin-dependent Signaling in the Endoplasmic Reticulum
Researcher (PI) Jürgen Kleine-Vehn
Host Institution (HI) UNIVERSITAET FUER BODENKULTUR WIEN
Call Details Starting Grant (StG), LS3, ERC-2014-STG
Summary The phytohormone auxin has profound importance for plant development. The extracellular AUXIN BINDING PROTEIN1 (ABP1) and the nuclear AUXIN F-BOX PROTEINs (TIR1/AFBs) auxin receptors perceive fast, non-genomic and slow, genomic auxin responses, respectively. Despite the fact that ABP1 mainly localizes to the endoplasmic reticulum (ER), until now it has been proposed to be active only in the extracellular matrix (reviewed in Sauer and Kleine-Vehn, 2011). Just recently, ABP1 function was also linked to genomic responses, modulating TIR1/AFB-dependent processes (Tromas et al., 2013). Intriguingly, the genomic effect of ABP1 appears to be at least partially independent of the endogenous auxin indole 3-acetic acid (IAA) (Paque et al., 2014).
In this proposal my main research objective is to unravel the importance of the ER for genomic auxin responses. The PIN-LIKES (PILS) putative carriers for auxinic compounds also localize to the ER and determine the cellular sensitivity to auxin. PILS5 gain-of-function reduces canonical auxin signaling (Barbez et al., 2012) and phenocopies abp1 knock down lines (Barbez et al., 2012, Paque et al., 2014). Accordingly, a PILS-dependent substrate could be a negative regulator of ABP1 function in the ER. Based on our unpublished data, an IAA metabolite could play a role in ABP1-dependent processes in the ER, possibly providing feedback on the canonical nuclear IAA-signaling.
I hypothesize that the genomic auxin response may be an integration of auxin- and auxin-metabolite-dependent nuclear and ER localized signaling, respectively. This proposed project aims to characterize a novel auxin-signaling paradigm in plants. We will employ state of the art interdisciplinary (biochemical, biophysical, computational modeling, molecular, and genetic) methods to assess the projected research. The identification of the proposed auxin conjugate-dependent signal could have far reaching plant developmental and biotechnological importance.
Summary
The phytohormone auxin has profound importance for plant development. The extracellular AUXIN BINDING PROTEIN1 (ABP1) and the nuclear AUXIN F-BOX PROTEINs (TIR1/AFBs) auxin receptors perceive fast, non-genomic and slow, genomic auxin responses, respectively. Despite the fact that ABP1 mainly localizes to the endoplasmic reticulum (ER), until now it has been proposed to be active only in the extracellular matrix (reviewed in Sauer and Kleine-Vehn, 2011). Just recently, ABP1 function was also linked to genomic responses, modulating TIR1/AFB-dependent processes (Tromas et al., 2013). Intriguingly, the genomic effect of ABP1 appears to be at least partially independent of the endogenous auxin indole 3-acetic acid (IAA) (Paque et al., 2014).
In this proposal my main research objective is to unravel the importance of the ER for genomic auxin responses. The PIN-LIKES (PILS) putative carriers for auxinic compounds also localize to the ER and determine the cellular sensitivity to auxin. PILS5 gain-of-function reduces canonical auxin signaling (Barbez et al., 2012) and phenocopies abp1 knock down lines (Barbez et al., 2012, Paque et al., 2014). Accordingly, a PILS-dependent substrate could be a negative regulator of ABP1 function in the ER. Based on our unpublished data, an IAA metabolite could play a role in ABP1-dependent processes in the ER, possibly providing feedback on the canonical nuclear IAA-signaling.
I hypothesize that the genomic auxin response may be an integration of auxin- and auxin-metabolite-dependent nuclear and ER localized signaling, respectively. This proposed project aims to characterize a novel auxin-signaling paradigm in plants. We will employ state of the art interdisciplinary (biochemical, biophysical, computational modeling, molecular, and genetic) methods to assess the projected research. The identification of the proposed auxin conjugate-dependent signal could have far reaching plant developmental and biotechnological importance.
Max ERC Funding
1 441 125 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym BIOMEMOS
Project Higher order structure and function of biomembranes
Researcher (PI) Poul Nissen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary The biomembrane is a prerequisite of life. It enables the cell to maintain a controlled environment and to establish electrochemical gradients as rapidly accessible energy stores. Biomembranes also provide scaffold for organisation and spatial definition of signal transmission in the cell. Crystal structures of membrane proteins are determined with an increasing pace. Along with functional studies integral studies of individual membrane proteins are now widely implemented. The BIOMEMOS proposal goes a step further and approaches the function of the biomembrane at the higher level of membrane protein complexes. Through a combination of X-ray crystallography, electrophysiology, general biochemistry, biophysics and bioinformatics and including also the application of single-particle cryo-EM and small-angle X-ray scattering, the structure and function of membrane protein complexes of key importance in life will be investigated. The specific targets for investigation in this proposal include: 1) higher-order complexes of P-type ATPase pumps such as signalling complexes of Na+,K+-ATPase, and 2) development of methods for structural studies of membrane protein complexes Based on my unique track record in structural studies of large, difficult structures (ribosomes and membrane proteins) in the setting of a thriving research community in structural biology and biomembrane research in Aarhus provides a critical momentum for a long-term activity. The activity will take advantage of the new possibilities offered by synchrotron sources in Europe. Furthermore, a single-particle cryo-EM research group formed on my initiative in Aarhus, and a well-established small-angle X-ray scattering community provides for an optimal setting through multiple cues in structural biology and functional studies
Summary
The biomembrane is a prerequisite of life. It enables the cell to maintain a controlled environment and to establish electrochemical gradients as rapidly accessible energy stores. Biomembranes also provide scaffold for organisation and spatial definition of signal transmission in the cell. Crystal structures of membrane proteins are determined with an increasing pace. Along with functional studies integral studies of individual membrane proteins are now widely implemented. The BIOMEMOS proposal goes a step further and approaches the function of the biomembrane at the higher level of membrane protein complexes. Through a combination of X-ray crystallography, electrophysiology, general biochemistry, biophysics and bioinformatics and including also the application of single-particle cryo-EM and small-angle X-ray scattering, the structure and function of membrane protein complexes of key importance in life will be investigated. The specific targets for investigation in this proposal include: 1) higher-order complexes of P-type ATPase pumps such as signalling complexes of Na+,K+-ATPase, and 2) development of methods for structural studies of membrane protein complexes Based on my unique track record in structural studies of large, difficult structures (ribosomes and membrane proteins) in the setting of a thriving research community in structural biology and biomembrane research in Aarhus provides a critical momentum for a long-term activity. The activity will take advantage of the new possibilities offered by synchrotron sources in Europe. Furthermore, a single-particle cryo-EM research group formed on my initiative in Aarhus, and a well-established small-angle X-ray scattering community provides for an optimal setting through multiple cues in structural biology and functional studies
Max ERC Funding
2 444 180 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym BYPASSWITHOUTSURGERY
Project Reaching the effects of gastric bypass on diabetes and obesity without surgery
Researcher (PI) Jens Juul Holst
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), LS4, ERC-2015-AdG
Summary Gastric bypass surgery results in massive weight loss and diabetes remission. The effect is superior to intensive medical treatment, showing that there are mechanisms within the body that can cure diabetes and obesity. Revealing the nature of these mechanisms could lead to new, cost-efficient, similarly effective, non-invasive treatments of these conditions. The hypothesis is that hyper-secretion of a number of gut hormones mediates the effect of surgery, as indicated by a series of our recent studies, demonstrating that hypersecretion of GLP-1, a hormone discovered in my laboratory and basis for the antidiabetic medication of millions of patients, is essential for the improved insulin secretion and glucose tolerance. But what are the mechanisms behind the up to 30-fold elevations in secretion of these hormones following surgery? Constantly with a translational scope, all elements involved in these responses will be addressed in this project, from detailed analysis of food items responsible for hormone secretion, to identification of the responsible regions of the gut, and to the molecular mechanisms leading to hypersecretion. Novel approaches for studies of human gut hormone secreting cells, including specific expression analysis, are combined with our advanced and unique isolated perfused gut preparations, the only tool that can provide physiologically relevant results with a translational potential regarding regulation of hormone secretion in the gut. This will lead to further groundbreaking experimental attempts to mimic and engage the identified mechanisms, creating similar hypersecretion and obtaining similar improvements as the operations in patients with obesity and diabetes. Based on our profound knowledge of gut hormone biology accumulated through decades of intensive and successful research and our successful elucidation of the antidiabetic actions of gastric bypass surgery, we are in a unique position to reach this ambitious goal.
Summary
Gastric bypass surgery results in massive weight loss and diabetes remission. The effect is superior to intensive medical treatment, showing that there are mechanisms within the body that can cure diabetes and obesity. Revealing the nature of these mechanisms could lead to new, cost-efficient, similarly effective, non-invasive treatments of these conditions. The hypothesis is that hyper-secretion of a number of gut hormones mediates the effect of surgery, as indicated by a series of our recent studies, demonstrating that hypersecretion of GLP-1, a hormone discovered in my laboratory and basis for the antidiabetic medication of millions of patients, is essential for the improved insulin secretion and glucose tolerance. But what are the mechanisms behind the up to 30-fold elevations in secretion of these hormones following surgery? Constantly with a translational scope, all elements involved in these responses will be addressed in this project, from detailed analysis of food items responsible for hormone secretion, to identification of the responsible regions of the gut, and to the molecular mechanisms leading to hypersecretion. Novel approaches for studies of human gut hormone secreting cells, including specific expression analysis, are combined with our advanced and unique isolated perfused gut preparations, the only tool that can provide physiologically relevant results with a translational potential regarding regulation of hormone secretion in the gut. This will lead to further groundbreaking experimental attempts to mimic and engage the identified mechanisms, creating similar hypersecretion and obtaining similar improvements as the operations in patients with obesity and diabetes. Based on our profound knowledge of gut hormone biology accumulated through decades of intensive and successful research and our successful elucidation of the antidiabetic actions of gastric bypass surgery, we are in a unique position to reach this ambitious goal.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym C-MORPH
Project Noninvasive cell specific morphometry in neuroinflammation and degeneration
Researcher (PI) Henrik LUNDELL
Host Institution (HI) REGION HOVEDSTADEN
Call Details Starting Grant (StG), LS7, ERC-2018-STG
Summary Brain structure determines function. Disentangling regional microstructural properties and understanding how these properties constitute brain function is a central goal of neuroimaging of the human brain and a key prerequisite for a mechanistic understanding of brain diseases and their treatment. Using magnetic resonance (MR) imaging, previous research has established links between regional brain microstructure and inter-individual variation in brain function, but this line of research has been limited by the non-specificity of MR-derived markers. This hampers the application of MR imaging as a tool to identify specific fingerprints of the underlying disease process.
Exploiting state-of-the-art ultra-high field MR imaging techniques, I have recently developed two independent spectroscopic MR methods that have the potential to tackle this challenge: Powder averaged diffusion weighted spectroscopy (PADWS) can provide an unbiased marker for cell specific structural degeneration, and Spectrally tuned gradient trajectories (STGT) can isolate cell shape and size. In this project, I will harness these innovations for MR-based precision medicine. I will advance PADWS and STGT methodology on state-of-the-art MR hardware and harvest the synergy of these methods to realize Cell-specific in-vivo MORPHOMETRY (C-MORPH) of the intact human brain. I will establish novel MR read-outs and analyses to derive cell-type specific tissue properties in the healthy and diseased brain and validate them with the help of a strong translational experimental framework, including histological validation. Once validated, the experimental methods and analyses will be simplified and adapted to provide clinically applicable tools. This will push the frontiers of MR-based personalized medicine, guiding therapeutic decisions by providing sensitive probes of cell-specific microstructural changes caused by inflammation, neurodegeneration or treatment response.
Summary
Brain structure determines function. Disentangling regional microstructural properties and understanding how these properties constitute brain function is a central goal of neuroimaging of the human brain and a key prerequisite for a mechanistic understanding of brain diseases and their treatment. Using magnetic resonance (MR) imaging, previous research has established links between regional brain microstructure and inter-individual variation in brain function, but this line of research has been limited by the non-specificity of MR-derived markers. This hampers the application of MR imaging as a tool to identify specific fingerprints of the underlying disease process.
Exploiting state-of-the-art ultra-high field MR imaging techniques, I have recently developed two independent spectroscopic MR methods that have the potential to tackle this challenge: Powder averaged diffusion weighted spectroscopy (PADWS) can provide an unbiased marker for cell specific structural degeneration, and Spectrally tuned gradient trajectories (STGT) can isolate cell shape and size. In this project, I will harness these innovations for MR-based precision medicine. I will advance PADWS and STGT methodology on state-of-the-art MR hardware and harvest the synergy of these methods to realize Cell-specific in-vivo MORPHOMETRY (C-MORPH) of the intact human brain. I will establish novel MR read-outs and analyses to derive cell-type specific tissue properties in the healthy and diseased brain and validate them with the help of a strong translational experimental framework, including histological validation. Once validated, the experimental methods and analyses will be simplified and adapted to provide clinically applicable tools. This will push the frontiers of MR-based personalized medicine, guiding therapeutic decisions by providing sensitive probes of cell-specific microstructural changes caused by inflammation, neurodegeneration or treatment response.
Max ERC Funding
1 498 811 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym CASINO
Project Carbohydrate signals controlling nodulation
Researcher (PI) Jens Stougaard Jensen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), LS3, ERC-2010-AdG_20100317
Summary Mechanisms governing interaction between multicellular organisms and microbes are central for understanding pathogenesis, symbiosis and the function of ecosystems. We propose to address these mechanisms by pioneering an interdisciplinary approach for understanding cellular signalling, response processes and organ development. The challenge is to determine factors synchronising three processes, organogenesis, infection thread formation and bacterial infection, running in parallel to build a root nodule hosting symbiotic bacteria. We aim to exploit the unique possibilities for analysing endocytosis of bacteria in model legumes and to develop genomic, genetic and biological chemistry tools to break new ground in our understanding of carbohydrates in plant development and plant-microbe interaction. Surface exposed rhizobial polysaccharides play a crucial but poorly understood role in infection thread formation and rhizobial invasion resulting in endocytosis. We will undertake an integrated functional characterisation of receptor-ligand mechanisms mediating recognition of secreted polysaccharides and subsequent signal amplification. So far progress in this field has been limited by the complex nature of carbohydrate polymers, lack of a suitable experimental model system where both partners in an interaction could be manipulated and lack of corresponding methods for carbohydrate synthesis, analysis and interaction studies. In this context our legume model system and the discovery that the legume Nod-factor receptors recognise bacterial lipochitin-oligosaccharide signals at their LysM domains provides a new opportunity. Combined with advanced bioorganic chemistry and nanobioscience approaches this proposal will engage the above mentioned limitations.
Summary
Mechanisms governing interaction between multicellular organisms and microbes are central for understanding pathogenesis, symbiosis and the function of ecosystems. We propose to address these mechanisms by pioneering an interdisciplinary approach for understanding cellular signalling, response processes and organ development. The challenge is to determine factors synchronising three processes, organogenesis, infection thread formation and bacterial infection, running in parallel to build a root nodule hosting symbiotic bacteria. We aim to exploit the unique possibilities for analysing endocytosis of bacteria in model legumes and to develop genomic, genetic and biological chemistry tools to break new ground in our understanding of carbohydrates in plant development and plant-microbe interaction. Surface exposed rhizobial polysaccharides play a crucial but poorly understood role in infection thread formation and rhizobial invasion resulting in endocytosis. We will undertake an integrated functional characterisation of receptor-ligand mechanisms mediating recognition of secreted polysaccharides and subsequent signal amplification. So far progress in this field has been limited by the complex nature of carbohydrate polymers, lack of a suitable experimental model system where both partners in an interaction could be manipulated and lack of corresponding methods for carbohydrate synthesis, analysis and interaction studies. In this context our legume model system and the discovery that the legume Nod-factor receptors recognise bacterial lipochitin-oligosaccharide signals at their LysM domains provides a new opportunity. Combined with advanced bioorganic chemistry and nanobioscience approaches this proposal will engage the above mentioned limitations.
Max ERC Funding
2 399 127 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym CDK6-DrugOpp
Project CDK6 in transcription - turning a foe in a friend
Researcher (PI) Veronika SEXL
Host Institution (HI) VETERINAERMEDIZINISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary "Translational research aims at applying mechanistic understanding in the development of "precision medicine", which depends on precise diagnostic tools and therapeutic approaches. Cancer therapy is experiencing a switch from non-specific, cytotoxic agents towards molecularly targeted and rationally designed compounds with the promise of greater efficacy and fewer side effects.
The two cell-cycle kinases CDK4 and CDK6 normally facilitate cell-cycle progression but are abnormally activated in certain cancers. CDK6 is up-regulated in hematopoietic malignancies, where it is the predominant cell-cycle kinase. The importance of CDK4/6 for tumor development is underscored by the fact that the US FDA selected inhibitors of the kinase activity of CDK4/6 as "breakthrough of the year 2013". Our recent findings suggest that the effects of the inhibitors may be limited as CDK6 is not only involved in cell-cycle progression: ground-breaking research in my group and others has shown that CDK6 is involved in regulation of transcription in a kinase-independent manner thereby driving the proliferation of leukemic stem cells and tumor formation. We have now identified mutations in CDK6 that convert it from a tumor promoter into a tumor suppressor. This unexpected outcome is accompanied by a distinct transcriptional profile. Separating the tumor-promoting from the tumor suppressive functions may open a novel therapeutic avenue for drug development. We aim at understanding which domains and residues of CDK6 are involved in rewiring the transcriptional landscape to pave the way for sophisticated inhibitors. The idea of turning a cancer cell's own most potent weapon against itself is novel and would represent a new paradigm for drug design. Finally, the understanding of CDK6 functions in tumor promotion and maintenance will also result in better patient stratification and improved treatment decisions for a broad spectrum of cancer types."
Summary
"Translational research aims at applying mechanistic understanding in the development of "precision medicine", which depends on precise diagnostic tools and therapeutic approaches. Cancer therapy is experiencing a switch from non-specific, cytotoxic agents towards molecularly targeted and rationally designed compounds with the promise of greater efficacy and fewer side effects.
The two cell-cycle kinases CDK4 and CDK6 normally facilitate cell-cycle progression but are abnormally activated in certain cancers. CDK6 is up-regulated in hematopoietic malignancies, where it is the predominant cell-cycle kinase. The importance of CDK4/6 for tumor development is underscored by the fact that the US FDA selected inhibitors of the kinase activity of CDK4/6 as "breakthrough of the year 2013". Our recent findings suggest that the effects of the inhibitors may be limited as CDK6 is not only involved in cell-cycle progression: ground-breaking research in my group and others has shown that CDK6 is involved in regulation of transcription in a kinase-independent manner thereby driving the proliferation of leukemic stem cells and tumor formation. We have now identified mutations in CDK6 that convert it from a tumor promoter into a tumor suppressor. This unexpected outcome is accompanied by a distinct transcriptional profile. Separating the tumor-promoting from the tumor suppressive functions may open a novel therapeutic avenue for drug development. We aim at understanding which domains and residues of CDK6 are involved in rewiring the transcriptional landscape to pave the way for sophisticated inhibitors. The idea of turning a cancer cell's own most potent weapon against itself is novel and would represent a new paradigm for drug design. Finally, the understanding of CDK6 functions in tumor promotion and maintenance will also result in better patient stratification and improved treatment decisions for a broad spectrum of cancer types."
Max ERC Funding
2 497 520 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CeMoMagneto
Project The Cellular and Molecular Basis of Magnetoreception
Researcher (PI) David Anthony Keays
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary Each year millions of animals undertake remarkable migratory journeys, across oceans and through hemispheres, guided by the Earth’s magnetic field. The cellular and molecular basis of this enigmatic sense, known as magnetoreception, remains an unsolved scientific mystery. One hypothesis that attempts to explain the basis of this sensory faculty is known as the magnetite theory of magnetoreception. It argues that magnetic information is transduced into a neuronal impulse by employing the iron oxide magnetite (Fe3O4). Current evidence indicates that pigeons employ a magnetoreceptor that is associated with the ophthalmic branch of the trigeminal nerve and the vestibular system, but the sensory cells remain undiscovered. The goal of this ambitious proposal is to discover the cells and molecules that mediate magnetoreception. This overall objective can be divided into three specific aims: (1) the identification of putative magnetoreceptive cells (PMCs); (2) the cellular characterisation of PMCs; and (3) the discovery and functional ablation of molecules specific to PMCs. In tackling these three aims this proposal adopts a reductionist mindset, employing and developing the latest imaging, subcellular, and molecular technologies.
Summary
Each year millions of animals undertake remarkable migratory journeys, across oceans and through hemispheres, guided by the Earth’s magnetic field. The cellular and molecular basis of this enigmatic sense, known as magnetoreception, remains an unsolved scientific mystery. One hypothesis that attempts to explain the basis of this sensory faculty is known as the magnetite theory of magnetoreception. It argues that magnetic information is transduced into a neuronal impulse by employing the iron oxide magnetite (Fe3O4). Current evidence indicates that pigeons employ a magnetoreceptor that is associated with the ophthalmic branch of the trigeminal nerve and the vestibular system, but the sensory cells remain undiscovered. The goal of this ambitious proposal is to discover the cells and molecules that mediate magnetoreception. This overall objective can be divided into three specific aims: (1) the identification of putative magnetoreceptive cells (PMCs); (2) the cellular characterisation of PMCs; and (3) the discovery and functional ablation of molecules specific to PMCs. In tackling these three aims this proposal adopts a reductionist mindset, employing and developing the latest imaging, subcellular, and molecular technologies.
Max ERC Funding
1 499 752 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym CFS modelling
Project Chromosomal Common Fragile Sites: Unravelling their biological functions and the basis of their instability
Researcher (PI) Andres Joaquin Lopez-Contreras
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary Cancer and other diseases are driven by genomic alterations initiated by DNA breaks. Within our genomes, some regions are particularly prone to breakage, and these are known as common fragile sites (CFSs). CFSs are present in every person and are frequently sites of oncogenic chromosomal rearrangements. Intriguingly, despite their fragility, many CFSs are well conserved through evolution, suggesting that these regions have important physiological functions that remain elusive. My previous background in genome editing, proteomics and replication-born DNA damage has given me the tools to propose an ambitious and comprehensive plan that tackles fundamental questions on the biology of CFSs. First, we will perform a systematic analysis of the function of CFSs. Most of the CFSs contain very large genes, which has made technically difficult to dissect whether the CFS role is due to the locus itself or to the encoded gene product. However, the emergence of the CRISPR/Cas9 technology now enables the study of CFSs on a more systematic basis. We will pioneer the engineering of mammalian models harbouring large deletions at CFS loci to investigate their physiological functions at the cellular and organism levels. For those CFSs that contain genes, the cDNAs will be re-introduced at a distal locus. Using this strategy, we will be able to achieve the first comprehensive characterization of CFS roles. Second, we will develop novel targeted approaches to interrogate the chromatin-bound proteome of CFSs and its dynamics during DNA replication. Finally, and given that CFS fragility is influenced both by cell cycle checkpoints and dNTP availability, we will use mouse models to study the impact of ATR/CHK1 pathway and dNTP levels on CFS instability and cancer. Taken together, I propose an ambitious, yet feasible, project to functionally annotate and characterise these poorly understood regions of the human genome, with important potential implications for improving human health.
Summary
Cancer and other diseases are driven by genomic alterations initiated by DNA breaks. Within our genomes, some regions are particularly prone to breakage, and these are known as common fragile sites (CFSs). CFSs are present in every person and are frequently sites of oncogenic chromosomal rearrangements. Intriguingly, despite their fragility, many CFSs are well conserved through evolution, suggesting that these regions have important physiological functions that remain elusive. My previous background in genome editing, proteomics and replication-born DNA damage has given me the tools to propose an ambitious and comprehensive plan that tackles fundamental questions on the biology of CFSs. First, we will perform a systematic analysis of the function of CFSs. Most of the CFSs contain very large genes, which has made technically difficult to dissect whether the CFS role is due to the locus itself or to the encoded gene product. However, the emergence of the CRISPR/Cas9 technology now enables the study of CFSs on a more systematic basis. We will pioneer the engineering of mammalian models harbouring large deletions at CFS loci to investigate their physiological functions at the cellular and organism levels. For those CFSs that contain genes, the cDNAs will be re-introduced at a distal locus. Using this strategy, we will be able to achieve the first comprehensive characterization of CFS roles. Second, we will develop novel targeted approaches to interrogate the chromatin-bound proteome of CFSs and its dynamics during DNA replication. Finally, and given that CFS fragility is influenced both by cell cycle checkpoints and dNTP availability, we will use mouse models to study the impact of ATR/CHK1 pathway and dNTP levels on CFS instability and cancer. Taken together, I propose an ambitious, yet feasible, project to functionally annotate and characterise these poorly understood regions of the human genome, with important potential implications for improving human health.
Max ERC Funding
1 499 711 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym CharFL
Project Characterizing the fitness landscape on population and global scales
Researcher (PI) Fyodor Kondrashov
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Consolidator Grant (CoG), LS2, ERC-2017-COG
Summary The fitness landscape, the representation of how the genotype manifests at the phenotypic (fitness) levels, may be among the most useful concepts in biology with impact on diverse fields, including quantitative genetics, emergence of pathogen resistance, synthetic biology and protein engineering. While progress in characterizing fitness landscapes has been made, three directions of research in the field remain virtually unexplored: the nature of the genotype to phenotype of standing variation (variation found in a natural population), the shape of the fitness landscape encompassing many genotypes and the modelling of complex genetic interactions in protein sequences.
The current proposal is designed to advance the study of fitness landscapes in these three directions using large-scale genomic experiments and experimental data from a model protein and theoretical work. The study of the fitness landscape of standing variation is aimed at the resolution of an outstanding question in quantitative genetics: the extent to which epistasis, non-additive genetic interactions, is shaping the phenotype. The second aim of characterizing the global fitness landscape will give us an understanding of how evolution proceeds along long evolutionary timescales, which can be directly applied to protein engineering and synthetic biology for the design of novel phenotypes. Finally, the third aim of modelling complex interactions will improve our ability to predict phenotypes from genotypes, such as the prediction of human disease mutations. In summary, the proposed study presents an opportunity to provide a unifying understanding of how phenotypes are shaped through genetic interactions. The consolidation of our empirical and theoretical work on different scales of the genotype to phenotype relationship will provide empirical data and novel context for several fields of biology.
Summary
The fitness landscape, the representation of how the genotype manifests at the phenotypic (fitness) levels, may be among the most useful concepts in biology with impact on diverse fields, including quantitative genetics, emergence of pathogen resistance, synthetic biology and protein engineering. While progress in characterizing fitness landscapes has been made, three directions of research in the field remain virtually unexplored: the nature of the genotype to phenotype of standing variation (variation found in a natural population), the shape of the fitness landscape encompassing many genotypes and the modelling of complex genetic interactions in protein sequences.
The current proposal is designed to advance the study of fitness landscapes in these three directions using large-scale genomic experiments and experimental data from a model protein and theoretical work. The study of the fitness landscape of standing variation is aimed at the resolution of an outstanding question in quantitative genetics: the extent to which epistasis, non-additive genetic interactions, is shaping the phenotype. The second aim of characterizing the global fitness landscape will give us an understanding of how evolution proceeds along long evolutionary timescales, which can be directly applied to protein engineering and synthetic biology for the design of novel phenotypes. Finally, the third aim of modelling complex interactions will improve our ability to predict phenotypes from genotypes, such as the prediction of human disease mutations. In summary, the proposed study presents an opportunity to provide a unifying understanding of how phenotypes are shaped through genetic interactions. The consolidation of our empirical and theoretical work on different scales of the genotype to phenotype relationship will provide empirical data and novel context for several fields of biology.
Max ERC Funding
1 998 280 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CHILDGROWTH2CANCER
Project Childhood body size, growth and pubertal timing and the risk of cancer in adulthood
Researcher (PI) Jennifer Lyn Baker
Host Institution (HI) REGION HOVEDSTADEN
Call Details Starting Grant (StG), LS7, ERC-2011-StG_20101109
Summary The goal of the proposed research is to examine how the independent and combined effects of childhood adiposity (assessed by body mass index [BMI]; kg/m2) height, change in BMI and height, and pubertal timing from the ages of 7 to 13 years are associated with the risk of cancer incidence in adulthood. Greater body size (adipose tissue and different types of lean tissue) reflecting past or ongoing growth may increase the risk of cancer in individuals as greater numbers of proliferating cells increase the risk that mutations leading to the subsequent development of cancer occur. As childhood is a period of growth, it is plausible that it is of particular relevance for the early establishment of the risk of cancer.
Data from the Copenhagen School Health Records Register, which is based on a population of schoolchildren born between 1930-1983 and contains computerised weight and height measurements on >350.000 boys and girls in the capital city of Denmark, as well as data from other cohorts will be used. Survival analysis techniques and the newly developed Dynamic Path Analysis model will be used to examine how body size (BMI and height) at each age from 7 to 13 years as well as change in body size during this period is associated with the risk of multiple forms of cancer in adulthood with a simultaneous exploration of the effects of birth weight and pubertal timing. Additionally, potential effects of childhood and adult health and social circumstances will be investigated in sub-cohorts with this information available.
Results from this research will demonstrate if childhood is a critical period for the establishment of the risk for cancer in adulthood and will lead into mechanistic explorations of the associations at the biological level, investigations into associations between childhood body size and mortality and contribute to developing improved definitions of childhood overweight and obesity that are based upon long-term health outcomes.
Summary
The goal of the proposed research is to examine how the independent and combined effects of childhood adiposity (assessed by body mass index [BMI]; kg/m2) height, change in BMI and height, and pubertal timing from the ages of 7 to 13 years are associated with the risk of cancer incidence in adulthood. Greater body size (adipose tissue and different types of lean tissue) reflecting past or ongoing growth may increase the risk of cancer in individuals as greater numbers of proliferating cells increase the risk that mutations leading to the subsequent development of cancer occur. As childhood is a period of growth, it is plausible that it is of particular relevance for the early establishment of the risk of cancer.
Data from the Copenhagen School Health Records Register, which is based on a population of schoolchildren born between 1930-1983 and contains computerised weight and height measurements on >350.000 boys and girls in the capital city of Denmark, as well as data from other cohorts will be used. Survival analysis techniques and the newly developed Dynamic Path Analysis model will be used to examine how body size (BMI and height) at each age from 7 to 13 years as well as change in body size during this period is associated with the risk of multiple forms of cancer in adulthood with a simultaneous exploration of the effects of birth weight and pubertal timing. Additionally, potential effects of childhood and adult health and social circumstances will be investigated in sub-cohorts with this information available.
Results from this research will demonstrate if childhood is a critical period for the establishment of the risk for cancer in adulthood and will lead into mechanistic explorations of the associations at the biological level, investigations into associations between childhood body size and mortality and contribute to developing improved definitions of childhood overweight and obesity that are based upon long-term health outcomes.
Max ERC Funding
1 199 998 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym CHILIC
Project Child health intervention interactions in low-income countries
Researcher (PI) Christine Benn
Host Institution (HI) STATENS SERUM INSTITUT
Call Details Starting Grant (StG), LS7, ERC-2009-StG
Summary Vitamin A supplementation (VAS) and vaccines are the most powerful tools to reduce child mortality in low-income countries. However, we may not use these interventions optimally because we disregard that the interventions may have immunomodulatory effects which differ for boys and girls and which may interact with the effects of other interventions. I have proposed the hypothesis that VAS and vaccines interact. This hypothesis is supported by randomised and observational studies showing that the combination of VAS and DTP may be harmful. I have furthermore proposed that VAS has sex-differential effects. VAS seems beneficial for boys but may not carry any benefits for girls. These findings challenge the current understanding that VAS and vaccines have only targeted effects and can be given together without considering interactions. This is of outmost importance for policy makers. The global trend is to combine health interventions for logistic reasons. My research suggests that this may not always be a good idea. Furthermore, the concept of sex-differential response to our common health interventions opens up for a completely new understanding of the immunology of the two sexes and may imply that we need to treat the two sexes differently in order to treat them optimally possibly also in high-income countries. In the present proposal I outline a series of inter-disciplinary epidemiological and immunological studies, which will serve to determine the overall and sex-differential effects of VAS and vaccines, the mechanisms behind these effects, and the basis for the immunological difference between boys and girls. If my hypotheses are true we can use the existing tools in a more optimal way to reduce child mortality without increasing costs. Thus, the results could lead to shifts in policy as well as paradigms.
Summary
Vitamin A supplementation (VAS) and vaccines are the most powerful tools to reduce child mortality in low-income countries. However, we may not use these interventions optimally because we disregard that the interventions may have immunomodulatory effects which differ for boys and girls and which may interact with the effects of other interventions. I have proposed the hypothesis that VAS and vaccines interact. This hypothesis is supported by randomised and observational studies showing that the combination of VAS and DTP may be harmful. I have furthermore proposed that VAS has sex-differential effects. VAS seems beneficial for boys but may not carry any benefits for girls. These findings challenge the current understanding that VAS and vaccines have only targeted effects and can be given together without considering interactions. This is of outmost importance for policy makers. The global trend is to combine health interventions for logistic reasons. My research suggests that this may not always be a good idea. Furthermore, the concept of sex-differential response to our common health interventions opens up for a completely new understanding of the immunology of the two sexes and may imply that we need to treat the two sexes differently in order to treat them optimally possibly also in high-income countries. In the present proposal I outline a series of inter-disciplinary epidemiological and immunological studies, which will serve to determine the overall and sex-differential effects of VAS and vaccines, the mechanisms behind these effects, and the basis for the immunological difference between boys and girls. If my hypotheses are true we can use the existing tools in a more optimal way to reduce child mortality without increasing costs. Thus, the results could lead to shifts in policy as well as paradigms.
Max ERC Funding
1 686 043 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym CHIPS
Project Effects of Prenatal Exposure to Acrylamide on Health: Prospective Biomarker-Based Studies
Researcher (PI) Marie Pedersen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2017-STG
Summary Background: Acrylamide is a chemical formed in many commonly consumed foods and beverages. It is neurotoxic, crosses the placenta and has been associated with restriction of fetal growth in humans. In animals, acrylamide causes heritable mutations, tumors, developmental toxicity, reduced fertility and impaired growth. Therefore, the discovery of acrylamide in food in 2002 raised concern about human health effects worldwide. Still, epidemiological studies are limited and effects on health of prenatal exposure have never been evaluated.
Research gaps: Epidemiological studies have mostly addressed exposure during adulthood, focused on cancer risk in adults, and relied on questionnaires entailing a high degree of exposure misclassification. Biomarker studies on prenatal exposure to acrylamide from diet are critically needed to improve exposure assessment and to determine whether acrylamide leads to major diseases later in life.
Own results: I have first authored a prospective European study showing that prenatal exposure to acrylamide, estimated by measuring hemoglobin adducts in cord blood, was associated with fetal growth restriction, for the first time.
Objectives: To determine the effects of prenatal exposure to acrylamide alone and in combination with other potentially toxic adduct-forming exposures on the health of children and young adults.
Methods: Both well-established and innovative biomarker methods will be used for characterization of prenatal exposure to acrylamide and related toxicants in blood from pregnant women and their offspring in prospective cohort studies with long-term follow-up. Risk of neurological disorders, impaired cognition, disturbed reproductive function and metabolic outcomes such as obesity and diabetes will be evaluated.
Perspectives: CHIPS project will provide a better understanding of the impact of prenatal exposure to acrylamide from diet on human health urgently needed for targeted strategies for the protection of the health.
Summary
Background: Acrylamide is a chemical formed in many commonly consumed foods and beverages. It is neurotoxic, crosses the placenta and has been associated with restriction of fetal growth in humans. In animals, acrylamide causes heritable mutations, tumors, developmental toxicity, reduced fertility and impaired growth. Therefore, the discovery of acrylamide in food in 2002 raised concern about human health effects worldwide. Still, epidemiological studies are limited and effects on health of prenatal exposure have never been evaluated.
Research gaps: Epidemiological studies have mostly addressed exposure during adulthood, focused on cancer risk in adults, and relied on questionnaires entailing a high degree of exposure misclassification. Biomarker studies on prenatal exposure to acrylamide from diet are critically needed to improve exposure assessment and to determine whether acrylamide leads to major diseases later in life.
Own results: I have first authored a prospective European study showing that prenatal exposure to acrylamide, estimated by measuring hemoglobin adducts in cord blood, was associated with fetal growth restriction, for the first time.
Objectives: To determine the effects of prenatal exposure to acrylamide alone and in combination with other potentially toxic adduct-forming exposures on the health of children and young adults.
Methods: Both well-established and innovative biomarker methods will be used for characterization of prenatal exposure to acrylamide and related toxicants in blood from pregnant women and their offspring in prospective cohort studies with long-term follow-up. Risk of neurological disorders, impaired cognition, disturbed reproductive function and metabolic outcomes such as obesity and diabetes will be evaluated.
Perspectives: CHIPS project will provide a better understanding of the impact of prenatal exposure to acrylamide from diet on human health urgently needed for targeted strategies for the protection of the health.
Max ERC Funding
1 499 531 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym CHROMABOLISM
Project Chromatin-localized central metabolism regulating gene expression and cell identity
Researcher (PI) Stefan KUBICEK
Host Institution (HI) CEMM - FORSCHUNGSZENTRUM FUER MOLEKULARE MEDIZIN GMBH
Call Details Consolidator Grant (CoG), LS3, ERC-2017-COG
Summary Epigenetics research has revealed that in the cell’s nucleus all kinds of biomolecules–DNA, RNAs, proteins, protein posttranslational modifications–are highly compartmentalized to occupy distinct chromatin territories and genomic loci, thereby contributing to gene regulation and cell identity. In contrast, small molecules and cellular metabolites are generally considered to passively enter the nucleus from the cytoplasm and to lack distinct subnuclear localization. The CHROMABOLISM proposal challenges this assumption based on preliminary data generated in my laboratory. I hypothesize that chromatin-bound enzymes of central metabolism and subnuclear metabolite gradients contribute to gene regulation and cellular identity.
To address this hypothesis, we will first systematically profile chromatin-bound metabolic enzymes, chart nuclear metabolomes across representative leukemia cell lines, and develop tools to measure local metabolite concentrations at distinct genomic loci. In a second step, we will then develop and apply technology to perturb these nuclear metabolite patterns by forcing the export of metabolic enzymes for the nucleus, aberrantly recruiting these enzymes to selected genomic loci, and perturbing metabolite patterns by addition and depletion of metabolites. In all these conditions we will measure the impact of nuclear metabolism on chromatin structure and gene expression. Based on the data obtained, we will model for the effects of cellular metabolites on cancer cell identity and proliferation. In line with the recent discovery of oncometabolites and the clinical use of antimetabolites, we expect to predict chromatin-bound metabolic enzymes that can be exploited as druggable targets in oncology. In a final aim we will validate these targets in leukemia and develop chemical probes against them.
Successful completion of this project has the potential to transform our understanding of nuclear metabolism in control of gene expression and cellular identity.
Summary
Epigenetics research has revealed that in the cell’s nucleus all kinds of biomolecules–DNA, RNAs, proteins, protein posttranslational modifications–are highly compartmentalized to occupy distinct chromatin territories and genomic loci, thereby contributing to gene regulation and cell identity. In contrast, small molecules and cellular metabolites are generally considered to passively enter the nucleus from the cytoplasm and to lack distinct subnuclear localization. The CHROMABOLISM proposal challenges this assumption based on preliminary data generated in my laboratory. I hypothesize that chromatin-bound enzymes of central metabolism and subnuclear metabolite gradients contribute to gene regulation and cellular identity.
To address this hypothesis, we will first systematically profile chromatin-bound metabolic enzymes, chart nuclear metabolomes across representative leukemia cell lines, and develop tools to measure local metabolite concentrations at distinct genomic loci. In a second step, we will then develop and apply technology to perturb these nuclear metabolite patterns by forcing the export of metabolic enzymes for the nucleus, aberrantly recruiting these enzymes to selected genomic loci, and perturbing metabolite patterns by addition and depletion of metabolites. In all these conditions we will measure the impact of nuclear metabolism on chromatin structure and gene expression. Based on the data obtained, we will model for the effects of cellular metabolites on cancer cell identity and proliferation. In line with the recent discovery of oncometabolites and the clinical use of antimetabolites, we expect to predict chromatin-bound metabolic enzymes that can be exploited as druggable targets in oncology. In a final aim we will validate these targets in leukemia and develop chemical probes against them.
Successful completion of this project has the potential to transform our understanding of nuclear metabolism in control of gene expression and cellular identity.
Max ERC Funding
1 980 916 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym CHROMATINREPLICATION
Project How to Replicate Chromatin - Maturation, Timing Control and Stress-Induced Aberrations
Researcher (PI) Anja Groth
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary Inheritance of DNA sequence and its proper organization into chromatin is fundamental for eukaryotic life. The challenge of propagating genetic and epigenetic information is met in S phase and entails genome-wide disruption and restoration of chromatin coupled to faithful copying of DNA. How specific chromatin structures are restored on new DNA and transmitted through mitotic cell division remains a fundamental question in biology central to understand cell fate and identity.
Chromatin restoration on new DNA involves a complex set of events including nucleosome assembly and remodelling, restoration of marks on DNA and histones, deposition of histone variants and establishment of higher order chromosomal structures including sister-chromatid cohesion. To dissect these fundamental processes and their coordination in time and space with DNA replication, we have developed a novel technology termed nascent chromatin capture (NCC) that provides unique possibility for biochemical and proteomic analysis of chromatin replication in human cells. I propose to apply this innovative cutting-edge technique for a comprehensive characterization of chromatin restoration during DNA replication and to reveal how replication timing and genotoxic stress impact on final chromatin state. This highly topical project brings together the fields of chromatin biology, DNA replication, epigenetics and genome stability and we expect to make groundbreaking discoveries that will improve our understanding of human development, somatic cell reprogramming and complex diseases like cancer.
The proposed research will 1) identify and characterize novel mechanisms in chromatin restoration and 2) address molecularly how replication timing and genotoxic insults influence chromatin maturation and final chromatin state.
Summary
Inheritance of DNA sequence and its proper organization into chromatin is fundamental for eukaryotic life. The challenge of propagating genetic and epigenetic information is met in S phase and entails genome-wide disruption and restoration of chromatin coupled to faithful copying of DNA. How specific chromatin structures are restored on new DNA and transmitted through mitotic cell division remains a fundamental question in biology central to understand cell fate and identity.
Chromatin restoration on new DNA involves a complex set of events including nucleosome assembly and remodelling, restoration of marks on DNA and histones, deposition of histone variants and establishment of higher order chromosomal structures including sister-chromatid cohesion. To dissect these fundamental processes and their coordination in time and space with DNA replication, we have developed a novel technology termed nascent chromatin capture (NCC) that provides unique possibility for biochemical and proteomic analysis of chromatin replication in human cells. I propose to apply this innovative cutting-edge technique for a comprehensive characterization of chromatin restoration during DNA replication and to reveal how replication timing and genotoxic stress impact on final chromatin state. This highly topical project brings together the fields of chromatin biology, DNA replication, epigenetics and genome stability and we expect to make groundbreaking discoveries that will improve our understanding of human development, somatic cell reprogramming and complex diseases like cancer.
The proposed research will 1) identify and characterize novel mechanisms in chromatin restoration and 2) address molecularly how replication timing and genotoxic insults influence chromatin maturation and final chromatin state.
Max ERC Funding
1 692 737 €
Duration
Start date: 2011-11-01, End date: 2017-04-30
Project acronym ChromatinTargets
Project Systematic in-vivo analysis of chromatin-associated targets in leukemia
Researcher (PI) Johannes Zuber
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary Recent advances in genome sequencing illustrate the complexity, heterogeneity and plasticity of cancer genomes. In leukemia - a group of blood cancers affecting 300,000 new patients every year – we know over 100 driver mutations. This genetic complexity poses a daunting challenge for the development of targeted therapies and highlights the urgent need for evaluating them in combination. One gene class that has recently emerged as highly promising target space are chromatin regulators, which maintain aberrant cell fate programs in leukemia. The dependency on altered chromatin states is thought to provide great therapeutic opportunities, since epigenetic aberrations are reversible and controlled by a machinery that is amenable to drug modulation. However, the precise mechanisms underlying these dependencies and the most effective and safe targets to exploit them therapeutically remain unknown.
Here we propose an innovative approach combining genetically engineered leukemia mouse models and advanced in-vivo RNAi technologies to explore chromatin-associated vulnerabilities at an unprecedented level of depth. Following a first screen in MLL-AF9;Nras-driven AML, which led to the discovery of BRD4 as a promising therapeutic target, we aim to (1) construct a knockdown-validated shRNA library targeting 520 chromatin regulators and use it to comparatively probe chromatin-associated dependencies in diverse leukemia subtypes; (2) explore the mechanistic basis of response and resistance to suppression of BRD4 and new chromatin-associated targets; and (3) pioneer a system for multiplexed combinatorial RNAi screening and use it to identify synergies between established and new chromatin-associated targets. We envision that this ERC-funded project will generate a comprehensive functional-genetic dataset that will greatly complement ongoing genome and epigenome profiling studies and ultimately guide the development of targeted therapies for leukemia and, potentially, other cancers.
Summary
Recent advances in genome sequencing illustrate the complexity, heterogeneity and plasticity of cancer genomes. In leukemia - a group of blood cancers affecting 300,000 new patients every year – we know over 100 driver mutations. This genetic complexity poses a daunting challenge for the development of targeted therapies and highlights the urgent need for evaluating them in combination. One gene class that has recently emerged as highly promising target space are chromatin regulators, which maintain aberrant cell fate programs in leukemia. The dependency on altered chromatin states is thought to provide great therapeutic opportunities, since epigenetic aberrations are reversible and controlled by a machinery that is amenable to drug modulation. However, the precise mechanisms underlying these dependencies and the most effective and safe targets to exploit them therapeutically remain unknown.
Here we propose an innovative approach combining genetically engineered leukemia mouse models and advanced in-vivo RNAi technologies to explore chromatin-associated vulnerabilities at an unprecedented level of depth. Following a first screen in MLL-AF9;Nras-driven AML, which led to the discovery of BRD4 as a promising therapeutic target, we aim to (1) construct a knockdown-validated shRNA library targeting 520 chromatin regulators and use it to comparatively probe chromatin-associated dependencies in diverse leukemia subtypes; (2) explore the mechanistic basis of response and resistance to suppression of BRD4 and new chromatin-associated targets; and (3) pioneer a system for multiplexed combinatorial RNAi screening and use it to identify synergies between established and new chromatin-associated targets. We envision that this ERC-funded project will generate a comprehensive functional-genetic dataset that will greatly complement ongoing genome and epigenome profiling studies and ultimately guide the development of targeted therapies for leukemia and, potentially, other cancers.
Max ERC Funding
1 498 985 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym ChromHeritance
Project Chromosome inheritance from mammalian oocytes to embryos
Researcher (PI) Kikue Tachibana-Konwalski
Host Institution (HI) INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
Call Details Starting Grant (StG), LS3, ERC-2013-StG
Summary One of the most dramatic transitions in biology is the oocyte-to-zygote transition. This refers to the maturation of the female germ cell or oocyte, which undergoes two rounds of meiotic chromosome segregation and, following fertilization, is converted to a mitotically dividing embryo. We aim to establish an innovative research program that addresses fundamental questions about the molecular processes controlling the mammalian oocyte-to-zygote transition to ensure faithful inheritance of genomes from one generation to the next. We are taking an interdisciplinary approach combining germ cell and chromosome biology with cell cycle and epigenetic studies to understand how maternal factors regulate chromosome segregation in oocytes and chromatin organization in the zygote. A molecular understanding of key players regulating these processes is a requisite step for investigating how their deterioration contributes to maternal age-related aneuploidy and infertility. Aneuploidy is the leading cause of mental retardation and spontaneous miscarriage. The current trend towards advanced maternal age has increased the frequency of trisomic fetuses by 71% in the past ten years. A better understanding of mammalian meiosis is therefore relevant to human reproductive health.
A special feature of the female germ line is that meiotic DNA replication occurs in the embryo but oocytes remain arrested until the first meiotic division is triggered months (mouse) or decades (human) later. The longevity of oocytes poses a challenge for the cohesin complex that must hold together sister chromatids from DNA synthesis until chromosome segregation. We specifically aim to: 1) elucidate how sister chromatid cohesion is maintained in mammalian oocytes, 2) identify mechanisms regulating cohesion in young and aged oocytes, and 3) investigate how the inheritance of genetic and resetting of epigenetic information is coordinated with cell cycle progression at the oocyte-to-zygote transition.
Summary
One of the most dramatic transitions in biology is the oocyte-to-zygote transition. This refers to the maturation of the female germ cell or oocyte, which undergoes two rounds of meiotic chromosome segregation and, following fertilization, is converted to a mitotically dividing embryo. We aim to establish an innovative research program that addresses fundamental questions about the molecular processes controlling the mammalian oocyte-to-zygote transition to ensure faithful inheritance of genomes from one generation to the next. We are taking an interdisciplinary approach combining germ cell and chromosome biology with cell cycle and epigenetic studies to understand how maternal factors regulate chromosome segregation in oocytes and chromatin organization in the zygote. A molecular understanding of key players regulating these processes is a requisite step for investigating how their deterioration contributes to maternal age-related aneuploidy and infertility. Aneuploidy is the leading cause of mental retardation and spontaneous miscarriage. The current trend towards advanced maternal age has increased the frequency of trisomic fetuses by 71% in the past ten years. A better understanding of mammalian meiosis is therefore relevant to human reproductive health.
A special feature of the female germ line is that meiotic DNA replication occurs in the embryo but oocytes remain arrested until the first meiotic division is triggered months (mouse) or decades (human) later. The longevity of oocytes poses a challenge for the cohesin complex that must hold together sister chromatids from DNA synthesis until chromosome segregation. We specifically aim to: 1) elucidate how sister chromatid cohesion is maintained in mammalian oocytes, 2) identify mechanisms regulating cohesion in young and aged oocytes, and 3) investigate how the inheritance of genetic and resetting of epigenetic information is coordinated with cell cycle progression at the oocyte-to-zygote transition.
Max ERC Funding
1 499 738 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CIRCUITASSEMBLY
Project Development of functional organization of the visual circuits in mice
Researcher (PI) Keisuke Yonehara
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Summary
The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym CMIL
Project Crosstalk of Metabolism and Inflammation
Researcher (PI) Andreas Bergthaler
Host Institution (HI) CEMM - FORSCHUNGSZENTRUM FUER MOLEKULARE MEDIZIN GMBH
Call Details Starting Grant (StG), LS6, ERC-2015-STG
Summary Inflammation is a response to noxious stimuli and initiates tissue repair. If resolution fails, however, chronic inflammation develops, which drives tissue damage in many diseases including autoimmunity, cancer and infections. Inflammatory processes are increasingly being appreciated as tightly integrated with metabolic pathways. The molecular crosstalk occurs on different levels including secreted metabolites and cytokines. I hypothesise that this interface of metabolism and inflammation represents a functional rheostat that shapes tissue damage and disease.
Here, I propose to analyse the metabolic and inflammatory processes in a mouse model of chronic viral hepatitis. I chose this model to explore the inflammatory rheostat because the liver is the central organ for metabolism and a hotspot for receiving, processing and distributing local and systemic signals. Cutting-edge technologies including deep sequencing, quantitative proteomics and metabolomics will let us create longitudinal multi-dimensional maps of virus-induced alterations. Paired with immunological, virological and pathological analyses, I expect to identify novel regulatory nodes between metabolism and inflammation. Within our systems-wide experiments and supported by preliminary results, we will specifically focus on the immunomodulatory roles of the metabolite bile acids and oxidative metabolism. These as well as other candidates will be investigated by genetic and pharmacological perturbations in cell culture and in mouse models. Bioinformatics integration of the orthogonal profiling kinetics is expected to reveal novel properties of the molecular networks mediating between metabolism and inflammation.
This proposed cross-disciplinary approach aims to improve our understanding of the crosstalk of metabolism and inflammation. The results of this project may be relevant to viral hepatitis in man and bear broader implications for other inflammatory diseases.
Summary
Inflammation is a response to noxious stimuli and initiates tissue repair. If resolution fails, however, chronic inflammation develops, which drives tissue damage in many diseases including autoimmunity, cancer and infections. Inflammatory processes are increasingly being appreciated as tightly integrated with metabolic pathways. The molecular crosstalk occurs on different levels including secreted metabolites and cytokines. I hypothesise that this interface of metabolism and inflammation represents a functional rheostat that shapes tissue damage and disease.
Here, I propose to analyse the metabolic and inflammatory processes in a mouse model of chronic viral hepatitis. I chose this model to explore the inflammatory rheostat because the liver is the central organ for metabolism and a hotspot for receiving, processing and distributing local and systemic signals. Cutting-edge technologies including deep sequencing, quantitative proteomics and metabolomics will let us create longitudinal multi-dimensional maps of virus-induced alterations. Paired with immunological, virological and pathological analyses, I expect to identify novel regulatory nodes between metabolism and inflammation. Within our systems-wide experiments and supported by preliminary results, we will specifically focus on the immunomodulatory roles of the metabolite bile acids and oxidative metabolism. These as well as other candidates will be investigated by genetic and pharmacological perturbations in cell culture and in mouse models. Bioinformatics integration of the orthogonal profiling kinetics is expected to reveal novel properties of the molecular networks mediating between metabolism and inflammation.
This proposed cross-disciplinary approach aims to improve our understanding of the crosstalk of metabolism and inflammation. The results of this project may be relevant to viral hepatitis in man and bear broader implications for other inflammatory diseases.
Max ERC Funding
1 701 011 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym CohesinMolMech
Project Molecular mechanisms of cohesin-mediated sister chromatid cohesion and chromatin organization
Researcher (PI) Jan-Michael Peters
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Advanced Grant (AdG), LS1, ERC-2015-AdG
Summary During S-phase newly synthesized “sister” DNA molecules become physically connected. This sister chromatid cohesion resists the pulling forces of the mitotic spindle and thereby enables the bi-orientation and subsequent symmetrical segregation of chromosomes. Cohesion is mediated by ring-shaped cohesin complexes, which are thought to entrap sister DNA molecules topologically. In mammalian cells, cohesin is loaded onto DNA at the end of mitosis by the Scc2-Scc4 complex, becomes acetylated during S-phase, and is stably “locked” on DNA during S- and G2-phase by sororin. Sororin stabilizes cohesin on DNA by inhibiting Wapl, which can otherwise release cohesin from DNA again. In addition to mediating cohesion, cohesin also has important roles in organizing higher-order chromatin structures and in gene regulation. Cohesin performs the latter functions in both proliferating and post-mitotic cells and mediates at least some of these together with the sequence-specific DNA-binding protein CTCF, which co-localizes with cohesin at many genomic sites. Although cohesin and CTCF perform essential functions in mammalian cells, it is poorly understood how cohesin is loaded onto DNA by Scc2-Scc4, how cohesin is positioned in the genome, how cohesin is released from DNA again by Wapl, and how Wapl is inhibited by sororin. Likewise, it is not known how cohesin establishes cohesion during DNA replication and how cohesin cooperates with CTCF to organize chromatin structure. Here we propose to address these questions by combining biochemical reconstitution, single-molecule TIRF microscopy, genetic and cell biological approaches. We expect that the results of these studies will advance our understanding of cell division, chromatin structure and gene regulation, and may also provide insight into the etiology of disorders that are caused by cohesin dysfunction, such as Down syndrome and “cohesinopathies” or cancers, in which cohesin mutations have been found to occur frequently.
Summary
During S-phase newly synthesized “sister” DNA molecules become physically connected. This sister chromatid cohesion resists the pulling forces of the mitotic spindle and thereby enables the bi-orientation and subsequent symmetrical segregation of chromosomes. Cohesion is mediated by ring-shaped cohesin complexes, which are thought to entrap sister DNA molecules topologically. In mammalian cells, cohesin is loaded onto DNA at the end of mitosis by the Scc2-Scc4 complex, becomes acetylated during S-phase, and is stably “locked” on DNA during S- and G2-phase by sororin. Sororin stabilizes cohesin on DNA by inhibiting Wapl, which can otherwise release cohesin from DNA again. In addition to mediating cohesion, cohesin also has important roles in organizing higher-order chromatin structures and in gene regulation. Cohesin performs the latter functions in both proliferating and post-mitotic cells and mediates at least some of these together with the sequence-specific DNA-binding protein CTCF, which co-localizes with cohesin at many genomic sites. Although cohesin and CTCF perform essential functions in mammalian cells, it is poorly understood how cohesin is loaded onto DNA by Scc2-Scc4, how cohesin is positioned in the genome, how cohesin is released from DNA again by Wapl, and how Wapl is inhibited by sororin. Likewise, it is not known how cohesin establishes cohesion during DNA replication and how cohesin cooperates with CTCF to organize chromatin structure. Here we propose to address these questions by combining biochemical reconstitution, single-molecule TIRF microscopy, genetic and cell biological approaches. We expect that the results of these studies will advance our understanding of cell division, chromatin structure and gene regulation, and may also provide insight into the etiology of disorders that are caused by cohesin dysfunction, such as Down syndrome and “cohesinopathies” or cancers, in which cohesin mutations have been found to occur frequently.
Max ERC Funding
2 500 000 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym CombaTCancer
Project Rational combination therapies for metastatic cancer
Researcher (PI) Anna Obenauf
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Starting Grant (StG), LS4, ERC-2017-STG
Summary Targeted therapy (TT) is frequently used to treat metastatic cancer. Although TT can achieve effective tumor control for several months, durable treatment responses are rare, due to emergence of aggressive, drug-resistant clones (RCs) with high metastatic competence. Tumor heterogeneity and plasticity result in multifaceted resistance mechanisms and targeting RCs poses a daunting challenge.
To better understand the clinical emergence of RCs, my work focuses on the poorly understood events during TT-induced tumor regression. We recently reported that during this phase drug-responsive cancer cells release a therapy-induced secretome, which remodels the tumor microenvironment (TME) and propagates disease relapse by promoting the survival of drug-sensitive cells and stimulating the outgrowth of RCs. Consequently, intervening with combination therapies during the tumor regression period has the potential to prevent the clinical emergence of RCs in the first place.
Here, we outline strategies to (1) understand how RCs emerge and (2) to leverage our findings on the TME remodeling for combination therapies. First, we will develop a novel and innovative parental clone-lookup method, that will allow us to identify and isolate treatment-naïve, parental clones (PCs) that gave rise to RCs. In functional experiments, we will assess (i) whether PCs were already resistant before or developed resistance during TT, (ii) whether PCs have a higher susceptibility to develop resistance than random clones, and (iii) the mechanistic basis for metastatic competence in different clones. Second, we will study the TT-induced TME remodeling, focusing on the effects on tumor vasculature and immune cells. We will utilize our results to target PCs and RCs by combining TT in the phase of tumor regression with other therapies, such as immunotherapies. Our study will provide new mechanistic insights into the biological processes during tumor regression and aims for novel therapeutic strategies.
Summary
Targeted therapy (TT) is frequently used to treat metastatic cancer. Although TT can achieve effective tumor control for several months, durable treatment responses are rare, due to emergence of aggressive, drug-resistant clones (RCs) with high metastatic competence. Tumor heterogeneity and plasticity result in multifaceted resistance mechanisms and targeting RCs poses a daunting challenge.
To better understand the clinical emergence of RCs, my work focuses on the poorly understood events during TT-induced tumor regression. We recently reported that during this phase drug-responsive cancer cells release a therapy-induced secretome, which remodels the tumor microenvironment (TME) and propagates disease relapse by promoting the survival of drug-sensitive cells and stimulating the outgrowth of RCs. Consequently, intervening with combination therapies during the tumor regression period has the potential to prevent the clinical emergence of RCs in the first place.
Here, we outline strategies to (1) understand how RCs emerge and (2) to leverage our findings on the TME remodeling for combination therapies. First, we will develop a novel and innovative parental clone-lookup method, that will allow us to identify and isolate treatment-naïve, parental clones (PCs) that gave rise to RCs. In functional experiments, we will assess (i) whether PCs were already resistant before or developed resistance during TT, (ii) whether PCs have a higher susceptibility to develop resistance than random clones, and (iii) the mechanistic basis for metastatic competence in different clones. Second, we will study the TT-induced TME remodeling, focusing on the effects on tumor vasculature and immune cells. We will utilize our results to target PCs and RCs by combining TT in the phase of tumor regression with other therapies, such as immunotherapies. Our study will provide new mechanistic insights into the biological processes during tumor regression and aims for novel therapeutic strategies.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym COMBINE
Project From flies to humans combining whole genome screens and tissue specific gene targeting to identify novel pathways involved in cancer and metastases
Researcher (PI) Josef Martin Penninger
Host Institution (HI) INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary Cancer care will be revolutionized over the next decade by the introduction of novel therapeutics that target the underlying molecular mechanisms of the disease. With the advent of human genetics, a plethora of genes have been correlated with human diseases such as cancer the SNP maps. Since the sequences are now available, the next big challenge is to determine the function of these genes in the context of the entire organism. Genetic animal models have proven to be extremely valuable to elucidate the essential functions of genes in normal physiology and the pathogenesis of disease. Using gene-targeted mice we have previously identified RANKL as a master gene of bone loss in arthritis, osteoporosis, and cancer cell migration and metastases and genes that control heart and kidney function; wound healing; diabetes; or lung injury Our primary goal is to use functional genomics in Drosophila and mice to understand cell transformation, invasion, and cancer metastases of epithelial tumors. The following projects are proposed: 1. Role of the key osteoclast differentiation factors RANKL-RANK and its downstream signalling cascade in the development of breast and prostate cancer. 2. Requirement of osteoclasts for bone metastases and stem cell niches using a new RANKfloxed allele; function of RANKL-RANK in local tumor cell invasion. 3. Role of RANKL-RANK in the central fever response to understand potential implications of future RANKL-RANK directed therapies. 4. Integration of gene targeting in mice with state-of-the art technologies in fly genetics; use of whole genome tissue-specific in vivo RNAi Drosophila libraries to identify essential and novel pathways for cancer pathogenesis using whole genome screens. 5. Role of TSPAN6, as a candidate lung metastasis gene. Identification of new cancer disease genes will allow us to design novel strategies for cancer treatment and will have ultimately impact on the basic understanding of cancer, metastases, and human health.
Summary
Cancer care will be revolutionized over the next decade by the introduction of novel therapeutics that target the underlying molecular mechanisms of the disease. With the advent of human genetics, a plethora of genes have been correlated with human diseases such as cancer the SNP maps. Since the sequences are now available, the next big challenge is to determine the function of these genes in the context of the entire organism. Genetic animal models have proven to be extremely valuable to elucidate the essential functions of genes in normal physiology and the pathogenesis of disease. Using gene-targeted mice we have previously identified RANKL as a master gene of bone loss in arthritis, osteoporosis, and cancer cell migration and metastases and genes that control heart and kidney function; wound healing; diabetes; or lung injury Our primary goal is to use functional genomics in Drosophila and mice to understand cell transformation, invasion, and cancer metastases of epithelial tumors. The following projects are proposed: 1. Role of the key osteoclast differentiation factors RANKL-RANK and its downstream signalling cascade in the development of breast and prostate cancer. 2. Requirement of osteoclasts for bone metastases and stem cell niches using a new RANKfloxed allele; function of RANKL-RANK in local tumor cell invasion. 3. Role of RANKL-RANK in the central fever response to understand potential implications of future RANKL-RANK directed therapies. 4. Integration of gene targeting in mice with state-of-the art technologies in fly genetics; use of whole genome tissue-specific in vivo RNAi Drosophila libraries to identify essential and novel pathways for cancer pathogenesis using whole genome screens. 5. Role of TSPAN6, as a candidate lung metastasis gene. Identification of new cancer disease genes will allow us to design novel strategies for cancer treatment and will have ultimately impact on the basic understanding of cancer, metastases, and human health.
Max ERC Funding
2 499 465 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym CSI-Fun
Project Chronic Systemic Inflammation: Functional organ cross-talk in inflammatory disease and cancer
Researcher (PI) Erwin Friedrich WAGNER
Host Institution (HI) MEDIZINISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), LS4, ERC-2016-ADG
Summary Chronic Systemic Inflammation (CSI) resulting from systemic release of inflammatory cytokines and activation of the immune system is responsible for the progression of several debilitating diseases, such as Psoriasis, Arthritis and Cancer. Initially localised diseases can result in CSI with subsequent systemic spread to distant organs, a key patho-physiological phase responsible for major morbidity and even mortality. Despite the importance of CSI, a complete understanding of the molecular mechanisms, signalling pathways and cell types involved, as well as the chronological evolution of the systemic inflammatory response is still elusive. The classical approach to study inflammation has focused on investigating individual cell types or organs in the pathogenesis of a single disease, thereby neglecting important organ cross-talk and systemic interactions. Furthermore, understanding the temporal and spatial kinetics modulating the inflammatory response requires a detailed study of interactions between different immune and non-immune organs at various time points during disease progression in the context of the whole organism.
The aim of this research proposal is to substantially advance our understanding of whole organ physiology in relation to systemic inflammation as a cause or/and consequence of disease with the focus on Psoriasis/Joint Diseases and Cancer Cachexia. The goal is to elucidate the molecular mechanisms at the cellular and systemic level, and to decipher endocrine interactions and cross-talks between distant organs. Various model systems ranging from cell cultures to genetically engineered mouse models to human clinical samples will be employed. Genomic, proteomic and metabolomic data will be combined with functional in vivo assessment using mouse models to understand the multi-faceted role of systemic inflammation in chronic human diseases, such as Inflammatory Skin/Joint disease and Cachexia, a deadly systemic manifestation of Cancer.
Summary
Chronic Systemic Inflammation (CSI) resulting from systemic release of inflammatory cytokines and activation of the immune system is responsible for the progression of several debilitating diseases, such as Psoriasis, Arthritis and Cancer. Initially localised diseases can result in CSI with subsequent systemic spread to distant organs, a key patho-physiological phase responsible for major morbidity and even mortality. Despite the importance of CSI, a complete understanding of the molecular mechanisms, signalling pathways and cell types involved, as well as the chronological evolution of the systemic inflammatory response is still elusive. The classical approach to study inflammation has focused on investigating individual cell types or organs in the pathogenesis of a single disease, thereby neglecting important organ cross-talk and systemic interactions. Furthermore, understanding the temporal and spatial kinetics modulating the inflammatory response requires a detailed study of interactions between different immune and non-immune organs at various time points during disease progression in the context of the whole organism.
The aim of this research proposal is to substantially advance our understanding of whole organ physiology in relation to systemic inflammation as a cause or/and consequence of disease with the focus on Psoriasis/Joint Diseases and Cancer Cachexia. The goal is to elucidate the molecular mechanisms at the cellular and systemic level, and to decipher endocrine interactions and cross-talks between distant organs. Various model systems ranging from cell cultures to genetically engineered mouse models to human clinical samples will be employed. Genomic, proteomic and metabolomic data will be combined with functional in vivo assessment using mouse models to understand the multi-faceted role of systemic inflammation in chronic human diseases, such as Inflammatory Skin/Joint disease and Cachexia, a deadly systemic manifestation of Cancer.
Max ERC Funding
2 499 875 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym CSUMECH
Project Cholesterol and Sugar Uptake Mechanisms
Researcher (PI) Bjørn Pedersen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary Cardiovascular disease, diabetes and cancer have a dramatic impact on modern society, and in great part are related to uptake of cholesterol and sugar. We still know surprisingly little about the molecular details of the processes that goes on in this essential part of human basic metabolism. This application addresses cholesterol and sugar transport and aim to elucidate the molecular mechanism of cholesterol and sugar uptake in humans. It moves the frontiers of the field by shifting the focus to in vitro work allowing hitherto untried structural and biochemical experiments to be performed.
Cholesterol uptake from the intestine is mediated by the membrane protein NPC1L1. Despite extensive research, the molecular mechanism of NPC1L1-dependent cholesterol uptake still remains largely unknown.
Facilitated sugar transport in humans is made possible by sugar transporters called GLUTs and SWEETs, and every cell possesses these sugar transport systems. For all these uptake systems structural information is sorely lacking to address important mechanistic questions to help elucidate their molecular mechanism.
I will address this using a complementary set of methods founded in macromolecular crystallography and electron microscopy to determine the 3-dimensional structures of key players in these uptake systems. My unpublished preliminary results have established the feasibility of this approach. This will be followed up by biochemical characterization of the molecular mechanism in vitro and in silico.
This high risk/high reward membrane protein proposal could lead to a breakthrough in how we approach human biochemical pathways that are linked to trans-membrane transport. An improved understanding of cholesterol and sugar homeostasis has tremendous potential for improving general public health, and furthermore this proposal will help to uncover general principles of endocytotic uptake and facilitated diffusion systems at the molecular level.
Summary
Cardiovascular disease, diabetes and cancer have a dramatic impact on modern society, and in great part are related to uptake of cholesterol and sugar. We still know surprisingly little about the molecular details of the processes that goes on in this essential part of human basic metabolism. This application addresses cholesterol and sugar transport and aim to elucidate the molecular mechanism of cholesterol and sugar uptake in humans. It moves the frontiers of the field by shifting the focus to in vitro work allowing hitherto untried structural and biochemical experiments to be performed.
Cholesterol uptake from the intestine is mediated by the membrane protein NPC1L1. Despite extensive research, the molecular mechanism of NPC1L1-dependent cholesterol uptake still remains largely unknown.
Facilitated sugar transport in humans is made possible by sugar transporters called GLUTs and SWEETs, and every cell possesses these sugar transport systems. For all these uptake systems structural information is sorely lacking to address important mechanistic questions to help elucidate their molecular mechanism.
I will address this using a complementary set of methods founded in macromolecular crystallography and electron microscopy to determine the 3-dimensional structures of key players in these uptake systems. My unpublished preliminary results have established the feasibility of this approach. This will be followed up by biochemical characterization of the molecular mechanism in vitro and in silico.
This high risk/high reward membrane protein proposal could lead to a breakthrough in how we approach human biochemical pathways that are linked to trans-membrane transport. An improved understanding of cholesterol and sugar homeostasis has tremendous potential for improving general public health, and furthermore this proposal will help to uncover general principles of endocytotic uptake and facilitated diffusion systems at the molecular level.
Max ERC Funding
1 499 848 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym Daphne
Project Circuits of Visual Attention
Researcher (PI) Maximilian Jösch
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary The evolutionary arms race has optimized and shaped the way animals attend to relevant sensory stimuli in an ever-changing environment. This is a complex task, because the vast majority of sensory experiences are not relevant. In humans, attentional disorders are a serious public health concern because of its high prevalence, but its causes are mostly unknown. In this proposal, I will explore the neuronal mechanisms used by the nervous system to attend visual cues to enable appropriate behaviors.
We will combine cutting edge imaging techniques, optogenetic interventions, behavioral read outs and targeted connectomics to study the neuronal transformations of the mouse Superior Colliculus (SC), an evolutionary conserved midbrain area known to process sensorimotor transformations and to be involved in the allocation of attention. First, this work will reveal a detailed description of visual representation in the SC, focusing on understanding how defined retinal information-streams, like motion and color, contribute to these properties. Second, we will characterize sensorimotor transformations instructed by the SC. The combination of the previous two objectives will determine mechanisms of visual saliency and sensory driven attention (“bottom-up” attention). Finally, we will explore the neuronal mechanisms of attention by studying the modulatory effect of higher brain areas (“top-down” attention) on sensory transformation and multisensory integration in the SC.
Taken together, this proposal aims to understand principles underlying sensorimotor transformation and build a framework to study attention in health and disease.
Summary
The evolutionary arms race has optimized and shaped the way animals attend to relevant sensory stimuli in an ever-changing environment. This is a complex task, because the vast majority of sensory experiences are not relevant. In humans, attentional disorders are a serious public health concern because of its high prevalence, but its causes are mostly unknown. In this proposal, I will explore the neuronal mechanisms used by the nervous system to attend visual cues to enable appropriate behaviors.
We will combine cutting edge imaging techniques, optogenetic interventions, behavioral read outs and targeted connectomics to study the neuronal transformations of the mouse Superior Colliculus (SC), an evolutionary conserved midbrain area known to process sensorimotor transformations and to be involved in the allocation of attention. First, this work will reveal a detailed description of visual representation in the SC, focusing on understanding how defined retinal information-streams, like motion and color, contribute to these properties. Second, we will characterize sensorimotor transformations instructed by the SC. The combination of the previous two objectives will determine mechanisms of visual saliency and sensory driven attention (“bottom-up” attention). Finally, we will explore the neuronal mechanisms of attention by studying the modulatory effect of higher brain areas (“top-down” attention) on sensory transformation and multisensory integration in the SC.
Taken together, this proposal aims to understand principles underlying sensorimotor transformation and build a framework to study attention in health and disease.
Max ERC Funding
1 446 542 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym DDRegulation
Project Regulation of DNA damage responses at the replication fork
Researcher (PI) Niels Mailand
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Consolidator Grant (CoG), LS1, ERC-2013-CoG
Summary This project aims at delineating the regulatory signaling processes that enable cells to overcome DNA damage during DNA replication, a major challenge to the integrity of the genome as the normal replication machinery is unable to replicate past DNA lesions. This may result in collapse of the replication fork, potentially giving rise to gross genomic alterations. To mitigate this threat, all cells have evolved DNA damage bypass strategies such as translesion DNA synthesis (TLS), involving low fidelity DNA polymerases that can replicate damaged DNA, albeit in an error-prone manner, offering a trade-off between limited mutagenesis and gross chromosomal instability. How DNA damage bypass pathways are regulated and integrated with DNA replication and repair remain poorly resolved questions fundamental to understanding genome stability maintenance and disease onset. Regulatory signaling mediated by the small modifier protein ubiquitin has a prominent role in orchestrating the reorganization of the replication fork necessary for overcoming DNA lesions, but this involvement has not been systematically explored. To remedy these gaps in our knowledge, I propose to implement a series of innovative complementary strategies to isolate and identify the regulatory factors and ubiquitin-dependent processes that promote DNA damage responses at the replication fork, allowing for subsequent in-depth characterization of their roles in protecting genome integrity by targeted functional studies. This project will enable an advanced level of mechanistic insight into key regulatory processes underlying replication-associated DNA damage responses that has not been feasible to achieve with exisiting methodologies, providing a realistic outlook for groundbreaking discoveries that will open up many new avenues for further research into mechanisms and biological functions of regulatory signaling processes in the DNA damage response and beyond.
Summary
This project aims at delineating the regulatory signaling processes that enable cells to overcome DNA damage during DNA replication, a major challenge to the integrity of the genome as the normal replication machinery is unable to replicate past DNA lesions. This may result in collapse of the replication fork, potentially giving rise to gross genomic alterations. To mitigate this threat, all cells have evolved DNA damage bypass strategies such as translesion DNA synthesis (TLS), involving low fidelity DNA polymerases that can replicate damaged DNA, albeit in an error-prone manner, offering a trade-off between limited mutagenesis and gross chromosomal instability. How DNA damage bypass pathways are regulated and integrated with DNA replication and repair remain poorly resolved questions fundamental to understanding genome stability maintenance and disease onset. Regulatory signaling mediated by the small modifier protein ubiquitin has a prominent role in orchestrating the reorganization of the replication fork necessary for overcoming DNA lesions, but this involvement has not been systematically explored. To remedy these gaps in our knowledge, I propose to implement a series of innovative complementary strategies to isolate and identify the regulatory factors and ubiquitin-dependent processes that promote DNA damage responses at the replication fork, allowing for subsequent in-depth characterization of their roles in protecting genome integrity by targeted functional studies. This project will enable an advanced level of mechanistic insight into key regulatory processes underlying replication-associated DNA damage responses that has not been feasible to achieve with exisiting methodologies, providing a realistic outlook for groundbreaking discoveries that will open up many new avenues for further research into mechanisms and biological functions of regulatory signaling processes in the DNA damage response and beyond.
Max ERC Funding
1 996 356 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym DE-ORPHAN
Project DEtermination of Orphan Receptor PHysiological Agonists and sigNals
Researcher (PI) David Erik Immanuel Gloriam
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2014-STG
Summary G protein-coupled receptors make up both the largest membrane protein and drug target families. DE-ORPHAN aims to determine the close functional context; specifically physiological agonists and signaling pathways; and provide the first research tool compounds, of orphan peptide receptors.
Determination of physiological agonists (aka de-orphanization), by high-throughput screening has largely failed. We will introduce a new research strategy: 1) developing highly innovative bioinformatics methods for handpicking of all orphan receptor targets and candidate ligand screening libraries; and 2) employing a screening technique that can measure all signaling pathways simultaneously.
The first potent and selective pharmacological tool compounds will be identified by chemoinformatic design of focused screening libraries. We will establish the ligands’ structure-activity relationships important for biological activity and further optimization towards drugs.
The first potent and selective Gs- and G12/13 protein inhibitors will be designed by structure-based re-optimization from a recent crystal structure of a Gq-inhibitor complex, and applied to determine orphan receptor signaling pathways and ligand pathway-bias. They will open up for efficient dissection of important signaling networks and development of drugs with fewer side effects.
DE-ORPHANs design hypotheses are based on unique computational methods to analyze protein and ligand similarities and are founded on genomic and protein sequences, structural data and ligands. The interdisciplinary research strategy applies multiple ligands acting independently but in concert to provide complementary receptor characterization. The results will allow the research field to advance into studies of receptor functions and exploitation of druggable targets, ligands and mechanisms. Which physiological insights and therapeutic breakthroughs will we witness when these receptors find their place in human pharmacology and medicine?
Summary
G protein-coupled receptors make up both the largest membrane protein and drug target families. DE-ORPHAN aims to determine the close functional context; specifically physiological agonists and signaling pathways; and provide the first research tool compounds, of orphan peptide receptors.
Determination of physiological agonists (aka de-orphanization), by high-throughput screening has largely failed. We will introduce a new research strategy: 1) developing highly innovative bioinformatics methods for handpicking of all orphan receptor targets and candidate ligand screening libraries; and 2) employing a screening technique that can measure all signaling pathways simultaneously.
The first potent and selective pharmacological tool compounds will be identified by chemoinformatic design of focused screening libraries. We will establish the ligands’ structure-activity relationships important for biological activity and further optimization towards drugs.
The first potent and selective Gs- and G12/13 protein inhibitors will be designed by structure-based re-optimization from a recent crystal structure of a Gq-inhibitor complex, and applied to determine orphan receptor signaling pathways and ligand pathway-bias. They will open up for efficient dissection of important signaling networks and development of drugs with fewer side effects.
DE-ORPHANs design hypotheses are based on unique computational methods to analyze protein and ligand similarities and are founded on genomic and protein sequences, structural data and ligands. The interdisciplinary research strategy applies multiple ligands acting independently but in concert to provide complementary receptor characterization. The results will allow the research field to advance into studies of receptor functions and exploitation of druggable targets, ligands and mechanisms. Which physiological insights and therapeutic breakthroughs will we witness when these receptors find their place in human pharmacology and medicine?
Max ERC Funding
1 499 926 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym DEFACT
Project DNA repair factories how cells do biochemistry
Researcher (PI) Michael Lisby
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2009-StG
Summary The integrity of a cell's genome is constantly challenged by DNA lesions such as base modifications and DNA strand breaks. A single double-strand break is lethal if unrepaired and may lead to loss-of-heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly. Such genetic alterations are the main cause of cancer and other genetic diseases. Homologous recombination is an error-free pathway for repairing DNA lesions such as single- and double-strand breaks, and for the restart of collapsed replication forks. This pathway is catalyzed by giga-Dalton protein complexes consisting of dozens of different proteins. These DNA repair factories are able to catalyze complex, multi-step biochemical processes, which have so far failed reconstitution in vitro. The aim of this project is to establish an understanding of how cells catalyze complex biochemical processes such as homologous recombination in vivo. To reach this goal, we will seek to define the complete set of RNA and protein components of DNA repair factories using a combination of genetic, cell biological and biochemical approaches in the yeast Saccharomyces cerevisiae. Further, we will characterize the molecular architecture of DNA repair factories using fluorescence resonance energy transfer (FRET) and by applying systematic hybrid loss-of-heterozygosity (LOH) to physical interactions among DNA repair proteins. Key findings will be extended to metazoans using the chicken DT40 model system. My aim is to determine the fundamental molecular principles that govern protein factories in living cells. As such, our results are likely to be directly relevant to other protein factories such as DNA replication factories, PML bodies, nuclear pore complexes and transcription clusters.
Summary
The integrity of a cell's genome is constantly challenged by DNA lesions such as base modifications and DNA strand breaks. A single double-strand break is lethal if unrepaired and may lead to loss-of-heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly. Such genetic alterations are the main cause of cancer and other genetic diseases. Homologous recombination is an error-free pathway for repairing DNA lesions such as single- and double-strand breaks, and for the restart of collapsed replication forks. This pathway is catalyzed by giga-Dalton protein complexes consisting of dozens of different proteins. These DNA repair factories are able to catalyze complex, multi-step biochemical processes, which have so far failed reconstitution in vitro. The aim of this project is to establish an understanding of how cells catalyze complex biochemical processes such as homologous recombination in vivo. To reach this goal, we will seek to define the complete set of RNA and protein components of DNA repair factories using a combination of genetic, cell biological and biochemical approaches in the yeast Saccharomyces cerevisiae. Further, we will characterize the molecular architecture of DNA repair factories using fluorescence resonance energy transfer (FRET) and by applying systematic hybrid loss-of-heterozygosity (LOH) to physical interactions among DNA repair proteins. Key findings will be extended to metazoans using the chicken DT40 model system. My aim is to determine the fundamental molecular principles that govern protein factories in living cells. As such, our results are likely to be directly relevant to other protein factories such as DNA replication factories, PML bodies, nuclear pore complexes and transcription clusters.
Max ERC Funding
1 700 030 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym DEFEAT
Project DiseasE-FreE social life without Antibiotics resisTance
Researcher (PI) Michael THOMAS-POULSEN
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Consolidator Grant (CoG), LS8, ERC-2017-COG
Summary The application of antimicrobial compounds produced by hosts or defensive symbionts to counter the effects of diseases has been identified in a number of organisms, but despite extensive studies on their presence, we know essentially nothing about why antimicrobials do not trigger rampant resistance evolution in target parasites. In stark contrast to virtually any other organism, fungus-farming termites have evolved a sophisticated agricultural symbiosis that pre-dates human farming by 30 million years without suffering from specialised diseases. I will capitalise on recent pioneering work in my group on proximate evidence for antimicrobial defences in the termites, their fungal crops, and their complex gut bacterial communities, by proposing to develop the farming symbiosis as a major model to test three novel concepts that may account for the evasion of resistance evolution. First, the antimicrobial compounds may have properties and evolve in ways that preclude resistance evolution in pathogens. Second, resistance is only possible towards individual compounds and not natural antimicrobial cocktails. Third, pathogens can only successfully invade and proliferate if they bypass several consecutive lines of defence, analogous to the six hallmarks of metazoan defence against cancer development. Addressing these concepts will allow fundamental insights into the remarkable success of complementary symbiont contributions to defence, and they will clarify the forces of multilevel natural selection that have allowed long-lived insect societies to evolve sustainability. Documenting and understanding these disease management principles is fundamentally important for several branches of evolutionary biology, and strategically important for adjusting human practices for future antimicrobial stewardship.
Summary
The application of antimicrobial compounds produced by hosts or defensive symbionts to counter the effects of diseases has been identified in a number of organisms, but despite extensive studies on their presence, we know essentially nothing about why antimicrobials do not trigger rampant resistance evolution in target parasites. In stark contrast to virtually any other organism, fungus-farming termites have evolved a sophisticated agricultural symbiosis that pre-dates human farming by 30 million years without suffering from specialised diseases. I will capitalise on recent pioneering work in my group on proximate evidence for antimicrobial defences in the termites, their fungal crops, and their complex gut bacterial communities, by proposing to develop the farming symbiosis as a major model to test three novel concepts that may account for the evasion of resistance evolution. First, the antimicrobial compounds may have properties and evolve in ways that preclude resistance evolution in pathogens. Second, resistance is only possible towards individual compounds and not natural antimicrobial cocktails. Third, pathogens can only successfully invade and proliferate if they bypass several consecutive lines of defence, analogous to the six hallmarks of metazoan defence against cancer development. Addressing these concepts will allow fundamental insights into the remarkable success of complementary symbiont contributions to defence, and they will clarify the forces of multilevel natural selection that have allowed long-lived insect societies to evolve sustainability. Documenting and understanding these disease management principles is fundamentally important for several branches of evolutionary biology, and strategically important for adjusting human practices for future antimicrobial stewardship.
Max ERC Funding
1 998 809 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym DIVIMAGE
Project Bridging spatial and temporal resolution gaps in the study of cell division
Researcher (PI) Daniel Wolfram Gerlich
Host Institution (HI) INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
Call Details Starting Grant (StG), LS3, ERC-2011-StG_20101109
Summary Cell division underlies the growth and development of all living organisms. Following partitioning of bulk cytoplasmic contents by cleavage furrow ingression, dividing animal cells split by a distinct process termed abscission. Whereas a number of factors required for abscission have been identified in previous studies, it is not known by which mechanism they mediate fission of the intercellular bridge between the nascent sister cells. Here, we will establish correlative workflows of time-lapse imaging, super resolution fluorescence microscopy, electron tomography, and electrophysiological assays to bridge spatial and temporal resolution gaps in the study of abscission. We will further develop computational tools for image-based RNAi screening. With this, we aim to:
1) elucidate how membrane and cytoskeletal dynamics coordinately split the intercellular bridge;
2) uncover the signaling pathways controlling abscission timing.
Failure in abscission can lead to aneuploidy and cancer. Elucidating its mechanism and temporal control is therefore of general biological and medical relevance. The computational and correlative imaging methods developed in this project will further provide the research community new possibilities for mechanistic studies in intact cells.
Summary
Cell division underlies the growth and development of all living organisms. Following partitioning of bulk cytoplasmic contents by cleavage furrow ingression, dividing animal cells split by a distinct process termed abscission. Whereas a number of factors required for abscission have been identified in previous studies, it is not known by which mechanism they mediate fission of the intercellular bridge between the nascent sister cells. Here, we will establish correlative workflows of time-lapse imaging, super resolution fluorescence microscopy, electron tomography, and electrophysiological assays to bridge spatial and temporal resolution gaps in the study of abscission. We will further develop computational tools for image-based RNAi screening. With this, we aim to:
1) elucidate how membrane and cytoskeletal dynamics coordinately split the intercellular bridge;
2) uncover the signaling pathways controlling abscission timing.
Failure in abscission can lead to aneuploidy and cancer. Elucidating its mechanism and temporal control is therefore of general biological and medical relevance. The computational and correlative imaging methods developed in this project will further provide the research community new possibilities for mechanistic studies in intact cells.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym DNAMET
Project "DNA methylation, hydroxymethylation and cancer"
Researcher (PI) Kristian Helin
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), LS4, ERC-2011-ADG_20110310
Summary "DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. In cancer increased aberrant DNA methylation is believed to work as a silencing mechanism for tumor suppressor genes such as INK4A, RB1 and MLH1. The high frequency of abnormal DNA methylation found in cancer might be due to the inactivation of a proofreading and/or fidelity system regulating the correct patterns of DNA methylation. Currently we have very limited knowledge about such mechanisms.
In this research proposal, we will focus on elucidating the biological function of a novel protein family, which catalyzes the conversion of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl cytosine (5-hmC). By catalyzing this reaction the TET proteins most likely work as DNA demethylases, and they might therefore have a role in regulating DNA methylation fidelity. Interestingly, accumulated data has in the last 2 years shown that TET2 is one of the most frequently mutated genes in various hematological cancers. We propose to investigate the molecular mechanisms by which TET2 regulates normal hematopoiesis, how its inactivation leads to hematopoietic malignancies and how the protein contributes to the regulation of DNA methylation patterns and transcription. Furthermore, we propose several experimental approaches for identifying proteins required for the recruitment of TET proteins to target genes and to analyze their role in the regulation of DNA methylation patterns and in cancer. Finally, we will investigate the potential functional role of 5-hmC and explore the potential mechanisms by which this modification could be erased.
We expect to provide new insights into the biology of DNA methylation, hydroxymethylation and contribute to unravel the roles of TET proteins in normal physiology and cancer."
Summary
"DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. In cancer increased aberrant DNA methylation is believed to work as a silencing mechanism for tumor suppressor genes such as INK4A, RB1 and MLH1. The high frequency of abnormal DNA methylation found in cancer might be due to the inactivation of a proofreading and/or fidelity system regulating the correct patterns of DNA methylation. Currently we have very limited knowledge about such mechanisms.
In this research proposal, we will focus on elucidating the biological function of a novel protein family, which catalyzes the conversion of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl cytosine (5-hmC). By catalyzing this reaction the TET proteins most likely work as DNA demethylases, and they might therefore have a role in regulating DNA methylation fidelity. Interestingly, accumulated data has in the last 2 years shown that TET2 is one of the most frequently mutated genes in various hematological cancers. We propose to investigate the molecular mechanisms by which TET2 regulates normal hematopoiesis, how its inactivation leads to hematopoietic malignancies and how the protein contributes to the regulation of DNA methylation patterns and transcription. Furthermore, we propose several experimental approaches for identifying proteins required for the recruitment of TET proteins to target genes and to analyze their role in the regulation of DNA methylation patterns and in cancer. Finally, we will investigate the potential functional role of 5-hmC and explore the potential mechanisms by which this modification could be erased.
We expect to provide new insights into the biology of DNA methylation, hydroxymethylation and contribute to unravel the roles of TET proteins in normal physiology and cancer."
Max ERC Funding
2 298 000 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym DormantMicrobes
Project Revealing the function of dormant soil microorganisms and the cues for their awakening
Researcher (PI) Dagmar Woebken
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary Soils are considered the last scientific frontiers that harbor one of the most diverse microbial communities on Earth. It is hypothesized that this diversity allows for redundancy in microbial key processes, thereby ensuring ecosystem stability. Much of this functional redundancy is embodied in non-active, dormant microorganisms that represent the ‘microbial seed bank’, which is characterized by a high number of low abundant taxa. Based on the recent theory of a ‘dynamic rank-abundance curve’, it is hypothesized that the rare dormant organisms can be recruited to participate in a given function upon resuscitation with environmental cue(s). In this project I will test this hypothesis on a level that matters for ecosystem processes – the functional level – by an innovative approach combining stable isotope probing (SIP) and sequencing with process-level and single-cell activity analysis.
By testing 4 hypotheses, we will (1) reveal environmental cues that resuscitate dormant microorganisms involved in major soil functions and identify the activated microorganisms. The activity of the resuscitated communities will be analyzed at the process level, as well as at the single-cell by NanoSIMS, thereby allowing us to elucidate the impact of dormancy/resuscitation dynamics on targeted processes at the population and ecosystem level. (2) We will investigate the genetics of microbial dormancy-resuscitation strategies in a natural model environment for dormancy, an arid ecosystem, by metatranscriptome analysis of critical dormancy-resuscitation steps. (3) We will retrieve genomic information of primarily rare, but after resuscitation active, microorganisms involved in important soil processes, as they presumably contain so far unknown genomic potential. In summary, this project will generate essential knowledge on the stability of microbial key processes and on the diversity, the function and the genetics of the dormant majority in terrestrial ecosystems.
Summary
Soils are considered the last scientific frontiers that harbor one of the most diverse microbial communities on Earth. It is hypothesized that this diversity allows for redundancy in microbial key processes, thereby ensuring ecosystem stability. Much of this functional redundancy is embodied in non-active, dormant microorganisms that represent the ‘microbial seed bank’, which is characterized by a high number of low abundant taxa. Based on the recent theory of a ‘dynamic rank-abundance curve’, it is hypothesized that the rare dormant organisms can be recruited to participate in a given function upon resuscitation with environmental cue(s). In this project I will test this hypothesis on a level that matters for ecosystem processes – the functional level – by an innovative approach combining stable isotope probing (SIP) and sequencing with process-level and single-cell activity analysis.
By testing 4 hypotheses, we will (1) reveal environmental cues that resuscitate dormant microorganisms involved in major soil functions and identify the activated microorganisms. The activity of the resuscitated communities will be analyzed at the process level, as well as at the single-cell by NanoSIMS, thereby allowing us to elucidate the impact of dormancy/resuscitation dynamics on targeted processes at the population and ecosystem level. (2) We will investigate the genetics of microbial dormancy-resuscitation strategies in a natural model environment for dormancy, an arid ecosystem, by metatranscriptome analysis of critical dormancy-resuscitation steps. (3) We will retrieve genomic information of primarily rare, but after resuscitation active, microorganisms involved in important soil processes, as they presumably contain so far unknown genomic potential. In summary, this project will generate essential knowledge on the stability of microbial key processes and on the diversity, the function and the genetics of the dormant majority in terrestrial ecosystems.
Max ERC Funding
1 499 356 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym DPC_REPAIR
Project Mechanism of DNA-protein cross-link repair in S phase
Researcher (PI) Julien Philippe Carlos Duxin
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary DNA-protein cross-links (DPCs) are common DNA lesions caused by endogenous, environmental, and chemotherapeutic agents. Cells are susceptible to these lesions during S phase, as DPCs impede replication fork progression and are likely to induce genomic instability, a cause of cancer and aging. Despite its relevance to human health, the repair of DPCs is poorly understood. Research on DPC repair has mainly involved testing cellular responses to compounds such as formaldehyde, but these agents induce a wide variety of DNA lesions, and conflicting results have been reported. To overcome these obstacles, I have developed the first in vitro system that recapitulates replication-coupled DPC repair. In this system, a plasmid containing a site-specific DPC is replicated in Xenopus egg extracts. Using this approach, I demonstrated that DPC repair requires DNA replication. When a replication fork encounters a DPC, the DPC is degraded into a peptide-adduct, which allows replication bypass by translesion DNA synthesis. Importantly, these experiments identified a novel proteolytic pathway whose activity is regulated by replication.
This in vitro system now provides a powerful means to identify and characterize the different factors that participate in S phase DPC repair. I speculate that for DPC processing to occur, the protein-adduct must first be detected, then marked for degradation and ultimately degraded. Using a series of complementary strategies, which will take advantage of the in vitro system combined with proteome and genome wide approaches, I seek to uncover the different players that participate in each of these events. This project will enable a detailed mechanistic outlook of a complex multi-step reaction that has not been feasible to achieve using existing methodologies. It will also improve our understanding of how DPCs impact genomic stability and the consequences of not repairing these lesions for human health.
Summary
DNA-protein cross-links (DPCs) are common DNA lesions caused by endogenous, environmental, and chemotherapeutic agents. Cells are susceptible to these lesions during S phase, as DPCs impede replication fork progression and are likely to induce genomic instability, a cause of cancer and aging. Despite its relevance to human health, the repair of DPCs is poorly understood. Research on DPC repair has mainly involved testing cellular responses to compounds such as formaldehyde, but these agents induce a wide variety of DNA lesions, and conflicting results have been reported. To overcome these obstacles, I have developed the first in vitro system that recapitulates replication-coupled DPC repair. In this system, a plasmid containing a site-specific DPC is replicated in Xenopus egg extracts. Using this approach, I demonstrated that DPC repair requires DNA replication. When a replication fork encounters a DPC, the DPC is degraded into a peptide-adduct, which allows replication bypass by translesion DNA synthesis. Importantly, these experiments identified a novel proteolytic pathway whose activity is regulated by replication.
This in vitro system now provides a powerful means to identify and characterize the different factors that participate in S phase DPC repair. I speculate that for DPC processing to occur, the protein-adduct must first be detected, then marked for degradation and ultimately degraded. Using a series of complementary strategies, which will take advantage of the in vitro system combined with proteome and genome wide approaches, I seek to uncover the different players that participate in each of these events. This project will enable a detailed mechanistic outlook of a complex multi-step reaction that has not been feasible to achieve using existing methodologies. It will also improve our understanding of how DPCs impact genomic stability and the consequences of not repairing these lesions for human health.
Max ERC Funding
1 498 856 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym DROSOPIRNAS
Project The piRNA pathway in the Drosophila germline a small RNA based genome immune system
Researcher (PI) Julius Brennecke
Host Institution (HI) INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
Call Details Starting Grant (StG), LS3, ERC-2010-StG_20091118
Summary The discovery of RNA interference (RNAi) has revolutionized biology. As a technology it opened up new experimental and therapeutic avenues. As a biological phenomenon it changed our view on a diverse array of cellular processes. Among those are the control of gene expression, the suppression of viral replication, the formation of heterochromatin and the protection of the genome against selfish genetic elements such as transposons.
I propose to study the molecular mechanism and the biological impact of a recently discovered RNAi pathway, the Piwi interacting RNA pathway (piRNA pathway).
The piRNA pathway is an evolutionarily conserved small RNA pathway acting in the animal germline. It is the key genome surveillance system that suppresses the activity of transposons. Recent work has provided a conceptual framework for this pathway: According to this, the genome stores transposon sequences in heterochromatic loci called piRNA clusters. These provide the RNA substrates for the biogenesis of 23-29 nt long piRNAs. An amplification cycle steers piRNA production predominantly to those cluster regions that are complementary to transposons being active at a given time. Finally, piRNAs guide a protein complex centered on Piwi-proteins to complementary transposon RNAs in the cell, leading to their silencing.
In contrast to other RNAi pathways, the mechanistic framework of the piRNA pathway is largely unknown. Moreover, the spectrum of biological processes impacted by it is only poorly understood. piRNAs are for example not only derived from transposon sequences but also from various other genomic repeats that are enriched at telomeres and in heterochromatin.
We will systematically dissect the piRNA pathway regarding its molecular architecture as well as its biological functions in Drosophila. Our studies will be a combination of fly genetics, proteomics and genomics approaches. Throughout we aim at linking our results back to the underlying biology of germline development.
Summary
The discovery of RNA interference (RNAi) has revolutionized biology. As a technology it opened up new experimental and therapeutic avenues. As a biological phenomenon it changed our view on a diverse array of cellular processes. Among those are the control of gene expression, the suppression of viral replication, the formation of heterochromatin and the protection of the genome against selfish genetic elements such as transposons.
I propose to study the molecular mechanism and the biological impact of a recently discovered RNAi pathway, the Piwi interacting RNA pathway (piRNA pathway).
The piRNA pathway is an evolutionarily conserved small RNA pathway acting in the animal germline. It is the key genome surveillance system that suppresses the activity of transposons. Recent work has provided a conceptual framework for this pathway: According to this, the genome stores transposon sequences in heterochromatic loci called piRNA clusters. These provide the RNA substrates for the biogenesis of 23-29 nt long piRNAs. An amplification cycle steers piRNA production predominantly to those cluster regions that are complementary to transposons being active at a given time. Finally, piRNAs guide a protein complex centered on Piwi-proteins to complementary transposon RNAs in the cell, leading to their silencing.
In contrast to other RNAi pathways, the mechanistic framework of the piRNA pathway is largely unknown. Moreover, the spectrum of biological processes impacted by it is only poorly understood. piRNAs are for example not only derived from transposon sequences but also from various other genomic repeats that are enriched at telomeres and in heterochromatin.
We will systematically dissect the piRNA pathway regarding its molecular architecture as well as its biological functions in Drosophila. Our studies will be a combination of fly genetics, proteomics and genomics approaches. Throughout we aim at linking our results back to the underlying biology of germline development.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym DTSSCP
Project Determinants of mammalian transcription start site selection and core promoter usage
Researcher (PI) Albin Sandelin
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Understanding the mechanisms underlying the initiation and regulation of transcription remains one of the most fundamental questions in biology. Much of what we know about the transcription process was inferred from experiments on a handful of genes. As these experiments are not realistically scalable, corresponding computational methods building on these findings have emerged; however, these are not accurate enough for annotation of genomes. The limitations reflect that we have no accurate universal model describing transcription initiation; to a large extent, our understanding is based on case stories. Recently, high-throughput methods have been developed to chart the TSS landscape with nucleotide resolution. Using these data, I have dissected promoters at nucleotide level and found patterns that explain the transcription initiation rate for individual nucleotides. The objective for this work is to extend this to the first universal model for how cells select core promoters and associated TSSs. This will have two counterparts: i)prediction of TSSs from DNA sequence given a region of accessible DNA, and ii)prediction of DNA accessibility based on DNA sequences and dynamic epigenetic factors. Such a model will be a corner stone of future experimental and computational transcriptome and gene regulation studies.
Summary
Understanding the mechanisms underlying the initiation and regulation of transcription remains one of the most fundamental questions in biology. Much of what we know about the transcription process was inferred from experiments on a handful of genes. As these experiments are not realistically scalable, corresponding computational methods building on these findings have emerged; however, these are not accurate enough for annotation of genomes. The limitations reflect that we have no accurate universal model describing transcription initiation; to a large extent, our understanding is based on case stories. Recently, high-throughput methods have been developed to chart the TSS landscape with nucleotide resolution. Using these data, I have dissected promoters at nucleotide level and found patterns that explain the transcription initiation rate for individual nucleotides. The objective for this work is to extend this to the first universal model for how cells select core promoters and associated TSSs. This will have two counterparts: i)prediction of TSSs from DNA sequence given a region of accessible DNA, and ii)prediction of DNA accessibility based on DNA sequences and dynamic epigenetic factors. Such a model will be a corner stone of future experimental and computational transcriptome and gene regulation studies.
Max ERC Funding
812 399 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym DUB-DECODE
Project Systematic Decoding of Deubiquitylase-Regulated Signaling Networks
Researcher (PI) Chuna Ram Choudhary
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Consolidator Grant (CoG), LS2, ERC-2014-CoG
Summary Cellular processes are largely governed by sophisticated protein posttranslational modification (PTM)-dependent signaling networks, and a systematic understanding of regulatory PTM-based networks is a key goal in modern biology. Ubiquitin is a small, evolutionarily conserved signaling protein that acts as a PTM after being covalently conjugated to other proteins. Reversible ubiquitylation forms the most versatile and largest eukaryote-exclusive signaling system, and regulates the stability and function of almost all proteins in cells. Deubiquitylases (DUBs) are ubiquitin-specific proteases that remove substrate-conjugated ubiquitin, and thereby regulate virtually all ubiquitylation-dependent signaling. Because of their central role in ubiquitin signaling, DUBs have essential functions in mammalian physiology and development, and the dysregulated expression and mutation of DUBs is frequently associated with human diseases. Despite their vital functions, very little is known about the proteins and ubiquitylation sites that are regulated by DUBs and this knowledge gap is hampering our understanding of the molecular mechanisms by which DUBs control diverse biological processes. Recently, we developed a mass spectrometry-based proteomics approach that allowed unbiased and site-specific quantification of ubiquitylation on a systems-wide scale. Here we propose to comprehensively investigate DUB-regulated ubiquitin signaling in human cells. We will integrate interdisciplinary approaches to develop next-generation cell models and innovative proteomic technologies to systematically decode DUB function in human cells. This will enable a novel and detailed understanding of DUB-regulated signaling networks, and open up new avenues for further research into the mechanisms and biological functions of ubiquitylation and of ubiquitin-like modifiers.
Summary
Cellular processes are largely governed by sophisticated protein posttranslational modification (PTM)-dependent signaling networks, and a systematic understanding of regulatory PTM-based networks is a key goal in modern biology. Ubiquitin is a small, evolutionarily conserved signaling protein that acts as a PTM after being covalently conjugated to other proteins. Reversible ubiquitylation forms the most versatile and largest eukaryote-exclusive signaling system, and regulates the stability and function of almost all proteins in cells. Deubiquitylases (DUBs) are ubiquitin-specific proteases that remove substrate-conjugated ubiquitin, and thereby regulate virtually all ubiquitylation-dependent signaling. Because of their central role in ubiquitin signaling, DUBs have essential functions in mammalian physiology and development, and the dysregulated expression and mutation of DUBs is frequently associated with human diseases. Despite their vital functions, very little is known about the proteins and ubiquitylation sites that are regulated by DUBs and this knowledge gap is hampering our understanding of the molecular mechanisms by which DUBs control diverse biological processes. Recently, we developed a mass spectrometry-based proteomics approach that allowed unbiased and site-specific quantification of ubiquitylation on a systems-wide scale. Here we propose to comprehensively investigate DUB-regulated ubiquitin signaling in human cells. We will integrate interdisciplinary approaches to develop next-generation cell models and innovative proteomic technologies to systematically decode DUB function in human cells. This will enable a novel and detailed understanding of DUB-regulated signaling networks, and open up new avenues for further research into the mechanisms and biological functions of ubiquitylation and of ubiquitin-like modifiers.
Max ERC Funding
1 972 570 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym EASTFE3
Project Efficient and accurate simulation techniques for free energies, enthalpies and entropies
Researcher (PI) Bernard Christiaan Oostenbrink
Host Institution (HI) UNIVERSITAET FUER BODENKULTUR WIEN
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Computational, structure-based, drug design offers insight at an atomic resolution, which is commonly not attainable by experimental means. Detailed calculations on protein-ligand interactions help to rationalize and predict experimental findings. Accurate and efficient calculations of binding free energies is essential in this respect. In addition, knowledge concerning the enthalpic and entropic contributions are highly relevant to determine novel drug design strategies and to understand the underlying principles of ligand binding.
Currently available methods to address ligand affinity either do not include all relevant contributions to the binding free energy, or are too computationally demanding to be applied straightforwardly. In addition, calculations on enthalpy and entropy for drug design purposes are very rare, due to the difficulty in calculating these accurately. This proposal describes the research that leads the way to new, standard applications to be used in drug design processes in academia and industry. Furthermore, we propose to investigate the enthalpic and entropic contributions to ligand binding. We define a ligand-surroundings enthalpy and entropy, which conveys more information than the experimentally accessible enthalpy and entropy of ligand binding.
In support of this research, we will develop new enhanced sampling techniques which not only render the above calculations practically feasible, but which will also find their application in related research questions such as the protein folding problem or the elucidation of protein-protein interactions.
The methods described are highly relevant for the pharmaceutical industry, where currently available computational approaches are insufficient to answer the questions of todays drug discovery programmes.
Summary
Computational, structure-based, drug design offers insight at an atomic resolution, which is commonly not attainable by experimental means. Detailed calculations on protein-ligand interactions help to rationalize and predict experimental findings. Accurate and efficient calculations of binding free energies is essential in this respect. In addition, knowledge concerning the enthalpic and entropic contributions are highly relevant to determine novel drug design strategies and to understand the underlying principles of ligand binding.
Currently available methods to address ligand affinity either do not include all relevant contributions to the binding free energy, or are too computationally demanding to be applied straightforwardly. In addition, calculations on enthalpy and entropy for drug design purposes are very rare, due to the difficulty in calculating these accurately. This proposal describes the research that leads the way to new, standard applications to be used in drug design processes in academia and industry. Furthermore, we propose to investigate the enthalpic and entropic contributions to ligand binding. We define a ligand-surroundings enthalpy and entropy, which conveys more information than the experimentally accessible enthalpy and entropy of ligand binding.
In support of this research, we will develop new enhanced sampling techniques which not only render the above calculations practically feasible, but which will also find their application in related research questions such as the protein folding problem or the elucidation of protein-protein interactions.
The methods described are highly relevant for the pharmaceutical industry, where currently available computational approaches are insufficient to answer the questions of todays drug discovery programmes.
Max ERC Funding
1 485 615 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ECOGENOMICINBREEDING
Project Comparative studies of inbreeding effects on evolutionary processes in non-model animal populations
Researcher (PI) Trine Bilde
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Comparative studies of inbreeding and evolution in non-model animal populations: a research proposal directed towards integrating ecological and evolutionary research on inbreeding. Specifically, my aim is to apply novel ecogenomics tools in the study of evolutionary consequences of inbreeding in non-model animal populations. At present, our understanding of inbreeding is dominated by studies of a small number of model organisms. I will undertake comparative studies on inbreeding effects in a genus of spiders containing independently evolved naturally inbreeding species as well as outcrossing sister species. The study of a naturally inbreeding animal species will provide unique insights to consequences of inbreeding for population genetic structure, genome-wide genetic diversity, and evolution of life history traits. Social spiders are not only unique because they naturally inbreed, but also by being cooperative and showing allomaternal brood care including self-sacrifice, and they evolve highly female-biased sex-ratios, a trait that is not well understood in diploid species. My research objectives are 1) to establish a robust phylogeny for comparative studies; 2) to quantify the effects of inbreeding on the genetic diversity within and between populations; 3) to estimate gene flow among inbred lineages to determine whether inbred lineages diversify but retain the potential for gene exchange, or undergo cryptic speciation; 4) to determine effects of inbreeding on gene expression; 5) to investigate the mechanism underlying the genetic sex determination system that cause female biased sex-ratios; and finally 6) to determine whether sex-ratio is under adaptive parental control in response to genetic relatedness and ecological constraints. Addressing these objectives will generate novel insights and expand current knowledge on the evolutionary ecology of inbreeding in wild animal populations.
Summary
Comparative studies of inbreeding and evolution in non-model animal populations: a research proposal directed towards integrating ecological and evolutionary research on inbreeding. Specifically, my aim is to apply novel ecogenomics tools in the study of evolutionary consequences of inbreeding in non-model animal populations. At present, our understanding of inbreeding is dominated by studies of a small number of model organisms. I will undertake comparative studies on inbreeding effects in a genus of spiders containing independently evolved naturally inbreeding species as well as outcrossing sister species. The study of a naturally inbreeding animal species will provide unique insights to consequences of inbreeding for population genetic structure, genome-wide genetic diversity, and evolution of life history traits. Social spiders are not only unique because they naturally inbreed, but also by being cooperative and showing allomaternal brood care including self-sacrifice, and they evolve highly female-biased sex-ratios, a trait that is not well understood in diploid species. My research objectives are 1) to establish a robust phylogeny for comparative studies; 2) to quantify the effects of inbreeding on the genetic diversity within and between populations; 3) to estimate gene flow among inbred lineages to determine whether inbred lineages diversify but retain the potential for gene exchange, or undergo cryptic speciation; 4) to determine effects of inbreeding on gene expression; 5) to investigate the mechanism underlying the genetic sex determination system that cause female biased sex-ratios; and finally 6) to determine whether sex-ratio is under adaptive parental control in response to genetic relatedness and ecological constraints. Addressing these objectives will generate novel insights and expand current knowledge on the evolutionary ecology of inbreeding in wild animal populations.
Max ERC Funding
1 497 248 €
Duration
Start date: 2012-01-01, End date: 2017-09-30
Project acronym EFFECTOMICS
Project EFFECTOMICS- elucidating the toolbox of
biotrophic pathogens
Researcher (PI) Armin Djamei
Host Institution (HI) GREGOR MENDEL INSTITUT FUR MOLEKULARE PFLANZENBIOLOGIE GMBH
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary "Our existence as human beings is based on plants and their products. Worldwide, crops are threatened by pests including biotrophic fungi. Therefore, it is of vital interest to develop new strategies to reduce crop losses and to improve crop plants for the growing world population. Biotrophic plant pathogens employ small secreted molecules, so-called effectors, to overcome plant defence systems and to establish biotrophy. The rapid increase in available genome sequences of biotrophic pathogens and in transcriptomic datasets of their biotrophic stages allow us to identify putative secreted proteinaceous effectors by bioinformatic means. However, our insight into the functions of these effectors is still very limited. In this proposal, the PI´s extensive experience on both the plant host side and the fungal pathogen side of the biotrophic interaction is exploited to develop a workflow for functional, partially robotic-based screens to fill this gap. The combination of screen-deduced functional information with the analysis of effector localisation and specific host interactors will provide the basis for formulating starting hypotheses of effector function. These will then be tested in individual case studies, employing the well established Ustilago maydis-Zea mays as well as the new Ustilago bromivora-Brachypodium distachyon model systems. The project will be conducted at the Max Planck Institute (MPI) for Terrestrial Microbiology in a highly stimulating scientific environment. Linking the dramatic morphological changes and underlying molecular events during biotrophy on the host side to the action of subsets or even single effector proteins will allow the creation of a synthetic effectome. The deep functional understanding of the manipulative toolbox of biotrophs has the potential to facilitate transgenic crop development and will open a new era in the development of sustainable antifungal plant protection strategies."
Summary
"Our existence as human beings is based on plants and their products. Worldwide, crops are threatened by pests including biotrophic fungi. Therefore, it is of vital interest to develop new strategies to reduce crop losses and to improve crop plants for the growing world population. Biotrophic plant pathogens employ small secreted molecules, so-called effectors, to overcome plant defence systems and to establish biotrophy. The rapid increase in available genome sequences of biotrophic pathogens and in transcriptomic datasets of their biotrophic stages allow us to identify putative secreted proteinaceous effectors by bioinformatic means. However, our insight into the functions of these effectors is still very limited. In this proposal, the PI´s extensive experience on both the plant host side and the fungal pathogen side of the biotrophic interaction is exploited to develop a workflow for functional, partially robotic-based screens to fill this gap. The combination of screen-deduced functional information with the analysis of effector localisation and specific host interactors will provide the basis for formulating starting hypotheses of effector function. These will then be tested in individual case studies, employing the well established Ustilago maydis-Zea mays as well as the new Ustilago bromivora-Brachypodium distachyon model systems. The project will be conducted at the Max Planck Institute (MPI) for Terrestrial Microbiology in a highly stimulating scientific environment. Linking the dramatic morphological changes and underlying molecular events during biotrophy on the host side to the action of subsets or even single effector proteins will allow the creation of a synthetic effectome. The deep functional understanding of the manipulative toolbox of biotrophs has the potential to facilitate transgenic crop development and will open a new era in the development of sustainable antifungal plant protection strategies."
Max ERC Funding
1 446 316 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym EIMS
Project "Early infectious, inflammatory and immune mechanisms in schizophrenia"
Researcher (PI) Preben Bo Mortensen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), LS5, ERC-2011-ADG_20110310
Summary "The ambitious goal of this proposal is to identify causal mechanisms in schizophrenia, a devastating disease affecting about 1 percent of the population worldwide, and for which there is no current prevention or cure.
If my team and I are successful, we will discover etiological factors that can be targets for preventive interventions on the general population level and in high-risk groups, as well as inform the development of novel treatments.
I will use a truly unique population-based set of registers and biobanks, based upon a total national Danish birth cohort of more that 1.6 million individuals, and apply a novel combination of epidemiological design and methods and molecular biological techniques to the study of early risk factors for schizophrenia: I propose to combine cohort, nested case-control and case-sibling designs in studies of this total national birth cohort with detailed biological assessment of genetic and environmental risk factors operating during fetal life and around birth, in combination with detailed longitudinal information about the life course of cases, controls and their relatives.
Together with my team, I will for the first time in a human population empirically test a range of novel and specific hypotheses, tied together by a common theoretical framework of inflammatory and immune mechanisms interacting with individual genetic vulnerability during fetal life. Specifically the focus will be on infectious agents, markers of inflammation, effects of maternal auto-antibodies, and interactions with maternal vitamin D as well as genes involved in apoptosis and other relevant pathways. All findings will be tested in independent replication samples from the same population and further validated by comparison to healthy sibling controls. Because my studies are performed in a total population birth cohort, we will be able to make risk prediction suitable for the identification of targets for preventive strategies."
Summary
"The ambitious goal of this proposal is to identify causal mechanisms in schizophrenia, a devastating disease affecting about 1 percent of the population worldwide, and for which there is no current prevention or cure.
If my team and I are successful, we will discover etiological factors that can be targets for preventive interventions on the general population level and in high-risk groups, as well as inform the development of novel treatments.
I will use a truly unique population-based set of registers and biobanks, based upon a total national Danish birth cohort of more that 1.6 million individuals, and apply a novel combination of epidemiological design and methods and molecular biological techniques to the study of early risk factors for schizophrenia: I propose to combine cohort, nested case-control and case-sibling designs in studies of this total national birth cohort with detailed biological assessment of genetic and environmental risk factors operating during fetal life and around birth, in combination with detailed longitudinal information about the life course of cases, controls and their relatives.
Together with my team, I will for the first time in a human population empirically test a range of novel and specific hypotheses, tied together by a common theoretical framework of inflammatory and immune mechanisms interacting with individual genetic vulnerability during fetal life. Specifically the focus will be on infectious agents, markers of inflammation, effects of maternal auto-antibodies, and interactions with maternal vitamin D as well as genes involved in apoptosis and other relevant pathways. All findings will be tested in independent replication samples from the same population and further validated by comparison to healthy sibling controls. Because my studies are performed in a total population birth cohort, we will be able to make risk prediction suitable for the identification of targets for preventive strategies."
Max ERC Funding
2 471 736 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym EINME
Project Systematic investigation of epistasis in molecular evolution
Researcher (PI) Fyodor Kondrashov
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary Why does a mutation have a deleterious effect when it occurs in one species but shows no apparent consequences on the phenotype when it occurs in another species? What are some of possible explanations on the molecular basis of this phenomenon? Are the computational predictions of the extent of this phenomenon in nature accurate? The present project aims to take a swing at answering, at least partially, these basic questions of epistasis in molecular evolution. Within our work we plan to address these issues using computational approaches, systematic fitness assays of engineered orthologous genotypes and experimental functional assays of specific cases of epistasis identified by evolutionary analysis. By tackling these goals and utilising this array of approaches the projects aims to create a synthesis between theory and experimentation under the confines of a single laboratory that will allow us to study this phenomenon in a systematic fashion on the interface of different fields and methodologies.
Summary
Why does a mutation have a deleterious effect when it occurs in one species but shows no apparent consequences on the phenotype when it occurs in another species? What are some of possible explanations on the molecular basis of this phenomenon? Are the computational predictions of the extent of this phenomenon in nature accurate? The present project aims to take a swing at answering, at least partially, these basic questions of epistasis in molecular evolution. Within our work we plan to address these issues using computational approaches, systematic fitness assays of engineered orthologous genotypes and experimental functional assays of specific cases of epistasis identified by evolutionary analysis. By tackling these goals and utilising this array of approaches the projects aims to create a synthesis between theory and experimentation under the confines of a single laboratory that will allow us to study this phenomenon in a systematic fashion on the interface of different fields and methodologies.
Max ERC Funding
1 461 576 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym ELEGANSNEUROCIRCUITS
Project Neuromodulation of Oxygen Chemosensory Circuits in Caenorhabditis elegans
Researcher (PI) Manuel Zimmer
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary An animal’s decision on how to respond to the environment is based not only on the sensory information available, but further depends on internal factors such as stress, sleep / wakefulness, hunger / satiety and experience. Neurotransmitters and neuropeptides in the brain modulate neural circuits accordingly so that appropriate behaviors are generated. Aberrant neuromodulation is implicated in diseases such as insomnia, obesity or anorexia. Given the complexity of most neural systems studied, we lack good models of how neuromodulators systemically affect the activities of neural networks.
To overcome this problem, I propose to study neural circuits in the nematode C. elegans, which is a genetically tractable model organism with a simple and anatomically defined nervous system. I will focus on the neural circuits involved in oxygen chemosensory behaviors. Worms can smell oxygen and they use this information to navigate through heterogeneous environments. This enables them to find food and to engage in social interactions. Oxygen chemosensory behaviors are highly modulated by experience and nutritional status, but the underlying mechanisms are not understood.
I established behavioral assays that allow studying the modulation of oxygen behaviors in a rigorously quantifiable manner. I also acquired expertise in micro-fabrication technologies and developed imaging devices to measure the activity of neurons in live animals. The first two aims of this proposal focus on the application of these technologies to study (A) how neuropeptides mediate experience dependent modulation of oxygen chemosensory circuits; and (B) how food availability and nutritional status modulate the same neural circuits. Aim (C) is an innovative engineering approach in which I will develop new microfluidic technologies that allow the simultaneous recording of oxygen evoked behaviors and neural activity. This will be beneficial for aims A and B and will pave way for new future research directions.
Summary
An animal’s decision on how to respond to the environment is based not only on the sensory information available, but further depends on internal factors such as stress, sleep / wakefulness, hunger / satiety and experience. Neurotransmitters and neuropeptides in the brain modulate neural circuits accordingly so that appropriate behaviors are generated. Aberrant neuromodulation is implicated in diseases such as insomnia, obesity or anorexia. Given the complexity of most neural systems studied, we lack good models of how neuromodulators systemically affect the activities of neural networks.
To overcome this problem, I propose to study neural circuits in the nematode C. elegans, which is a genetically tractable model organism with a simple and anatomically defined nervous system. I will focus on the neural circuits involved in oxygen chemosensory behaviors. Worms can smell oxygen and they use this information to navigate through heterogeneous environments. This enables them to find food and to engage in social interactions. Oxygen chemosensory behaviors are highly modulated by experience and nutritional status, but the underlying mechanisms are not understood.
I established behavioral assays that allow studying the modulation of oxygen behaviors in a rigorously quantifiable manner. I also acquired expertise in micro-fabrication technologies and developed imaging devices to measure the activity of neurons in live animals. The first two aims of this proposal focus on the application of these technologies to study (A) how neuropeptides mediate experience dependent modulation of oxygen chemosensory circuits; and (B) how food availability and nutritional status modulate the same neural circuits. Aim (C) is an innovative engineering approach in which I will develop new microfluidic technologies that allow the simultaneous recording of oxygen evoked behaviors and neural activity. This will be beneficial for aims A and B and will pave way for new future research directions.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2017-06-30
Project acronym ELEVATE
Project Eco-physiological tradeoffs with crop domestication: have farming ants cracked the code?
Researcher (PI) Jonathan Zvi SHIK
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2017-STG
Summary Domesticated crops hardly resemble their wild ancestors, and often trade higher yield in artificially optimized conditions for lower performance in fluctuating environments. Leafcutter ants (genus Atta) provide fascinating parallels with human farmers, harvesting fresh vegetation used as compost to produce domesticated fungal crops that feed massive societies with millions of workers. However, while human agricultural systems are imperiled by rapid global changes, leafcutter ants have managed to grow one type of cultivar from Texas to Argentina, thriving across extreme rainfall and temperature gradients and across diverse climates over millions of years. However, the eco-physiological mechanisms governing this farming resiliency are poorly understood.
I propose a new in vitro mapping paradigm to visualize the niche requirements of fungal cultivars. Creating multidimensional landscapes of nutrient availability (e.g. protein, carbohydrates, Na, P) and environmental stress (e.g. temperature, moisture, plant toxins, crop pathogens) I will answer three main questions:
1) What genes and biochemical pathways shape cultivar performance across interacting gradients of nutrition and stress?
2) Do colonies harvest substrates to navigate nutritional contours of cultivar performance maps and avoid production tradeoffs?
3) Do locally adaptive cultivar traits shape the performance of farming societies across regional ecological gradients, and over 60 million years of co-evolutionary crop domestication by farming ants?
My cutting-edge approach will deliver transformative advances to the field of eco-physiology, enabling seamless integration between field and laboratory experiments, and providing new ways to visualize evolutionary mechanisms across levels of biological organization from genes to symbiotic partnerships, and from within diverse farming assemblages to across populations spanning entire continents.
Summary
Domesticated crops hardly resemble their wild ancestors, and often trade higher yield in artificially optimized conditions for lower performance in fluctuating environments. Leafcutter ants (genus Atta) provide fascinating parallels with human farmers, harvesting fresh vegetation used as compost to produce domesticated fungal crops that feed massive societies with millions of workers. However, while human agricultural systems are imperiled by rapid global changes, leafcutter ants have managed to grow one type of cultivar from Texas to Argentina, thriving across extreme rainfall and temperature gradients and across diverse climates over millions of years. However, the eco-physiological mechanisms governing this farming resiliency are poorly understood.
I propose a new in vitro mapping paradigm to visualize the niche requirements of fungal cultivars. Creating multidimensional landscapes of nutrient availability (e.g. protein, carbohydrates, Na, P) and environmental stress (e.g. temperature, moisture, plant toxins, crop pathogens) I will answer three main questions:
1) What genes and biochemical pathways shape cultivar performance across interacting gradients of nutrition and stress?
2) Do colonies harvest substrates to navigate nutritional contours of cultivar performance maps and avoid production tradeoffs?
3) Do locally adaptive cultivar traits shape the performance of farming societies across regional ecological gradients, and over 60 million years of co-evolutionary crop domestication by farming ants?
My cutting-edge approach will deliver transformative advances to the field of eco-physiology, enabling seamless integration between field and laboratory experiments, and providing new ways to visualize evolutionary mechanisms across levels of biological organization from genes to symbiotic partnerships, and from within diverse farming assemblages to across populations spanning entire continents.
Max ERC Funding
1 427 741 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym EMOTIONCIRCUITS
Project Circuit mechanics of emotions in the limbic system
Researcher (PI) Wulf Eckhard Haubensak
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary Numerous studies established the role of the limbic system in fear and reward: it integrates sensory information, encodes emotional states and instructs other brain centers to regulate physiology and behavior. The limbic system, however, consists of many distinct and highly interconnected neuronal populations. Resolving how emotions are processed in this network at the level of single neural circuits remains a major challenge.
As entry point into the complexity of emotion circuitry, we propose to study, in exemplary fashion, how fear, as the most basic paradigm for emotions, is processed in key limbic hubs. Genetic manipulation of brain circuitry with electrophysiological methods and Pavlovian conditioning in mice, are powerful tools to explore which and how individual circuits in these hubs control emotional states, and, in turn, how genes and psychoactive drugs modulate circuit activity, emotional states and behavior.
We envision this ERC funded research to uncover general principles of the network organization of both emotions and behaviors. It is our hope that we contribute useful tools and methodological framework for investigating other brain functions in a similar manner.
Summary
Numerous studies established the role of the limbic system in fear and reward: it integrates sensory information, encodes emotional states and instructs other brain centers to regulate physiology and behavior. The limbic system, however, consists of many distinct and highly interconnected neuronal populations. Resolving how emotions are processed in this network at the level of single neural circuits remains a major challenge.
As entry point into the complexity of emotion circuitry, we propose to study, in exemplary fashion, how fear, as the most basic paradigm for emotions, is processed in key limbic hubs. Genetic manipulation of brain circuitry with electrophysiological methods and Pavlovian conditioning in mice, are powerful tools to explore which and how individual circuits in these hubs control emotional states, and, in turn, how genes and psychoactive drugs modulate circuit activity, emotional states and behavior.
We envision this ERC funded research to uncover general principles of the network organization of both emotions and behaviors. It is our hope that we contribute useful tools and methodological framework for investigating other brain functions in a similar manner.
Max ERC Funding
1 499 922 €
Duration
Start date: 2013-01-01, End date: 2018-06-30
Project acronym Enhancer ID
Project Identification and functional characterization of mammalian enhancers and transcriptional co-factors during cellular signaling and cell fate transitions
Researcher (PI) Alexander Stark
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Consolidator Grant (CoG), LS2, ERC-2014-CoG
Summary A major goal in biology is to understand how gene regulatory information is encoded by the human genome and how it defines different gene expression programs and cell types. Enhancers are genomic elements that control transcription, yet despite their importance, only a minority of enhancers are known and functionally characterized. In particular, their activity changes during cellular signalling or cell type transitions are largely elusive. Furthermore, fundamental questions about transcriptional co-factors have remained unanswered even though they regulate enhancer activities and have become attractive therapeutic targets, e.g. for cancer treatment.
Here, I propose a functional genomics approach in mammalian cells with three specific objectives: First, we will identify and functionally characterize transcriptional enhancers in selected human and mouse cells using the recently developed quantitative enhancer activity assay STARR-seq. Second, we will determine enhancer activity changes quantitatively during steroid hormone signalling, cell differentiation, and malignant transformation to reveal enhancers that are important for these processes. Third, we will systematically dissect the functional relationship of enhancers and transcriptional co-factors.
This proposal uses emerging in-house technology to address fundamental questions in enhancer biology and complement the genome-wide profiling of gene expression and chromatin states (e.g. by ENCODE). We will gain insights into the genomic organization of active enhancers and reveal chromatin or sequence features associated with dynamic activity changes. I also expect that we will be able to define co-factor requirements for enhancer function and reveal if different types of enhancers exist. Given our expertise in experimental and computational approaches and STARR-seq, I anticipate that we reach our aims and make major contributions to the understanding of gene regulation in mammals.
Summary
A major goal in biology is to understand how gene regulatory information is encoded by the human genome and how it defines different gene expression programs and cell types. Enhancers are genomic elements that control transcription, yet despite their importance, only a minority of enhancers are known and functionally characterized. In particular, their activity changes during cellular signalling or cell type transitions are largely elusive. Furthermore, fundamental questions about transcriptional co-factors have remained unanswered even though they regulate enhancer activities and have become attractive therapeutic targets, e.g. for cancer treatment.
Here, I propose a functional genomics approach in mammalian cells with three specific objectives: First, we will identify and functionally characterize transcriptional enhancers in selected human and mouse cells using the recently developed quantitative enhancer activity assay STARR-seq. Second, we will determine enhancer activity changes quantitatively during steroid hormone signalling, cell differentiation, and malignant transformation to reveal enhancers that are important for these processes. Third, we will systematically dissect the functional relationship of enhancers and transcriptional co-factors.
This proposal uses emerging in-house technology to address fundamental questions in enhancer biology and complement the genome-wide profiling of gene expression and chromatin states (e.g. by ENCODE). We will gain insights into the genomic organization of active enhancers and reveal chromatin or sequence features associated with dynamic activity changes. I also expect that we will be able to define co-factor requirements for enhancer function and reveal if different types of enhancers exist. Given our expertise in experimental and computational approaches and STARR-seq, I anticipate that we reach our aims and make major contributions to the understanding of gene regulation in mammals.
Max ERC Funding
1 999 906 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ENVISION
Project Novel mechanisms of early defense against virus infections
Researcher (PI) Søren Riis PALUDAN
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), LS6, ERC-2017-ADG
Summary Virus-induced type I interferons (IFN) have classically been considered to constitute the first line of defense against virus infections However, recent work by us and others has identified early antiviral actions that occur independently of inducible type I and III IFN expression and sometimes even prior to IFN action (e.g. Iversen,...., Paludan. Nature Immunology, 2016; Paludan. Trends in Immunology, 2016). These discoveries challenge the current thinking in the field that IFNs constitute the first line of defense. Hence, there is an urgent need for more detailed understanding of the immediate antiviral defense mechanisms. Most importantly, we remain to identify key players in IFN-independent antiviral responses, we completely lack insight into the mechanisms that govern these responses, and we also lack information on the importance of this layer of defense in mice and humans. In accord with this, my proposal follows four aims: (i) Identification of mechanisms of virus detection at epithelial surfaces, (ii) elucidation of the role of tonic IFN signaling in antiviral defense, (iii) identification and characterization of novel restriction factors, and (iv) deciphering the mechanisms that govern induction of the first wave of IFNs at epithelial surfaces. In addition, I will also explore the interactions between the early antiviral actions. To achieve the goals, I will combine unbiased genome-wide screens with hypothesis-driven approaches, and will integrate molecular biology/genetics/biochemistry with advanced cell culture systems, animal science and analysis of patient material. Strong preliminary data have been generated for all four aims, and world-leading collaborations are in place, hence minimizing the risks, and allowing fast progress. Our findings will (i) change the thinking in innate immunology by uncovering a novel layer of antiviral defense and (ii) provide new avenues for therapeutic modulation of immune responses.
Summary
Virus-induced type I interferons (IFN) have classically been considered to constitute the first line of defense against virus infections However, recent work by us and others has identified early antiviral actions that occur independently of inducible type I and III IFN expression and sometimes even prior to IFN action (e.g. Iversen,...., Paludan. Nature Immunology, 2016; Paludan. Trends in Immunology, 2016). These discoveries challenge the current thinking in the field that IFNs constitute the first line of defense. Hence, there is an urgent need for more detailed understanding of the immediate antiviral defense mechanisms. Most importantly, we remain to identify key players in IFN-independent antiviral responses, we completely lack insight into the mechanisms that govern these responses, and we also lack information on the importance of this layer of defense in mice and humans. In accord with this, my proposal follows four aims: (i) Identification of mechanisms of virus detection at epithelial surfaces, (ii) elucidation of the role of tonic IFN signaling in antiviral defense, (iii) identification and characterization of novel restriction factors, and (iv) deciphering the mechanisms that govern induction of the first wave of IFNs at epithelial surfaces. In addition, I will also explore the interactions between the early antiviral actions. To achieve the goals, I will combine unbiased genome-wide screens with hypothesis-driven approaches, and will integrate molecular biology/genetics/biochemistry with advanced cell culture systems, animal science and analysis of patient material. Strong preliminary data have been generated for all four aims, and world-leading collaborations are in place, hence minimizing the risks, and allowing fast progress. Our findings will (i) change the thinking in innate immunology by uncovering a novel layer of antiviral defense and (ii) provide new avenues for therapeutic modulation of immune responses.
Max ERC Funding
2 480 338 €
Duration
Start date: 2018-12-01, End date: 2023-11-30