Project acronym 1st-principles-discs
Project A First Principles Approach to Accretion Discs
Researcher (PI) Martin Elias Pessah
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Summary
Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Max ERC Funding
1 793 697 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 1toStopVax
Project RNA virus attenuation by altering mutational robustness
Researcher (PI) Marco VIGNUZZI
Host Institution (HI) INSTITUT PASTEUR
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary RNA viruses have extreme mutation frequencies. When a RNA virus replicates, nucleotide mutations are generated resulting in a population of variants. This genetic diversity creates a cloud of mutations that are potentially beneficial to viral survival, but the majority of mutations are detrimental to the virus. By increasing the mutation rate of a RNA virus, viral fitness is reduced because it generates more errors, and attenuates the virus during in vivo infection. Another feature that affects RNA virus fitness is mutational robustness. Mutational robustness is the ability to buffer the negative effects of mutation.
The attenuation of RNA viruses for vaccine production faces problems of genetic instability and reversion to a pathogenic phenotype. The conventional method for attenuation is mostly empirical and specific to the particular RNA virus species.
Hence, it cannot be universally applied to a variety of virus types. We've developed a non-empirical, rational means of attenuating RNA viruses, targeting mutational robustness as modifiable trait.
We demonstrate that mutational robustness of RNA viruses can be modified without changing a virus' physical and biological properties for vaccine production; yet the virus is attenuated as it becomes victim of its naturally high mutation rate. Specifically, the genome of RNA viruses are modified so that a larger proportion of mutations become lethal Stop mutations. Our technology places the virus one step away from these Stop mutations (1-to-Stop). We succeeded in attenuating two RNA viruses from very different viral families, confirming the broad applicability of this approach. These viruses were attenuated in vivo, generated high levels of neutralizing antibody and protected mice from lethal challenge infection.
The proposal now seeks to complete proof of concept studies and develop commercialization strategies to scale up this new technology to preclinical testing with industrial partners.
Summary
RNA viruses have extreme mutation frequencies. When a RNA virus replicates, nucleotide mutations are generated resulting in a population of variants. This genetic diversity creates a cloud of mutations that are potentially beneficial to viral survival, but the majority of mutations are detrimental to the virus. By increasing the mutation rate of a RNA virus, viral fitness is reduced because it generates more errors, and attenuates the virus during in vivo infection. Another feature that affects RNA virus fitness is mutational robustness. Mutational robustness is the ability to buffer the negative effects of mutation.
The attenuation of RNA viruses for vaccine production faces problems of genetic instability and reversion to a pathogenic phenotype. The conventional method for attenuation is mostly empirical and specific to the particular RNA virus species.
Hence, it cannot be universally applied to a variety of virus types. We've developed a non-empirical, rational means of attenuating RNA viruses, targeting mutational robustness as modifiable trait.
We demonstrate that mutational robustness of RNA viruses can be modified without changing a virus' physical and biological properties for vaccine production; yet the virus is attenuated as it becomes victim of its naturally high mutation rate. Specifically, the genome of RNA viruses are modified so that a larger proportion of mutations become lethal Stop mutations. Our technology places the virus one step away from these Stop mutations (1-to-Stop). We succeeded in attenuating two RNA viruses from very different viral families, confirming the broad applicability of this approach. These viruses were attenuated in vivo, generated high levels of neutralizing antibody and protected mice from lethal challenge infection.
The proposal now seeks to complete proof of concept studies and develop commercialization strategies to scale up this new technology to preclinical testing with industrial partners.
Max ERC Funding
150 000 €
Duration
Start date: 2016-09-01, End date: 2018-02-28
Project acronym 2-3-AUT
Project Surfaces, 3-manifolds and automorphism groups
Researcher (PI) Nathalie Wahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Summary
The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Max ERC Funding
724 992 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym 2D-4-CO2
Project DESIGNING 2D NANOSHEETS FOR CO2 REDUCTION AND INTEGRATION INTO vdW HETEROSTRUCTURES FOR ARTIFICIAL PHOTOSYNTHESIS
Researcher (PI) Damien VOIRY
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary CO2 reduction reaction (CO2RR) holds great promise for conversion of the green-house gas carbon dioxide into chemical fuels. The absence of catalytic materials demonstrating high performance and high selectivity currently hampers practical demonstration. CO2RR is also limited by the low solubility of CO2 in the electrolyte solution and therefore electrocatalytic reactions in gas phase using gas diffusion electrodes would be preferred. 2D materials have recently emerged as a novel class of electrocatalytic materials thanks to their rich structures and electronic properties. The synthesis of novel 2D catalysts and their implementation into photocatalytic systems would be a major step towards the development of devices for storing solar energy in the form of chemical fuels. With 2D-4-CO2, I propose to: 1) develop novel class of CO2RR catalysts based on conducting 2D nanosheets and 2) demonstrate photocatalytic conversion of CO2 into chemical fuels using structure engineered gas diffusion electrodes made of 2D conducting catalysts. To reach this goal, the first objective of 2D-4-CO2 is to provide guidelines for the development of novel cutting-edge 2D catalysts towards CO2 conversion into chemical fuel. This will be possible by using a multidisciplinary approach based on 2D materials engineering, advanced methods of characterization and novel designs of gas diffusion electrodes for the reduction of CO2 in gas phase. The second objective is to develop practical photocatalytic systems using van der Waals (vdW) heterostructures for the efficient conversion of CO2 into chemical fuels. vdW heterostructures will consist in rational designs of 2D materials and 2D-like materials deposited by atomic layer deposition in order to achieve highly efficient light conversion and prolonged stability. This project will not only enable a deeper understanding of the CO2RR but it will also provide practical strategies for large-scale application of CO2RR for solar fuel production.
Summary
CO2 reduction reaction (CO2RR) holds great promise for conversion of the green-house gas carbon dioxide into chemical fuels. The absence of catalytic materials demonstrating high performance and high selectivity currently hampers practical demonstration. CO2RR is also limited by the low solubility of CO2 in the electrolyte solution and therefore electrocatalytic reactions in gas phase using gas diffusion electrodes would be preferred. 2D materials have recently emerged as a novel class of electrocatalytic materials thanks to their rich structures and electronic properties. The synthesis of novel 2D catalysts and their implementation into photocatalytic systems would be a major step towards the development of devices for storing solar energy in the form of chemical fuels. With 2D-4-CO2, I propose to: 1) develop novel class of CO2RR catalysts based on conducting 2D nanosheets and 2) demonstrate photocatalytic conversion of CO2 into chemical fuels using structure engineered gas diffusion electrodes made of 2D conducting catalysts. To reach this goal, the first objective of 2D-4-CO2 is to provide guidelines for the development of novel cutting-edge 2D catalysts towards CO2 conversion into chemical fuel. This will be possible by using a multidisciplinary approach based on 2D materials engineering, advanced methods of characterization and novel designs of gas diffusion electrodes for the reduction of CO2 in gas phase. The second objective is to develop practical photocatalytic systems using van der Waals (vdW) heterostructures for the efficient conversion of CO2 into chemical fuels. vdW heterostructures will consist in rational designs of 2D materials and 2D-like materials deposited by atomic layer deposition in order to achieve highly efficient light conversion and prolonged stability. This project will not only enable a deeper understanding of the CO2RR but it will also provide practical strategies for large-scale application of CO2RR for solar fuel production.
Max ERC Funding
1 499 931 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym 2F4BIODYN
Project Two-Field Nuclear Magnetic Resonance Spectroscopy for the Exploration of Biomolecular Dynamics
Researcher (PI) Fabien Ferrage
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Summary
The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Max ERC Funding
1 462 080 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym 2G-CSAFE
Project Combustion of Sustainable Alternative Fuels for Engines used in aeronautics and automotives
Researcher (PI) Philippe Dagaut
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE8, ERC-2011-ADG_20110209
Summary This project aims at promoting sustainable combustion technologies for transport via validation of advanced combustion kinetic models obtained using sophisticated new laboratory experiments, engines, and theoretical computations, breaking through the current frontier of knowledge. It will focus on the unexplored kinetics of ignition and combustion of 2nd generation (2G) biofuels and blends with conventional fuels, which should provide energy safety and sustainability to Europe. The motivation is that no accurate kinetic models are available for the ignition, oxidation and combustion of 2G-biofuels, and improved ignition control is needed for new compression ignition engines. Crucial information is missing: data from well characterised experiments on combustion-generated pollutants and data on key-intermediates for fuels ignition in new engines.
To provide that knowledge new well-instrumented complementary experiments and kinetic modelling will be used. Measurements of key-intermediates, stables species, and pollutants will be performed. New ignition control strategies will be designed, opening new technological horizons. Kinetic modelling will be used for rationalising the results. Due to the complexity of 2G-biofuels and their unusual composition, innovative surrogates will be designed. Kinetic models for surrogate fuels will be generalised for extension to other compounds. The experimental results, together with ab-initio and detailed modelling, will serve to characterise the kinetics of ignition, combustion, and pollutants formation of fuels including 2G biofuels, and provide relevant data and models.
This research is risky because this is (i) the 1st effort to measure radicals by reactor/CRDS coupling, (ii) the 1st effort to use a μ-channel reactor to build ignition databases for conventional and bio-fuels, (iii) the 1st effort to design and use controlled generation and injection of reactive species to control ignition/combustion in compression ignition engines
Summary
This project aims at promoting sustainable combustion technologies for transport via validation of advanced combustion kinetic models obtained using sophisticated new laboratory experiments, engines, and theoretical computations, breaking through the current frontier of knowledge. It will focus on the unexplored kinetics of ignition and combustion of 2nd generation (2G) biofuels and blends with conventional fuels, which should provide energy safety and sustainability to Europe. The motivation is that no accurate kinetic models are available for the ignition, oxidation and combustion of 2G-biofuels, and improved ignition control is needed for new compression ignition engines. Crucial information is missing: data from well characterised experiments on combustion-generated pollutants and data on key-intermediates for fuels ignition in new engines.
To provide that knowledge new well-instrumented complementary experiments and kinetic modelling will be used. Measurements of key-intermediates, stables species, and pollutants will be performed. New ignition control strategies will be designed, opening new technological horizons. Kinetic modelling will be used for rationalising the results. Due to the complexity of 2G-biofuels and their unusual composition, innovative surrogates will be designed. Kinetic models for surrogate fuels will be generalised for extension to other compounds. The experimental results, together with ab-initio and detailed modelling, will serve to characterise the kinetics of ignition, combustion, and pollutants formation of fuels including 2G biofuels, and provide relevant data and models.
This research is risky because this is (i) the 1st effort to measure radicals by reactor/CRDS coupling, (ii) the 1st effort to use a μ-channel reactor to build ignition databases for conventional and bio-fuels, (iii) the 1st effort to design and use controlled generation and injection of reactive species to control ignition/combustion in compression ignition engines
Max ERC Funding
2 498 450 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym 3D-BioMat
Project Deciphering biomineralization mechanisms through 3D explorations of mesoscale crystalline structure in calcareous biomaterials
Researcher (PI) VIRGINIE CHAMARD
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Summary
The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Max ERC Funding
1 966 429 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 3D-CAP
Project 3D micro-supercapacitors for embedded electronics
Researcher (PI) David Sarinn PECH
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE7, ERC-2017-COG
Summary The realization of high-performance micro-supercapacitors is currently a big challenge but the ineluctable applications requiring such miniaturized energy storage devices are continuously emerging, from wearable electronic gadgets to wireless sensor networks. Although they store less energy than micro-batteries, micro-supercapacitors can be charged and discharged very rapidly and exhibit a quasi-unlimited lifetime. The global scientific research is consequently largely focused on the improvement of their capacitance and energetic performances. However, to date, they are still far from being able to power sensors or electronic components.
Here I propose a 3D paradigm shift of micro-supercapacitor design to ensure increased energy storage capacities. Hydrous ruthenium dioxide (RuO2) is a pseudocapacitive material for supercapacitor electrode well-known for its high capacitance. A thin-film of ruthenium will be deposited by atomic layer deposition (ALD), followed by an electrochemical oxidation process, onto a high-surface-area 3D current collector prepared via an ingenious dynamic template built with hydrogen bubbles. The structural features of these 3D architectures will be controllably tailored by the processing methodologies. These electrodes will be combined with an innovative electrolyte in solid form (a protic ionogel) able to operate over an extended cell voltage. In a parallel investigation, we will develop a fundamental understanding of electrochemical reactions occurring at the nanoscale with a FIB-patterned (Focused Ion Beam) RuO2 nano-supercapacitor. The resulting 3D micro-supercapacitors should display extremely high power, long lifetime and – for the first time – energy densities competing or even exceeding that of micro-batteries. As a key achievement, prototypes will be designed using a new concept based on a self-adaptative micro-supercapacitors matrix, which arranges itself according to the global amount of energy stored.
Summary
The realization of high-performance micro-supercapacitors is currently a big challenge but the ineluctable applications requiring such miniaturized energy storage devices are continuously emerging, from wearable electronic gadgets to wireless sensor networks. Although they store less energy than micro-batteries, micro-supercapacitors can be charged and discharged very rapidly and exhibit a quasi-unlimited lifetime. The global scientific research is consequently largely focused on the improvement of their capacitance and energetic performances. However, to date, they are still far from being able to power sensors or electronic components.
Here I propose a 3D paradigm shift of micro-supercapacitor design to ensure increased energy storage capacities. Hydrous ruthenium dioxide (RuO2) is a pseudocapacitive material for supercapacitor electrode well-known for its high capacitance. A thin-film of ruthenium will be deposited by atomic layer deposition (ALD), followed by an electrochemical oxidation process, onto a high-surface-area 3D current collector prepared via an ingenious dynamic template built with hydrogen bubbles. The structural features of these 3D architectures will be controllably tailored by the processing methodologies. These electrodes will be combined with an innovative electrolyte in solid form (a protic ionogel) able to operate over an extended cell voltage. In a parallel investigation, we will develop a fundamental understanding of electrochemical reactions occurring at the nanoscale with a FIB-patterned (Focused Ion Beam) RuO2 nano-supercapacitor. The resulting 3D micro-supercapacitors should display extremely high power, long lifetime and – for the first time – energy densities competing or even exceeding that of micro-batteries. As a key achievement, prototypes will be designed using a new concept based on a self-adaptative micro-supercapacitors matrix, which arranges itself according to the global amount of energy stored.
Max ERC Funding
1 673 438 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym 3D-PXM
Project 3D Piezoresponse X-ray Microscopy
Researcher (PI) Hugh SIMONS
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk.
This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage.
For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.
Summary
Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk.
This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage.
For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.
Max ERC Funding
1 496 941 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym 3D-REPAIR
Project Spatial organization of DNA repair within the nucleus
Researcher (PI) Evanthia Soutoglou
Host Institution (HI) CENTRE EUROPEEN DE RECHERCHE EN BIOLOGIE ET MEDECINE
Call Details Consolidator Grant (CoG), LS2, ERC-2015-CoG
Summary Faithful repair of double stranded DNA breaks (DSBs) is essential, as they are at the origin of genome instability, chromosomal translocations and cancer. Cells repair DSBs through different pathways, which can be faithful or mutagenic, and the balance between them at a given locus must be tightly regulated to preserve genome integrity. Although, much is known about DSB repair factors, how the choice between pathways is controlled within the nuclear environment is not understood. We have shown that nuclear architecture and non-random genome organization determine the frequency of chromosomal translocations and that pathway choice is dictated by the spatial organization of DNA in the nucleus. Nevertheless, what determines which pathway is activated in response to DSBs at specific genomic locations is not understood. Furthermore, the impact of 3D-genome folding on the kinetics and efficiency of DSB repair is completely unknown.
Here we aim to understand how nuclear compartmentalization, chromatin structure and genome organization impact on the efficiency of detection, signaling and repair of DSBs. We will unravel what determines the DNA repair specificity within distinct nuclear compartments using protein tethering, promiscuous biotinylation and quantitative proteomics. We will determine how DNA repair is orchestrated at different heterochromatin structures using a CRISPR/Cas9-based system that allows, for the first time robust induction of DSBs at specific heterochromatin compartments. Finally, we will investigate the role of 3D-genome folding in the kinetics of DNA repair and pathway choice using single nucleotide resolution DSB-mapping coupled to 3D-topological maps.
This proposal has significant implications for understanding the mechanisms controlling DNA repair within the nuclear environment and will reveal the regions of the genome that are susceptible to genomic instability and help us understand why certain mutations and translocations are recurrent in cancer
Summary
Faithful repair of double stranded DNA breaks (DSBs) is essential, as they are at the origin of genome instability, chromosomal translocations and cancer. Cells repair DSBs through different pathways, which can be faithful or mutagenic, and the balance between them at a given locus must be tightly regulated to preserve genome integrity. Although, much is known about DSB repair factors, how the choice between pathways is controlled within the nuclear environment is not understood. We have shown that nuclear architecture and non-random genome organization determine the frequency of chromosomal translocations and that pathway choice is dictated by the spatial organization of DNA in the nucleus. Nevertheless, what determines which pathway is activated in response to DSBs at specific genomic locations is not understood. Furthermore, the impact of 3D-genome folding on the kinetics and efficiency of DSB repair is completely unknown.
Here we aim to understand how nuclear compartmentalization, chromatin structure and genome organization impact on the efficiency of detection, signaling and repair of DSBs. We will unravel what determines the DNA repair specificity within distinct nuclear compartments using protein tethering, promiscuous biotinylation and quantitative proteomics. We will determine how DNA repair is orchestrated at different heterochromatin structures using a CRISPR/Cas9-based system that allows, for the first time robust induction of DSBs at specific heterochromatin compartments. Finally, we will investigate the role of 3D-genome folding in the kinetics of DNA repair and pathway choice using single nucleotide resolution DSB-mapping coupled to 3D-topological maps.
This proposal has significant implications for understanding the mechanisms controlling DNA repair within the nuclear environment and will reveal the regions of the genome that are susceptible to genomic instability and help us understand why certain mutations and translocations are recurrent in cancer
Max ERC Funding
1 999 750 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 3DEpi
Project Transgenerational epigenetic inheritance of chromatin states : the role of Polycomb and 3D chromosome architecture
Researcher (PI) Giacomo CAVALLI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary Epigenetic inheritance entails transmission of phenotypic traits not encoded in the DNA sequence and, in the most extreme case, Transgenerational Epigenetic Inheritance (TEI) involves transmission of memory through multiple generations. Very little is known on the mechanisms governing TEI and this is the subject of the present proposal. By transiently enhancing long-range chromatin interactions, we recently established isogenic Drosophila epilines that carry stable alternative epialleles, defined by differential levels of the Polycomb-dependent H3K27me3 mark. Furthermore, we extended our paradigm to natural phenotypes. These are ideal systems to study the role of Polycomb group (PcG) proteins and other components in regulating nuclear organization and epigenetic inheritance of chromatin states. The present project conjugates genetics, epigenomics, imaging and molecular biology to reach three critical aims.
Aim 1: Analysis of the molecular mechanisms regulating Polycomb-mediated TEI. We will identify the DNA, protein and RNA components that trigger and maintain transgenerational chromatin inheritance as well as their mechanisms of action.
Aim 2: Role of 3D genome organization in the regulation of TEI. We will analyze the developmental dynamics of TEI-inducing long-range chromatin interactions, identify chromatin components mediating 3D chromatin contacts and characterize their function in the TEI process.
Aim 3: Identification of a broader role of TEI during development. TEI might reflect a normal role of PcG components in the transmission of parental chromatin onto the next embryonic generation. We will explore this possibility by establishing other TEI paradigms and by relating TEI to the normal PcG function in these systems and in normal development.
This research program will unravel the biological significance and the molecular underpinnings of TEI and lead the way towards establishing this area of research into a consolidated scientific discipline.
Summary
Epigenetic inheritance entails transmission of phenotypic traits not encoded in the DNA sequence and, in the most extreme case, Transgenerational Epigenetic Inheritance (TEI) involves transmission of memory through multiple generations. Very little is known on the mechanisms governing TEI and this is the subject of the present proposal. By transiently enhancing long-range chromatin interactions, we recently established isogenic Drosophila epilines that carry stable alternative epialleles, defined by differential levels of the Polycomb-dependent H3K27me3 mark. Furthermore, we extended our paradigm to natural phenotypes. These are ideal systems to study the role of Polycomb group (PcG) proteins and other components in regulating nuclear organization and epigenetic inheritance of chromatin states. The present project conjugates genetics, epigenomics, imaging and molecular biology to reach three critical aims.
Aim 1: Analysis of the molecular mechanisms regulating Polycomb-mediated TEI. We will identify the DNA, protein and RNA components that trigger and maintain transgenerational chromatin inheritance as well as their mechanisms of action.
Aim 2: Role of 3D genome organization in the regulation of TEI. We will analyze the developmental dynamics of TEI-inducing long-range chromatin interactions, identify chromatin components mediating 3D chromatin contacts and characterize their function in the TEI process.
Aim 3: Identification of a broader role of TEI during development. TEI might reflect a normal role of PcG components in the transmission of parental chromatin onto the next embryonic generation. We will explore this possibility by establishing other TEI paradigms and by relating TEI to the normal PcG function in these systems and in normal development.
This research program will unravel the biological significance and the molecular underpinnings of TEI and lead the way towards establishing this area of research into a consolidated scientific discipline.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym 3DICE
Project 3D Interstellar Chemo-physical Evolution
Researcher (PI) Valentine Wakelam
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Summary
At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Max ERC Funding
1 166 231 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym 3S-BTMUC
Project Soft, Slimy, Sliding Interfaces: Biotribological Properties of Mucins and Mucus gels
Researcher (PI) Seunghwan Lee
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Summary
Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Max ERC Funding
1 432 920 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym 4D-GenEx
Project Spatio-temporal Organization and Expression of the Genome
Researcher (PI) Antoine COULON
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS2, ERC-2017-STG
Summary This project investigates the two-way relationship between spatio-temporal genome organization and coordinated gene regulation, through an approach at the interface between physics, computer science and biology.
In the nucleus, preferred positions are observed from chromosomes to single genes, in relation to normal and pathological cellular states. Evidence indicates a complex spatio-temporal coupling between co-regulated genes: e.g. certain genes cluster spatially when responding to similar factors and transcriptional noise patterns suggest domain-wide mechanisms. Yet, no individual experiment allows probing transcriptional coordination in 4 dimensions (FISH, live locus tracking, Hi-C...). Interpreting such data also critically requires theory (stochastic processes, statistical physics…). A lack of appropriate experimental/analytical approaches is impairing our understanding of the 4D genome.
Our proposal combines cutting-edge single-molecule imaging, signal-theory data analysis and physical modeling to study how genes coordinate in space and time in a single nucleus. Our objectives are to understand (a) competition/recycling of shared resources between genes within subnuclear compartments, (b) how enhancers communicate with genes domain-wide, and (c) the role of local conformational dynamics and supercoiling in gene co-regulation. Our organizing hypothesis is that, by acting on their microenvironment, genes shape their co-expression with other genes.
Building upon my expertise, we will use dual-color MS2/PP7 RNA labeling to visualize for the first time transcription and motion of pairs of hormone-responsive genes in real time. With our innovative signal analysis tools, we will extract spatio-temporal signatures of underlying processes, which we will investigate with stochastic modeling and validate through experimental perturbations. We expect to uncover how the functional organization of the linear genome relates to its physical properties and dynamics in 4D.
Summary
This project investigates the two-way relationship between spatio-temporal genome organization and coordinated gene regulation, through an approach at the interface between physics, computer science and biology.
In the nucleus, preferred positions are observed from chromosomes to single genes, in relation to normal and pathological cellular states. Evidence indicates a complex spatio-temporal coupling between co-regulated genes: e.g. certain genes cluster spatially when responding to similar factors and transcriptional noise patterns suggest domain-wide mechanisms. Yet, no individual experiment allows probing transcriptional coordination in 4 dimensions (FISH, live locus tracking, Hi-C...). Interpreting such data also critically requires theory (stochastic processes, statistical physics…). A lack of appropriate experimental/analytical approaches is impairing our understanding of the 4D genome.
Our proposal combines cutting-edge single-molecule imaging, signal-theory data analysis and physical modeling to study how genes coordinate in space and time in a single nucleus. Our objectives are to understand (a) competition/recycling of shared resources between genes within subnuclear compartments, (b) how enhancers communicate with genes domain-wide, and (c) the role of local conformational dynamics and supercoiling in gene co-regulation. Our organizing hypothesis is that, by acting on their microenvironment, genes shape their co-expression with other genes.
Building upon my expertise, we will use dual-color MS2/PP7 RNA labeling to visualize for the first time transcription and motion of pairs of hormone-responsive genes in real time. With our innovative signal analysis tools, we will extract spatio-temporal signatures of underlying processes, which we will investigate with stochastic modeling and validate through experimental perturbations. We expect to uncover how the functional organization of the linear genome relates to its physical properties and dynamics in 4D.
Max ERC Funding
1 499 750 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym 4TH-NU-AVENUE
Project Search for a fourth neutrino with a PBq anti-neutrino source
Researcher (PI) Thierry Michel René Lasserre
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV2. This hypothesis can be tested with a PBq (ten kilocurie scale) 144Ce antineutrino beta-source deployed at the center of a large low background liquid scintillator detector, such like Borexino, KamLAND, and SNO+. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles.
The proposed program aims to perform the necessary research and developments to produce and deploy an intense antineutrino source in a large liquid scintillator detector. Our program will address the definition of the production process of the neutrino source as well as its experimental characterization, the detailed physics simulation of both signal and backgrounds, the complete design and the realization of the thick shielding, the preparation of the interfaces with the antineutrino detector, including the safety and security aspects.
Summary
Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV2. This hypothesis can be tested with a PBq (ten kilocurie scale) 144Ce antineutrino beta-source deployed at the center of a large low background liquid scintillator detector, such like Borexino, KamLAND, and SNO+. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles.
The proposed program aims to perform the necessary research and developments to produce and deploy an intense antineutrino source in a large liquid scintillator detector. Our program will address the definition of the production process of the neutrino source as well as its experimental characterization, the detailed physics simulation of both signal and backgrounds, the complete design and the realization of the thick shielding, the preparation of the interfaces with the antineutrino detector, including the safety and security aspects.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym A-BINGOS
Project Accreting binary populations in Nearby Galaxies: Observations and Simulations
Researcher (PI) Andreas Zezas
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Consolidator Grant (CoG), PE9, ERC-2013-CoG
Summary "High-energy observations of our Galaxy offer a good, albeit not complete, picture of the X-ray source populations, in particular the accreting binary sources. Recent ability to study accreting binaries in nearby galaxies has shown that we would be short-sighted if we restricted ourselves to our Galaxy or to a few nearby ones. I propose an ambitious project that involves a comprehensive study of all the galaxies within 10 Mpc for which we can study in detail their X-ray sources and stellar populations. The study will combine data from a unique suite of observatories (Chandra, XMM-Newton, HST, Spitzer) with state-of-the-art theoretical modelling of binary systems. I propose a novel approach that links the accreting binary populations to their parent stellar populations and surpasses any current studies of X-ray binary populations, both in scale and in scope, by: (a) combining methods and results from several different areas of astrophysics (compact objects, binary systems, stellar populations, galaxy evolution); (b) using data from almost the whole electromagnetic spectrum (infrared to X-ray bands); (c) identifying and studying the different sub-populations of accreting binaries; and (d) performing direct comparison between observations and theoretical predictions, over a broad parameter space. The project: (a) will answer the long-standing question of the formation efficiency of accreting binaries in different environments; and (b) will constrain their evolutionary paths. As by-products the project will provide eagerly awaited input to the fields of gravitational-wave sources, γ-ray bursts, and X-ray emitting galaxies at cosmological distances and it will produce a heritage multi-wavelength dataset and library of models for future studies of galaxies and accreting binaries."
Summary
"High-energy observations of our Galaxy offer a good, albeit not complete, picture of the X-ray source populations, in particular the accreting binary sources. Recent ability to study accreting binaries in nearby galaxies has shown that we would be short-sighted if we restricted ourselves to our Galaxy or to a few nearby ones. I propose an ambitious project that involves a comprehensive study of all the galaxies within 10 Mpc for which we can study in detail their X-ray sources and stellar populations. The study will combine data from a unique suite of observatories (Chandra, XMM-Newton, HST, Spitzer) with state-of-the-art theoretical modelling of binary systems. I propose a novel approach that links the accreting binary populations to their parent stellar populations and surpasses any current studies of X-ray binary populations, both in scale and in scope, by: (a) combining methods and results from several different areas of astrophysics (compact objects, binary systems, stellar populations, galaxy evolution); (b) using data from almost the whole electromagnetic spectrum (infrared to X-ray bands); (c) identifying and studying the different sub-populations of accreting binaries; and (d) performing direct comparison between observations and theoretical predictions, over a broad parameter space. The project: (a) will answer the long-standing question of the formation efficiency of accreting binaries in different environments; and (b) will constrain their evolutionary paths. As by-products the project will provide eagerly awaited input to the fields of gravitational-wave sources, γ-ray bursts, and X-ray emitting galaxies at cosmological distances and it will produce a heritage multi-wavelength dataset and library of models for future studies of galaxies and accreting binaries."
Max ERC Funding
1 242 000 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym A-LIFE
Project The asymmetry of life: towards a unified view of the emergence of biological homochirality
Researcher (PI) Cornelia MEINERT
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2018-STG
Summary What is responsible for the emergence of homochirality, the almost exclusive use of one enantiomer over its mirror image? And what led to the evolution of life’s homochiral biopolymers, DNA/RNA, proteins and lipids, where all the constituent monomers exhibit the same handedness?
Based on in-situ observations and laboratory studies, we propose that this handedness occurs when chiral biomolecules are synthesized asymmetrically through interaction with circularly polarized photons in interstellar space. The ultimate goal of this project will be to demonstrate how the diverse set of heterogeneous enantioenriched molecules, available from meteoritic impact, assembles into homochiral pre-biopolymers, by simulating the evolutionary stages on early Earth. My recent research has shown that the central chiral unit of RNA, ribose, forms readily under simulated comet conditions and this has provided valuable new insights into the accessibility of precursors of genetic material in interstellar environments. The significance of this project arises due to the current lack of experimental demonstration that amino acids, sugars and lipids can simultaneously and asymmetrically be synthesized by a universal physical selection process.
A synergistic methodology will be developed to build a unified theory for the origin of all chiral biological building blocks and their assembly into homochiral supramolecular entities. For the first time, advanced analyses of astrophysical-relevant samples, asymmetric photochemistry triggered by circularly polarized synchrotron and laser sources, and chiral amplification due to polymerization processes will be combined. Intermediates and autocatalytic reaction kinetics will be monitored and supported by quantum calculations to understand the underlying processes. A unified theory on the asymmetric formation and self-assembly of life’s biopolymers is groundbreaking and will impact the whole conceptual foundation of the origin of life.
Summary
What is responsible for the emergence of homochirality, the almost exclusive use of one enantiomer over its mirror image? And what led to the evolution of life’s homochiral biopolymers, DNA/RNA, proteins and lipids, where all the constituent monomers exhibit the same handedness?
Based on in-situ observations and laboratory studies, we propose that this handedness occurs when chiral biomolecules are synthesized asymmetrically through interaction with circularly polarized photons in interstellar space. The ultimate goal of this project will be to demonstrate how the diverse set of heterogeneous enantioenriched molecules, available from meteoritic impact, assembles into homochiral pre-biopolymers, by simulating the evolutionary stages on early Earth. My recent research has shown that the central chiral unit of RNA, ribose, forms readily under simulated comet conditions and this has provided valuable new insights into the accessibility of precursors of genetic material in interstellar environments. The significance of this project arises due to the current lack of experimental demonstration that amino acids, sugars and lipids can simultaneously and asymmetrically be synthesized by a universal physical selection process.
A synergistic methodology will be developed to build a unified theory for the origin of all chiral biological building blocks and their assembly into homochiral supramolecular entities. For the first time, advanced analyses of astrophysical-relevant samples, asymmetric photochemistry triggered by circularly polarized synchrotron and laser sources, and chiral amplification due to polymerization processes will be combined. Intermediates and autocatalytic reaction kinetics will be monitored and supported by quantum calculations to understand the underlying processes. A unified theory on the asymmetric formation and self-assembly of life’s biopolymers is groundbreaking and will impact the whole conceptual foundation of the origin of life.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym A2C2
Project Atmospheric flow Analogues and Climate Change
Researcher (PI) Pascal Yiou
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary "The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Summary
"The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Max ERC Funding
1 491 457 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym AAA
Project Adaptive Actin Architectures
Researcher (PI) Laurent Blanchoin
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS3, ERC-2016-ADG
Summary Although we have extensive knowledge of many important processes in cell biology, including information on many of the molecules involved and the physical interactions among them, we still do not understand most of the dynamical features that are the essence of living systems. This is particularly true for the actin cytoskeleton, a major component of the internal architecture of eukaryotic cells. In living cells, actin networks constantly assemble and disassemble filaments while maintaining an apparent stable structure, suggesting a perfect balance between the two processes. Such behaviors are called “dynamic steady states”. They confer upon actin networks a high degree of plasticity allowing them to adapt in response to external changes and enable cells to adjust to their environments. Despite their fundamental importance in the regulation of cell physiology, the basic mechanisms that control the coordinated dynamics of co-existing actin networks are poorly understood. In the AAA project, first, we will characterize the parameters that allow the coupling among co-existing actin networks at steady state. In vitro reconstituted systems will be used to control the actin nucleation patterns, the closed volume of the reaction chamber and the physical interaction of the networks. We hope to unravel the mechanism allowing the global coherence of a dynamic actin cytoskeleton. Second, we will use our unique capacity to perform dynamic micropatterning, to add or remove actin nucleation sites in real time, in order to investigate the ability of dynamic networks to adapt to changes and the role of coupled network dynamics in this emergent property. In this part, in vitro experiments will be complemented by the analysis of actin network remodeling in living cells. In the end, our project will provide a comprehensive understanding of how the adaptive response of the cytoskeleton derives from the complex interplay between its biochemical, structural and mechanical properties.
Summary
Although we have extensive knowledge of many important processes in cell biology, including information on many of the molecules involved and the physical interactions among them, we still do not understand most of the dynamical features that are the essence of living systems. This is particularly true for the actin cytoskeleton, a major component of the internal architecture of eukaryotic cells. In living cells, actin networks constantly assemble and disassemble filaments while maintaining an apparent stable structure, suggesting a perfect balance between the two processes. Such behaviors are called “dynamic steady states”. They confer upon actin networks a high degree of plasticity allowing them to adapt in response to external changes and enable cells to adjust to their environments. Despite their fundamental importance in the regulation of cell physiology, the basic mechanisms that control the coordinated dynamics of co-existing actin networks are poorly understood. In the AAA project, first, we will characterize the parameters that allow the coupling among co-existing actin networks at steady state. In vitro reconstituted systems will be used to control the actin nucleation patterns, the closed volume of the reaction chamber and the physical interaction of the networks. We hope to unravel the mechanism allowing the global coherence of a dynamic actin cytoskeleton. Second, we will use our unique capacity to perform dynamic micropatterning, to add or remove actin nucleation sites in real time, in order to investigate the ability of dynamic networks to adapt to changes and the role of coupled network dynamics in this emergent property. In this part, in vitro experiments will be complemented by the analysis of actin network remodeling in living cells. In the end, our project will provide a comprehensive understanding of how the adaptive response of the cytoskeleton derives from the complex interplay between its biochemical, structural and mechanical properties.
Max ERC Funding
2 349 898 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AAMOT
Project Arithmetic of automorphic motives
Researcher (PI) Michael Harris
Host Institution (HI) INSTITUT DES HAUTES ETUDES SCIENTIFIQUES
Call Details Advanced Grant (AdG), PE1, ERC-2011-ADG_20110209
Summary The primary purpose of this project is to build on recent spectacular progress in the Langlands program to study the arithmetic properties of automorphic motives constructed in the cohomology of Shimura varieties. Because automorphic methods are available to study the L-functions of these motives, which include elliptic curves and certain families of Calabi-Yau varieties over totally real fields (possibly after base change), they represent the most accessible class of varieties for which one can hope to verify fundamental conjectures on special values of L-functions, including Deligne's conjecture and the Main Conjecture of Iwasawa theory. Immediate goals include the proof of irreducibility of automorphic Galois representations; the establishment of period relations for automorphic and potentially automorphic realizations of motives in the cohomology of distinct Shimura varieties; the construction of p-adic L-functions for these and related motives, notably adjoint and tensor product L-functions in p-adic families; and the geometrization of the p-adic and mod p Langlands program. All four goals, as well as the others mentioned in the body of the proposal, are interconnected; the final goal provides a bridge to related work in geometric representation theory, algebraic geometry, and mathematical physics.
Summary
The primary purpose of this project is to build on recent spectacular progress in the Langlands program to study the arithmetic properties of automorphic motives constructed in the cohomology of Shimura varieties. Because automorphic methods are available to study the L-functions of these motives, which include elliptic curves and certain families of Calabi-Yau varieties over totally real fields (possibly after base change), they represent the most accessible class of varieties for which one can hope to verify fundamental conjectures on special values of L-functions, including Deligne's conjecture and the Main Conjecture of Iwasawa theory. Immediate goals include the proof of irreducibility of automorphic Galois representations; the establishment of period relations for automorphic and potentially automorphic realizations of motives in the cohomology of distinct Shimura varieties; the construction of p-adic L-functions for these and related motives, notably adjoint and tensor product L-functions in p-adic families; and the geometrization of the p-adic and mod p Langlands program. All four goals, as well as the others mentioned in the body of the proposal, are interconnected; the final goal provides a bridge to related work in geometric representation theory, algebraic geometry, and mathematical physics.
Max ERC Funding
1 491 348 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym AArteMIS
Project Aneurysmal Arterial Mechanics: Into the Structure
Researcher (PI) Pierre Joseph Badel
Host Institution (HI) ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT DES METHODES ET PROCESSUS INDUSTRIELS
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary The rupture of an Aortic Aneurysm (AA), which is often lethal, is a mechanical phenomenon that occurs when the wall stress state exceeds the local strength of the tissue. Our current understanding of arterial rupture mechanisms is poor, and the physics taking place at the microscopic scale in these collagenous structures remains an open area of research. Understanding, modelling, and quantifying the micro-mechanisms which drive the mechanical response of such tissue and locally trigger rupture represents the most challenging and promising pathway towards predictive diagnosis and personalized care of AA.
The PI's group was recently able to detect, in advance, at the macro-scale, rupture-prone areas in bulging arterial tissues. The next step is to get into the details of the arterial microstructure to elucidate the underlying mechanisms.
Through the achievements of AArteMIS, the local mechanical state of the fibrous microstructure of the tissue, especially close to its rupture state, will be quantitatively analyzed from multi-photon confocal microscopy and numerically reconstructed to establish quantitative micro-scale rupture criteria. AArteMIS will also address developing micro-macro models which are based on the collected quantitative data.
The entire project will be completed through collaboration with medical doctors and engineers, experts in all required fields for the success of AArteMIS.
AArteMIS is expected to open longed-for pathways for research in soft tissue mechanobiology which focuses on cell environment and to enable essential clinical applications for the quantitative assessment of AA rupture risk. It will significantly contribute to understanding fatal vascular events and improving cardiovascular treatments. It will provide a tremendous source of data and inspiration for subsequent applications and research by answering the most fundamental questions on AA rupture behaviour enabling ground-breaking clinical changes to take place.
Summary
The rupture of an Aortic Aneurysm (AA), which is often lethal, is a mechanical phenomenon that occurs when the wall stress state exceeds the local strength of the tissue. Our current understanding of arterial rupture mechanisms is poor, and the physics taking place at the microscopic scale in these collagenous structures remains an open area of research. Understanding, modelling, and quantifying the micro-mechanisms which drive the mechanical response of such tissue and locally trigger rupture represents the most challenging and promising pathway towards predictive diagnosis and personalized care of AA.
The PI's group was recently able to detect, in advance, at the macro-scale, rupture-prone areas in bulging arterial tissues. The next step is to get into the details of the arterial microstructure to elucidate the underlying mechanisms.
Through the achievements of AArteMIS, the local mechanical state of the fibrous microstructure of the tissue, especially close to its rupture state, will be quantitatively analyzed from multi-photon confocal microscopy and numerically reconstructed to establish quantitative micro-scale rupture criteria. AArteMIS will also address developing micro-macro models which are based on the collected quantitative data.
The entire project will be completed through collaboration with medical doctors and engineers, experts in all required fields for the success of AArteMIS.
AArteMIS is expected to open longed-for pathways for research in soft tissue mechanobiology which focuses on cell environment and to enable essential clinical applications for the quantitative assessment of AA rupture risk. It will significantly contribute to understanding fatal vascular events and improving cardiovascular treatments. It will provide a tremendous source of data and inspiration for subsequent applications and research by answering the most fundamental questions on AA rupture behaviour enabling ground-breaking clinical changes to take place.
Max ERC Funding
1 499 783 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym ABC
Project Targeting Multidrug Resistant Cancer
Researcher (PI) Gergely Szakacs
Host Institution (HI) MAGYAR TUDOMANYOS AKADEMIA TERMESZETTUDOMANYI KUTATOKOZPONT
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Despite considerable advances in drug discovery, resistance to anticancer chemotherapy confounds the effective treatment of patients. Cancer cells can acquire broad cross-resistance to mechanistically and structurally unrelated drugs. P-glycoprotein (Pgp) actively extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. The central tenet of my work is that Pgp, a universally accepted biomarker of drug resistance, should in addition be considered as a molecular target of multidrug-resistant (MDR) cancer cells. Successful targeting of MDR cells would reduce the tumor burden and would also enable the elimination of ABC transporter-overexpressing cancer stem cells that are responsible for the replenishment of tumors. The proposed project is based on the following observations:
- First, by using a pharmacogenomic approach, I have revealed the hidden vulnerability of MDRcells (Szakács et al. 2004, Cancer Cell 6, 129-37);
- Second, I have identified a series of MDR-selective compounds with increased toxicity toPgp-expressing cells
(Turk et al.,Cancer Res, 2009. 69(21));
- Third, I have shown that MDR-selective compounds can be used to prevent theemergence of MDR (Ludwig, Szakács et al. 2006, Cancer Res 66, 4808-15);
- Fourth, we have generated initial pharmacophore models for cytotoxicity and MDR-selectivity (Hall et al. 2009, J Med Chem 52, 3191-3204).
I propose a comprehensive series of studies that will address thefollowing critical questions:
- First, what is the scope of MDR-selective compounds?
- Second, what is their mechanism of action?
- Third, what is the optimal therapeutic modality?
Extensive biological, pharmacological and bioinformatic analyses will be utilized to address four major specific aims. These aims address basic questions concerning the physiology of MDR ABC transporters in determining the mechanism of action of MDR-selective compounds, setting the stage for a fresh therapeutic approach that may eventually translate into improved patient care.
Summary
Despite considerable advances in drug discovery, resistance to anticancer chemotherapy confounds the effective treatment of patients. Cancer cells can acquire broad cross-resistance to mechanistically and structurally unrelated drugs. P-glycoprotein (Pgp) actively extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. The central tenet of my work is that Pgp, a universally accepted biomarker of drug resistance, should in addition be considered as a molecular target of multidrug-resistant (MDR) cancer cells. Successful targeting of MDR cells would reduce the tumor burden and would also enable the elimination of ABC transporter-overexpressing cancer stem cells that are responsible for the replenishment of tumors. The proposed project is based on the following observations:
- First, by using a pharmacogenomic approach, I have revealed the hidden vulnerability of MDRcells (Szakács et al. 2004, Cancer Cell 6, 129-37);
- Second, I have identified a series of MDR-selective compounds with increased toxicity toPgp-expressing cells
(Turk et al.,Cancer Res, 2009. 69(21));
- Third, I have shown that MDR-selective compounds can be used to prevent theemergence of MDR (Ludwig, Szakács et al. 2006, Cancer Res 66, 4808-15);
- Fourth, we have generated initial pharmacophore models for cytotoxicity and MDR-selectivity (Hall et al. 2009, J Med Chem 52, 3191-3204).
I propose a comprehensive series of studies that will address thefollowing critical questions:
- First, what is the scope of MDR-selective compounds?
- Second, what is their mechanism of action?
- Third, what is the optimal therapeutic modality?
Extensive biological, pharmacological and bioinformatic analyses will be utilized to address four major specific aims. These aims address basic questions concerning the physiology of MDR ABC transporters in determining the mechanism of action of MDR-selective compounds, setting the stage for a fresh therapeutic approach that may eventually translate into improved patient care.
Max ERC Funding
1 499 640 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym ABIOS
Project ABIOtic Synthesis of RNA: an investigation on how life started before biology existed
Researcher (PI) Guillaume STIRNEMANN
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The emergence of life is one of the most fascinating and yet largely unsolved questions in the natural sciences, and thus a significant challenge for scientists from many disciplines. There is growing evidence that ribonucleic acid (RNA) polymers, which are capable of genetic information storage and self-catalysis, were involved in the early forms of life. But despite recent progress, RNA synthesis without biological machineries is very challenging. The current project aims at understanding how to synthesize RNA in abiotic conditions. I will solve problems associated with three critical aspects of RNA formation that I will rationalize at a molecular level: (i) accumulation of precursors, (ii) formation of a chemical bond between RNA monomers, and (iii) tolerance for alternative backbone sugars or linkages. Because I will study problems ranging from the formation of chemical bonds up to the stability of large biopolymers, I propose an original computational multi-scale approach combining techniques that range from quantum calculations to large-scale all-atom simulations, employed together with efficient enhanced-sampling algorithms, forcefield improvement, cutting-edge analysis methods and model development.
My objectives are the following:
1 • To explain why the poorly-understood thermally-driven process of thermophoresis can contribute to the accumulation of dilute precursors.
2 • To understand why linking RNA monomers with phosphoester bonds is so difficult, to understand the molecular mechanism of possible catalysts and to suggest key improvements.
3 • To rationalize the molecular basis for RNA tolerance for alternative backbone sugars or linkages that have probably been incorporated in abiotic conditions.
This unique in-silico laboratory setup should significantly impact our comprehension of life’s origin by overcoming major obstacles to RNA abiotic formation, and in addition will reveal significant orthogonal outcomes for (bio)technological applications.
Summary
The emergence of life is one of the most fascinating and yet largely unsolved questions in the natural sciences, and thus a significant challenge for scientists from many disciplines. There is growing evidence that ribonucleic acid (RNA) polymers, which are capable of genetic information storage and self-catalysis, were involved in the early forms of life. But despite recent progress, RNA synthesis without biological machineries is very challenging. The current project aims at understanding how to synthesize RNA in abiotic conditions. I will solve problems associated with three critical aspects of RNA formation that I will rationalize at a molecular level: (i) accumulation of precursors, (ii) formation of a chemical bond between RNA monomers, and (iii) tolerance for alternative backbone sugars or linkages. Because I will study problems ranging from the formation of chemical bonds up to the stability of large biopolymers, I propose an original computational multi-scale approach combining techniques that range from quantum calculations to large-scale all-atom simulations, employed together with efficient enhanced-sampling algorithms, forcefield improvement, cutting-edge analysis methods and model development.
My objectives are the following:
1 • To explain why the poorly-understood thermally-driven process of thermophoresis can contribute to the accumulation of dilute precursors.
2 • To understand why linking RNA monomers with phosphoester bonds is so difficult, to understand the molecular mechanism of possible catalysts and to suggest key improvements.
3 • To rationalize the molecular basis for RNA tolerance for alternative backbone sugars or linkages that have probably been incorporated in abiotic conditions.
This unique in-silico laboratory setup should significantly impact our comprehension of life’s origin by overcoming major obstacles to RNA abiotic formation, and in addition will reveal significant orthogonal outcomes for (bio)technological applications.
Max ERC Funding
1 497 031 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ACAP
Project Acency Costs and Asset Pricing
Researcher (PI) Thomas Mariotti
Host Institution (HI) FONDATION JEAN-JACQUES LAFFONT,TOULOUSE SCIENCES ECONOMIQUES
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary The main objective of this research project is to contribute at bridging the gap between the two main branches of financial theory, namely corporate finance and asset pricing. It is motivated by the conviction that these two aspects of financial activity should and can be analyzed within a unified framework. This research will borrow from these two approaches in order to construct theoretical models that allow one to analyze the design and issuance of financial securities, as well as the dynamics of their valuations. Unlike asset pricing, which takes as given the price of the fundamentals, the goal is to derive security price processes from a precise description of firm’s operations and internal frictions. Regarding the latter, and in line with traditional corporate finance theory, the analysis will emphasize the role of agency costs within the firm for the design of its securities. But the analysis will be pushed one step further by studying the impact of these agency costs on key financial variables such as stock and bond prices, leverage, book-to-market ratios, default risk, or the holding of liquidities by firms. One of the contributions of this research project is to show how these variables are interrelated when firms and investors agree upon optimal financial arrangements. The final objective is to derive a rich set of testable asset pricing implications that would eventually be brought to the data.
Summary
The main objective of this research project is to contribute at bridging the gap between the two main branches of financial theory, namely corporate finance and asset pricing. It is motivated by the conviction that these two aspects of financial activity should and can be analyzed within a unified framework. This research will borrow from these two approaches in order to construct theoretical models that allow one to analyze the design and issuance of financial securities, as well as the dynamics of their valuations. Unlike asset pricing, which takes as given the price of the fundamentals, the goal is to derive security price processes from a precise description of firm’s operations and internal frictions. Regarding the latter, and in line with traditional corporate finance theory, the analysis will emphasize the role of agency costs within the firm for the design of its securities. But the analysis will be pushed one step further by studying the impact of these agency costs on key financial variables such as stock and bond prices, leverage, book-to-market ratios, default risk, or the holding of liquidities by firms. One of the contributions of this research project is to show how these variables are interrelated when firms and investors agree upon optimal financial arrangements. The final objective is to derive a rich set of testable asset pricing implications that would eventually be brought to the data.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-11-01, End date: 2014-10-31
Project acronym ACCLIMATE
Project Elucidating the Causes and Effects of Atlantic Circulation Changes through Model-Data Integration
Researcher (PI) Claire Waelbroeck
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary Rapid changes in ocean circulation and climate have been observed in marine sediment and ice cores, notably over the last 60 thousand years (ky), highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing.
To date, these rapid changes in climate and ocean circulation are still not fully explained. Two main obstacles prevent going beyond the current state of knowledge:
- Paleoclimatic proxy data are by essence only indirect indicators of the climatic variables, and thus can not be directly compared with model outputs;
- A 4-D (latitude, longitude, water depth, time) reconstruction of Atlantic water masses over the past 40 ky is lacking: previous studies have generated isolated records with disparate timescales which do not allow the causes of circulation changes to be identified.
Overcoming these two major limitations will lead to major breakthroughs in climate research. Concretely, I will create the first database of Atlantic deep-sea records over the last 40 ky, and extract full climatic information from these records through an innovative model-data integration scheme using an isotopic proxy forward modeling approach. The novelty and exceptional potential of this scheme is twofold: (i) it avoids hypotheses on proxy interpretation and hence suppresses or strongly reduces the errors of interpretation of paleoclimatic records; (ii) it produces states of the climate system that best explain the observations over the last 40 ky, while being consistent with the model physics.
Expected results include:
• The elucidation of the mechanisms explaining rapid changes in ocean circulation and climate over the last 40 ky,
• Improved climate model physics and parameterizations,
• The first projections of future climate changes obtained with a model able to reproduce the highly non linear behavior of the climate system observed over the last 40 ky.
Summary
Rapid changes in ocean circulation and climate have been observed in marine sediment and ice cores, notably over the last 60 thousand years (ky), highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing.
To date, these rapid changes in climate and ocean circulation are still not fully explained. Two main obstacles prevent going beyond the current state of knowledge:
- Paleoclimatic proxy data are by essence only indirect indicators of the climatic variables, and thus can not be directly compared with model outputs;
- A 4-D (latitude, longitude, water depth, time) reconstruction of Atlantic water masses over the past 40 ky is lacking: previous studies have generated isolated records with disparate timescales which do not allow the causes of circulation changes to be identified.
Overcoming these two major limitations will lead to major breakthroughs in climate research. Concretely, I will create the first database of Atlantic deep-sea records over the last 40 ky, and extract full climatic information from these records through an innovative model-data integration scheme using an isotopic proxy forward modeling approach. The novelty and exceptional potential of this scheme is twofold: (i) it avoids hypotheses on proxy interpretation and hence suppresses or strongly reduces the errors of interpretation of paleoclimatic records; (ii) it produces states of the climate system that best explain the observations over the last 40 ky, while being consistent with the model physics.
Expected results include:
• The elucidation of the mechanisms explaining rapid changes in ocean circulation and climate over the last 40 ky,
• Improved climate model physics and parameterizations,
• The first projections of future climate changes obtained with a model able to reproduce the highly non linear behavior of the climate system observed over the last 40 ky.
Max ERC Funding
3 000 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym aCROBAT
Project Circadian Regulation Of Brown Adipose Thermogenesis
Researcher (PI) Zachary Philip Gerhart-Hines
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Summary
Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Max ERC Funding
1 497 008 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym Actanthrope
Project Computational Foundations of Anthropomorphic Action
Researcher (PI) Jean Paul Laumond
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE7, ERC-2013-ADG
Summary Actanthrope intends to promote a neuro-robotics perspective to explore original models of anthropomorphic action. The project targets contributions to humanoid robot autonomy (for rescue and service robotics), to advanced human body simulation (for applications in ergonomics), and to a new theory of embodied intelligence (by promoting a motion-based semiotics of the human action).
Actions take place in the physical space while they originate in the –robot or human– sensory-motor space. Geometry is the core abstraction that makes the link between these spaces. Considering that the structure of actions inherits from that of the body, the underlying intuition is that actions can be segmented within discrete sub-spaces lying in the entire continuous posture space. Such sub-spaces are viewed as symbols bridging deliberative reasoning and reactive control. Actanthrope argues that geometric approaches to motion segmentation and generation as promising and innovative routes to explore embodied intelligence:
- Motion segmentation: what are the sub-manifolds that define the structure of a given action?
- Motion generation: among all the solution paths within a given sub-manifold, what is the underlying law that makes the selection?
In Robotics these questions are related to the competition between abstract symbol manipulation and physical signal processing. In Computational Neuroscience the questions refer to the quest of motion invariants. The ambition of the project is to promote a dual perspective: exploring the computational foundations of human action to make better robots, while simultaneously doing better robotics to better understand human action.
A unique “Anthropomorphic Action Factory” supports the methodology. It aims at attracting to a single lab, researchers with complementary know-how and solid mathematical background. All of them will benefit from unique equipments, while being stimulated by four challenges dealing with locomotion and manipulation actions.
Summary
Actanthrope intends to promote a neuro-robotics perspective to explore original models of anthropomorphic action. The project targets contributions to humanoid robot autonomy (for rescue and service robotics), to advanced human body simulation (for applications in ergonomics), and to a new theory of embodied intelligence (by promoting a motion-based semiotics of the human action).
Actions take place in the physical space while they originate in the –robot or human– sensory-motor space. Geometry is the core abstraction that makes the link between these spaces. Considering that the structure of actions inherits from that of the body, the underlying intuition is that actions can be segmented within discrete sub-spaces lying in the entire continuous posture space. Such sub-spaces are viewed as symbols bridging deliberative reasoning and reactive control. Actanthrope argues that geometric approaches to motion segmentation and generation as promising and innovative routes to explore embodied intelligence:
- Motion segmentation: what are the sub-manifolds that define the structure of a given action?
- Motion generation: among all the solution paths within a given sub-manifold, what is the underlying law that makes the selection?
In Robotics these questions are related to the competition between abstract symbol manipulation and physical signal processing. In Computational Neuroscience the questions refer to the quest of motion invariants. The ambition of the project is to promote a dual perspective: exploring the computational foundations of human action to make better robots, while simultaneously doing better robotics to better understand human action.
A unique “Anthropomorphic Action Factory” supports the methodology. It aims at attracting to a single lab, researchers with complementary know-how and solid mathematical background. All of them will benefit from unique equipments, while being stimulated by four challenges dealing with locomotion and manipulation actions.
Max ERC Funding
2 500 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym ACTAR TPC
Project Active Target and Time Projection Chamber
Researcher (PI) Gwen Grinyer
Host Institution (HI) GRAND ACCELERATEUR NATIONAL D'IONS LOURDS
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary The active target and time projection chamber (ACTAR TPC) is a novel gas-filled detection system that will permit new studies into the structure and decays of the most exotic nuclei. The use of a gas volume that acts as a sensitive detection medium and as the reaction target itself (an “active target”) offers considerable advantages over traditional nuclear physics detectors and techniques. In high-energy physics, TPC detectors have found profitable applications but their use in nuclear physics has been limited. With the ACTAR TPC design, individual detection pad sizes of 2 mm are the smallest ever attempted in either discipline but is a requirement for high-efficiency and high-resolution nuclear spectroscopy. The corresponding large number of electronic channels (16000 from a surface of only 25×25 cm) requires new developments in high-density electronics and data-acquisition systems that are not yet available in the nuclear physics domain. New experiments in regions of the nuclear chart that cannot be presently contemplated will become feasible with ACTAR TPC.
Summary
The active target and time projection chamber (ACTAR TPC) is a novel gas-filled detection system that will permit new studies into the structure and decays of the most exotic nuclei. The use of a gas volume that acts as a sensitive detection medium and as the reaction target itself (an “active target”) offers considerable advantages over traditional nuclear physics detectors and techniques. In high-energy physics, TPC detectors have found profitable applications but their use in nuclear physics has been limited. With the ACTAR TPC design, individual detection pad sizes of 2 mm are the smallest ever attempted in either discipline but is a requirement for high-efficiency and high-resolution nuclear spectroscopy. The corresponding large number of electronic channels (16000 from a surface of only 25×25 cm) requires new developments in high-density electronics and data-acquisition systems that are not yet available in the nuclear physics domain. New experiments in regions of the nuclear chart that cannot be presently contemplated will become feasible with ACTAR TPC.
Max ERC Funding
1 290 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ACTICELL
Project Precision confiner for mechanical cell activation
Researcher (PI) Matthieu PIEL
Host Institution (HI) INSTITUT CURIE
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary In tissues, cells have their physical space constrained by neighbouring cells and extracellular matrix. In the PROMICO ERC project, our team proposed to specifically address the effect of physical confinement on normal and cancer cells that are dividing and migrating, using new pathophysiologically relevant in vitro approaches based on innovative micro-fabrication techniques. One of the devices we developed was meant to quantitatively control two key parameters of the cell environment: its geometry and its surface chemical properties. The main technical breakthrough was achieved using micro-fabricated elastomeric structures bound to a hard substrate (Le Berre Integrative Biology, 2012). The method led to important fundamental discoveries in cell biology (Lancaster Dev Cell 2013, Le Berre PRL 2013, Liu Cell 2015, Raab Science 2016). In part based on our findings, the notion that confinement is a crucial parameter for cell physiology has spread through the cell biology. Based on this, our idea is that cell confinement could be used as a powerfull cell conditioning technology, to change the cell state and offer new opportunities for fundamental research in cell biology, but also in cell therapies and drug screening. However, our current method to confine cells is not adapted to large scale cell conditioning applications, because the throughput and reliability of the device is still too low and because the recovery of cells after confinement remain poorly controlled. It is thus now timely to develop a robust and versatile cell confiner adapted to use in any cell biology lab, in academy and in industry, with no prior experience in micro-fabrication. Achieving this goal involves a complete change of technology compared to the ‘homemade’ PDMS device we have been using so far. We will also perform proofs of concept of its use for its application in cell based therapies, such as cancer immunotherapy, by testing the possibility to mechanically activate dendritic cells.
Summary
In tissues, cells have their physical space constrained by neighbouring cells and extracellular matrix. In the PROMICO ERC project, our team proposed to specifically address the effect of physical confinement on normal and cancer cells that are dividing and migrating, using new pathophysiologically relevant in vitro approaches based on innovative micro-fabrication techniques. One of the devices we developed was meant to quantitatively control two key parameters of the cell environment: its geometry and its surface chemical properties. The main technical breakthrough was achieved using micro-fabricated elastomeric structures bound to a hard substrate (Le Berre Integrative Biology, 2012). The method led to important fundamental discoveries in cell biology (Lancaster Dev Cell 2013, Le Berre PRL 2013, Liu Cell 2015, Raab Science 2016). In part based on our findings, the notion that confinement is a crucial parameter for cell physiology has spread through the cell biology. Based on this, our idea is that cell confinement could be used as a powerfull cell conditioning technology, to change the cell state and offer new opportunities for fundamental research in cell biology, but also in cell therapies and drug screening. However, our current method to confine cells is not adapted to large scale cell conditioning applications, because the throughput and reliability of the device is still too low and because the recovery of cells after confinement remain poorly controlled. It is thus now timely to develop a robust and versatile cell confiner adapted to use in any cell biology lab, in academy and in industry, with no prior experience in micro-fabrication. Achieving this goal involves a complete change of technology compared to the ‘homemade’ PDMS device we have been using so far. We will also perform proofs of concept of its use for its application in cell based therapies, such as cancer immunotherapy, by testing the possibility to mechanically activate dendritic cells.
Max ERC Funding
150 000 €
Duration
Start date: 2017-06-01, End date: 2018-11-30
Project acronym ACTINIT
Project Brain-behavior forecasting: The causal determinants of spontaneous self-initiated action in the study of volition and the development of asynchronous brain-computer interfaces.
Researcher (PI) Aaron Schurger
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary "How are actions initiated by the human brain when there is no external sensory cue or other immediate imperative? How do subtle ongoing interactions within the brain and between the brain, body, and sensory context influence the spontaneous initiation of action? How should we approach the problem of trying to identify the neural events that cause spontaneous voluntary action? Much is understood about how the brain decides between competing alternatives, leading to different behavioral responses. But far less is known about how the brain decides "when" to perform an action, or "whether" to perform an action in the first place, especially in a context where there is no sensory cue to act such as during foraging. This project seeks to open a new chapter in the study of spontaneous voluntary action building on a novel hypothesis recently introduced by the applicant (Schurger et al, PNAS 2012) concerning the role of ongoing neural activity in action initiation. We introduce brain-behavior forecasting, the converse of movement-locked averaging, as an approach to identifying the neurodynamic states that commit the motor system to performing an action "now", and will apply it in the context of information foraging. Spontaneous action remains a profound mystery in the brain basis of behavior, in humans and other animals, and is also central to the problem of asynchronous intention-detection in brain-computer interfaces (BCIs). A BCI must not only interpret what the user intends, but also must detect "when" the user intends to act, and not respond otherwise. This remains the biggest challenge in the development of high-performance BCIs, whether invasive or non-invasive. This project will take a systematic and collaborative approach to the study of spontaneous self-initiated action, incorporating computational modeling, neuroimaging, and machine learning techniques towards a deeper understanding of voluntary behavior and the robust asynchronous detection of decisions-to-act."
Summary
"How are actions initiated by the human brain when there is no external sensory cue or other immediate imperative? How do subtle ongoing interactions within the brain and between the brain, body, and sensory context influence the spontaneous initiation of action? How should we approach the problem of trying to identify the neural events that cause spontaneous voluntary action? Much is understood about how the brain decides between competing alternatives, leading to different behavioral responses. But far less is known about how the brain decides "when" to perform an action, or "whether" to perform an action in the first place, especially in a context where there is no sensory cue to act such as during foraging. This project seeks to open a new chapter in the study of spontaneous voluntary action building on a novel hypothesis recently introduced by the applicant (Schurger et al, PNAS 2012) concerning the role of ongoing neural activity in action initiation. We introduce brain-behavior forecasting, the converse of movement-locked averaging, as an approach to identifying the neurodynamic states that commit the motor system to performing an action "now", and will apply it in the context of information foraging. Spontaneous action remains a profound mystery in the brain basis of behavior, in humans and other animals, and is also central to the problem of asynchronous intention-detection in brain-computer interfaces (BCIs). A BCI must not only interpret what the user intends, but also must detect "when" the user intends to act, and not respond otherwise. This remains the biggest challenge in the development of high-performance BCIs, whether invasive or non-invasive. This project will take a systematic and collaborative approach to the study of spontaneous self-initiated action, incorporating computational modeling, neuroimaging, and machine learning techniques towards a deeper understanding of voluntary behavior and the robust asynchronous detection of decisions-to-act."
Max ERC Funding
1 338 130 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym ACTIVIA
Project Visual Recognition of Function and Intention
Researcher (PI) Ivan Laptev
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Starting Grant (StG), PE6, ERC-2012-StG_20111012
Summary "Computer vision is concerned with the automated interpretation of images and video streams. Today's research is (mostly) aimed at answering queries such as ""Is this a picture of a dog?"", (classification) or sometimes ""Find the dog in this photo"" (detection). While categorisation and detection are useful for many tasks, inferring correct class labels is not the final answer to visual recognition. The categories and locations of objects do not provide direct understanding of their function i.e., how things work, what they can be used for, or how they can act and react. Such an understanding, however, would be highly desirable to answer currently unsolvable queries such as ""Am I in danger?"" or ""What can happen in this scene?"". Solving such queries is the aim of this proposal.
My goal is to uncover the functional properties of objects and the purpose of actions by addressing visual recognition from a different and yet unexplored perspective. The main novelty of this proposal is to leverage observations of people, i.e., their actions and interactions to automatically learn the use, the purpose and the function of objects and scenes from visual data. The project is timely as it builds upon the two key recent technological advances: (a) the immense progress in visual recognition of objects, scenes and human actions achieved in the last ten years, as well as (b) the emergence of a massive amount of public image and video data now available to train visual models.
ACTIVIA addresses fundamental research issues in automated interpretation of dynamic visual scenes, but its results are expected to serve as a basis for ground-breaking technological advances in practical applications. The recognition of functional properties and intentions as explored in this project will directly support high-impact applications such as detection of abnormal events, which are likely to revolutionise today's approaches to crime protection, hazard prevention, elderly care, and many others."
Summary
"Computer vision is concerned with the automated interpretation of images and video streams. Today's research is (mostly) aimed at answering queries such as ""Is this a picture of a dog?"", (classification) or sometimes ""Find the dog in this photo"" (detection). While categorisation and detection are useful for many tasks, inferring correct class labels is not the final answer to visual recognition. The categories and locations of objects do not provide direct understanding of their function i.e., how things work, what they can be used for, or how they can act and react. Such an understanding, however, would be highly desirable to answer currently unsolvable queries such as ""Am I in danger?"" or ""What can happen in this scene?"". Solving such queries is the aim of this proposal.
My goal is to uncover the functional properties of objects and the purpose of actions by addressing visual recognition from a different and yet unexplored perspective. The main novelty of this proposal is to leverage observations of people, i.e., their actions and interactions to automatically learn the use, the purpose and the function of objects and scenes from visual data. The project is timely as it builds upon the two key recent technological advances: (a) the immense progress in visual recognition of objects, scenes and human actions achieved in the last ten years, as well as (b) the emergence of a massive amount of public image and video data now available to train visual models.
ACTIVIA addresses fundamental research issues in automated interpretation of dynamic visual scenes, but its results are expected to serve as a basis for ground-breaking technological advances in practical applications. The recognition of functional properties and intentions as explored in this project will directly support high-impact applications such as detection of abnormal events, which are likely to revolutionise today's approaches to crime protection, hazard prevention, elderly care, and many others."
Max ERC Funding
1 497 420 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym ADAM
Project The Adaptive Auditory Mind
Researcher (PI) Shihab Shamma
Host Institution (HI) ECOLE NORMALE SUPERIEURE
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary Listening in realistic situations is an active process that engages perceptual and cognitive faculties, endowing speech with meaning, music with joy, and environmental sounds with emotion. Through hearing, humans and other animals navigate complex acoustic scenes, separate sound mixtures, and assess their behavioral relevance. These remarkable feats are currently beyond our understanding and exceed the capabilities of the most sophisticated audio engineering systems. The goal of the proposed research is to investigate experimentally a novel view of hearing, where active hearing emerges from a deep interplay between adaptive sensory processes and goal-directed cognition. Specifically, we shall explore the postulate that versatile perception is mediated by rapid-plasticity at the neuronal level. At the conjunction of sensory and cognitive processing, rapid-plasticity pervades all levels of auditory system, from the cochlea up to the auditory and prefrontal cortices. Exploiting fundamental statistical regularities of acoustics, it is what allows humans and other animal to deal so successfully with natural acoustic scenes where artificial systems fail. The project builds on the internationally recognized leadership of the PI in the fields of physiology and computational modeling, combined with the expertise of the Co-Investigator in psychophysics. Building on these highly complementary fields and several technical innovations, we hope to promote a novel view of auditory perception and cognition. We aim also to contribute significantly to translational research in the domain of signal processing for clinical hearing aids, given that many current limitations are not technological but rather conceptual. The project will finally result in the creation of laboratory facilities and an intellectual network unique in France and rare in all of Europe, combining cognitive, neural, and computational approaches to auditory neuroscience.
Summary
Listening in realistic situations is an active process that engages perceptual and cognitive faculties, endowing speech with meaning, music with joy, and environmental sounds with emotion. Through hearing, humans and other animals navigate complex acoustic scenes, separate sound mixtures, and assess their behavioral relevance. These remarkable feats are currently beyond our understanding and exceed the capabilities of the most sophisticated audio engineering systems. The goal of the proposed research is to investigate experimentally a novel view of hearing, where active hearing emerges from a deep interplay between adaptive sensory processes and goal-directed cognition. Specifically, we shall explore the postulate that versatile perception is mediated by rapid-plasticity at the neuronal level. At the conjunction of sensory and cognitive processing, rapid-plasticity pervades all levels of auditory system, from the cochlea up to the auditory and prefrontal cortices. Exploiting fundamental statistical regularities of acoustics, it is what allows humans and other animal to deal so successfully with natural acoustic scenes where artificial systems fail. The project builds on the internationally recognized leadership of the PI in the fields of physiology and computational modeling, combined with the expertise of the Co-Investigator in psychophysics. Building on these highly complementary fields and several technical innovations, we hope to promote a novel view of auditory perception and cognition. We aim also to contribute significantly to translational research in the domain of signal processing for clinical hearing aids, given that many current limitations are not technological but rather conceptual. The project will finally result in the creation of laboratory facilities and an intellectual network unique in France and rare in all of Europe, combining cognitive, neural, and computational approaches to auditory neuroscience.
Max ERC Funding
3 199 078 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym ADAPT
Project Theory and Algorithms for Adaptive Particle Simulation
Researcher (PI) Stephane Redon
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Starting Grant (StG), PE6, ERC-2012-StG_20111012
Summary "During the twentieth century, the development of macroscopic engineering has been largely stimulated by progress in digital prototyping: cars, planes, boats, etc. are nowadays designed and tested on computers. Digital prototypes have progressively replaced actual ones, and effective computer-aided engineering tools have helped cut costs and reduce production cycles of these macroscopic systems.
The twenty-first century is most likely to see a similar development at the atomic scale. Indeed, the recent years have seen tremendous progress in nanotechnology - in particular in the ability to control matter at the atomic scale. Similar to what has happened with macroscopic engineering, powerful and generic computational tools will be needed to engineer complex nanosystems, through modeling and simulation. As a result, a major challenge is to develop efficient simulation methods and algorithms.
NANO-D, the INRIA research group I started in January 2008 in Grenoble, France, aims at developing
efficient computational methods for modeling and simulating complex nanosystems, both natural and artificial. In particular, NANO-D develops SAMSON, a software application which gathers all algorithms designed by the group and its collaborators (SAMSON: Software for Adaptive Modeling and Simulation Of Nanosystems).
In this project, I propose to develop a unified theory, and associated algorithms, for adaptive particle simulation. The proposed theory will avoid problems that plague current popular multi-scale or hybrid simulation approaches by simulating a single potential throughout the system, while allowing users to finely trade precision for computational speed.
I believe the full development of the adaptive particle simulation theory will have an important impact on current modeling and simulation practices, and will enable practical design of complex nanosystems on desktop computers, which should significantly boost the emergence of generic nano-engineering."
Summary
"During the twentieth century, the development of macroscopic engineering has been largely stimulated by progress in digital prototyping: cars, planes, boats, etc. are nowadays designed and tested on computers. Digital prototypes have progressively replaced actual ones, and effective computer-aided engineering tools have helped cut costs and reduce production cycles of these macroscopic systems.
The twenty-first century is most likely to see a similar development at the atomic scale. Indeed, the recent years have seen tremendous progress in nanotechnology - in particular in the ability to control matter at the atomic scale. Similar to what has happened with macroscopic engineering, powerful and generic computational tools will be needed to engineer complex nanosystems, through modeling and simulation. As a result, a major challenge is to develop efficient simulation methods and algorithms.
NANO-D, the INRIA research group I started in January 2008 in Grenoble, France, aims at developing
efficient computational methods for modeling and simulating complex nanosystems, both natural and artificial. In particular, NANO-D develops SAMSON, a software application which gathers all algorithms designed by the group and its collaborators (SAMSON: Software for Adaptive Modeling and Simulation Of Nanosystems).
In this project, I propose to develop a unified theory, and associated algorithms, for adaptive particle simulation. The proposed theory will avoid problems that plague current popular multi-scale or hybrid simulation approaches by simulating a single potential throughout the system, while allowing users to finely trade precision for computational speed.
I believe the full development of the adaptive particle simulation theory will have an important impact on current modeling and simulation practices, and will enable practical design of complex nanosystems on desktop computers, which should significantly boost the emergence of generic nano-engineering."
Max ERC Funding
1 476 882 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym ADAPT
Project Origins and factors governing adaptation: Insights from experimental evolution and population genomic data
Researcher (PI) Thomas, Martin Jean Bataillon
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary "I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Summary
"I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Max ERC Funding
1 159 857 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym ADAPTIVES
Project Algorithmic Development and Analysis of Pioneer Techniques for Imaging with waVES
Researcher (PI) Chrysoula Tsogka
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Our results are expected to have a strong impact in a wide range of applications, including underwater acoustics, exploration geophysics and ultrasound non-destructive testing. Our machinery is coherent interferometry (CINT), a state-of-the-art statistically stable imaging methodology, highly suitable for the development of imaging methods in clutter. We aim to extend CINT along two complementary directions: novel types of applications, and further mathematical and numerical development so as to assess and extend its range of applicability. CINT is designed for imaging with partially coherent array data recorded in richly scattering media. It uses statistical smoothing techniques to obtain results that are independent of the clutter realization. Quantifying the amount of smoothing needed is difficult, especially when there is no a priori knowledge about the propagation medium. We intend to address this question by coupling the imaging process with the estimation of the medium's large scale features. Our algorithms rely on the residual coherence in the data. When the coherent signal is too weak, the CINT results are unsatisfactory. We propose two ways for enhancing the resolution of CINT: filter the data prior to imaging (noise reduction) and waveform design (optimize the source distribution). Finally, we propose to extend the applicability of our imaging-in-clutter methodologies by investigating the possibility of utilizing ambient noise sources to perform passive sensor imaging, as well as by studying the imaging problem in random waveguides.
Summary
The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Our results are expected to have a strong impact in a wide range of applications, including underwater acoustics, exploration geophysics and ultrasound non-destructive testing. Our machinery is coherent interferometry (CINT), a state-of-the-art statistically stable imaging methodology, highly suitable for the development of imaging methods in clutter. We aim to extend CINT along two complementary directions: novel types of applications, and further mathematical and numerical development so as to assess and extend its range of applicability. CINT is designed for imaging with partially coherent array data recorded in richly scattering media. It uses statistical smoothing techniques to obtain results that are independent of the clutter realization. Quantifying the amount of smoothing needed is difficult, especially when there is no a priori knowledge about the propagation medium. We intend to address this question by coupling the imaging process with the estimation of the medium's large scale features. Our algorithms rely on the residual coherence in the data. When the coherent signal is too weak, the CINT results are unsatisfactory. We propose two ways for enhancing the resolution of CINT: filter the data prior to imaging (noise reduction) and waveform design (optimize the source distribution). Finally, we propose to extend the applicability of our imaging-in-clutter methodologies by investigating the possibility of utilizing ambient noise sources to perform passive sensor imaging, as well as by studying the imaging problem in random waveguides.
Max ERC Funding
690 000 €
Duration
Start date: 2010-06-01, End date: 2015-11-30
Project acronym ADDECCO
Project Adaptive Schemes for Deterministic and Stochastic Flow Problems
Researcher (PI) Remi Abgrall
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary The numerical simulation of complex compressible flow problem is still a challenge nowaday even for simple models. In our opinion, the most important hard points that need currently to be tackled and solved is how to obtain stable, scalable, very accurate, easy to code and to maintain schemes on complex geometries. The method should easily handle mesh refinement, even near the boundary where the most interesting engineering quantities have to be evaluated. Unsteady uncertainties in the model, for example in the geometry or the boundary conditions should represented efficiently.This proposal goal is to design, develop and evaluate solutions to each of the above problems. Our work program will lead to significant breakthroughs for flow simulations. More specifically, we propose to work on 3 connected problems: 1-A class of very high order numerical schemes able to easily deal with the geometry of boundaries and still can solve steep problems. The geometry is generally defined by CAD tools. The output is used to generate a mesh which is then used by the scheme. Hence, any mesh refinement process is disconnected from the CAD, a situation that prevents the spread of mesh adaptation techniques in industry! 2-A class of very high order numerical schemes which can utilize possibly solution dependant basis functions in order to lower the number of degrees of freedom, for example to compute accurately boundary layers with low resolutions. 3-A general non intrusive technique for handling uncertainties in order to deal with irregular probability density functions (pdf) and also to handle pdf that may evolve in time, for example thanks to an optimisation loop. The curse of dimensionality will be dealt thanks Harten's multiresolution method combined with sparse grid methods. Currently, and up to our knowledge, no scheme has each of these properties. This research program will have an impact on numerical schemes and industrial applications.
Summary
The numerical simulation of complex compressible flow problem is still a challenge nowaday even for simple models. In our opinion, the most important hard points that need currently to be tackled and solved is how to obtain stable, scalable, very accurate, easy to code and to maintain schemes on complex geometries. The method should easily handle mesh refinement, even near the boundary where the most interesting engineering quantities have to be evaluated. Unsteady uncertainties in the model, for example in the geometry or the boundary conditions should represented efficiently.This proposal goal is to design, develop and evaluate solutions to each of the above problems. Our work program will lead to significant breakthroughs for flow simulations. More specifically, we propose to work on 3 connected problems: 1-A class of very high order numerical schemes able to easily deal with the geometry of boundaries and still can solve steep problems. The geometry is generally defined by CAD tools. The output is used to generate a mesh which is then used by the scheme. Hence, any mesh refinement process is disconnected from the CAD, a situation that prevents the spread of mesh adaptation techniques in industry! 2-A class of very high order numerical schemes which can utilize possibly solution dependant basis functions in order to lower the number of degrees of freedom, for example to compute accurately boundary layers with low resolutions. 3-A general non intrusive technique for handling uncertainties in order to deal with irregular probability density functions (pdf) and also to handle pdf that may evolve in time, for example thanks to an optimisation loop. The curse of dimensionality will be dealt thanks Harten's multiresolution method combined with sparse grid methods. Currently, and up to our knowledge, no scheme has each of these properties. This research program will have an impact on numerical schemes and industrial applications.
Max ERC Funding
1 432 769 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym ADEQUATE
Project Advanced optoelectronic Devices with Enhanced QUAntum efficiency at THz frEquencies
Researcher (PI) Carlo Sirtori
Host Institution (HI) UNIVERSITE PARIS DIDEROT - PARIS 7
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Summary
The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Max ERC Funding
1 761 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym ADIPOR
Project Molecular and structural pharmacology of adiponectin receptor: towards innovative treatments of obesity-related diseases.
Researcher (PI) Sebastien Jean Antoine Granier
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary The human kind is witnessing an escalation of obesity-related health problems such as cardiovascular diseases and type 2 diabetes. A recent groundbreaking study revealed adiponectin receptors (ADIPOR) as key targets for treating such obesity-related diseases. Indeed, the modulation of this integral membrane protein by small molecules agonists ameliorates diabetes and prolongs lifespan of genetically obese rodent model. Despite these exciting results and the importance of ADIPOR in human physiology, there is a complete lack of knowledge of ADIPOR mechanisms of action and pharmacology. This is mainly due to the challenges associated with the characterization of membrane protein structure and function. To fill this gap of knowledge and based on my extensive experience in membrane protein biology, I propose here to characterize the the proximal signaling pathways associated with ADIPOR activation as well as the molecular and structural mechanisms of ADIPOR activation. We will develop an innovative integrated strategy combining state-of-the-art molecular and structural pharmacology approaches including 1) molecular analyses of ADIPOR network of interaction using resonance energy transfer measurement in living cells and a proteomic analysis and 2) structural analyses of ADIPOR and signaling complexes using biophysics and X-ray crystallography. Our data will have a major impact on drug discovery for treating obesity-related diseases as it will enable the application of structure-based drug design and in silico screening for the molecular control of ADIPOR activity. The proposed high-risk endeavor of obtaining structural data on these atypical membrane signaling complexes is a new direction both for my career and for the field of adiponectin biology; the exceptionally high gain from these studies fully justifies the risks; the feasibility of this project is supported by my recent success in membrane protein pharmacology, biochemistry, biophysics and crystallography.
Summary
The human kind is witnessing an escalation of obesity-related health problems such as cardiovascular diseases and type 2 diabetes. A recent groundbreaking study revealed adiponectin receptors (ADIPOR) as key targets for treating such obesity-related diseases. Indeed, the modulation of this integral membrane protein by small molecules agonists ameliorates diabetes and prolongs lifespan of genetically obese rodent model. Despite these exciting results and the importance of ADIPOR in human physiology, there is a complete lack of knowledge of ADIPOR mechanisms of action and pharmacology. This is mainly due to the challenges associated with the characterization of membrane protein structure and function. To fill this gap of knowledge and based on my extensive experience in membrane protein biology, I propose here to characterize the the proximal signaling pathways associated with ADIPOR activation as well as the molecular and structural mechanisms of ADIPOR activation. We will develop an innovative integrated strategy combining state-of-the-art molecular and structural pharmacology approaches including 1) molecular analyses of ADIPOR network of interaction using resonance energy transfer measurement in living cells and a proteomic analysis and 2) structural analyses of ADIPOR and signaling complexes using biophysics and X-ray crystallography. Our data will have a major impact on drug discovery for treating obesity-related diseases as it will enable the application of structure-based drug design and in silico screening for the molecular control of ADIPOR activity. The proposed high-risk endeavor of obtaining structural data on these atypical membrane signaling complexes is a new direction both for my career and for the field of adiponectin biology; the exceptionally high gain from these studies fully justifies the risks; the feasibility of this project is supported by my recent success in membrane protein pharmacology, biochemistry, biophysics and crystallography.
Max ERC Funding
1 989 518 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym AdOC
Project Advance Optical Clocks
Researcher (PI) Sebastien André Marcel Bize
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Summary
"The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Max ERC Funding
1 946 432 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym ADORA
Project Asymptotic approach to spatial and dynamical organizations
Researcher (PI) Benoit PERTHAME
Host Institution (HI) SORBONNE UNIVERSITE
Call Details Advanced Grant (AdG), PE1, ERC-2016-ADG
Summary The understanding of spatial, social and dynamical organization of large numbers of agents is presently a fundamental issue in modern science. ADORA focuses on problems motivated by biology because, more than anywhere else, access to precise and many data has opened the route to novel and complex biomathematical models. The problems we address are written in terms of nonlinear partial differential equations. The flux-limited Keller-Segel system, the integrate-and-fire Fokker-Planck equation, kinetic equations with internal state, nonlocal parabolic equations and constrained Hamilton-Jacobi equations are among examples of the equations under investigation.
The role of mathematics is not only to understand the analytical structure of these new problems, but it is also to explain the qualitative behavior of solutions and to quantify their properties. The challenge arises here because these goals should be achieved through a hierarchy of scales. Indeed, the problems under consideration share the common feature that the large scale behavior cannot be understood precisely without access to a hierarchy of finer scales, down to the individual behavior and sometimes its molecular determinants.
Major difficulties arise because the numerous scales present in these equations have to be discovered and singularities appear in the asymptotic process which yields deep compactness obstructions. Our vision is that the complexity inherent to models of biology can be enlightened by mathematical analysis and a classification of the possible asymptotic regimes.
However an enormous effort is needed to uncover the equations intimate mathematical structures, and bring them at the level of conceptual understanding they deserve being given the applications motivating these questions which range from medical science or neuroscience to cell biology.
Summary
The understanding of spatial, social and dynamical organization of large numbers of agents is presently a fundamental issue in modern science. ADORA focuses on problems motivated by biology because, more than anywhere else, access to precise and many data has opened the route to novel and complex biomathematical models. The problems we address are written in terms of nonlinear partial differential equations. The flux-limited Keller-Segel system, the integrate-and-fire Fokker-Planck equation, kinetic equations with internal state, nonlocal parabolic equations and constrained Hamilton-Jacobi equations are among examples of the equations under investigation.
The role of mathematics is not only to understand the analytical structure of these new problems, but it is also to explain the qualitative behavior of solutions and to quantify their properties. The challenge arises here because these goals should be achieved through a hierarchy of scales. Indeed, the problems under consideration share the common feature that the large scale behavior cannot be understood precisely without access to a hierarchy of finer scales, down to the individual behavior and sometimes its molecular determinants.
Major difficulties arise because the numerous scales present in these equations have to be discovered and singularities appear in the asymptotic process which yields deep compactness obstructions. Our vision is that the complexity inherent to models of biology can be enlightened by mathematical analysis and a classification of the possible asymptotic regimes.
However an enormous effort is needed to uncover the equations intimate mathematical structures, and bring them at the level of conceptual understanding they deserve being given the applications motivating these questions which range from medical science or neuroscience to cell biology.
Max ERC Funding
2 192 500 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ADOS
Project AMPA Receptor Dynamic Organization and Synaptic transmission in health and disease
Researcher (PI) Daniel Georges Gustave Choquet
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS5, ERC-2013-ADG
Summary AMPA glutamate receptors (AMPAR) play key roles in information processing by the brain as they mediate nearly all fast excitatory synaptic transmission. Their spatio-temporal organization in the post synapse with respect to presynaptic glutamate release sites is a key determinant in synaptic transmission. The activity-dependent regulation of AMPAR organization is at the heart of synaptic plasticity processes underlying learning and memory. Dysfunction of synaptic transmission - hence AMPAR organization - is likely at the origin of a number of brain diseases.
Building on discoveries made during my past ERC grant, our new ground-breaking objective is to uncover the mechanisms that link synaptic transmission with the dynamic organization of AMPAR and associated proteins. For this aim, we have assembled a team of neurobiologists, computer scientists and chemists with a track record of collaboration. We will combine physiology, cellular and molecular neurobiology with development of novel quantitative imaging and biomolecular tools to probe the molecular dynamics that regulate synaptic transmission.
Live high content 3D SuperResolution Light Imaging (SRLI) combined with electron microscopy will allow unprecedented visualization of AMPAR organization in synapses at the scale of individual subunits up to the level of intact tissue. Simultaneous SRLI and electrophysiology will elucidate the intricate relations between dynamic AMPAR organization, trafficking and synaptic transmission. Novel peptide- and small protein-based probes used as protein-protein interaction reporters and modulators will be developed to image and directly interfere with synapse organization.
We will identify new processes that are fundamental to activity dependent modifications of synaptic transmission. We will apply the above findings to understand the causes of early cognitive deficits in models of neurodegenerative disorders and open new avenues of research for innovative therapies.
Summary
AMPA glutamate receptors (AMPAR) play key roles in information processing by the brain as they mediate nearly all fast excitatory synaptic transmission. Their spatio-temporal organization in the post synapse with respect to presynaptic glutamate release sites is a key determinant in synaptic transmission. The activity-dependent regulation of AMPAR organization is at the heart of synaptic plasticity processes underlying learning and memory. Dysfunction of synaptic transmission - hence AMPAR organization - is likely at the origin of a number of brain diseases.
Building on discoveries made during my past ERC grant, our new ground-breaking objective is to uncover the mechanisms that link synaptic transmission with the dynamic organization of AMPAR and associated proteins. For this aim, we have assembled a team of neurobiologists, computer scientists and chemists with a track record of collaboration. We will combine physiology, cellular and molecular neurobiology with development of novel quantitative imaging and biomolecular tools to probe the molecular dynamics that regulate synaptic transmission.
Live high content 3D SuperResolution Light Imaging (SRLI) combined with electron microscopy will allow unprecedented visualization of AMPAR organization in synapses at the scale of individual subunits up to the level of intact tissue. Simultaneous SRLI and electrophysiology will elucidate the intricate relations between dynamic AMPAR organization, trafficking and synaptic transmission. Novel peptide- and small protein-based probes used as protein-protein interaction reporters and modulators will be developed to image and directly interfere with synapse organization.
We will identify new processes that are fundamental to activity dependent modifications of synaptic transmission. We will apply the above findings to understand the causes of early cognitive deficits in models of neurodegenerative disorders and open new avenues of research for innovative therapies.
Max ERC Funding
2 491 157 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AdS-CFT-solvable
Project Origins of integrability in AdS/CFT correspondence
Researcher (PI) Vladimir Kazakov
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2012-ADG_20120216
Summary Fundamental interactions in nature are well described by quantum gauge fields in 4 space-time dimensions (4d). When the strength of gauge interaction is weak the Feynman perturbation techniques are very efficient for the description of most of the experimentally observable consequences of the Standard model and for the study of high energy processes in QCD.
But in the intermediate and strong coupling regime, such as the relatively small energies in QCD, the perturbation theory fails leaving us with no reliable analytic methods (except the Monte-Carlo simulation). The project aims at working out new analytic and computational methods for strongly coupled gauge theories in 4d. We will employ for that two important discoveries: 1) the gauge-string duality (AdS/CFT correspondence) relating certain strongly coupled gauge Conformal Field
Theories to the weakly coupled string theories on Anty-deSitter space; 2) the solvability, or integrability of maximally supersymmetric (N=4) 4d super Yang-Mills (SYM) theory in multicolor limit. Integrability made possible pioneering exact numerical and analytic results in the N=4 multicolor SYM at any coupling, effectively summing up all 4d Feynman diagrams. Recently, we conjectured a system of functional equations - the AdS/CFT Y-system – for the exact spectrum of anomalous dimensions of all local operators in N=4 SYM. The conjecture has passed all available checks. My project is aimed at the understanding of origins of this, still mysterious integrability. Deriving the AdS/CFT Y-system from the first principles on both sides of gauge-string duality should provide a long-awaited proof of the AdS/CFT correspondence itself. I plan to use the Y-system to study the systematic weak and strong coupling expansions and the so called BFKL limit, as well as for calculation of multi-point correlation functions of N=4 SYM. We hope on new insights into the strong coupling dynamics of less supersymmetric gauge theories and of QCD.
Summary
Fundamental interactions in nature are well described by quantum gauge fields in 4 space-time dimensions (4d). When the strength of gauge interaction is weak the Feynman perturbation techniques are very efficient for the description of most of the experimentally observable consequences of the Standard model and for the study of high energy processes in QCD.
But in the intermediate and strong coupling regime, such as the relatively small energies in QCD, the perturbation theory fails leaving us with no reliable analytic methods (except the Monte-Carlo simulation). The project aims at working out new analytic and computational methods for strongly coupled gauge theories in 4d. We will employ for that two important discoveries: 1) the gauge-string duality (AdS/CFT correspondence) relating certain strongly coupled gauge Conformal Field
Theories to the weakly coupled string theories on Anty-deSitter space; 2) the solvability, or integrability of maximally supersymmetric (N=4) 4d super Yang-Mills (SYM) theory in multicolor limit. Integrability made possible pioneering exact numerical and analytic results in the N=4 multicolor SYM at any coupling, effectively summing up all 4d Feynman diagrams. Recently, we conjectured a system of functional equations - the AdS/CFT Y-system – for the exact spectrum of anomalous dimensions of all local operators in N=4 SYM. The conjecture has passed all available checks. My project is aimed at the understanding of origins of this, still mysterious integrability. Deriving the AdS/CFT Y-system from the first principles on both sides of gauge-string duality should provide a long-awaited proof of the AdS/CFT correspondence itself. I plan to use the Y-system to study the systematic weak and strong coupling expansions and the so called BFKL limit, as well as for calculation of multi-point correlation functions of N=4 SYM. We hope on new insights into the strong coupling dynamics of less supersymmetric gauge theories and of QCD.
Max ERC Funding
1 456 140 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym AEROFLEX
Project AEROelastic instabilities and control of FLEXible Structures
Researcher (PI) Olivier Pierre MARQUET
Host Institution (HI) OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary Aeroelastic instabilities are at the origin of large deformations of structures and are limiting the capacities of products in various industrial branches such as aeronautics, marine industry, or wind electricity production. If suppressing aeroelastic instabilities is an ultimate goal, a paradigm shift in the technological development is to take advantage of these instabilities to achieve others objectives, as reducing the drag of these flexible structures. The ground-breaking challenges addressed in this project are to design fundamentally new theoretical methodologies for (i) describing mathematically aeroelastic instabilities, (ii) suppressing them and (iii) using them to reduce mean drag of structures at a low energetic cost. To that aim, two types of aeroelastic phenomena will be specifically studied: the flutter, which arises as a result of an unstable coupling instability between two stable dynamics, that of the structures and that the flow, and vortex-induced vibrations which appear when the fluid dynamics is unstable. An aeroelastic global stability analysis will be first developed and applied to problems of increasing complexity, starting from two-dimensional free-vibrating rigid structures and progressing towards three-dimensional free-deforming elastic structures. The control of these aeroelastic instabilities will be then addressed with two different objectives: their suppression or their use for flow control. A theoretical passive control methodology will be established for suppressing linear aeroelastic instabilities, and extended to high Reynolds number flows and experimental configurations. New perturbation methods for solving strongly nonlinear problems and adjoint-based control algorithm will allow to use these aeroelastic instabilities for drag reduction. This project will allow innovative control solutions to emerge, not only in flutter or vortex-induced vibrations problems, but also in a much broader class of fluid-structure problems.
Summary
Aeroelastic instabilities are at the origin of large deformations of structures and are limiting the capacities of products in various industrial branches such as aeronautics, marine industry, or wind electricity production. If suppressing aeroelastic instabilities is an ultimate goal, a paradigm shift in the technological development is to take advantage of these instabilities to achieve others objectives, as reducing the drag of these flexible structures. The ground-breaking challenges addressed in this project are to design fundamentally new theoretical methodologies for (i) describing mathematically aeroelastic instabilities, (ii) suppressing them and (iii) using them to reduce mean drag of structures at a low energetic cost. To that aim, two types of aeroelastic phenomena will be specifically studied: the flutter, which arises as a result of an unstable coupling instability between two stable dynamics, that of the structures and that the flow, and vortex-induced vibrations which appear when the fluid dynamics is unstable. An aeroelastic global stability analysis will be first developed and applied to problems of increasing complexity, starting from two-dimensional free-vibrating rigid structures and progressing towards three-dimensional free-deforming elastic structures. The control of these aeroelastic instabilities will be then addressed with two different objectives: their suppression or their use for flow control. A theoretical passive control methodology will be established for suppressing linear aeroelastic instabilities, and extended to high Reynolds number flows and experimental configurations. New perturbation methods for solving strongly nonlinear problems and adjoint-based control algorithm will allow to use these aeroelastic instabilities for drag reduction. This project will allow innovative control solutions to emerge, not only in flutter or vortex-induced vibrations problems, but also in a much broader class of fluid-structure problems.
Max ERC Funding
1 377 290 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym AIME
Project An Inquiry into Modes of Existence
Researcher (PI) Bruno Latour
Host Institution (HI) FONDATION NATIONALE DES SCIENCES POLITIQUES
Call Details Advanced Grant (AdG), SH2, ERC-2010-AdG_20100407
Summary "AIME is an inquiry to make more precise what is lumped together into the confusing word ""modernization"". The work done in the field of science studies (STS) on the progress and practice of science and technology has had the consequence of deeply modifying the definition of ""modernity"", resulting into the provocative idea that ""we (meaning the Europeans) have never been modern"". This is, however only a negative definition. To obtain a positive rendering of the European current situation, it is necessary to start an inquiry in the complex and conflicting set of values that have been invented. This inquiry is possible only if there is a clear and shareable way to judge the differences in the set of truth-conditions that make up those conflicting sets of values. AIME offers a grammar of those differences based on the key notion of modes of existence. Then it builds a procedure and an instrument to test this grammar into a selected set of situations where the definitions of the differing modes of existence is redefined and renegotiated. The result is a set of shareable definitions of what modernization has been in practice. This is important just at the moment when Europe has lost its privileged status and needs to be able to present itself in a new ways to the other cultures and civilizations which are making up the world of globalization with very different views on what it is to modernize themselves."
Summary
"AIME is an inquiry to make more precise what is lumped together into the confusing word ""modernization"". The work done in the field of science studies (STS) on the progress and practice of science and technology has had the consequence of deeply modifying the definition of ""modernity"", resulting into the provocative idea that ""we (meaning the Europeans) have never been modern"". This is, however only a negative definition. To obtain a positive rendering of the European current situation, it is necessary to start an inquiry in the complex and conflicting set of values that have been invented. This inquiry is possible only if there is a clear and shareable way to judge the differences in the set of truth-conditions that make up those conflicting sets of values. AIME offers a grammar of those differences based on the key notion of modes of existence. Then it builds a procedure and an instrument to test this grammar into a selected set of situations where the definitions of the differing modes of existence is redefined and renegotiated. The result is a set of shareable definitions of what modernization has been in practice. This is important just at the moment when Europe has lost its privileged status and needs to be able to present itself in a new ways to the other cultures and civilizations which are making up the world of globalization with very different views on what it is to modernize themselves."
Max ERC Funding
1 334 720 €
Duration
Start date: 2011-09-01, End date: 2015-06-30
Project acronym AIRSEA
Project Air-Sea Exchanges driven by Light
Researcher (PI) Christian George
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary The scientific motivation of this project is the significant presence of organic compounds at the surface of the ocean. They form the link between ocean biogeochemistry through the physico-chemical processes near the water-air interface with primary and secondary aerosol formation and evolution in the air aloft and finally to the climate impact of marine boundary layer aerosols. However, their photochemistry and photosensitizer properties have only been suggested and discussed but never fully addressed because they were beyond reach. This project suggests going significantly beyond this matter of fact by a combination of innovative tools and the development of new ideas.
This project is therefore devoted to new laboratory investigations of processes occurring at the air sea interface to predict emission, formation and evolution of halogenated radicals and aerosols from this vast interface between oceans and atmosphere. It progresses from fundamental laboratory measurements, marine science, surface chemistry, photochemistry … and is therefore interdisciplinary in nature.
It will lead to the development of innovative techniques for characterising chemical processing at the air sea interface (e.g., a multiphase atmospheric simulation chamber, a time-resolved fluorescence technique for characterising chemical processing at the air-sea interface). It will allow the assessment of new emerging ideas such as a quantitative description of the importance of photosensitized reactions in the visible at the air/sea interface as a major source of halogenated radicals and aerosols in the marine environment.
This new understanding will impact on our ability to describe atmospheric chemistry in the marine environment which has strong impact on the urban air quality of coastal regions (which by the way represent highly populated regions ) but also on climate change by providing new input for global climate models.
Summary
The scientific motivation of this project is the significant presence of organic compounds at the surface of the ocean. They form the link between ocean biogeochemistry through the physico-chemical processes near the water-air interface with primary and secondary aerosol formation and evolution in the air aloft and finally to the climate impact of marine boundary layer aerosols. However, their photochemistry and photosensitizer properties have only been suggested and discussed but never fully addressed because they were beyond reach. This project suggests going significantly beyond this matter of fact by a combination of innovative tools and the development of new ideas.
This project is therefore devoted to new laboratory investigations of processes occurring at the air sea interface to predict emission, formation and evolution of halogenated radicals and aerosols from this vast interface between oceans and atmosphere. It progresses from fundamental laboratory measurements, marine science, surface chemistry, photochemistry … and is therefore interdisciplinary in nature.
It will lead to the development of innovative techniques for characterising chemical processing at the air sea interface (e.g., a multiphase atmospheric simulation chamber, a time-resolved fluorescence technique for characterising chemical processing at the air-sea interface). It will allow the assessment of new emerging ideas such as a quantitative description of the importance of photosensitized reactions in the visible at the air/sea interface as a major source of halogenated radicals and aerosols in the marine environment.
This new understanding will impact on our ability to describe atmospheric chemistry in the marine environment which has strong impact on the urban air quality of coastal regions (which by the way represent highly populated regions ) but also on climate change by providing new input for global climate models.
Max ERC Funding
2 366 276 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym ALFA
Project Shaping a European Scientific Scene : Alfonsine Astronomy
Researcher (PI) Matthieu Husson
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary Alfonsine astronomy is arguably among the first European scientific achievements. It shaped a scene for actors like Regiomontanus or Copernicus. There is however little detailed historical analysis encompassing its development in its full breadth. ALFA addresses this issue by studying tables, instruments, mathematical and theoretical texts in a methodologically innovative way relying on approaches from the history of manuscript cultures, history of mathematics, and history of astronomy.
ALFA integrates these approaches not only to benefit from different perspectives but also to build new questions from their interactions. For instance the analysis of mathematical practices in astral sciences manuscripts induces new ways to analyse the documents and to think about astronomical questions.
Relying on these approaches the main objectives of ALFA are thus to:
- Retrace the development of the corpus of Alfonsine texts from its origin in the second half of the 13th century to the end of the 15th century by following, on the manuscript level, the milieus fostering it;
- Analyse the Alfonsine astronomers’ practices, their relations to mathematics, to the natural world, to proofs and justification, their intellectual context and audiences;
- Build a meaningful narrative showing how astronomers in different milieus with diverse practices shaped, also from Arabic materials, an original scientific scene in Europe.
ALFA will shed new light on the intellectual history of the late medieval period as a whole and produce a better understanding of its relations to related scientific periods in Europe and beyond. It will also produce methodological breakthroughs impacting the ways history of knowledge is practiced outside the field of ancient and medieval sciences. Efforts will be devoted to bring these results not only to the relevant scholarly communities but also to a wider audience as a resource in the public debates around science, knowledge and culture.
Summary
Alfonsine astronomy is arguably among the first European scientific achievements. It shaped a scene for actors like Regiomontanus or Copernicus. There is however little detailed historical analysis encompassing its development in its full breadth. ALFA addresses this issue by studying tables, instruments, mathematical and theoretical texts in a methodologically innovative way relying on approaches from the history of manuscript cultures, history of mathematics, and history of astronomy.
ALFA integrates these approaches not only to benefit from different perspectives but also to build new questions from their interactions. For instance the analysis of mathematical practices in astral sciences manuscripts induces new ways to analyse the documents and to think about astronomical questions.
Relying on these approaches the main objectives of ALFA are thus to:
- Retrace the development of the corpus of Alfonsine texts from its origin in the second half of the 13th century to the end of the 15th century by following, on the manuscript level, the milieus fostering it;
- Analyse the Alfonsine astronomers’ practices, their relations to mathematics, to the natural world, to proofs and justification, their intellectual context and audiences;
- Build a meaningful narrative showing how astronomers in different milieus with diverse practices shaped, also from Arabic materials, an original scientific scene in Europe.
ALFA will shed new light on the intellectual history of the late medieval period as a whole and produce a better understanding of its relations to related scientific periods in Europe and beyond. It will also produce methodological breakthroughs impacting the ways history of knowledge is practiced outside the field of ancient and medieval sciences. Efforts will be devoted to bring these results not only to the relevant scholarly communities but also to a wider audience as a resource in the public debates around science, knowledge and culture.
Max ERC Funding
1 871 250 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AlgoFinance
Project Algorithmic Finance: Inquiring into the Reshaping of Financial Markets
Researcher (PI) Christian BORCH
Host Institution (HI) COPENHAGEN BUSINESS SCHOOL
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary Present-day financial markets are turning algorithmic, as market orders are increasingly being executed by fully automated computer algorithms, without any direct human intervention. Although algorithmic finance seems to fundamentally reshape the central dynamics in financial markets, and even though it prompts core sociological questions, it has not yet received any systematic attention. In a pioneering contribution to economic sociology and social studies of finance, ALGOFINANCE aims to understand how and with what consequences the turn to algorithms is changing financial markets. The overall concept and central contributions of ALGOFINANCE are the following: (1) on an intra-firm level, the project examines how the shift to algorithmic finance reshapes the ways in which trading firms operate, and does so by systematically and empirically investigating the reconfiguration of organizational structures and employee subjectivity; (2) on an inter-algorithmic level, it offers a ground-breaking methodology (agent-based modelling informed by qualitative data) to grasp how trading algorithms interact with one another in a fully digital space; and (3) on the level of market sociality, it proposes a novel theorization of how intra-firm and inter-algorithmic dynamics can be conceived of as introducing a particular form of sociality that is characteristic to algorithmic finance: a form of sociality-as-association heuristically analyzed as imitation. None of these three levels have received systematic attention in the state-of-the-art literature. Addressing them will significantly advance the understanding of present-day algorithmic finance in economic sociology. By contributing novel empirical, methodological, and theoretical understandings of the functioning and consequences of algorithms, ALGOFINANCE will pave the way for other research into digital sociology and the broader algorithmization of society.
Summary
Present-day financial markets are turning algorithmic, as market orders are increasingly being executed by fully automated computer algorithms, without any direct human intervention. Although algorithmic finance seems to fundamentally reshape the central dynamics in financial markets, and even though it prompts core sociological questions, it has not yet received any systematic attention. In a pioneering contribution to economic sociology and social studies of finance, ALGOFINANCE aims to understand how and with what consequences the turn to algorithms is changing financial markets. The overall concept and central contributions of ALGOFINANCE are the following: (1) on an intra-firm level, the project examines how the shift to algorithmic finance reshapes the ways in which trading firms operate, and does so by systematically and empirically investigating the reconfiguration of organizational structures and employee subjectivity; (2) on an inter-algorithmic level, it offers a ground-breaking methodology (agent-based modelling informed by qualitative data) to grasp how trading algorithms interact with one another in a fully digital space; and (3) on the level of market sociality, it proposes a novel theorization of how intra-firm and inter-algorithmic dynamics can be conceived of as introducing a particular form of sociality that is characteristic to algorithmic finance: a form of sociality-as-association heuristically analyzed as imitation. None of these three levels have received systematic attention in the state-of-the-art literature. Addressing them will significantly advance the understanding of present-day algorithmic finance in economic sociology. By contributing novel empirical, methodological, and theoretical understandings of the functioning and consequences of algorithms, ALGOFINANCE will pave the way for other research into digital sociology and the broader algorithmization of society.
Max ERC Funding
1 590 036 €
Duration
Start date: 2017-05-01, End date: 2021-04-30
Project acronym AlgTateGro
Project Constructing line bundles on algebraic varieties --around conjectures of Tate and Grothendieck
Researcher (PI) François CHARLES
Host Institution (HI) UNIVERSITE PARIS-SUD
Call Details Starting Grant (StG), PE1, ERC-2016-STG
Summary The goal of this project is to investigate two conjectures in arithmetic geometry pertaining to the geometry of projective varieties over finite and number fields. These two conjectures, formulated by Tate and Grothendieck in the 1960s, predict which cohomology classes are chern classes of line bundles. They both form an arithmetic counterpart of a theorem of Lefschetz, proved in the 1940s, which itself is the only known case of the Hodge conjecture. These two long-standing conjectures are one of the aspects of a more general web of questions regarding the topology of algebraic varieties which have been emphasized by Grothendieck and have since had a central role in modern arithmetic geometry. Special cases of these conjectures, appearing for instance in the work of Tate, Deligne, Faltings, Schneider-Lang, Masser-Wüstholz, have all had important consequences.
My goal is to investigate different lines of attack towards these conjectures, building on recent work on myself and Jean-Benoît Bost on related problems. The two main directions of the proposal are as follows. Over finite fields, the Tate conjecture is related to finiteness results for certain cohomological objects. I want to understand how to relate these to hidden boundedness properties of algebraic varieties that have appeared in my recent geometric proof of the Tate conjecture for K3 surfaces. The existence and relevance of a theory of Donaldson invariants for moduli spaces of twisted sheaves over finite fields seems to be a promising and novel direction. Over number fields, I want to combine the geometric insight above with algebraization techniques developed by Bost. In a joint project, we want to investigate how these can be used to first understand geometrically major results in transcendence theory and then attack the Grothendieck period conjecture for divisors via a number-theoretic and complex-analytic understanding of universal vector extensions of abelian schemes over curves.
Summary
The goal of this project is to investigate two conjectures in arithmetic geometry pertaining to the geometry of projective varieties over finite and number fields. These two conjectures, formulated by Tate and Grothendieck in the 1960s, predict which cohomology classes are chern classes of line bundles. They both form an arithmetic counterpart of a theorem of Lefschetz, proved in the 1940s, which itself is the only known case of the Hodge conjecture. These two long-standing conjectures are one of the aspects of a more general web of questions regarding the topology of algebraic varieties which have been emphasized by Grothendieck and have since had a central role in modern arithmetic geometry. Special cases of these conjectures, appearing for instance in the work of Tate, Deligne, Faltings, Schneider-Lang, Masser-Wüstholz, have all had important consequences.
My goal is to investigate different lines of attack towards these conjectures, building on recent work on myself and Jean-Benoît Bost on related problems. The two main directions of the proposal are as follows. Over finite fields, the Tate conjecture is related to finiteness results for certain cohomological objects. I want to understand how to relate these to hidden boundedness properties of algebraic varieties that have appeared in my recent geometric proof of the Tate conjecture for K3 surfaces. The existence and relevance of a theory of Donaldson invariants for moduli spaces of twisted sheaves over finite fields seems to be a promising and novel direction. Over number fields, I want to combine the geometric insight above with algebraization techniques developed by Bost. In a joint project, we want to investigate how these can be used to first understand geometrically major results in transcendence theory and then attack the Grothendieck period conjecture for divisors via a number-theoretic and complex-analytic understanding of universal vector extensions of abelian schemes over curves.
Max ERC Funding
1 222 329 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym ALKAGE
Project Algebraic and Kähler geometry
Researcher (PI) Jean-Pierre, Raymond, Philippe Demailly
Host Institution (HI) UNIVERSITE GRENOBLE ALPES
Call Details Advanced Grant (AdG), PE1, ERC-2014-ADG
Summary The purpose of this project is to study basic questions in algebraic and Kähler geometry. It is well known that the structure of projective or Kähler manifolds is governed by positivity or negativity properties of the curvature tensor. However, many fundamental problems are still wide open. Since the mid 1980's, I have developed a large number of key concepts and results that have led to important progress in transcendental algebraic geometry. Let me mention the discovery of holomorphic Morse inequalities, systematic applications of L² estimates with singular hermitian metrics, and a much improved understanding of Monge-Ampère equations and of singularities of plurisuharmonic functions. My first goal will be to investigate the Green-Griffiths-Lang conjecture asserting that an entire curve drawn in a variety of general type is algebraically degenerate. The subject is intimately related to important questions concerning Diophantine equations, especially higher dimensional generalizations of Faltings' theorem - the so-called Vojta program. One can rely here on a breakthrough I made in 2010, showing that all such entire curves must satisfy algebraic differential equations. A second closely related area of research of this project is the analysis of the structure of projective or compact Kähler manifolds. It can be seen as a generalization of the classification theory of surfaces by Kodaira, and of the more recent results for dimension 3 (Kawamata, Kollár, Mori, Shokurov, ...) to other dimensions. My plan is to combine powerful recent results obtained on the duality of positive cohomology cones with an analysis of the instability of the tangent bundle, i.e. of the Harder-Narasimhan filtration. On these ground-breaking questions, I intend to go much further and to enhance my national and international collaborations. These subjects already attract many young researchers and postdocs throughout the world, and the grant could be used to create even stronger interactions.
Summary
The purpose of this project is to study basic questions in algebraic and Kähler geometry. It is well known that the structure of projective or Kähler manifolds is governed by positivity or negativity properties of the curvature tensor. However, many fundamental problems are still wide open. Since the mid 1980's, I have developed a large number of key concepts and results that have led to important progress in transcendental algebraic geometry. Let me mention the discovery of holomorphic Morse inequalities, systematic applications of L² estimates with singular hermitian metrics, and a much improved understanding of Monge-Ampère equations and of singularities of plurisuharmonic functions. My first goal will be to investigate the Green-Griffiths-Lang conjecture asserting that an entire curve drawn in a variety of general type is algebraically degenerate. The subject is intimately related to important questions concerning Diophantine equations, especially higher dimensional generalizations of Faltings' theorem - the so-called Vojta program. One can rely here on a breakthrough I made in 2010, showing that all such entire curves must satisfy algebraic differential equations. A second closely related area of research of this project is the analysis of the structure of projective or compact Kähler manifolds. It can be seen as a generalization of the classification theory of surfaces by Kodaira, and of the more recent results for dimension 3 (Kawamata, Kollár, Mori, Shokurov, ...) to other dimensions. My plan is to combine powerful recent results obtained on the duality of positive cohomology cones with an analysis of the instability of the tangent bundle, i.e. of the Harder-Narasimhan filtration. On these ground-breaking questions, I intend to go much further and to enhance my national and international collaborations. These subjects already attract many young researchers and postdocs throughout the world, and the grant could be used to create even stronger interactions.
Max ERC Funding
1 809 345 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ALLEGRO
Project Active large-scale learning for visual recognition
Researcher (PI) Cordelia Schmid
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Advanced Grant (AdG), PE6, ERC-2012-ADG_20120216
Summary A massive and ever growing amount of digital image and video content
is available today, on sites such as
Flickr and YouTube, in audiovisual archives such as those of BBC and
INA, and in personal collections. In most cases, it comes with
additional information, such as text, audio or other metadata, that forms a
rather sparse and noisy, yet rich and diverse source of annotation,
ideally suited to emerging weakly supervised and active machine
learning technology. The ALLEGRO project will take visual recognition
to the next level by using this largely untapped source of data to
automatically learn visual models. The main research objective of
our project is the development of new algorithms and computer software
capable of autonomously exploring evolving data collections, selecting
the relevant information, and determining the visual models most
appropriate for different object, scene, and activity categories. An
emphasis will be put on learning visual models from video, a
particularly rich source of information, and on the representation of
human activities, one of today's most challenging problems in computer
vision. Although this project addresses fundamental research
issues, it is expected to result in significant advances in
high-impact applications that range from visual mining of the Web and
automated annotation and organization of family photo and video albums
to large-scale information retrieval in television archives.
Summary
A massive and ever growing amount of digital image and video content
is available today, on sites such as
Flickr and YouTube, in audiovisual archives such as those of BBC and
INA, and in personal collections. In most cases, it comes with
additional information, such as text, audio or other metadata, that forms a
rather sparse and noisy, yet rich and diverse source of annotation,
ideally suited to emerging weakly supervised and active machine
learning technology. The ALLEGRO project will take visual recognition
to the next level by using this largely untapped source of data to
automatically learn visual models. The main research objective of
our project is the development of new algorithms and computer software
capable of autonomously exploring evolving data collections, selecting
the relevant information, and determining the visual models most
appropriate for different object, scene, and activity categories. An
emphasis will be put on learning visual models from video, a
particularly rich source of information, and on the representation of
human activities, one of today's most challenging problems in computer
vision. Although this project addresses fundamental research
issues, it is expected to result in significant advances in
high-impact applications that range from visual mining of the Web and
automated annotation and organization of family photo and video albums
to large-scale information retrieval in television archives.
Max ERC Funding
2 493 322 €
Duration
Start date: 2013-04-01, End date: 2019-03-31