Project acronym 19TH-CENTURY_EUCLID
Project Nineteenth-Century Euclid: Geometry and the Literary Imagination from Wordsworth to Wells
Researcher (PI) Alice Jenkins
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Summary
This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Max ERC Funding
323 118 €
Duration
Start date: 2009-01-01, End date: 2011-10-31
Project acronym 2DQP
Project Two-dimensional quantum photonics
Researcher (PI) Brian David GERARDOT
Host Institution (HI) HERIOT-WATT UNIVERSITY
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Summary
Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Max ERC Funding
1 999 135 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym 3D-FM
Project Taking Force Microscopy into the Third Dimension
Researcher (PI) Tjerk Hendrik Oosterkamp
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary I propose to pursue two emerging Force Microscopy techniques that allow measuring structural properties below the surface of the specimen. Whereas Force Microscopy (most commonly known under the name AFM) is usually limited to measuring the surface topography and surface properties of a specimen, I will demonstrate that Force Microscopy can achieve true 3D images of the structure of the cell nucleus. In Ultrasound Force Microscopy, an ultrasound wave is launched from below towards the surface of the specimen. After the sound waves interact with structures beneath the surface of the specimen, the local variations in the amplitude and phase shift of the ultrasonic surface motion is collected by the Force Microscopy tip. Previously, measured 2D maps of the surface response have shown that the surface response is sensitive to structures below the surface. In this project I will employ miniature AFM cantilevers and nanotube tips that I have already developed in my lab. This will allow me to quickly acquire many such 2D maps at a much wider range of ultrasound frequencies and from these 2D maps calculate the full 3D structure below the surface. I expect this technique to have a resolving power better than 10 nm in three dimensions as far as 2 microns below the surface. In parallel I will introduce a major improvement to a technique based on Nuclear Magnetic Resonance (NMR). Magnetic Resonance Force Microscopy measures the interaction of a rotating nuclear spin in the field gradient of a magnetic Force Microscopy tip. However, these forces are so small that they pose an enormous challenge. Miniature cantilevers and nanotube tips, in combination with additional innovations in the detection of the cantilever motion, can overcome this problem. I expect to be able to measure the combined signal of 100 proton spins or fewer, which will allow me to measure proton densities with a resolution of 5 nm, but possibly even with atomic resolution.
Summary
I propose to pursue two emerging Force Microscopy techniques that allow measuring structural properties below the surface of the specimen. Whereas Force Microscopy (most commonly known under the name AFM) is usually limited to measuring the surface topography and surface properties of a specimen, I will demonstrate that Force Microscopy can achieve true 3D images of the structure of the cell nucleus. In Ultrasound Force Microscopy, an ultrasound wave is launched from below towards the surface of the specimen. After the sound waves interact with structures beneath the surface of the specimen, the local variations in the amplitude and phase shift of the ultrasonic surface motion is collected by the Force Microscopy tip. Previously, measured 2D maps of the surface response have shown that the surface response is sensitive to structures below the surface. In this project I will employ miniature AFM cantilevers and nanotube tips that I have already developed in my lab. This will allow me to quickly acquire many such 2D maps at a much wider range of ultrasound frequencies and from these 2D maps calculate the full 3D structure below the surface. I expect this technique to have a resolving power better than 10 nm in three dimensions as far as 2 microns below the surface. In parallel I will introduce a major improvement to a technique based on Nuclear Magnetic Resonance (NMR). Magnetic Resonance Force Microscopy measures the interaction of a rotating nuclear spin in the field gradient of a magnetic Force Microscopy tip. However, these forces are so small that they pose an enormous challenge. Miniature cantilevers and nanotube tips, in combination with additional innovations in the detection of the cantilever motion, can overcome this problem. I expect to be able to measure the combined signal of 100 proton spins or fewer, which will allow me to measure proton densities with a resolution of 5 nm, but possibly even with atomic resolution.
Max ERC Funding
1 794 960 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym 3DSCAN
Project Commercialisation of novel ultra-fast 3D laser scanning technology
Researcher (PI) Robin Angus SILVER
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Proof of Concept (PoC), ERC-2019-PoC
Summary Understanding how the brain processes information is one of the unsolved grand challenges in science. Moreover, neurological disorders, which disrupt information processing, have an enormous societal and economic impact. Studying information processing in the brain requires measurements of signals as they flow through neural circuits. However, the 3D nature of brain circuits and the speed of information transfer makes it difficult for neuroscientists to measure their properties with sufficiently high spatial and temporal resolution. During the NEUROGAIN ERC project, we developed a novel type of Acousto-Optic Lens (AOL)-based high-speed 3D laser scanner. This technology enables the focusing and scanning of a laser beam at 20-40 kHz. This scanning technology can be added to existing two-photon microscopes to enable 3D imaging of neurons and circuits with unprecedented spatio-temporal resolution. Moreover, it also automatically corrects for brain movement in real-time providing sharper images. This ERC PoC will facilitate commercialization of this 3D scanning technology by providing support to explore the markets in biosciences and beyond, protect the IP and facilitate early stage manufacture and assembly of AOL 3D scanners to supply biomedical researchers.
Summary
Understanding how the brain processes information is one of the unsolved grand challenges in science. Moreover, neurological disorders, which disrupt information processing, have an enormous societal and economic impact. Studying information processing in the brain requires measurements of signals as they flow through neural circuits. However, the 3D nature of brain circuits and the speed of information transfer makes it difficult for neuroscientists to measure their properties with sufficiently high spatial and temporal resolution. During the NEUROGAIN ERC project, we developed a novel type of Acousto-Optic Lens (AOL)-based high-speed 3D laser scanner. This technology enables the focusing and scanning of a laser beam at 20-40 kHz. This scanning technology can be added to existing two-photon microscopes to enable 3D imaging of neurons and circuits with unprecedented spatio-temporal resolution. Moreover, it also automatically corrects for brain movement in real-time providing sharper images. This ERC PoC will facilitate commercialization of this 3D scanning technology by providing support to explore the markets in biosciences and beyond, protect the IP and facilitate early stage manufacture and assembly of AOL 3D scanners to supply biomedical researchers.
Max ERC Funding
150 000 €
Duration
Start date: 2019-06-01, End date: 2020-11-30
Project acronym 4C
Project 4C technology: uncovering the multi-dimensional structure of the genome
Researcher (PI) Wouter Leonard De Laat
Host Institution (HI) KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAW
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary The architecture of DNA in the cell nucleus is an emerging epigenetic key contributor to genome function. We recently developed 4C technology, a high-throughput technique that combines state-of-the-art 3C technology with tailored micro-arrays to uniquely allow for an unbiased genome-wide search for DNA loci that interact in the nuclear space. Based on 4C technology, we were the first to provide a comprehensive overview of long-range DNA contacts of selected loci. The data showed that active and inactive chromatin domains contact many distinct regions within and between chromosomes and genes switch long-range DNA contacts in relation to their expression status. 4C technology not only allows investigating the three-dimensional structure of DNA in the nucleus, it also accurately reconstructs at least 10 megabases of the one-dimensional chromosome sequence map around the target sequence. Changes in this physical map as a result of genomic rearrangements are therefore identified by 4C technology. We recently demonstrated that 4C detects deletions, balanced inversions and translocations in patient samples at a resolution (~7kb) that allowed immediate sequencing of the breakpoints. Excitingly, 4C technology therefore offers the first high-resolution genomic approach that can identify both balanced and unbalanced genomic rearrangements. 4C is expected to become an important tool in clinical diagnosis and prognosis. Key objectives of this proposal are: 1. Explore the functional significance of DNA folding in the nucleus by systematically applying 4C technology to differentially expressed gene loci. 2. Adapt 4C technology such that it allows for massive parallel analysis of DNA interactions between regulatory elements and gene promoters. This method would greatly facilitate the identification of functionally relevant DNA elements in the genome. 3. Develop 4C technology into a clinical diagnostic tool for the accurate detection of balanced and unbalanced rearrangements.
Summary
The architecture of DNA in the cell nucleus is an emerging epigenetic key contributor to genome function. We recently developed 4C technology, a high-throughput technique that combines state-of-the-art 3C technology with tailored micro-arrays to uniquely allow for an unbiased genome-wide search for DNA loci that interact in the nuclear space. Based on 4C technology, we were the first to provide a comprehensive overview of long-range DNA contacts of selected loci. The data showed that active and inactive chromatin domains contact many distinct regions within and between chromosomes and genes switch long-range DNA contacts in relation to their expression status. 4C technology not only allows investigating the three-dimensional structure of DNA in the nucleus, it also accurately reconstructs at least 10 megabases of the one-dimensional chromosome sequence map around the target sequence. Changes in this physical map as a result of genomic rearrangements are therefore identified by 4C technology. We recently demonstrated that 4C detects deletions, balanced inversions and translocations in patient samples at a resolution (~7kb) that allowed immediate sequencing of the breakpoints. Excitingly, 4C technology therefore offers the first high-resolution genomic approach that can identify both balanced and unbalanced genomic rearrangements. 4C is expected to become an important tool in clinical diagnosis and prognosis. Key objectives of this proposal are: 1. Explore the functional significance of DNA folding in the nucleus by systematically applying 4C technology to differentially expressed gene loci. 2. Adapt 4C technology such that it allows for massive parallel analysis of DNA interactions between regulatory elements and gene promoters. This method would greatly facilitate the identification of functionally relevant DNA elements in the genome. 3. Develop 4C technology into a clinical diagnostic tool for the accurate detection of balanced and unbalanced rearrangements.
Max ERC Funding
1 225 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym AAMDDR
Project DNA damage response and genome stability: The role of ATM, ATR and the Mre11 complex
Researcher (PI) Vincenzo Costanzo
Host Institution (HI) CANCER RESEARCH UK LBG
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Summary
Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ABOLED
Project Commercial feasibility of an anti-bacterial treatment
Researcher (PI) Ifor SAMUEL
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Proof of Concept (PoC), ERC-2019-PoC
Summary Multidrug resistance of pathogenic bacteria has become a serious threat to public health. The need to develop novel technologies to combat the evolution of bacterial drug resistance is clearly a matter of public concern and urgency. The consequences of AMR include (i) reducing our ability to treat common infectious, resulting in prolonged illness and a greater risk of complications; (ii) patients remaining infectious for longer due to ineffective treatments, making them more likely to pass infections on to others; (iii) compromising advances in modern medicine (such as organ transplantation or chemotherapy) due to risk of infection; and (iv) increasing economic burden on health care systems, families, and societies. This project aims to assess the commercial viability of an alternative approach to this problem.
Summary
Multidrug resistance of pathogenic bacteria has become a serious threat to public health. The need to develop novel technologies to combat the evolution of bacterial drug resistance is clearly a matter of public concern and urgency. The consequences of AMR include (i) reducing our ability to treat common infectious, resulting in prolonged illness and a greater risk of complications; (ii) patients remaining infectious for longer due to ineffective treatments, making them more likely to pass infections on to others; (iii) compromising advances in modern medicine (such as organ transplantation or chemotherapy) due to risk of infection; and (iv) increasing economic burden on health care systems, families, and societies. This project aims to assess the commercial viability of an alternative approach to this problem.
Max ERC Funding
150 000 €
Duration
Start date: 2019-08-01, End date: 2021-01-31
Project acronym ACOUSEQ
Project Acoustics for Next Generation Sequencing
Researcher (PI) Jonathan Mark Cooper
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary Since completion of the first human genome sequence, the demand for cheaper and faster sequencing methods has increased enormously. This need has driven the development of second-generation sequencing methods, or next-generation sequencing (also known as NGS or high throughput sequencing). The creation of these platforms has made sequencing accessible to more laboratories, rapidly increasing the volume of research, including clinical diagnostics and its use in directing treatment (precision medicine). The applications of NGS are also allowing rapid advances in clinically related fields such as public health and epidemiology. Such developments illustrate why sequencing is now the fastest-growing area in genomics (+23% p.a.). The activity is said to be worth $2.5B this year, and poised to reach ~$9B by 2020. In any workflow, prior to the sequencing reactions, a number of pre-sequencing steps are required, including the fragmentation of the DNA into smaller sizes for processing, size selection, library preparation and target enrichment. This proposal is specifically concerned with this latter area, namely DNA fragmentation – now widely acknowledged across the industry as being the most important technological bottleneck in the pre-sequencing workflow. Our new method for DNA fragmentation – involving using surface acoustic waves will enable sample preparation from lower sample volumes using lower powers. It also has the potential to allow the seamless integration of fragmentation into sequencing instrumentation, opening up the possibility of “sample to answer” diagnostics. In the near term this will enable the implementation of sample preparation pre-sequencing steps within the NGS instruments. In the longer term, our techniques will also enable us to develop methods for field-based DNA sequencing – as may be required for determining “microbial resistance” and informing the treatment of infectious disease in the face of the emergence of drug resistance.
Summary
Since completion of the first human genome sequence, the demand for cheaper and faster sequencing methods has increased enormously. This need has driven the development of second-generation sequencing methods, or next-generation sequencing (also known as NGS or high throughput sequencing). The creation of these platforms has made sequencing accessible to more laboratories, rapidly increasing the volume of research, including clinical diagnostics and its use in directing treatment (precision medicine). The applications of NGS are also allowing rapid advances in clinically related fields such as public health and epidemiology. Such developments illustrate why sequencing is now the fastest-growing area in genomics (+23% p.a.). The activity is said to be worth $2.5B this year, and poised to reach ~$9B by 2020. In any workflow, prior to the sequencing reactions, a number of pre-sequencing steps are required, including the fragmentation of the DNA into smaller sizes for processing, size selection, library preparation and target enrichment. This proposal is specifically concerned with this latter area, namely DNA fragmentation – now widely acknowledged across the industry as being the most important technological bottleneck in the pre-sequencing workflow. Our new method for DNA fragmentation – involving using surface acoustic waves will enable sample preparation from lower sample volumes using lower powers. It also has the potential to allow the seamless integration of fragmentation into sequencing instrumentation, opening up the possibility of “sample to answer” diagnostics. In the near term this will enable the implementation of sample preparation pre-sequencing steps within the NGS instruments. In the longer term, our techniques will also enable us to develop methods for field-based DNA sequencing – as may be required for determining “microbial resistance” and informing the treatment of infectious disease in the face of the emergence of drug resistance.
Max ERC Funding
149 995 €
Duration
Start date: 2017-05-01, End date: 2018-10-31
Project acronym ACrossWire
Project A Cross-Correlated Approach to Engineering Nitride Nanowires
Researcher (PI) Hannah Jane JOYCE
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Nanowires based on group III–nitride semiconductors exhibit outstanding potential for emerging applications in energy-efficient lighting, optoelectronics and solar energy harvesting. Nitride nanowires, tailored at the nanoscale, should overcome many of the challenges facing conventional planar nitride materials, and also add extraordinary new functionality to these materials. However, progress towards III–nitride nanowire devices has been hampered by the challenges in quantifying nanowire electrical properties using conventional contact-based measurements. Without reliable electrical transport data, it is extremely difficult to optimise nanowire growth and device design. This project aims to overcome this problem through an unconventional approach: advanced contact-free electrical measurements. Contact-free measurements, growth studies, and device studies will be cross-correlated to provide unprecedented insight into the growth mechanisms that govern nanowire electronic properties and ultimately dictate device performance. A key contact-free technique at the heart of this proposal is ultrafast terahertz conductivity spectroscopy: an advanced technique ideal for probing nanowire electrical properties. We will develop new methods to enable the full suite of contact-free (including terahertz, photoluminescence and cathodoluminescence measurements) and contact-based measurements to be performed with high spatial resolution on the same nanowires. This will provide accurate, comprehensive and cross-correlated feedback to guide growth studies and expedite the targeted development of nanowires with specified functionality. We will apply this powerful approach to tailor nanowires as photoelectrodes for solar photoelectrochemical water splitting. This is an application for which nitride nanowires have outstanding, yet unfulfilled, potential. This project will thus harness the true potential of nitride nanowires and bring them to the forefront of 21st century technology.
Summary
Nanowires based on group III–nitride semiconductors exhibit outstanding potential for emerging applications in energy-efficient lighting, optoelectronics and solar energy harvesting. Nitride nanowires, tailored at the nanoscale, should overcome many of the challenges facing conventional planar nitride materials, and also add extraordinary new functionality to these materials. However, progress towards III–nitride nanowire devices has been hampered by the challenges in quantifying nanowire electrical properties using conventional contact-based measurements. Without reliable electrical transport data, it is extremely difficult to optimise nanowire growth and device design. This project aims to overcome this problem through an unconventional approach: advanced contact-free electrical measurements. Contact-free measurements, growth studies, and device studies will be cross-correlated to provide unprecedented insight into the growth mechanisms that govern nanowire electronic properties and ultimately dictate device performance. A key contact-free technique at the heart of this proposal is ultrafast terahertz conductivity spectroscopy: an advanced technique ideal for probing nanowire electrical properties. We will develop new methods to enable the full suite of contact-free (including terahertz, photoluminescence and cathodoluminescence measurements) and contact-based measurements to be performed with high spatial resolution on the same nanowires. This will provide accurate, comprehensive and cross-correlated feedback to guide growth studies and expedite the targeted development of nanowires with specified functionality. We will apply this powerful approach to tailor nanowires as photoelectrodes for solar photoelectrochemical water splitting. This is an application for which nitride nanowires have outstanding, yet unfulfilled, potential. This project will thus harness the true potential of nitride nanowires and bring them to the forefront of 21st century technology.
Max ERC Funding
1 499 195 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ActiveBioFluids
Project Origins of Collective Motion in Active Biofluids
Researcher (PI) Daniel TAM
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary The emergence of coherent behaviour is ubiquitous in the natural world and has long captivated biologists and physicists alike. One area of growing interest is the collective motion and synchronization arising within and between simple motile organisms. My goal is to develop and use a novel experimental approach to unravel the origins of spontaneous coherent motion in three model systems of biofluids: (1) the synchronization of the two flagella of green algae Chlamydomonas Rheinhardtii, (2) the metachronal wave in the cilia of protist Paramecium and (3) the collective motion of swimming microorganisms in active suspensions. Understanding the mechanisms leading to collective motion is of tremendous importance because it is crucial to many biological processes such as mechanical signal transduction, embryonic development and biofilm formation.
Up till now, most of the work has been theoretical and has led to the dominant view that hydrodynamic interactions are the main driving force for synchronization and collective motion. Recent experiments have challenged this view and highlighted the importance of direct mechanical contact. New experimental studies are now crucially needed. The state-of-the-art of experimental approaches consists of observations of unperturbed cells. The key innovation in our approach is to dynamically interact with microorganisms in real-time, at the relevant time and length scales. I will investigate the origins of coherent motion by reproducing synthetically the mechanical signatures of physiological flows and direct mechanical interactions and track precisely the response of the organism to the perturbations. Our new approach will incorporate optical tweezers to interact with motile cells, and a unique μ-Tomographic PIV setup to track their 3D micron-scale motion.
This proposal tackles a timely question in biophysics and will yield new insight into the fundamental principles underlying collective motion in active biological matter.
Summary
The emergence of coherent behaviour is ubiquitous in the natural world and has long captivated biologists and physicists alike. One area of growing interest is the collective motion and synchronization arising within and between simple motile organisms. My goal is to develop and use a novel experimental approach to unravel the origins of spontaneous coherent motion in three model systems of biofluids: (1) the synchronization of the two flagella of green algae Chlamydomonas Rheinhardtii, (2) the metachronal wave in the cilia of protist Paramecium and (3) the collective motion of swimming microorganisms in active suspensions. Understanding the mechanisms leading to collective motion is of tremendous importance because it is crucial to many biological processes such as mechanical signal transduction, embryonic development and biofilm formation.
Up till now, most of the work has been theoretical and has led to the dominant view that hydrodynamic interactions are the main driving force for synchronization and collective motion. Recent experiments have challenged this view and highlighted the importance of direct mechanical contact. New experimental studies are now crucially needed. The state-of-the-art of experimental approaches consists of observations of unperturbed cells. The key innovation in our approach is to dynamically interact with microorganisms in real-time, at the relevant time and length scales. I will investigate the origins of coherent motion by reproducing synthetically the mechanical signatures of physiological flows and direct mechanical interactions and track precisely the response of the organism to the perturbations. Our new approach will incorporate optical tweezers to interact with motile cells, and a unique μ-Tomographic PIV setup to track their 3D micron-scale motion.
This proposal tackles a timely question in biophysics and will yield new insight into the fundamental principles underlying collective motion in active biological matter.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym AdaSmartRes
Project Adapter for a commercial grade camera or a smart phone to perform depth resolved imaging
Researcher (PI) Adrian PODOLEANU
Host Institution (HI) UNIVERSITY OF KENT
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary The proposal refers to a patented adapter that can transform a commercial grade digital camera or the camera in a smart phone into a depth resolved imaging instrument. Several adapters will be assembled, making use of optical coherence tomography (OCT) technology protected by some other of PI’s patents. The activity takes advantage of recent progress in commercial grade cameras in terms of their modes of operation as well as in terms of parameters of their devices, such as sensitivity and speed of their photodetector arrays.
Three versions of low cost functional OCT systems will be assembled as proof of concepts responding to needs of three possible markets that can be addressed by such an adapter: 1. En-face depth resolved, high transversal resolution microscope; 2. Fast cross sectioning imager. 3. Swept source volumetric analyser.
Industrial input comes from a company involved in professional eye imaging systems, a company already selling adapters for smart phones to perform medical imaging, a company specialised in digital photographic equipment and a company efficient in prototyping photonics equipment and handling medical images. Clinical input is provided by two specialists in the two highest potential medical imaging markets of the adapter serving ophthalmology and ear, nose and throat speciality.
Summary
The proposal refers to a patented adapter that can transform a commercial grade digital camera or the camera in a smart phone into a depth resolved imaging instrument. Several adapters will be assembled, making use of optical coherence tomography (OCT) technology protected by some other of PI’s patents. The activity takes advantage of recent progress in commercial grade cameras in terms of their modes of operation as well as in terms of parameters of their devices, such as sensitivity and speed of their photodetector arrays.
Three versions of low cost functional OCT systems will be assembled as proof of concepts responding to needs of three possible markets that can be addressed by such an adapter: 1. En-face depth resolved, high transversal resolution microscope; 2. Fast cross sectioning imager. 3. Swept source volumetric analyser.
Industrial input comes from a company involved in professional eye imaging systems, a company already selling adapters for smart phones to perform medical imaging, a company specialised in digital photographic equipment and a company efficient in prototyping photonics equipment and handling medical images. Clinical input is provided by two specialists in the two highest potential medical imaging markets of the adapter serving ophthalmology and ear, nose and throat speciality.
Max ERC Funding
149 300 €
Duration
Start date: 2017-06-01, End date: 2018-11-30
Project acronym ADSNeSP
Project Active and Driven Systems: Nonequilibrium Statistical Physics
Researcher (PI) Michael Elmhirst CATES
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE3, ERC-2016-ADG
Summary Active Matter systems, such as self-propelled colloids, violate time-reversal symmetry by producing entropy locally, typically converting fuel into mechanical motion at the particle scale. Other driven systems instead produce entropy because of global forcing by external fields, or boundary conditions that impose macroscopic fluxes (such as the momentum flux across a fluid sheared between moving parallel walls).
Nonequilibrium statistical physics (NeSP) is the basic toolbox for both classes of system. In recent years, much progress in NeSP has stemmed from bottom-up work on driven systems. This has provided a number of exactly solved benchmark models, and extended approximation techniques to address driven non-ergodic systems, such as sheared glasses. Meanwhile, work on fluctuation theorems and stochastic thermodynamics have created profound, model-independent insights into dynamics far from equilibrium.
More recently, the field of Active Matter has moved forward rapidly, leaving in its wake a series of generic and profound NeSP questions that now need answers: When is time-reversal symmetry, broken at the microscale, restored by coarse-graining? If it is restored, is an effective thermodynamic description is possible? How different is an active system's behaviour from a globally forced one?
ADSNeSP aims to distil from recent Active Matter research such fundamental questions; answer them first in the context of specific models and second in more general terms; and then, using the tools and insights gained, shed new light on longstanding problems in the wider class of driven systems.
I believe these new tools and insights will be substantial, because local activity takes systems far from equilibrium in a conceptually distinct direction from most types of global driving. By focusing on general principles and on simple models of activity, I seek to create a new vantage point that can inform, and potentially transform, wider areas of statistical physics.
Summary
Active Matter systems, such as self-propelled colloids, violate time-reversal symmetry by producing entropy locally, typically converting fuel into mechanical motion at the particle scale. Other driven systems instead produce entropy because of global forcing by external fields, or boundary conditions that impose macroscopic fluxes (such as the momentum flux across a fluid sheared between moving parallel walls).
Nonequilibrium statistical physics (NeSP) is the basic toolbox for both classes of system. In recent years, much progress in NeSP has stemmed from bottom-up work on driven systems. This has provided a number of exactly solved benchmark models, and extended approximation techniques to address driven non-ergodic systems, such as sheared glasses. Meanwhile, work on fluctuation theorems and stochastic thermodynamics have created profound, model-independent insights into dynamics far from equilibrium.
More recently, the field of Active Matter has moved forward rapidly, leaving in its wake a series of generic and profound NeSP questions that now need answers: When is time-reversal symmetry, broken at the microscale, restored by coarse-graining? If it is restored, is an effective thermodynamic description is possible? How different is an active system's behaviour from a globally forced one?
ADSNeSP aims to distil from recent Active Matter research such fundamental questions; answer them first in the context of specific models and second in more general terms; and then, using the tools and insights gained, shed new light on longstanding problems in the wider class of driven systems.
I believe these new tools and insights will be substantial, because local activity takes systems far from equilibrium in a conceptually distinct direction from most types of global driving. By focusing on general principles and on simple models of activity, I seek to create a new vantage point that can inform, and potentially transform, wider areas of statistical physics.
Max ERC Funding
2 043 630 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym AIDViC
Project Antibiotic intracellular delivery via virus-like carriers
Researcher (PI) Giuseppe BATTAGLIA
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary Taking inspiration from natural carriers, such as viruses, a new technology has been developed in
our laboratories part of an ongoing ERC starting grant project, Molecular Engineering of Virus-like
Carriers (MEViC). We created synthetic viruses using polymers and thus safer materials. They are
able of delivering high payload of specific drugs into cells with no detrimental effect. While testing for
anticancer therapies, we identified a synthetic virus capable of targeting almost exclusively
macrophages. We performed preliminary work showing that this can be successfully applied to
deliver antibiotics to rid of intracellular pathogens. This has now open a completely new possibility
whereas we can expand our technology for the treatment of several infections as well as to contribute
to the ongoing efforts in tackling antibiotic resistance.
Summary
Taking inspiration from natural carriers, such as viruses, a new technology has been developed in
our laboratories part of an ongoing ERC starting grant project, Molecular Engineering of Virus-like
Carriers (MEViC). We created synthetic viruses using polymers and thus safer materials. They are
able of delivering high payload of specific drugs into cells with no detrimental effect. While testing for
anticancer therapies, we identified a synthetic virus capable of targeting almost exclusively
macrophages. We performed preliminary work showing that this can be successfully applied to
deliver antibiotics to rid of intracellular pathogens. This has now open a completely new possibility
whereas we can expand our technology for the treatment of several infections as well as to contribute
to the ongoing efforts in tackling antibiotic resistance.
Max ERC Funding
149 062 €
Duration
Start date: 2017-07-01, End date: 2018-12-31
Project acronym AIM
Project Adaptive Imaging Microscopy
Researcher (PI) Michel Verhaegen
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary The project has a goal of starting up a small business producing highly special customizable microscope systems for biomedical research. Microscopic imaging is one of the major drivers of the progress in biomedical and life sciences. The development of novel concepts, addressing the challenges of advanced optical microscopy, represents the front line of scientific research. Modern microscopes are not purely optical devices anymore. They have developed into complex integrated systems, combining optics, mechanics, electronics, feedback control systems, and image processing Many novel concepts of modern microscopy, while very interesting for research, still have to prove the commercial profitability. Such developments can be effectively addressed by start-up companies with a goal of either custom development, production and service of these advanced systems, or development and selling the IP to a larger player.
The major goal of this proposal is the creation of the first commercial optical microscope, the performance of which depends completely on the adaptive optics feedback controls. To prove the feasibility of this approach, we select a highly attractive technical concept of adaptive light sheet microscope, developed in our group in the framework of the ERC project. In this aspect, our development relates to ordinary microscope system in the same way as “fly by wire” airplane relates to an old-fashioned one.
Our contribution in the development of instrumentation for biomedical research will bring a positive impact on our knowledge about the nature and ourselves, the quality of life and life expectation of the population. Our proposal addresses the largest societal challenge of Europe: the healthcare. Our instrument will contribute to the understanding of complex diseases and support the greying population to stay healthy and self-supportive for extended period of time.
Summary
The project has a goal of starting up a small business producing highly special customizable microscope systems for biomedical research. Microscopic imaging is one of the major drivers of the progress in biomedical and life sciences. The development of novel concepts, addressing the challenges of advanced optical microscopy, represents the front line of scientific research. Modern microscopes are not purely optical devices anymore. They have developed into complex integrated systems, combining optics, mechanics, electronics, feedback control systems, and image processing Many novel concepts of modern microscopy, while very interesting for research, still have to prove the commercial profitability. Such developments can be effectively addressed by start-up companies with a goal of either custom development, production and service of these advanced systems, or development and selling the IP to a larger player.
The major goal of this proposal is the creation of the first commercial optical microscope, the performance of which depends completely on the adaptive optics feedback controls. To prove the feasibility of this approach, we select a highly attractive technical concept of adaptive light sheet microscope, developed in our group in the framework of the ERC project. In this aspect, our development relates to ordinary microscope system in the same way as “fly by wire” airplane relates to an old-fashioned one.
Our contribution in the development of instrumentation for biomedical research will bring a positive impact on our knowledge about the nature and ourselves, the quality of life and life expectation of the population. Our proposal addresses the largest societal challenge of Europe: the healthcare. Our instrument will contribute to the understanding of complex diseases and support the greying population to stay healthy and self-supportive for extended period of time.
Max ERC Funding
149 998 €
Duration
Start date: 2017-05-01, End date: 2018-10-31
Project acronym AlCat
Project Bond activation and catalysis with low-valent aluminium
Researcher (PI) Michael James COWLEY
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary This project will develop the principles required to enable bond-modifying redox catalysis based on aluminium by preparing and studying new Al(I) compounds capable of reversible oxidative addition.
Catalytic processes are involved in the synthesis of 75 % of all industrially produced chemicals, but most catalysts involved are based on precious metals such as rhodium, palladium or platinum. These metals are expensive and their supply limited and unstable; there is a significant need to develop the chemistry of non-precious metals as alternatives. On toxicity and abundance alone, aluminium is an attractive candidate. Furthermore, recent work, including in our group, has demonstrated that Al(I) compounds can perform a key step in catalytic cycles - the oxidative addition of E-H bonds.
In order to realise the significant potential of Al(I) for transition-metal style catalysis we urgently need to:
- establish the principles governing oxidative addition and reductive elimination reactivity in aluminium systems.
- know how the reactivity of Al(I) compounds can be controlled by varying properties of ligand frameworks.
- understand the onward reactivity of oxidative addition products of Al(I) to enable applications in catalysis.
In this project we will:
- Study mechanisms of oxidative addition and reductive elimination of a range of synthetically relevant bonds at Al(I) centres, establishing the principles governing this fundamental reactivity.
- Develop new ligand frameworks to support of Al(I) centres and evaluate the effect of the ligand on oxidative addition/reductive elimination at Al centres.
- Investigate methods for Al-mediated functionalisation of organic compounds by exploring the reactivity of E-H oxidative addition products with unsaturated organic compounds.
Summary
This project will develop the principles required to enable bond-modifying redox catalysis based on aluminium by preparing and studying new Al(I) compounds capable of reversible oxidative addition.
Catalytic processes are involved in the synthesis of 75 % of all industrially produced chemicals, but most catalysts involved are based on precious metals such as rhodium, palladium or platinum. These metals are expensive and their supply limited and unstable; there is a significant need to develop the chemistry of non-precious metals as alternatives. On toxicity and abundance alone, aluminium is an attractive candidate. Furthermore, recent work, including in our group, has demonstrated that Al(I) compounds can perform a key step in catalytic cycles - the oxidative addition of E-H bonds.
In order to realise the significant potential of Al(I) for transition-metal style catalysis we urgently need to:
- establish the principles governing oxidative addition and reductive elimination reactivity in aluminium systems.
- know how the reactivity of Al(I) compounds can be controlled by varying properties of ligand frameworks.
- understand the onward reactivity of oxidative addition products of Al(I) to enable applications in catalysis.
In this project we will:
- Study mechanisms of oxidative addition and reductive elimination of a range of synthetically relevant bonds at Al(I) centres, establishing the principles governing this fundamental reactivity.
- Develop new ligand frameworks to support of Al(I) centres and evaluate the effect of the ligand on oxidative addition/reductive elimination at Al centres.
- Investigate methods for Al-mediated functionalisation of organic compounds by exploring the reactivity of E-H oxidative addition products with unsaturated organic compounds.
Max ERC Funding
1 493 679 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym ALEXANDRIA
Project Large-Scale Formal Proof for the Working Mathematician
Researcher (PI) Lawrence PAULSON
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE6, ERC-2016-ADG
Summary Mathematical proofs have always been prone to error. Today, proofs can be hundreds of pages long and combine results from many specialisms, making them almost impossible to check. One solution is to deploy modern verification technology. Interactive theorem provers have demonstrated their potential as vehicles for formalising mathematics through achievements such as the verification of the Kepler Conjecture. Proofs done using such tools reach a high standard of correctness.
However, existing theorem provers are unsuitable for mathematics. Their formal proofs are unreadable. They struggle to do simple tasks, such as evaluating limits. They lack much basic mathematics, and the material they do have is difficult to locate and apply.
ALEXANDRIA will create a proof development environment attractive to working mathematicians, utilising the best technology available across computer science. Its focus will be the management and use of large-scale mathematical knowledge, both theorems and algorithms. The project will employ mathematicians to investigate the formalisation of mathematics in practice. Our already substantial formalised libraries will serve as the starting point. They will be extended and annotated to support sophisticated searches. Techniques will be borrowed from machine learning, information retrieval and natural language processing. Algorithms will be treated similarly: ALEXANDRIA will help users find and invoke the proof methods and algorithms appropriate for the task.
ALEXANDRIA will provide (1) comprehensive formal mathematical libraries; (2) search within libraries, and the mining of libraries for proof patterns; (3) automated support for the construction of large formal proofs; (4) sound and practical computer algebra tools.
ALEXANDRIA will be based on legible structured proofs. Formal proofs should be not mere code, but a machine-checkable form of communication between mathematicians.
Summary
Mathematical proofs have always been prone to error. Today, proofs can be hundreds of pages long and combine results from many specialisms, making them almost impossible to check. One solution is to deploy modern verification technology. Interactive theorem provers have demonstrated their potential as vehicles for formalising mathematics through achievements such as the verification of the Kepler Conjecture. Proofs done using such tools reach a high standard of correctness.
However, existing theorem provers are unsuitable for mathematics. Their formal proofs are unreadable. They struggle to do simple tasks, such as evaluating limits. They lack much basic mathematics, and the material they do have is difficult to locate and apply.
ALEXANDRIA will create a proof development environment attractive to working mathematicians, utilising the best technology available across computer science. Its focus will be the management and use of large-scale mathematical knowledge, both theorems and algorithms. The project will employ mathematicians to investigate the formalisation of mathematics in practice. Our already substantial formalised libraries will serve as the starting point. They will be extended and annotated to support sophisticated searches. Techniques will be borrowed from machine learning, information retrieval and natural language processing. Algorithms will be treated similarly: ALEXANDRIA will help users find and invoke the proof methods and algorithms appropriate for the task.
ALEXANDRIA will provide (1) comprehensive formal mathematical libraries; (2) search within libraries, and the mining of libraries for proof patterns; (3) automated support for the construction of large formal proofs; (4) sound and practical computer algebra tools.
ALEXANDRIA will be based on legible structured proofs. Formal proofs should be not mere code, but a machine-checkable form of communication between mathematicians.
Max ERC Funding
2 430 140 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ALGSTRONGCRYPTO
Project Algebraic Methods for Stronger Crypto
Researcher (PI) Ronald John Fitzgerald CRAMER
Host Institution (HI) STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTEN
Call Details Advanced Grant (AdG), PE6, ERC-2016-ADG
Summary Our field is cryptology. Our overarching objective is to advance significantly the frontiers in
design and analysis of high-security cryptography for the future generation.
Particularly, we wish to enhance the efficiency, functionality, and, last-but-not-least, fundamental understanding of cryptographic security against very powerful adversaries.
Our approach here is to develop completely novel methods by
deepening, strengthening and broadening the
algebraic foundations of the field.
Concretely, our lens builds on
the arithmetic codex. This is a general, abstract cryptographic primitive whose basic theory we recently developed and whose asymptotic part, which relies on algebraic geometry, enjoys crucial applications in surprising foundational results on constant communication-rate two-party cryptography. A codex is a linear (error correcting) code that, when endowing its ambient vector space just with coordinate-wise multiplication, can be viewed as simulating, up to some degree, richer arithmetical structures such as finite fields (or products thereof), or generally, finite-dimensional algebras over finite fields. Besides this degree, coordinate-localities for which simulation holds and for which it does not at all are also captured.
Our method is based on novel perspectives on codices which significantly
widen their scope and strengthen their utility. Particularly, we bring
symmetries, computational- and complexity theoretic aspects, and connections with algebraic number theory, -geometry, and -combinatorics into play in novel ways. Our applications range from public-key cryptography to secure multi-party computation.
Our proposal is subdivided into 3 interconnected modules:
(1) Algebraic- and Number Theoretical Cryptanalysis
(2) Construction of Algebraic Crypto Primitives
(3) Advanced Theory of Arithmetic Codices
Summary
Our field is cryptology. Our overarching objective is to advance significantly the frontiers in
design and analysis of high-security cryptography for the future generation.
Particularly, we wish to enhance the efficiency, functionality, and, last-but-not-least, fundamental understanding of cryptographic security against very powerful adversaries.
Our approach here is to develop completely novel methods by
deepening, strengthening and broadening the
algebraic foundations of the field.
Concretely, our lens builds on
the arithmetic codex. This is a general, abstract cryptographic primitive whose basic theory we recently developed and whose asymptotic part, which relies on algebraic geometry, enjoys crucial applications in surprising foundational results on constant communication-rate two-party cryptography. A codex is a linear (error correcting) code that, when endowing its ambient vector space just with coordinate-wise multiplication, can be viewed as simulating, up to some degree, richer arithmetical structures such as finite fields (or products thereof), or generally, finite-dimensional algebras over finite fields. Besides this degree, coordinate-localities for which simulation holds and for which it does not at all are also captured.
Our method is based on novel perspectives on codices which significantly
widen their scope and strengthen their utility. Particularly, we bring
symmetries, computational- and complexity theoretic aspects, and connections with algebraic number theory, -geometry, and -combinatorics into play in novel ways. Our applications range from public-key cryptography to secure multi-party computation.
Our proposal is subdivided into 3 interconnected modules:
(1) Algebraic- and Number Theoretical Cryptanalysis
(2) Construction of Algebraic Crypto Primitives
(3) Advanced Theory of Arithmetic Codices
Max ERC Funding
2 447 439 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym ALMP_ECON
Project Effective evaluation of active labour market policies in social insurance programs - improving the interaction between econometric evaluation estimators and economic theory
Researcher (PI) Bas Van Der Klaauw
Host Institution (HI) STICHTING VU
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary In most European countries social insurance programs, like welfare, unemployment insurance and disability insurance are characterized by low reemployment rates. Therefore, governments spend huge amounts of money on active labour market programs, which should help individuals in finding work. Recent surveys indicate that programs which aim at intensifying job search behaviour are much more effective than schooling programs for improving human capital. A second conclusion from these surveys is that despite the size of the spendings on these programs, evidence on its effectiveness is limited. This research proposal aims at developing an economic framework that will be used to evaluate the effectiveness of popular programs like offering reemployment bonuses, fraud detection, workfare and job search monitoring. The main innovation is that I will combine economic theory with recently developed econometric techniques and detailed administrative data sets, which have not been explored before. While most of the literature only focuses on short-term outcomes, the available data allow me to also consider the long-term effectiveness of programs. The key advantage of an economic model is that I can compare the effectiveness of the different programs, consider modifications of programs and combinations of programs. Furthermore, using an economic model I can construct profiling measures to improve the targeting of programs to subsamples of the population. This is particularly relevant if the effectiveness of programs differs between individuals or depends on the moment in time the program is offered. Therefore, the results from this research will not only be of scientific interest, but will also be of great value to policymakers.
Summary
In most European countries social insurance programs, like welfare, unemployment insurance and disability insurance are characterized by low reemployment rates. Therefore, governments spend huge amounts of money on active labour market programs, which should help individuals in finding work. Recent surveys indicate that programs which aim at intensifying job search behaviour are much more effective than schooling programs for improving human capital. A second conclusion from these surveys is that despite the size of the spendings on these programs, evidence on its effectiveness is limited. This research proposal aims at developing an economic framework that will be used to evaluate the effectiveness of popular programs like offering reemployment bonuses, fraud detection, workfare and job search monitoring. The main innovation is that I will combine economic theory with recently developed econometric techniques and detailed administrative data sets, which have not been explored before. While most of the literature only focuses on short-term outcomes, the available data allow me to also consider the long-term effectiveness of programs. The key advantage of an economic model is that I can compare the effectiveness of the different programs, consider modifications of programs and combinations of programs. Furthermore, using an economic model I can construct profiling measures to improve the targeting of programs to subsamples of the population. This is particularly relevant if the effectiveness of programs differs between individuals or depends on the moment in time the program is offered. Therefore, the results from this research will not only be of scientific interest, but will also be of great value to policymakers.
Max ERC Funding
550 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ALTERUMMA
Project Creating an Alternative umma: Clerical Authority and Religio-political Mobilisation in Transnational Shii Islam
Researcher (PI) Oliver Paul SCHARBRODT
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Consolidator Grant (CoG), SH5, ERC-2016-COG
Summary This interdisciplinary project investigates the transformation of Shii Islam in the Middle East and Europe since the 1950s. The project examines the formation of modern Shii communal identities and the role Shii clerical authorities and their transnational networks have played in their religio-political mobilisation. The volatile situation post-Arab Spring, the rise of militant movements such as ISIS and the sectarianisation of geopolitical conflicts in the Middle East have intensified efforts to forge distinct Shii communal identities and to conceive Shii Muslims as part of an alternative umma (Islamic community). The project focusses on Iran, Iraq and significant but unexplored diasporic links to Syria, Kuwait and Britain. In response to the rise of modern nation-states in the Middle East, Shii clerical authorities resorted to a wide range of activities: (a) articulating intellectual responses to the ideologies underpinning modern Middle Eastern nation-states, (b) forming political parties and other platforms of socio-political activism and (c) using various forms of cultural production by systematising and promoting Shii ritual practices and utilising visual art, poetry and new media.
The project yields a perspectival shift on the factors that led to Shii communal mobilisation by:
- Analysing unacknowledged intellectual responses of Shii clerical authorities to the secular or sectarian ideologies of post-colonial nation-states and to the current sectarianisation of geopolitics in the Middle East.
- Emphasising the central role of diasporic networks in the Middle East and Europe in mobilising Shii communities and in influencing discourses and agendas of clerical authorities based in Iraq and Iran.
- Exploring new modes of cultural production in the form of a modern Shii aesthetics articulated in ritual practices, visual art, poetry and new media and thus creating a more holistic narrative on Shii religio-political mobilisation.
Summary
This interdisciplinary project investigates the transformation of Shii Islam in the Middle East and Europe since the 1950s. The project examines the formation of modern Shii communal identities and the role Shii clerical authorities and their transnational networks have played in their religio-political mobilisation. The volatile situation post-Arab Spring, the rise of militant movements such as ISIS and the sectarianisation of geopolitical conflicts in the Middle East have intensified efforts to forge distinct Shii communal identities and to conceive Shii Muslims as part of an alternative umma (Islamic community). The project focusses on Iran, Iraq and significant but unexplored diasporic links to Syria, Kuwait and Britain. In response to the rise of modern nation-states in the Middle East, Shii clerical authorities resorted to a wide range of activities: (a) articulating intellectual responses to the ideologies underpinning modern Middle Eastern nation-states, (b) forming political parties and other platforms of socio-political activism and (c) using various forms of cultural production by systematising and promoting Shii ritual practices and utilising visual art, poetry and new media.
The project yields a perspectival shift on the factors that led to Shii communal mobilisation by:
- Analysing unacknowledged intellectual responses of Shii clerical authorities to the secular or sectarian ideologies of post-colonial nation-states and to the current sectarianisation of geopolitics in the Middle East.
- Emphasising the central role of diasporic networks in the Middle East and Europe in mobilising Shii communities and in influencing discourses and agendas of clerical authorities based in Iraq and Iran.
- Exploring new modes of cultural production in the form of a modern Shii aesthetics articulated in ritual practices, visual art, poetry and new media and thus creating a more holistic narrative on Shii religio-political mobilisation.
Max ERC Funding
1 952 374 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym AORVM
Project The Effects of Aging on Object Representation in Visual Working Memory
Researcher (PI) James Robert Brockmole
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), SH3, ERC-2007-StG
Summary One’s ability to remember visual material such as objects, faces, and spatial locations over a short period of time declines with age. The proposed research will examine whether these deficits are explained by a reduction in visual working memory (VWM) capacity, or an impairment in one’s ability to maintain, or ‘bind’ appropriate associations among pieces of related information. In this project successful binding is operationally defined as the proper recall or recognition of objects that are defined by the conjunction of multiple visual features. While tests of long-term memory have demonstrated that, despite preserved memory for isolated features, older adults have more difficulty remembering conjunctions of features, no research has yet investigated analogous age related binding deficits in VWM. This is a critical oversight because, given the current state of the science, it is unknown whether these deficits are specific to the long-term memory system, or if they originate in VWM. The project interweaves three strands of research that each investigate whether older adults have more difficulty creating, maintaining, and updating bound multi-feature object representations than younger adults. This theoretical program of enquiry will provide insight into the cognitive architecture of VWM and how this system changes with age, and its outcomes will have wide ranging multi-disciplinary applications in applied theory and intervention techniques that may reduce the adverse consequences of aging on memory.
Summary
One’s ability to remember visual material such as objects, faces, and spatial locations over a short period of time declines with age. The proposed research will examine whether these deficits are explained by a reduction in visual working memory (VWM) capacity, or an impairment in one’s ability to maintain, or ‘bind’ appropriate associations among pieces of related information. In this project successful binding is operationally defined as the proper recall or recognition of objects that are defined by the conjunction of multiple visual features. While tests of long-term memory have demonstrated that, despite preserved memory for isolated features, older adults have more difficulty remembering conjunctions of features, no research has yet investigated analogous age related binding deficits in VWM. This is a critical oversight because, given the current state of the science, it is unknown whether these deficits are specific to the long-term memory system, or if they originate in VWM. The project interweaves three strands of research that each investigate whether older adults have more difficulty creating, maintaining, and updating bound multi-feature object representations than younger adults. This theoretical program of enquiry will provide insight into the cognitive architecture of VWM and how this system changes with age, and its outcomes will have wide ranging multi-disciplinary applications in applied theory and intervention techniques that may reduce the adverse consequences of aging on memory.
Max ERC Funding
500 000 €
Duration
Start date: 2008-09-01, End date: 2011-08-31
Project acronym APROCS
Project Automated Linear Parameter-Varying Modeling and Control Synthesis for Nonlinear Complex Systems
Researcher (PI) Roland TOTH
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Linear Parameter-Varying (LPV) systems are flexible mathematical models capable of representing Nonlinear (NL)/Time-Varying (TV) dynamical behaviors of complex physical systems (e.g., wafer scanners, car engines, chemical reactors), often encountered in engineering, via a linear structure. The LPV framework provides computationally efficient and robust approaches to synthesize digital controllers that can ensure desired operation of such systems - making it attractive to (i) high-tech mechatronic, (ii) automotive and (iii) chemical-process applications. Such a framework is important to meet with the increasing operational demands of systems in these industrial sectors and to realize future technological targets. However, recent studies have shown that, to fully exploit the potential of the LPV framework, a number of limiting factors of the underlying theory ask a for serious innovation, as currently it is not understood how to (1) automate exact and low-complexity LPV modeling of real-world applications and how to refine uncertain aspects of these models efficiently by the help of measured data, (2) incorporate control objectives directly into modeling and to develop model reduction approaches for control, and (3) how to see modeling & control synthesis as a unified, closed-loop system synthesis approach directly oriented for the underlying NL/TV system. Furthermore, due to the increasingly cyber-physical nature of applications, (4) control synthesis is needed in a plug & play fashion, where if sub-systems are modified or exchanged, then the control design and the model of the whole system are only incrementally updated. This project aims to surmount Challenges (1)-(4) by establishing an innovative revolution of the LPV framework supported by a software suite and extensive empirical studies on real-world industrial applications; with a potential to ensure a leading role of technological innovation of the EU in the high-impact industrial sectors (i)-(iii).
Summary
Linear Parameter-Varying (LPV) systems are flexible mathematical models capable of representing Nonlinear (NL)/Time-Varying (TV) dynamical behaviors of complex physical systems (e.g., wafer scanners, car engines, chemical reactors), often encountered in engineering, via a linear structure. The LPV framework provides computationally efficient and robust approaches to synthesize digital controllers that can ensure desired operation of such systems - making it attractive to (i) high-tech mechatronic, (ii) automotive and (iii) chemical-process applications. Such a framework is important to meet with the increasing operational demands of systems in these industrial sectors and to realize future technological targets. However, recent studies have shown that, to fully exploit the potential of the LPV framework, a number of limiting factors of the underlying theory ask a for serious innovation, as currently it is not understood how to (1) automate exact and low-complexity LPV modeling of real-world applications and how to refine uncertain aspects of these models efficiently by the help of measured data, (2) incorporate control objectives directly into modeling and to develop model reduction approaches for control, and (3) how to see modeling & control synthesis as a unified, closed-loop system synthesis approach directly oriented for the underlying NL/TV system. Furthermore, due to the increasingly cyber-physical nature of applications, (4) control synthesis is needed in a plug & play fashion, where if sub-systems are modified or exchanged, then the control design and the model of the whole system are only incrementally updated. This project aims to surmount Challenges (1)-(4) by establishing an innovative revolution of the LPV framework supported by a software suite and extensive empirical studies on real-world industrial applications; with a potential to ensure a leading role of technological innovation of the EU in the high-impact industrial sectors (i)-(iii).
Max ERC Funding
1 493 561 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ARCTIC CULT
Project ARCTIC CULTURES: SITES OF COLLECTION IN THE FORMATION OF THE EUROPEAN AND AMERICAN NORTHLANDS
Researcher (PI) Richard Charles POWELL
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), SH5, ERC-2016-COG
Summary The Arctic has risen to global attention in recent years, as it has been reconfigured through debates about global environmental change, resource extraction and disputes over sovereign rights. Within these discourses, little attention has been paid to the cultures of the Arctic. Indeed, it often seems as if the Circumpolar Arctic in global public understanding remains framed as a 'natural region' - that is, a place where the environment dominates the creation of culture. This framing has consequences for the region, because through this the Arctic becomes constructed as a space where people are absent. This proposal aims to discover how and why this might be so.
The proposal argues that this construction of the Arctic emerged from the exploration of the region by Europeans and North Americans and their contacts with indigenous people from the middle of the eighteenth century. Particular texts, cartographic representations and objects were collected and returned to sites like London, Copenhagen, Berlin and Philadelphia. The construction of the Arctic thereby became entwined within the growth of colonial museum cultures and, indeed, western modernity. This project aims to delineate the networks and collecting cultures involved in this creation of Arctic Cultures. It will bring repositories in colonial metropoles into dialogue with sites of collection in the Arctic by tracing the contexts of discovery and memorialisation. In doing so, it aspires to a new understanding of the consequences of certain forms of colonial representation for debates about the Circumpolar Arctic today.
The project involves research by the Principal Investigator and four Post Doctoral Researchers at museums, archives, libraries and repositories across Europe and North America, as well as in Greenland and the Canadian Arctic. A Project Assistant based in Oxford will help facilitate the completion of the research.
Summary
The Arctic has risen to global attention in recent years, as it has been reconfigured through debates about global environmental change, resource extraction and disputes over sovereign rights. Within these discourses, little attention has been paid to the cultures of the Arctic. Indeed, it often seems as if the Circumpolar Arctic in global public understanding remains framed as a 'natural region' - that is, a place where the environment dominates the creation of culture. This framing has consequences for the region, because through this the Arctic becomes constructed as a space where people are absent. This proposal aims to discover how and why this might be so.
The proposal argues that this construction of the Arctic emerged from the exploration of the region by Europeans and North Americans and their contacts with indigenous people from the middle of the eighteenth century. Particular texts, cartographic representations and objects were collected and returned to sites like London, Copenhagen, Berlin and Philadelphia. The construction of the Arctic thereby became entwined within the growth of colonial museum cultures and, indeed, western modernity. This project aims to delineate the networks and collecting cultures involved in this creation of Arctic Cultures. It will bring repositories in colonial metropoles into dialogue with sites of collection in the Arctic by tracing the contexts of discovery and memorialisation. In doing so, it aspires to a new understanding of the consequences of certain forms of colonial representation for debates about the Circumpolar Arctic today.
The project involves research by the Principal Investigator and four Post Doctoral Researchers at museums, archives, libraries and repositories across Europe and North America, as well as in Greenland and the Canadian Arctic. A Project Assistant based in Oxford will help facilitate the completion of the research.
Max ERC Funding
1 996 250 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym ARENA
Project Aligned Roll-to-Roll Shear Coating of Nanotubes
Researcher (PI) Michael DE VOLDER
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary Carbon Nanotubes (CNTs) are considered to be one of 21st century’s most promising materials and over the past decade, tremendous scientific advances have been achieved in the synthesis and processing of these materials. However, the uptake of CNTs by high-tech industry is hampered by a lack of high-throughput processes to structure CNTs into aligned and densely packed assemblies. This is key to fabricate next generation CNT devices, and to date, the CNT community is still struggling to achieve this, especially over large areas.
As part of the ERC Starting Grant HiENA, we are pioneering a potentially disruptive strategy to control the packing of CNTs and to fabricate large area films of aligned CNT. In this process, we start from newly developed ultra-high density dispersion of CNTs which can form liquid crystal domains. These domains are aligned by controlling shear in a custom designed coating head which then continuously dispenses the CNTs on a roll-to-roll coater which was recently purchased by the host group. To quantify the performance of the proposed technology, the parameter space of the coating process will be mapped out in terms of throughput, film thickness, uniformity, and conductivity.
Finally, we devised a two-step commercialisation plan which targets less to more demanding markets including thin film heaters, ultra-lightweight electro-magnetic shields, as well as interconnects and sensors for flexible electronics. We believe this project is timely on the one hand because of the technology push of improved CNT processing and on the other hand by the pull from several new markets including flexible electronics and the rise of the Internet of Things which will require a drastic increase in low cost electronic manufacturing technologies. The ERC Proof of Concept grant ARENA aspires to contribute to this need by taking a leap forward in the large scale processing of next generation CNT devices.
Summary
Carbon Nanotubes (CNTs) are considered to be one of 21st century’s most promising materials and over the past decade, tremendous scientific advances have been achieved in the synthesis and processing of these materials. However, the uptake of CNTs by high-tech industry is hampered by a lack of high-throughput processes to structure CNTs into aligned and densely packed assemblies. This is key to fabricate next generation CNT devices, and to date, the CNT community is still struggling to achieve this, especially over large areas.
As part of the ERC Starting Grant HiENA, we are pioneering a potentially disruptive strategy to control the packing of CNTs and to fabricate large area films of aligned CNT. In this process, we start from newly developed ultra-high density dispersion of CNTs which can form liquid crystal domains. These domains are aligned by controlling shear in a custom designed coating head which then continuously dispenses the CNTs on a roll-to-roll coater which was recently purchased by the host group. To quantify the performance of the proposed technology, the parameter space of the coating process will be mapped out in terms of throughput, film thickness, uniformity, and conductivity.
Finally, we devised a two-step commercialisation plan which targets less to more demanding markets including thin film heaters, ultra-lightweight electro-magnetic shields, as well as interconnects and sensors for flexible electronics. We believe this project is timely on the one hand because of the technology push of improved CNT processing and on the other hand by the pull from several new markets including flexible electronics and the rise of the Internet of Things which will require a drastic increase in low cost electronic manufacturing technologies. The ERC Proof of Concept grant ARENA aspires to contribute to this need by taking a leap forward in the large scale processing of next generation CNT devices.
Max ERC Funding
149 963 €
Duration
Start date: 2017-07-01, End date: 2018-12-31
Project acronym ARTEFACT
Project The Global as Artefact: Understanding the Patterns of Global Political History Through an Anthropology of Knowledge -- The Case of Agriculture in Four Global Systems from the Neolithic to the Present
Researcher (PI) INANNA HAMATI-ATAYA
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), SH2, ERC-2016-COG
Summary Knowledge is an anthropological constant that is indissociable from the birth and interactions of human societies, but is at best a secondary concern for scholars of international relations and globalization. Contemporary global studies are thus unable to account for the co-constitution of knowledge and politics at a macro-scale, and remain especially blind to the historical patterns of epistemic development that operate at the level of the species as a whole and have shaped its global political history in specific, path-dependent ways up to now.
ARTEFACT is the first project to pursue a knowledge-centered investigation of global politics. It is uniquely grounded in an anthropological approach that treats globalization and human knowledges beyond their modern manifestations, from the longue-durée perspective of our species’ social history. 'The global as artefact' is more than a metaphor. It reflects the premise that human collectives 'make' the political world not merely through ideas, language, or norms, but primordially through the material infrastructures, solutions, objects, practices, and skills they develop in response to evolving structural challenges.
ARTEFACT takes agriculture as an exemplary and especially timely case-study to illuminate the entangled global histories of knowledge and politics, analyzing and comparing four increasingly inclusive 'global political systems' of the Ancient, Medieval, Modern, and Contemporary eras and their associated agrarian socio-epistemic revolutions.
ARTEFACT ultimately aims to 1) develop an original theory of the global, 2) launch Global Knowledge Studies as a new cross-disciplinary domain of systematic empirical and theoretical study, and 3) push the respective boundaries of the anthropology of knowledge, global history, and international theory beyond the state-of-the-art and toward a holistic understanding that can illuminate how past trends of socio-epistemic evolution might shape future paths of global life.
Summary
Knowledge is an anthropological constant that is indissociable from the birth and interactions of human societies, but is at best a secondary concern for scholars of international relations and globalization. Contemporary global studies are thus unable to account for the co-constitution of knowledge and politics at a macro-scale, and remain especially blind to the historical patterns of epistemic development that operate at the level of the species as a whole and have shaped its global political history in specific, path-dependent ways up to now.
ARTEFACT is the first project to pursue a knowledge-centered investigation of global politics. It is uniquely grounded in an anthropological approach that treats globalization and human knowledges beyond their modern manifestations, from the longue-durée perspective of our species’ social history. 'The global as artefact' is more than a metaphor. It reflects the premise that human collectives 'make' the political world not merely through ideas, language, or norms, but primordially through the material infrastructures, solutions, objects, practices, and skills they develop in response to evolving structural challenges.
ARTEFACT takes agriculture as an exemplary and especially timely case-study to illuminate the entangled global histories of knowledge and politics, analyzing and comparing four increasingly inclusive 'global political systems' of the Ancient, Medieval, Modern, and Contemporary eras and their associated agrarian socio-epistemic revolutions.
ARTEFACT ultimately aims to 1) develop an original theory of the global, 2) launch Global Knowledge Studies as a new cross-disciplinary domain of systematic empirical and theoretical study, and 3) push the respective boundaries of the anthropology of knowledge, global history, and international theory beyond the state-of-the-art and toward a holistic understanding that can illuminate how past trends of socio-epistemic evolution might shape future paths of global life.
Max ERC Funding
1 428 165 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ASSHURED
Project Analysing South-South Humanitarian Responses to Displacement from Syria: Views from Lebanon, Jordan and Turkey
Researcher (PI) Elena FIDDIAN-QASMIYEH
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), SH3, ERC-2016-STG
Summary Since 2012, over 4 million people have fled Syria in ‘the most dramatic humanitarian crisis that we have ever faced’ (UNHCR). By November 2015 there were 1,078,338 refugees from Syria in Lebanon, 630,776 in Jordan and 2,181,293 in Turkey. Humanitarian agencies and donor states from both the global North and the global South have funded and implemented aid programmes, and yet commentators have argued that civil society groups from the global South are the most significant actors supporting refugees in Lebanon, Jordan and Turkey. Whilst they are highly significant responses, however, major gaps in knowledge remain regarding the motivations, nature and implications of Southern-led responses to conflict-induced displacement. This project draws on multi-sited ethnographic and participatory research with refugees from Syria and their aid providers in Lebanon, Jordan and Turkey to critically examine why, how and with what effect actors from the South have responded to the displacement of refugees from Syria. The main research aims are:
1. identifying diverse models of Southern-led responses to conflict-induced displacement,
2. examining the (un)official motivations, nature and implications of Southern-led responses,
3. examining refugees’ experiences and perceptions of Southern-led responses,
4. exploring diverse Southern and Northern actors’ perceptions of Southern-led responses,
5. tracing the implications of Southern-led initiatives for humanitarian theory and practice.
Based on a critical theoretical framework inspired by post-colonial and feminist approaches, the project contributes to theories of humanitarianism and debates regarding donor-recipient relations and refugees’ agency in displacement situations. It will also inform the development of policies to most appropriately address refugees’ needs and rights. This highly topical and innovative project thus has far-reaching implications for refugees and local communities, academics, policy-makers and practitioners.
Summary
Since 2012, over 4 million people have fled Syria in ‘the most dramatic humanitarian crisis that we have ever faced’ (UNHCR). By November 2015 there were 1,078,338 refugees from Syria in Lebanon, 630,776 in Jordan and 2,181,293 in Turkey. Humanitarian agencies and donor states from both the global North and the global South have funded and implemented aid programmes, and yet commentators have argued that civil society groups from the global South are the most significant actors supporting refugees in Lebanon, Jordan and Turkey. Whilst they are highly significant responses, however, major gaps in knowledge remain regarding the motivations, nature and implications of Southern-led responses to conflict-induced displacement. This project draws on multi-sited ethnographic and participatory research with refugees from Syria and their aid providers in Lebanon, Jordan and Turkey to critically examine why, how and with what effect actors from the South have responded to the displacement of refugees from Syria. The main research aims are:
1. identifying diverse models of Southern-led responses to conflict-induced displacement,
2. examining the (un)official motivations, nature and implications of Southern-led responses,
3. examining refugees’ experiences and perceptions of Southern-led responses,
4. exploring diverse Southern and Northern actors’ perceptions of Southern-led responses,
5. tracing the implications of Southern-led initiatives for humanitarian theory and practice.
Based on a critical theoretical framework inspired by post-colonial and feminist approaches, the project contributes to theories of humanitarianism and debates regarding donor-recipient relations and refugees’ agency in displacement situations. It will also inform the development of policies to most appropriately address refugees’ needs and rights. This highly topical and innovative project thus has far-reaching implications for refugees and local communities, academics, policy-makers and practitioners.
Max ERC Funding
1 498 069 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym AtoFun
Project Atomic Scale Defects: Structure and Function
Researcher (PI) Felix HOFMANN
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary Atomic scale defects play a key role in determining the behaviour of all crystalline materials, profoundly modifying mechanical, thermal and electrical properties. Many current technological applications make do with phenomenological descriptions of these effects; yet myriad intriguing questions about the fundamental link between defect structure and material function remain.
Transmission electron microscopy revolutionised the study of atomic scale defects by enabling their direct imaging. The novel coherent X-ray diffraction techniques developed in this project promise a similar advancement, making it possible to probe the strain fields that govern defect interactions in 3D with high spatial resolution (<10 nm). They will allow us to clarify the effect of impurities and retained gas on dislocation strain fields, shedding light on opportunities to engineer dislocation properties. The exceptional strain sensitivity of coherent diffraction will enable us to explore the fundamental mechanisms governing the behaviour of ion-implantation-induced point defects that are invisible to TEM. While we concentrate on dislocations and point defects, the new techniques will apply to all crystalline materials where defects are important. Our characterisation of defect structure will be combined with laser transient grating measurements of thermal transport changes due to specific defect populations. This unique multifaceted perspective of defect behaviour will transform our ability to devise modelling approaches linking defect structure to material function.
Our proof-of-concept results highlight the feasibility of this ambitious research project. It opens up a vast range of exciting possibilities to gain a deep, fundamental understanding of atomic scale defects and their effect on material function. This is an essential prerequisite for exploiting and engineering defects to enhance material properties.
Summary
Atomic scale defects play a key role in determining the behaviour of all crystalline materials, profoundly modifying mechanical, thermal and electrical properties. Many current technological applications make do with phenomenological descriptions of these effects; yet myriad intriguing questions about the fundamental link between defect structure and material function remain.
Transmission electron microscopy revolutionised the study of atomic scale defects by enabling their direct imaging. The novel coherent X-ray diffraction techniques developed in this project promise a similar advancement, making it possible to probe the strain fields that govern defect interactions in 3D with high spatial resolution (<10 nm). They will allow us to clarify the effect of impurities and retained gas on dislocation strain fields, shedding light on opportunities to engineer dislocation properties. The exceptional strain sensitivity of coherent diffraction will enable us to explore the fundamental mechanisms governing the behaviour of ion-implantation-induced point defects that are invisible to TEM. While we concentrate on dislocations and point defects, the new techniques will apply to all crystalline materials where defects are important. Our characterisation of defect structure will be combined with laser transient grating measurements of thermal transport changes due to specific defect populations. This unique multifaceted perspective of defect behaviour will transform our ability to devise modelling approaches linking defect structure to material function.
Our proof-of-concept results highlight the feasibility of this ambitious research project. It opens up a vast range of exciting possibilities to gain a deep, fundamental understanding of atomic scale defects and their effect on material function. This is an essential prerequisite for exploiting and engineering defects to enhance material properties.
Max ERC Funding
1 610 231 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym AUTOCOMPLEMENT
Project The role of complement in the induction of autoimmunity against post-translationally modified proteins
Researcher (PI) Leendert TROUW
Host Institution (HI) ACADEMISCH ZIEKENHUIS LEIDEN
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary In many prevalent autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) autoantibodies are used as diagnostic and prognostic tools. Several of these autoantibodies target proteins that have been post-translationally modified (PTM). Examples of such modifications are citrullination and carbamylation. The success of B cell-targeted therapies in many auto-antibody positive diseases suggests that B cell mediated auto-immunity is playing a direct pathogenic role. Despite the wealth of information on the clinical associations of these anti-PTM protein antibodies as biomarkers we have currently no insight into why these antibodies are formed.
Immunization studies reveal that PTM proteins can induce antibody responses even in the absence of exogenous adjuvant. The reason why these PTM proteins have ‘autoadjuvant’ properties that lead to a breach of tolerance is currently unknown. In this proposal, I hypothesise that the breach of tolerance towards PTM proteins is mediated by complement factors that bind directly to these PTM. Our preliminary data indeed reveal that several complement factors bind specifically to PTM proteins. Complement could be involved in the autoadjuvant property of PTM proteins as next to killing pathogens complement can also boost adaptive immune responses. I plan to unravel the importance of the complement–PTM protein interaction by answering these questions:
1) What is the physiological function of complement binding to PTM proteins?
2) Is the breach of tolerance towards PTM proteins influenced by complement?
3) Can the adjuvant function of PTM be used to increase vaccine efficacy and/or decrease autoreactivity?
With AUTOCOMPLEMENT I will elucidate how PTM-reactive B cells receive ‘autoadjuvant’ signals. This insight will impact on patient care as we can now design strategies to either block unwanted ‘autoadjuvant’ signals to inhibit autoimmunity or to utilize ‘autoadjuvant’ signals to potentiate vaccination.
Summary
In many prevalent autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) autoantibodies are used as diagnostic and prognostic tools. Several of these autoantibodies target proteins that have been post-translationally modified (PTM). Examples of such modifications are citrullination and carbamylation. The success of B cell-targeted therapies in many auto-antibody positive diseases suggests that B cell mediated auto-immunity is playing a direct pathogenic role. Despite the wealth of information on the clinical associations of these anti-PTM protein antibodies as biomarkers we have currently no insight into why these antibodies are formed.
Immunization studies reveal that PTM proteins can induce antibody responses even in the absence of exogenous adjuvant. The reason why these PTM proteins have ‘autoadjuvant’ properties that lead to a breach of tolerance is currently unknown. In this proposal, I hypothesise that the breach of tolerance towards PTM proteins is mediated by complement factors that bind directly to these PTM. Our preliminary data indeed reveal that several complement factors bind specifically to PTM proteins. Complement could be involved in the autoadjuvant property of PTM proteins as next to killing pathogens complement can also boost adaptive immune responses. I plan to unravel the importance of the complement–PTM protein interaction by answering these questions:
1) What is the physiological function of complement binding to PTM proteins?
2) Is the breach of tolerance towards PTM proteins influenced by complement?
3) Can the adjuvant function of PTM be used to increase vaccine efficacy and/or decrease autoreactivity?
With AUTOCOMPLEMENT I will elucidate how PTM-reactive B cells receive ‘autoadjuvant’ signals. This insight will impact on patient care as we can now design strategies to either block unwanted ‘autoadjuvant’ signals to inhibit autoimmunity or to utilize ‘autoadjuvant’ signals to potentiate vaccination.
Max ERC Funding
1 999 803 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AveTransRisk
Project Average - Transaction Costs and Risk Management during the First Globalization (Sixteenth-Eighteenth Centuries)
Researcher (PI) Maria FUSARO
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary This project focuses on the historical analysis of institutions and their impact on economic development through the investigation of a legal instrument – general average (GA) – which underpins maritime trade by redistributing damages’ costs across all interested parties. This will be pursued through the comparative investigation of GA in those European countries where substantial data exists: Italy, Spain, England, France and the Low Countries (1500-1800). Average and insurance were both created in the Middle Ages to facilitate trade through the redistribution of risk. Insurance has been widely studied, average – the expenses which can befall ships and cargoes from the time of their loading aboard until their unloading (due to accidents, jettison, and unexpected costs) – has been neglected. GA still plays an essential role in the redistribution of transaction costs, and being a form of strictly mutual self-protection, never evolved into a speculative financial instrument as insurance did; it therefore represents an excellent case of long-term effectiveness of a non-market economic phenomenon. Although the principle behind GA was very similar across Europe, in practice there were substantial differences in declaring and adjudicating claims. GA reports provide unparalleled evidence on maritime trade which, analysed quantitatively and quantitatively through a novel interdisciplinary approach, will contribute to the reassessment of the role played by the maritime sector in fostering economic growth during the early modern first globalization, when GA was the object of fierce debates on state jurisdiction and standardization of practice. Today they are regulated by the York-Antwerp Rules (YAR), currently under revision. This timely conjuncture provides plenty of opportunities for active engagement with practitioners, thereby fostering a creative dialogue on GA historical study and its future development to better face the challenges of mature globalization.
Summary
This project focuses on the historical analysis of institutions and their impact on economic development through the investigation of a legal instrument – general average (GA) – which underpins maritime trade by redistributing damages’ costs across all interested parties. This will be pursued through the comparative investigation of GA in those European countries where substantial data exists: Italy, Spain, England, France and the Low Countries (1500-1800). Average and insurance were both created in the Middle Ages to facilitate trade through the redistribution of risk. Insurance has been widely studied, average – the expenses which can befall ships and cargoes from the time of their loading aboard until their unloading (due to accidents, jettison, and unexpected costs) – has been neglected. GA still plays an essential role in the redistribution of transaction costs, and being a form of strictly mutual self-protection, never evolved into a speculative financial instrument as insurance did; it therefore represents an excellent case of long-term effectiveness of a non-market economic phenomenon. Although the principle behind GA was very similar across Europe, in practice there were substantial differences in declaring and adjudicating claims. GA reports provide unparalleled evidence on maritime trade which, analysed quantitatively and quantitatively through a novel interdisciplinary approach, will contribute to the reassessment of the role played by the maritime sector in fostering economic growth during the early modern first globalization, when GA was the object of fierce debates on state jurisdiction and standardization of practice. Today they are regulated by the York-Antwerp Rules (YAR), currently under revision. This timely conjuncture provides plenty of opportunities for active engagement with practitioners, thereby fostering a creative dialogue on GA historical study and its future development to better face the challenges of mature globalization.
Max ERC Funding
1 854 256 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym AVIANEGG
Project Evolutionary genetics in a ‘classical’ avian study system by high throughput transcriptome sequencing and SNP genotyping
Researcher (PI) Jon Slate
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Starting Grant (StG), LS5, ERC-2007-StG
Summary Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Summary
Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Max ERC Funding
1 560 770 €
Duration
Start date: 2008-10-01, End date: 2014-06-30
Project acronym BabyVir
Project The role of the virome in shaping the gut ecosystem during the first year of life
Researcher (PI) Alexandra Petrovna ZHERNAKOVA
Host Institution (HI) ACADEMISCH ZIEKENHUIS GRONINGEN
Call Details Starting Grant (StG), LS8, ERC-2016-STG
Summary The role of intestinal bacteria in human health and disease has been intensively studied; however the viral composition of the microbiome, the virome, remains largely unknown. As many of the viruses are bacteriophages, they are expected to be a major factor shaping the human microbiome. The dynamics of the virome during early life, its interaction with host and environmental factors, is likely to have profound effects on human physiology. Therefore it is extremely timely to study the virome in depth and on a wide scale.
This ERC project aims at understanding how the gut virome develops during the first year of life and how that relates to the composition of the bacterial microbiome. In particular, we will determine which intrinsic and environmental factors, including genetics and the mother’s microbiome and diet, interact with the virome in shaping the early gut microbiome ecosystem. In a longitudinal study of 1,000 newborns followed at 7 time points from birth till age 12 months, I will investigate: (1) the composition and evolution of the virome and bacterial microbiome in the first year of life; (2) the role of factors coming from the mother and from the host genome on virome and bacterial microbiome development and their co-evolution; and (3) the role of environmental factors, like infectious diseases, vaccinations and diet habits, on establishing the virome and overall microbiome composition during the first year of life.
This project will provide crucial knowledge about composition and maturation of the virome during the first year of life, and its symbiotic relation with the bacterial microbiome. This longitudinal dataset will be instrumental for identification of microbiome markers of diseases and for the follow up analysis of the long-term effect of microbiota maturation later in life. Knowledge of the role of viruses in shaping the microbiota may promote future directions for manipulating the human gut microbiota in health and disease.
Summary
The role of intestinal bacteria in human health and disease has been intensively studied; however the viral composition of the microbiome, the virome, remains largely unknown. As many of the viruses are bacteriophages, they are expected to be a major factor shaping the human microbiome. The dynamics of the virome during early life, its interaction with host and environmental factors, is likely to have profound effects on human physiology. Therefore it is extremely timely to study the virome in depth and on a wide scale.
This ERC project aims at understanding how the gut virome develops during the first year of life and how that relates to the composition of the bacterial microbiome. In particular, we will determine which intrinsic and environmental factors, including genetics and the mother’s microbiome and diet, interact with the virome in shaping the early gut microbiome ecosystem. In a longitudinal study of 1,000 newborns followed at 7 time points from birth till age 12 months, I will investigate: (1) the composition and evolution of the virome and bacterial microbiome in the first year of life; (2) the role of factors coming from the mother and from the host genome on virome and bacterial microbiome development and their co-evolution; and (3) the role of environmental factors, like infectious diseases, vaccinations and diet habits, on establishing the virome and overall microbiome composition during the first year of life.
This project will provide crucial knowledge about composition and maturation of the virome during the first year of life, and its symbiotic relation with the bacterial microbiome. This longitudinal dataset will be instrumental for identification of microbiome markers of diseases and for the follow up analysis of the long-term effect of microbiota maturation later in life. Knowledge of the role of viruses in shaping the microbiota may promote future directions for manipulating the human gut microbiota in health and disease.
Max ERC Funding
1 499 881 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BAM
Project Becoming A Minority
Researcher (PI) Maurice CRUL
Host Institution (HI) STICHTING VU
Call Details Advanced Grant (AdG), SH3, ERC-2016-ADG
Summary In the last forty years, researchers in the Field of Migration and Ethnic Studies looked at the integration of migrants and their descendants. Concepts, methodological tools and theoretical frameworks have been developed to measure and predict integration outcomes both across different ethnic groups and in comparison with people of native descent. But are we also looking into the actual integration of the receiving group of native ‘white’ descent in city contexts where they have become a numerical minority themselves? In cities like Amsterdam, now only one in three youngsters under age fifteen is of native descent. This situation, referred to as a majority-minority context, is a new phenomenon in Western Europe and it presents itself as one of the most important societal and psychological transformations of our time. I argue that the field of migration and ethnic studies is stagnating because of the one-sided focus on migrants and their children. This is even more urgent given the increased ant-immigrant vote. These pressing scientific and societal reasons pushed me to develop the project BAM (Becoming A Minority). The project will be executed in three harbor cities, Rotterdam, Antwerp and Malmö, and three service sector cities, Amsterdam, Frankfurt and Vienna. BAM consists of 5 subprojects: (1) A meta-analysis of secondary data on people of native ‘white’ descent in the six research sites; (2) A newly developed survey for the target group; (3) An analysis of critical circumstances of encounter that trigger either positive or rather negative responses to increased ethnic diversity (4) Experimental diversity labs to test under which circumstances people will change their attitudes or their actions towards increased ethnic diversity; (5) The formulation of a new theory of integration that includes the changed position of the group of native ‘white’ descent as an important actor.
Summary
In the last forty years, researchers in the Field of Migration and Ethnic Studies looked at the integration of migrants and their descendants. Concepts, methodological tools and theoretical frameworks have been developed to measure and predict integration outcomes both across different ethnic groups and in comparison with people of native descent. But are we also looking into the actual integration of the receiving group of native ‘white’ descent in city contexts where they have become a numerical minority themselves? In cities like Amsterdam, now only one in three youngsters under age fifteen is of native descent. This situation, referred to as a majority-minority context, is a new phenomenon in Western Europe and it presents itself as one of the most important societal and psychological transformations of our time. I argue that the field of migration and ethnic studies is stagnating because of the one-sided focus on migrants and their children. This is even more urgent given the increased ant-immigrant vote. These pressing scientific and societal reasons pushed me to develop the project BAM (Becoming A Minority). The project will be executed in three harbor cities, Rotterdam, Antwerp and Malmö, and three service sector cities, Amsterdam, Frankfurt and Vienna. BAM consists of 5 subprojects: (1) A meta-analysis of secondary data on people of native ‘white’ descent in the six research sites; (2) A newly developed survey for the target group; (3) An analysis of critical circumstances of encounter that trigger either positive or rather negative responses to increased ethnic diversity (4) Experimental diversity labs to test under which circumstances people will change their attitudes or their actions towards increased ethnic diversity; (5) The formulation of a new theory of integration that includes the changed position of the group of native ‘white’ descent as an important actor.
Max ERC Funding
2 499 714 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym BAPS
Project Bayesian Agent-based Population Studies: Transforming Simulation Models of Human Migration
Researcher (PI) Jakub KAZIMIERZ BIJAK
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary The aim of BAPS is to develop a ground-breaking simulation model of international migration, based on a population of intelligent, cognitive agents, their social networks and institutions, all interacting with one another. The project will transform the study of migration – one of the most uncertain population processes and a top-priority EU policy area – by offering a step change in the way it can be understood, predicted and managed. In this way, BAPS will effectively integrate behavioural and social theory with modelling.
To develop micro-foundations for migration studies, model design will follow cutting-edge developments in demography, statistics, cognitive psychology and computer science. BAPS will also offer a pioneering environment for applying the findings in practice through a bespoke modelling language. Bayesian statistical principles will be used to design innovative computer experiments, and learn about modelling the simulated individuals and the way they make decisions.
In BAPS, we will collate available information for migration models; build and test the simulations by applying experimental design principles to enhance our knowledge of migration processes; collect information on the underpinning decision-making mechanisms through psychological experiments; and design software for implementing Bayesian agent-based models in practice. The project will use various information sources to build models bottom-up, filling an important epistemological gap in demography.
BAPS will be carried out by the Allianz European Demographer 2015, recognised as a leader in the field for methodological innovation, directing an interdisciplinary team with expertise in demography, agent-based models, statistical analysis of uncertainty, meta-cognition, and computer simulations. The project will open up exciting research possibilities beyond demography, and will generate both academic and practical impact, offering methodological advice for policy-relevant simulations.
Summary
The aim of BAPS is to develop a ground-breaking simulation model of international migration, based on a population of intelligent, cognitive agents, their social networks and institutions, all interacting with one another. The project will transform the study of migration – one of the most uncertain population processes and a top-priority EU policy area – by offering a step change in the way it can be understood, predicted and managed. In this way, BAPS will effectively integrate behavioural and social theory with modelling.
To develop micro-foundations for migration studies, model design will follow cutting-edge developments in demography, statistics, cognitive psychology and computer science. BAPS will also offer a pioneering environment for applying the findings in practice through a bespoke modelling language. Bayesian statistical principles will be used to design innovative computer experiments, and learn about modelling the simulated individuals and the way they make decisions.
In BAPS, we will collate available information for migration models; build and test the simulations by applying experimental design principles to enhance our knowledge of migration processes; collect information on the underpinning decision-making mechanisms through psychological experiments; and design software for implementing Bayesian agent-based models in practice. The project will use various information sources to build models bottom-up, filling an important epistemological gap in demography.
BAPS will be carried out by the Allianz European Demographer 2015, recognised as a leader in the field for methodological innovation, directing an interdisciplinary team with expertise in demography, agent-based models, statistical analysis of uncertainty, meta-cognition, and computer simulations. The project will open up exciting research possibilities beyond demography, and will generate both academic and practical impact, offering methodological advice for policy-relevant simulations.
Max ERC Funding
1 455 590 €
Duration
Start date: 2017-06-01, End date: 2021-05-31
Project acronym Becoming Social
Project Social Interaction Perception and the Social Brain Across Typical and Atypical Development
Researcher (PI) Kami KOLDEWYN
Host Institution (HI) BANGOR UNIVERSITY
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary Social interactions are multifaceted and subtle, yet we can almost instantaneously discern if two people are cooperating or competing, flirting or fighting, or helping or hindering each other. Surprisingly, the development and brain basis of this remarkable ability has remained largely unexplored. At the same time, understanding how we develop the ability to process and use social information from other people is widely recognized as a core challenge facing developmental cognitive neuroscience. The Becoming Social project meets this challenge by proposing the most complete investigation to date of the development of the behavioural and neurobiological systems that support complex social perception. To achieve this, we first systematically map how the social interactions we observe are coded in the brain by testing typical adults. Next, we investigate developmental change both behaviourally and neurally during a key stage in social development in typically developing children. Finally, we explore whether social interaction perception is clinically relevant by investigating it developmentally in autism spectrum disorder. The Becoming Social project is expected to lead to a novel conception of the neurocognitive architecture supporting the perception of social interactions. In addition, neuroimaging and behavioural tasks measured longitudinally during development will allow us to determine how individual differences in brain and behaviour are causally related to real-world social ability and social learning. The planned studies as well as those generated during the project will enable the Becoming Social team to become a world-leading group bridging social cognition, neuroscience and developmental psychology.
Summary
Social interactions are multifaceted and subtle, yet we can almost instantaneously discern if two people are cooperating or competing, flirting or fighting, or helping or hindering each other. Surprisingly, the development and brain basis of this remarkable ability has remained largely unexplored. At the same time, understanding how we develop the ability to process and use social information from other people is widely recognized as a core challenge facing developmental cognitive neuroscience. The Becoming Social project meets this challenge by proposing the most complete investigation to date of the development of the behavioural and neurobiological systems that support complex social perception. To achieve this, we first systematically map how the social interactions we observe are coded in the brain by testing typical adults. Next, we investigate developmental change both behaviourally and neurally during a key stage in social development in typically developing children. Finally, we explore whether social interaction perception is clinically relevant by investigating it developmentally in autism spectrum disorder. The Becoming Social project is expected to lead to a novel conception of the neurocognitive architecture supporting the perception of social interactions. In addition, neuroimaging and behavioural tasks measured longitudinally during development will allow us to determine how individual differences in brain and behaviour are causally related to real-world social ability and social learning. The planned studies as well as those generated during the project will enable the Becoming Social team to become a world-leading group bridging social cognition, neuroscience and developmental psychology.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BEHAVE
Project New discrete choice theory for understanding moral decision making behaviour
Researcher (PI) Caspar Gerard CHORUS
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Consolidator Grant (CoG), SH2, ERC-2016-COG
Summary Discrete choice theory provides a mathematically rigorous framework to analyse and predict choice behaviour. While many of the theory’s key developments originate from the domain of transportation (mobility, travel behaviour), it is now widely used throughout the social sciences.
The theory has a blind spot for moral choice behaviour. It was designed to analyse situations where people make choices that are optimal given their consumer preferences, rather than situations where people attempt to make choices that are right, given their moral preferences. This neglect of the morality of choice is striking, in light of the fact that many of the most important choices people make, have a moral dimension.
This research program extends discrete choice theory to the domain of moral decision making.
It will produce a suite of new mathematical representations of choice behaviour (i.e., choice models), which are designed to capture the decision rules and decision weights that determine how individuals behave in moral choice situations. In these models, particular emphasis is given to heterogeneity in moral decision rules and to the role of social influences. Models will be estimated and validated using data obtained through a series of interviews, surveys and choice experiments. Empirical analyses will take place in the context of moral choice situations concerning i) co-operative road using and ii) unsafe driving practices. Estimation results will be used as input for agent based models, to identify how social interaction processes lead to the emergence, persistence or dissolution of moral (traffic) equilibria at larger spatio-temporal scales.
Together, these proposed research efforts promise to generate a major breakthrough in discrete choice theory. In addition, the program will result in important methodological contributions to the empirical study of moral decision making behaviour in general; and to new insights into the moral aspects of (travel) behaviour.
Summary
Discrete choice theory provides a mathematically rigorous framework to analyse and predict choice behaviour. While many of the theory’s key developments originate from the domain of transportation (mobility, travel behaviour), it is now widely used throughout the social sciences.
The theory has a blind spot for moral choice behaviour. It was designed to analyse situations where people make choices that are optimal given their consumer preferences, rather than situations where people attempt to make choices that are right, given their moral preferences. This neglect of the morality of choice is striking, in light of the fact that many of the most important choices people make, have a moral dimension.
This research program extends discrete choice theory to the domain of moral decision making.
It will produce a suite of new mathematical representations of choice behaviour (i.e., choice models), which are designed to capture the decision rules and decision weights that determine how individuals behave in moral choice situations. In these models, particular emphasis is given to heterogeneity in moral decision rules and to the role of social influences. Models will be estimated and validated using data obtained through a series of interviews, surveys and choice experiments. Empirical analyses will take place in the context of moral choice situations concerning i) co-operative road using and ii) unsafe driving practices. Estimation results will be used as input for agent based models, to identify how social interaction processes lead to the emergence, persistence or dissolution of moral (traffic) equilibria at larger spatio-temporal scales.
Together, these proposed research efforts promise to generate a major breakthrough in discrete choice theory. In addition, the program will result in important methodological contributions to the empirical study of moral decision making behaviour in general; and to new insights into the moral aspects of (travel) behaviour.
Max ERC Funding
1 998 750 €
Duration
Start date: 2017-08-01, End date: 2022-07-31
Project acronym BENDER
Project BiogENesis and Degradation of Endoplasmic Reticulum proteins
Researcher (PI) Friedrich Förster
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Consolidator Grant (CoG), LS1, ERC-2016-COG
Summary The Endoplasmic Reticulum (ER) membrane in all eukaryotic cells has an intricate protein network that facilitates protein biogene-sis and homeostasis. The molecular complexity and sophisticated regulation of this machinery favours study-ing it in its native microenvironment by novel approaches. Cryo-electron tomography (CET) allows 3D im-aging of membrane-associated complexes in their native surrounding. Computational analysis of many sub-tomograms depicting the same type of macromolecule, a technology I pioneered, provides subnanometer resolution insights into different conformations of native complexes.
I propose to leverage CET of cellular and cell-free systems to reveal the molecular details of ER protein bio-genesis and homeostasis. In detail, I will study: (a) The structure of the ER translocon, the dynamic gateway for import of nascent proteins into the ER and their maturation. The largest component is the oligosaccharyl transferase complex. (b) Cotranslational ER import, N-glycosylation, chaperone-mediated stabilization and folding as well as oligomerization of established model substrate such a major histocompatibility complex (MHC) class I and II complexes. (c) The degradation of misfolded ER-residing proteins by the cytosolic 26S proteasome using cytomegalovirus-induced depletion of MHC class I as a model system. (d) The structural changes of the ER-bound translation machinery upon ER stress through IRE1-mediated degradation of mRNA that is specific for ER-targeted proteins. (e) The improved ‘in silico purification’ of different states of native macromolecules by maximum likelihood subtomogram classification and its application to a-d.
This project will be the blueprint for a new approach to structural biology of membrane-associated processes. It will contribute to our mechanistic understanding of viral immune evasion and glycosylation disorders as well as numerous diseases involving chronic ER stress including diabetes and neurodegenerative diseases.
Summary
The Endoplasmic Reticulum (ER) membrane in all eukaryotic cells has an intricate protein network that facilitates protein biogene-sis and homeostasis. The molecular complexity and sophisticated regulation of this machinery favours study-ing it in its native microenvironment by novel approaches. Cryo-electron tomography (CET) allows 3D im-aging of membrane-associated complexes in their native surrounding. Computational analysis of many sub-tomograms depicting the same type of macromolecule, a technology I pioneered, provides subnanometer resolution insights into different conformations of native complexes.
I propose to leverage CET of cellular and cell-free systems to reveal the molecular details of ER protein bio-genesis and homeostasis. In detail, I will study: (a) The structure of the ER translocon, the dynamic gateway for import of nascent proteins into the ER and their maturation. The largest component is the oligosaccharyl transferase complex. (b) Cotranslational ER import, N-glycosylation, chaperone-mediated stabilization and folding as well as oligomerization of established model substrate such a major histocompatibility complex (MHC) class I and II complexes. (c) The degradation of misfolded ER-residing proteins by the cytosolic 26S proteasome using cytomegalovirus-induced depletion of MHC class I as a model system. (d) The structural changes of the ER-bound translation machinery upon ER stress through IRE1-mediated degradation of mRNA that is specific for ER-targeted proteins. (e) The improved ‘in silico purification’ of different states of native macromolecules by maximum likelihood subtomogram classification and its application to a-d.
This project will be the blueprint for a new approach to structural biology of membrane-associated processes. It will contribute to our mechanistic understanding of viral immune evasion and glycosylation disorders as well as numerous diseases involving chronic ER stress including diabetes and neurodegenerative diseases.
Max ERC Funding
2 496 611 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BG-BB-AS
Project Birational Geometry, B-branes and Artin Stacks
Researcher (PI) Edward Paul Segal
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), PE1, ERC-2016-COG
Summary Derived categories of coherent sheaves on a variety are a fundamental tool in algebraic geometry. They also arise in String Theory, as the category of B-branes in a quantum field theory whose target space is the variety. This connection to physics has been extraordinarily fruitful, providing deep insights and conjectures.
An Artin stack is a sophisticated generalization of a variety, they encode the idea of equivariant geometry. A simple example is a vector space carrying a linear action of a Lie group. In String Theory this data defines a Gauged Linear Sigma Model, which is a basic tool in the subject. A GLSM should also give rise to a category of B-branes, but surprisingly it is not yet understood what this should be. An overarching goal of this project is to develop an understanding of this category (more accurately, system of categories), and to extend this understanding to more general Artin stacks.
The basic importance of this question is that in certain limits a GLSM reduces to a sigma model, whose target is a quotient of the vector space by the group. This quotient must be taken using Geometric Invariant Theory. Thus this project is intimately connected with the question of how derived categories change under variation-of-GIT, and birational maps in general.
For GLSMs with abelian groups this approach has already produced spectacular results, in the non-abelian case we understand only a few remarkable examples. We will develop these examples into a wide-ranging general theory.
Our key objectives are to:
- Provide powerful new tools for controlling the behaviour of derived categories under birational maps.
- Understand the category of B-branes on a large class of Artin stacks.
- Prove and apply a striking new duality between GLSMs.
- Construct completely new symmetries of derived categories.
Summary
Derived categories of coherent sheaves on a variety are a fundamental tool in algebraic geometry. They also arise in String Theory, as the category of B-branes in a quantum field theory whose target space is the variety. This connection to physics has been extraordinarily fruitful, providing deep insights and conjectures.
An Artin stack is a sophisticated generalization of a variety, they encode the idea of equivariant geometry. A simple example is a vector space carrying a linear action of a Lie group. In String Theory this data defines a Gauged Linear Sigma Model, which is a basic tool in the subject. A GLSM should also give rise to a category of B-branes, but surprisingly it is not yet understood what this should be. An overarching goal of this project is to develop an understanding of this category (more accurately, system of categories), and to extend this understanding to more general Artin stacks.
The basic importance of this question is that in certain limits a GLSM reduces to a sigma model, whose target is a quotient of the vector space by the group. This quotient must be taken using Geometric Invariant Theory. Thus this project is intimately connected with the question of how derived categories change under variation-of-GIT, and birational maps in general.
For GLSMs with abelian groups this approach has already produced spectacular results, in the non-abelian case we understand only a few remarkable examples. We will develop these examples into a wide-ranging general theory.
Our key objectives are to:
- Provide powerful new tools for controlling the behaviour of derived categories under birational maps.
- Understand the category of B-branes on a large class of Artin stacks.
- Prove and apply a striking new duality between GLSMs.
- Construct completely new symmetries of derived categories.
Max ERC Funding
1 358 925 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BinCosmos
Project The Impact of Massive Binaries Through Cosmic Time
Researcher (PI) Selma DE MINK
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), PE9, ERC-2016-STG
Summary Massive stars play many key roles in Astrophysics. As COSMIC ENGINES they transformed the pristine Universe left after the Big Bang into our modern Universe. We use massive stars, their explosions and products as COSMIC PROBES to study the conditions in the distant Universe and the extreme physics inaccessible at earth. Models of massive stars are thus widely applied. A central common assumption is that massive stars are non-rotating single objects, in stark contrast with new data. Recent studies show that majority (70% according to our data) will experience severe interaction with a companion (Sana, de Mink et al. Science 2012).
I propose to conduct the most ambitious and extensive exploration to date of the effects of binarity and rotation on the lives and fates of massive stars to (I) transform our understanding of the complex physical processes and how they operate in the vast parameter space and (II) explore the cosmological implications after calibrating and verifying the models. To achieve this ambitious objective I will use an innovative computational approach that combines the strength of two highly complementary codes and seek direct confrontation with observations to overcome the computational challenges that inhibited previous work.
This timely project will provide the urgent theory framework needed for interpretation and guiding of observing programs with the new facilities (JWST, LSST, aLIGO/VIRGO). Public release of the model grids and code will ensure wide impact of this project. I am in the unique position to successfully lead this project because of my (i) extensive experience modeling the complex physical processes, (ii) leading role in introducing large statistical simulations in the massive star community and (iii) direct involvement in surveys that will be used in this project.
Summary
Massive stars play many key roles in Astrophysics. As COSMIC ENGINES they transformed the pristine Universe left after the Big Bang into our modern Universe. We use massive stars, their explosions and products as COSMIC PROBES to study the conditions in the distant Universe and the extreme physics inaccessible at earth. Models of massive stars are thus widely applied. A central common assumption is that massive stars are non-rotating single objects, in stark contrast with new data. Recent studies show that majority (70% according to our data) will experience severe interaction with a companion (Sana, de Mink et al. Science 2012).
I propose to conduct the most ambitious and extensive exploration to date of the effects of binarity and rotation on the lives and fates of massive stars to (I) transform our understanding of the complex physical processes and how they operate in the vast parameter space and (II) explore the cosmological implications after calibrating and verifying the models. To achieve this ambitious objective I will use an innovative computational approach that combines the strength of two highly complementary codes and seek direct confrontation with observations to overcome the computational challenges that inhibited previous work.
This timely project will provide the urgent theory framework needed for interpretation and guiding of observing programs with the new facilities (JWST, LSST, aLIGO/VIRGO). Public release of the model grids and code will ensure wide impact of this project. I am in the unique position to successfully lead this project because of my (i) extensive experience modeling the complex physical processes, (ii) leading role in introducing large statistical simulations in the massive star community and (iii) direct involvement in surveys that will be used in this project.
Max ERC Funding
1 926 634 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BIO-H-BORROW
Project Biocatalytic Amine Synthesis via Hydrogen Borrowing
Researcher (PI) Nicholas TURNER
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Advanced Grant (AdG), PE5, ERC-2016-ADG
Summary Amine containing compounds are ubiquitous in everyday life and find applications ranging from polymers to pharmaceuticals. The vast majority of amines are synthetic and manufactured on large scale which creates waste as well as requiring high temperatures and pressures. The increasing availability of biocatalysts, together with an understanding of how they can be used in organic synthesis (biocatalytic retrosynthesis), has stimulated chemists to consider new ways of making target molecules. In this context, the iterative construction of C-N bonds via biocatalytic hydrogen borrowing represents a powerful and unexplored way to synthesise a wide range of target amine molecules in an efficient manner. Hydrogen borrowing involves telescoping redox neutral reactions together using only catalytic amounts of hydrogen.
In this project we will engineer the three key target biocatalysts (reductive aminase, amine dehydrogenase, alcohol dehydrogenase) required for biocatalytic hydrogen borrowing such that they possess the required regio-, chemo- and stereo-selectivity for practical application. Recently discovered reductive aminases (RedAms) and amine dehydrogenases (AmDHs) will be engineered for enantioselective coupling of alcohols (1o, 2o) with ammonia/amines (1o, 2o, 3o) under redox neutral conditions. Alcohol dehydrogenases will be engineered for low enantioselectivity. Hydrogen borrowing requires mutually compatible cofactors shared by two enzymes and in some cases will require redesign of cofactor specificity. Thereafter we shall develop conditions for the combined use of these biocatalysts under hydrogen borrowing conditions (catalytic NADH, NADPH), to enable the conversion of simple and sustainable feedstocks (alcohols) into amines using ammonia as the nitrogen source.
The main deliverables of BIO-H-BORROW will be a set of novel engineered biocatalysts together with redox neutral cascades for the synthesis of amine products from inexpensive and renewable precursors.
Summary
Amine containing compounds are ubiquitous in everyday life and find applications ranging from polymers to pharmaceuticals. The vast majority of amines are synthetic and manufactured on large scale which creates waste as well as requiring high temperatures and pressures. The increasing availability of biocatalysts, together with an understanding of how they can be used in organic synthesis (biocatalytic retrosynthesis), has stimulated chemists to consider new ways of making target molecules. In this context, the iterative construction of C-N bonds via biocatalytic hydrogen borrowing represents a powerful and unexplored way to synthesise a wide range of target amine molecules in an efficient manner. Hydrogen borrowing involves telescoping redox neutral reactions together using only catalytic amounts of hydrogen.
In this project we will engineer the three key target biocatalysts (reductive aminase, amine dehydrogenase, alcohol dehydrogenase) required for biocatalytic hydrogen borrowing such that they possess the required regio-, chemo- and stereo-selectivity for practical application. Recently discovered reductive aminases (RedAms) and amine dehydrogenases (AmDHs) will be engineered for enantioselective coupling of alcohols (1o, 2o) with ammonia/amines (1o, 2o, 3o) under redox neutral conditions. Alcohol dehydrogenases will be engineered for low enantioselectivity. Hydrogen borrowing requires mutually compatible cofactors shared by two enzymes and in some cases will require redesign of cofactor specificity. Thereafter we shall develop conditions for the combined use of these biocatalysts under hydrogen borrowing conditions (catalytic NADH, NADPH), to enable the conversion of simple and sustainable feedstocks (alcohols) into amines using ammonia as the nitrogen source.
The main deliverables of BIO-H-BORROW will be a set of novel engineered biocatalysts together with redox neutral cascades for the synthesis of amine products from inexpensive and renewable precursors.
Max ERC Funding
2 337 548 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym Bio-ICD
Project Biological auto-detection and termination of heart rhythm disturbances
Researcher (PI) Daniël Antonie PIJNAPPELS
Host Institution (HI) ACADEMISCH ZIEKENHUIS LEIDEN
Call Details Starting Grant (StG), LS7, ERC-2016-STG
Summary Imagine a heart that could no longer suffer from life-threatening rhythm disturbances, and not because of pills or traumatizing electroshocks from an Implantable Cardioverter Defibrillator (ICD) device. Instead, this heart has become able to rapidly detect & terminate these malignant arrhythmias fully on its own, after gene transfer. In order to explore this novel concept of biological auto-detection & termination of arrhythmias, I will investigate how forced expression of particular engineered proteins could i) allow cardiac tissue to become a detector of arrhythmias through rapid sensing of acute physiological changes upon their initiation. And how after detection, ii) this cardiac tissue (now as effector), could terminate the arrhythmia by generating a painless electroshock through these proteins.
To this purpose, I will first explore the requirements for such detection & termination by studying arrhythmia initiation and termination in rat models of atrial & ventricular arrhythmias using optical probes and light-gated ion channels. These insights will guide computer-based screening of proteins to identify those properties allowing effective arrhythmia detection & termination. These data will be used for rational engineering of the proteins with the desired properties, followed by their forced expression in cardiac cells and slices to assess anti-arrhythmic potential & safety. Promising proteins will be expressed in whole hearts to study their anti-arrhythmic effects and mechanisms, after which the most effective ones will be studied in awake rats.
This unexplored concept of self-resetting an acutely disturbed physiological state by establishing a biological detector-effector system may yield unique insight into arrhythmia management. Hence, this could provide distinctively innovative therapeutic rationales in which a diseased organ begets its own remedy, e.g. a Biologically-Integrated Cardiac Defibrillator (Bio-ICD).
Summary
Imagine a heart that could no longer suffer from life-threatening rhythm disturbances, and not because of pills or traumatizing electroshocks from an Implantable Cardioverter Defibrillator (ICD) device. Instead, this heart has become able to rapidly detect & terminate these malignant arrhythmias fully on its own, after gene transfer. In order to explore this novel concept of biological auto-detection & termination of arrhythmias, I will investigate how forced expression of particular engineered proteins could i) allow cardiac tissue to become a detector of arrhythmias through rapid sensing of acute physiological changes upon their initiation. And how after detection, ii) this cardiac tissue (now as effector), could terminate the arrhythmia by generating a painless electroshock through these proteins.
To this purpose, I will first explore the requirements for such detection & termination by studying arrhythmia initiation and termination in rat models of atrial & ventricular arrhythmias using optical probes and light-gated ion channels. These insights will guide computer-based screening of proteins to identify those properties allowing effective arrhythmia detection & termination. These data will be used for rational engineering of the proteins with the desired properties, followed by their forced expression in cardiac cells and slices to assess anti-arrhythmic potential & safety. Promising proteins will be expressed in whole hearts to study their anti-arrhythmic effects and mechanisms, after which the most effective ones will be studied in awake rats.
This unexplored concept of self-resetting an acutely disturbed physiological state by establishing a biological detector-effector system may yield unique insight into arrhythmia management. Hence, this could provide distinctively innovative therapeutic rationales in which a diseased organ begets its own remedy, e.g. a Biologically-Integrated Cardiac Defibrillator (Bio-ICD).
Max ERC Funding
1 485 028 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym BioCHANGE
Project Biodiversity Change: an open access data resource supporting societal responses to the biodiversity crisis
Researcher (PI) Anne Elizabeth MAGURRAN
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary Biodiversity CHANGE is a major, but still underappreciated, threat to humanity. It arises when there is unprecedented turnover in the identities of species that comprise ecological assemblages. To understand, monitor and ameliorate this CHANGE, and to enable appropriate societal responses, policy makers and conservation managers urgently need access to the best possible data. At present the ability of practitioners to elucidate ecosystem responses to anthropogenic impacts is hampered by data availability. Building on ERC AdvG BioTIME, BioCHANGE will provide a proof of concept that existing fragmented data can be assembled into an open access, authoritative database to form a crucial resource for addressing societal challenges arising from the biodiversity crisis.
Summary
Biodiversity CHANGE is a major, but still underappreciated, threat to humanity. It arises when there is unprecedented turnover in the identities of species that comprise ecological assemblages. To understand, monitor and ameliorate this CHANGE, and to enable appropriate societal responses, policy makers and conservation managers urgently need access to the best possible data. At present the ability of practitioners to elucidate ecosystem responses to anthropogenic impacts is hampered by data availability. Building on ERC AdvG BioTIME, BioCHANGE will provide a proof of concept that existing fragmented data can be assembled into an open access, authoritative database to form a crucial resource for addressing societal challenges arising from the biodiversity crisis.
Max ERC Funding
149 428 €
Duration
Start date: 2016-11-01, End date: 2018-04-30
Project acronym BIOIONS
Project Biological ions in the gas-phase: New techniques for structural characterization of isolated biomolecular ions
Researcher (PI) Caroline Dessent
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Recent intensive research on the laser spectroscopy of neutral gas-phase biomolecules has yielded a detailed picture of their structures and conformational preferences away from the complications of the bulk environment. In contrast, work on ionic systems has been sparse despite the fact that many important molecular groups are charged under physiological conditions. To address this probelm, we have developed a custom-built laser spectrometer, which incorporates a distincitive electrospray ionisation (ESI) cluster ion source, dedicated to producing biological anions (ATP,oligonucleotides) and their microsolvated clusters for structural characterization. Many previous laser spectrometers with ESI sources have suffered from producing "hot" congested spectra as the ions were produced at ambient temperatures. This is a particularly serious limitation for spectroscopic studies of biomolecules, since these systems can possess high internal energies due tothe presence of numerous low frequency modes. Our spectrometer overcomes this problem by exploiting the newly developed physics technique of "buffer gas cooling" to produce cold ESI molecular ions. In this proposal, we now seek to exploit the new laser-spectrometer to perform detailed spectroscopic interrogations of ESI generated biomolecular anions and clusters. In addition to traditional ion-dissociation spectroscopies, we propose to develop two new laser spectroscopy techniques (Two-color tuneable IR spectroscopy and Dipole-bound excited state spectroscopy) to give the broadest possible structural characterizations of the systems of interest. Studies will focus on ATP/GTP-anions, olignonucleotides, and sulphated and carboxylated sugars. These methodologies will provide a general approach for performing temperature-controlled spectroscopic characterizations of isolated biological ions, with measurements on the corresponding micro-solvated clusters providing details of how the molecules are perturbed by solvent.
Summary
Recent intensive research on the laser spectroscopy of neutral gas-phase biomolecules has yielded a detailed picture of their structures and conformational preferences away from the complications of the bulk environment. In contrast, work on ionic systems has been sparse despite the fact that many important molecular groups are charged under physiological conditions. To address this probelm, we have developed a custom-built laser spectrometer, which incorporates a distincitive electrospray ionisation (ESI) cluster ion source, dedicated to producing biological anions (ATP,oligonucleotides) and their microsolvated clusters for structural characterization. Many previous laser spectrometers with ESI sources have suffered from producing "hot" congested spectra as the ions were produced at ambient temperatures. This is a particularly serious limitation for spectroscopic studies of biomolecules, since these systems can possess high internal energies due tothe presence of numerous low frequency modes. Our spectrometer overcomes this problem by exploiting the newly developed physics technique of "buffer gas cooling" to produce cold ESI molecular ions. In this proposal, we now seek to exploit the new laser-spectrometer to perform detailed spectroscopic interrogations of ESI generated biomolecular anions and clusters. In addition to traditional ion-dissociation spectroscopies, we propose to develop two new laser spectroscopy techniques (Two-color tuneable IR spectroscopy and Dipole-bound excited state spectroscopy) to give the broadest possible structural characterizations of the systems of interest. Studies will focus on ATP/GTP-anions, olignonucleotides, and sulphated and carboxylated sugars. These methodologies will provide a general approach for performing temperature-controlled spectroscopic characterizations of isolated biological ions, with measurements on the corresponding micro-solvated clusters providing details of how the molecules are perturbed by solvent.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-10-01, End date: 2015-06-30
Project acronym BioREAD
Project BioREAD; a Continuous Barrier Quality Monitoring System for Organs-on-Chip
Researcher (PI) Albert Van den Berg
Host Institution (HI) UNIVERSITEIT TWENTE
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary Organs-on-chip are expected to play a crucial role in the pharmaceutical industry for drug development and study of organs and diseases. We propose the development of an electrical detector that enables simple, versatile and continuous quality monitoring of these devices and is essential for commercialization. Combined with recent advances in stem cell technology, Organ-on-Chips can be used to do drug screening on an individual level. Therefore it can serve as instrument for personalized medicine, by determining the effectiveness of selected compounds, as well as possible side-effects to determine safe drug doses on a person-specific level. Moreover, Organs-on-Chip will greatly contribute to a further reduction in the need for animal testing. Besides the pharmaceutical industry, Organs-on-Chip hold great promise for the food and cosmetics industry to test the safety of products.
Organ-on-Chip systems need continuous monitoring of the quality of the cell barrier to guarantee reliable outcomes of the drug development tests. State-of-the-art methods, such as fluorescence and commercially available Trans-Endothelial Electrical Resistance (TEER) measurement apparatus are discontinuous, inaccurate and/or harmful for the cells and therefore unsuitable for pharmaceutical applications. Our innovation overcomes these disadvantages. It enables continuous quality monitoring of the barrier function of the organ, which is essential for the commercialization of Organs-on-Chip. The BIOS-Lab on Chip group holds an excellent record in high-quality TEER measurements, demonstrating direct current (DC) TEER-measurements in a gut-on-a-chip in a top-15 of most cited research papers in the journal Lab-on-Chip in 2015 and has ample experience in the development of a blood-brain barrier on chip. This proposal is part of the ERC-project Vascular Engineering on-chip using differentiated Stem Cells (VESCEL).
Summary
Organs-on-chip are expected to play a crucial role in the pharmaceutical industry for drug development and study of organs and diseases. We propose the development of an electrical detector that enables simple, versatile and continuous quality monitoring of these devices and is essential for commercialization. Combined with recent advances in stem cell technology, Organ-on-Chips can be used to do drug screening on an individual level. Therefore it can serve as instrument for personalized medicine, by determining the effectiveness of selected compounds, as well as possible side-effects to determine safe drug doses on a person-specific level. Moreover, Organs-on-Chip will greatly contribute to a further reduction in the need for animal testing. Besides the pharmaceutical industry, Organs-on-Chip hold great promise for the food and cosmetics industry to test the safety of products.
Organ-on-Chip systems need continuous monitoring of the quality of the cell barrier to guarantee reliable outcomes of the drug development tests. State-of-the-art methods, such as fluorescence and commercially available Trans-Endothelial Electrical Resistance (TEER) measurement apparatus are discontinuous, inaccurate and/or harmful for the cells and therefore unsuitable for pharmaceutical applications. Our innovation overcomes these disadvantages. It enables continuous quality monitoring of the barrier function of the organ, which is essential for the commercialization of Organs-on-Chip. The BIOS-Lab on Chip group holds an excellent record in high-quality TEER measurements, demonstrating direct current (DC) TEER-measurements in a gut-on-a-chip in a top-15 of most cited research papers in the journal Lab-on-Chip in 2015 and has ample experience in the development of a blood-brain barrier on chip. This proposal is part of the ERC-project Vascular Engineering on-chip using differentiated Stem Cells (VESCEL).
Max ERC Funding
150 000 €
Duration
Start date: 2017-01-01, End date: 2018-06-30
Project acronym BLASTOFF
Project Retooling plant immunity for resistance to blast fungi
Researcher (PI) Sophien KAMOUN
Host Institution (HI) THE SAINSBURY LABORATORY
Call Details Advanced Grant (AdG), LS9, ERC-2016-ADG
Summary Plant NLR-type immune receptors tend to have a narrow spectrum of pathogen recognition, which is currently limiting their value in agriculture. NLRs can recognize pathogen effectors through unconventional domains that have evolved by duplication of an effector target followed by fusion into the NLR. One NLR with an integrated domain is the rice resistance protein Pik-1, which binds an effector of the blast fungus Magnaporthe oryzae via its Heavy-Metal Associated (HMA) domain. We solved the crystal structure of the HMA domain of Pik-1 in complex with a blast fungus effector and gained an unprecedented level of detail of the molecular interactions that define pathogen recognition. This led to the overall aim of this proposal to generate a complete picture of the biophysical interactions between blast fungus effectors and HMA-containing cereal proteins to guide the retooling of the plant immune system towards resistance to blast diseases. M. oryzae is a general cereal killer that infects wheat, barley and rice, which are staple food for a majority of the world population. The central hypothesis of the proposed research is that mutations in cereal HMA-containing proteins will result in broad-spectrum resistance to blast fungi.
To achieve our goal, we will pursue the following objectives:
1. BIOPHYSICS. Define the biophysical properties that underpin binding of M. oryzae effectors to HMA-containing proteins of cereal crops.
2. RECEPTOR ENGINEERING. Develop Pik-1 receptors that respond to a wide-spectrum of M. oryzae effectors.
3. GENOME EDITING. Mutate HMA domain-containing genes in cereal genomes to confer broad-spectrum blast resistance.
At the completion of this project, we will generate a thorough understanding of the biophysical properties of pathogen effector binding to cereal HMA proteins, and deliver traits and non-transgenic cultivars for breeding blast disease resistance in cereal crops.
Summary
Plant NLR-type immune receptors tend to have a narrow spectrum of pathogen recognition, which is currently limiting their value in agriculture. NLRs can recognize pathogen effectors through unconventional domains that have evolved by duplication of an effector target followed by fusion into the NLR. One NLR with an integrated domain is the rice resistance protein Pik-1, which binds an effector of the blast fungus Magnaporthe oryzae via its Heavy-Metal Associated (HMA) domain. We solved the crystal structure of the HMA domain of Pik-1 in complex with a blast fungus effector and gained an unprecedented level of detail of the molecular interactions that define pathogen recognition. This led to the overall aim of this proposal to generate a complete picture of the biophysical interactions between blast fungus effectors and HMA-containing cereal proteins to guide the retooling of the plant immune system towards resistance to blast diseases. M. oryzae is a general cereal killer that infects wheat, barley and rice, which are staple food for a majority of the world population. The central hypothesis of the proposed research is that mutations in cereal HMA-containing proteins will result in broad-spectrum resistance to blast fungi.
To achieve our goal, we will pursue the following objectives:
1. BIOPHYSICS. Define the biophysical properties that underpin binding of M. oryzae effectors to HMA-containing proteins of cereal crops.
2. RECEPTOR ENGINEERING. Develop Pik-1 receptors that respond to a wide-spectrum of M. oryzae effectors.
3. GENOME EDITING. Mutate HMA domain-containing genes in cereal genomes to confer broad-spectrum blast resistance.
At the completion of this project, we will generate a thorough understanding of the biophysical properties of pathogen effector binding to cereal HMA proteins, and deliver traits and non-transgenic cultivars for breeding blast disease resistance in cereal crops.
Max ERC Funding
2 491 893 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BRAINBELIEFS
Project Proving or improving yourself: longitudinal effects of ability beliefs on neural feedback processing and school outcomes
Researcher (PI) Nienke VAN ATTEVELDT
Host Institution (HI) STICHTING VU
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary To successfully complete secondary education, persistent learning behavior is essential. Why are some adolescents more resilient to setbacks at school than others? In addition to actual ability, students’ implicit beliefs about the nature of their abilities have major impact on their motivation and achievements. Ability beliefs range from viewing abilities as “entities” that cannot be improved much by effort (entity beliefs), to believing that they are incremental with effort and time (incremental beliefs). Importantly, ability beliefs shape which goals a student pursues at school; proving themselves (performance goals) or improving themselves (learning goals). The central aims of the proposal are to unravel 1) the underlying processing mechanisms of how beliefs and goals shape resilience to setbacks at school and 2) how to influence these mechanisms to stimulate persistent learning behavior.
Functional brain research, including my own, has revealed the profound top-down influence of goals on selective information processing. Goals may thus determine which learning-related information is attended. Project 1 jointly investigates the essential psychological and neurobiological processes to unravel the longitudinal effects of beliefs and goals on how the brain prioritizes information during learning, and how this relates to school outcomes. Project 2 reveals how to influence this interplay with the aim to long-lastingly stimulate persistent learning behavior. I will move beyond existing approaches by introducing a novel intervention in which students experience their own learning-related brain activity and its malleability.
The results will demonstrate how ability beliefs and goals shape functional brain development and school outcomes during adolescence, and how we can optimally stimulate this interplay. The research has high scientific impact as it bridges multiple disciplines and thereby provides a strong impulse to the emerging field of educational neuroscience.
Summary
To successfully complete secondary education, persistent learning behavior is essential. Why are some adolescents more resilient to setbacks at school than others? In addition to actual ability, students’ implicit beliefs about the nature of their abilities have major impact on their motivation and achievements. Ability beliefs range from viewing abilities as “entities” that cannot be improved much by effort (entity beliefs), to believing that they are incremental with effort and time (incremental beliefs). Importantly, ability beliefs shape which goals a student pursues at school; proving themselves (performance goals) or improving themselves (learning goals). The central aims of the proposal are to unravel 1) the underlying processing mechanisms of how beliefs and goals shape resilience to setbacks at school and 2) how to influence these mechanisms to stimulate persistent learning behavior.
Functional brain research, including my own, has revealed the profound top-down influence of goals on selective information processing. Goals may thus determine which learning-related information is attended. Project 1 jointly investigates the essential psychological and neurobiological processes to unravel the longitudinal effects of beliefs and goals on how the brain prioritizes information during learning, and how this relates to school outcomes. Project 2 reveals how to influence this interplay with the aim to long-lastingly stimulate persistent learning behavior. I will move beyond existing approaches by introducing a novel intervention in which students experience their own learning-related brain activity and its malleability.
The results will demonstrate how ability beliefs and goals shape functional brain development and school outcomes during adolescence, and how we can optimally stimulate this interplay. The research has high scientific impact as it bridges multiple disciplines and thereby provides a strong impulse to the emerging field of educational neuroscience.
Max ERC Funding
1 597 291 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym BrainEnergy
Project Control of cerebral blood flow by capillary pericytes in health and disease
Researcher (PI) David ATTWELL
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), LS5, ERC-2016-ADG
Summary Pericytes, located at intervals along capillaries, have recently been revealed as major controllers of brain blood flow. Normally, they dilate capillaries in response to neuronal activity, increasing local blood flow and energy supply. But in pathology they have a more sinister role. After artery block causes a stroke, the brain suffers from the so-called “no-reflow” phenomenon - a failure to fully reperfuse capillaries, even after the upstream occluded artery has been reperfused successfully. The resulting long-lasting decrease of energy supply damages neurons. I have shown that a major cause of no-reflow lies in pericytes: during ischaemia they constrict and then die in rigor. This reduces capillary diameter and blood flow, and probably degrades blood-brain barrier function. However, despite their crucial role in regulating blood flow physiologically and in pathology, little is known about the mechanisms by which pericytes function.
By using blood vessel imaging, patch-clamping, two-photon imaging, optogenetics, immunohistochemistry, mathematical modelling, and live human tissue obtained from neurosurgery, this programme of research will:
(i) define the signalling mechanisms controlling capillary constriction and dilation in health and disease;
(ii) identify the relative contributions of neurons, astrocytes and microglia to regulating pericyte tone;
(iii) develop approaches to preventing brain pericyte constriction and death during ischaemia;
(iv) define how pericyte constriction of capillaries and pericyte death contribute to Alzheimer’s disease;
(v) extend these results from rodent brain to human brain pericytes as a prelude to developing therapies.
The diseases to which pericytes contribute include stroke, spinal cord injury, diabetes and Alzheimer’s disease. These all have an enormous economic impact, as well as causing great suffering for patients and their carers. This work will provide novel therapeutic approaches for treating these diseases.
Summary
Pericytes, located at intervals along capillaries, have recently been revealed as major controllers of brain blood flow. Normally, they dilate capillaries in response to neuronal activity, increasing local blood flow and energy supply. But in pathology they have a more sinister role. After artery block causes a stroke, the brain suffers from the so-called “no-reflow” phenomenon - a failure to fully reperfuse capillaries, even after the upstream occluded artery has been reperfused successfully. The resulting long-lasting decrease of energy supply damages neurons. I have shown that a major cause of no-reflow lies in pericytes: during ischaemia they constrict and then die in rigor. This reduces capillary diameter and blood flow, and probably degrades blood-brain barrier function. However, despite their crucial role in regulating blood flow physiologically and in pathology, little is known about the mechanisms by which pericytes function.
By using blood vessel imaging, patch-clamping, two-photon imaging, optogenetics, immunohistochemistry, mathematical modelling, and live human tissue obtained from neurosurgery, this programme of research will:
(i) define the signalling mechanisms controlling capillary constriction and dilation in health and disease;
(ii) identify the relative contributions of neurons, astrocytes and microglia to regulating pericyte tone;
(iii) develop approaches to preventing brain pericyte constriction and death during ischaemia;
(iv) define how pericyte constriction of capillaries and pericyte death contribute to Alzheimer’s disease;
(v) extend these results from rodent brain to human brain pericytes as a prelude to developing therapies.
The diseases to which pericytes contribute include stroke, spinal cord injury, diabetes and Alzheimer’s disease. These all have an enormous economic impact, as well as causing great suffering for patients and their carers. This work will provide novel therapeutic approaches for treating these diseases.
Max ERC Funding
2 499 954 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BRASILIAE
Project Indigenous Knowledge in the Making of Science: Historia Naturalis Brasiliae (1648)
Researcher (PI) Mariana DE CAMPOS FRANCOZO
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), SH6, ERC-2016-STG
Summary This project is an interdisciplinary study of the role of indigenous knowledge in the making of science. Situated at the intersection of history and anthropology, its main research objective is to understand the transformation of information and practices of South American indigenous peoples into a body of knowledge that became part of the Western scholarly canon. It aims to explore, by means of a distinctive case-study, how European science is constructed in intercultural settings.
This project takes the book Historia Naturalis Brasiliae (HNB), published in 1648 by Piso and Marcgraf, as its central focus. The HNB is the first product of the encounter between early modern European scholarship and South American indigenous knowledge. In an encyclopedic format, it brings together information about the natural world, linguistics, and geography of South America as understood and experienced by indigenous peoples as well as enslaved Africans. Its method of construction embodies the intercultural connections that shaped practices of knowledge production in colonial settings across the globe, and is the earliest example of such in South America. With my research team, I will investigate how indigenous knowledge was appropriated and transformed into European science by focusing on ethnobotanics, ethnozoology, and indigenous material culture.
Since the HNB and its associated materials are kept in European museums and archives, this project is timely and relevant in light of the growing concern for the democratization of heritage. The current debate about the societal role of publicly-funded cultural institutions across Europe argues for the importance of multi-vocality in cultural and political processes. This project proposes a more inclusive interpretation and use of the materials in these institutions and thereby sets an example of how European heritage institutions can use their historical collections to reconnect the past with present-day societal concerns.
Summary
This project is an interdisciplinary study of the role of indigenous knowledge in the making of science. Situated at the intersection of history and anthropology, its main research objective is to understand the transformation of information and practices of South American indigenous peoples into a body of knowledge that became part of the Western scholarly canon. It aims to explore, by means of a distinctive case-study, how European science is constructed in intercultural settings.
This project takes the book Historia Naturalis Brasiliae (HNB), published in 1648 by Piso and Marcgraf, as its central focus. The HNB is the first product of the encounter between early modern European scholarship and South American indigenous knowledge. In an encyclopedic format, it brings together information about the natural world, linguistics, and geography of South America as understood and experienced by indigenous peoples as well as enslaved Africans. Its method of construction embodies the intercultural connections that shaped practices of knowledge production in colonial settings across the globe, and is the earliest example of such in South America. With my research team, I will investigate how indigenous knowledge was appropriated and transformed into European science by focusing on ethnobotanics, ethnozoology, and indigenous material culture.
Since the HNB and its associated materials are kept in European museums and archives, this project is timely and relevant in light of the growing concern for the democratization of heritage. The current debate about the societal role of publicly-funded cultural institutions across Europe argues for the importance of multi-vocality in cultural and political processes. This project proposes a more inclusive interpretation and use of the materials in these institutions and thereby sets an example of how European heritage institutions can use their historical collections to reconnect the past with present-day societal concerns.
Max ERC Funding
1 475 565 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BRCA-ERC
Project Understanding cancer development in BRCA 1/2 mutation carriers for improved Early detection and Risk Control
Researcher (PI) Martin WIDSCHWENDTER
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary Recent evidence demonstrates that cancer is overtaking cardiovascular disease as the number one cause of mortality in Europe. This is largely due to the lack of preventative measures for common (e.g. breast) or highly fatal (e.g. ovarian) human cancers. Most cancers are multifactorial in origin. The core hypothesis of this research programme is that the extremely high risk of BRCA1/2 germline mutation carriers to develop breast and ovarian cancer is a net consequence of cell-autonomous (direct effect of BRCA mutation in cells at risk) and cell non-autonomous (produced in distant organs and affecting organs at risk) factors which both trigger epigenetic, cancer-initiating effects.
The project’s aims are centered around the principles of systems medicine and built on a large cohort of BRCA mutation carriers and controls who will be offered newly established cancer screening programmes. We will uncover how ‘cell non-autonomous’ factors work, provide detail on the epigenetic changes in at-risk tissues and investigate whether these changes are mechanistically linked to cancer, study whether we can neutralise this process and measure success in the organs at risk, and ideally in easy to access samples such as blood, buccal and cervical cells.
In my Department for Women’s Cancer we have assembled a powerful interdisciplinary team including computational biologists, functionalists, immunologists and clinician scientists linked to leading patient advocacy groups which is extremely well placed to lead this pioneering project to develop the fundamental understanding of cancer development in women with BRCA mutations. To reset the epigenome, re-establishing normal cell identity and consequently reducing cancer risk without the need for surgery and being able to monitor the efficacy using multicellular epigenetic outcome predictors will be a major scientific and medical breakthrough and possibly applicable to other chronic diseases.
Summary
Recent evidence demonstrates that cancer is overtaking cardiovascular disease as the number one cause of mortality in Europe. This is largely due to the lack of preventative measures for common (e.g. breast) or highly fatal (e.g. ovarian) human cancers. Most cancers are multifactorial in origin. The core hypothesis of this research programme is that the extremely high risk of BRCA1/2 germline mutation carriers to develop breast and ovarian cancer is a net consequence of cell-autonomous (direct effect of BRCA mutation in cells at risk) and cell non-autonomous (produced in distant organs and affecting organs at risk) factors which both trigger epigenetic, cancer-initiating effects.
The project’s aims are centered around the principles of systems medicine and built on a large cohort of BRCA mutation carriers and controls who will be offered newly established cancer screening programmes. We will uncover how ‘cell non-autonomous’ factors work, provide detail on the epigenetic changes in at-risk tissues and investigate whether these changes are mechanistically linked to cancer, study whether we can neutralise this process and measure success in the organs at risk, and ideally in easy to access samples such as blood, buccal and cervical cells.
In my Department for Women’s Cancer we have assembled a powerful interdisciplinary team including computational biologists, functionalists, immunologists and clinician scientists linked to leading patient advocacy groups which is extremely well placed to lead this pioneering project to develop the fundamental understanding of cancer development in women with BRCA mutations. To reset the epigenome, re-establishing normal cell identity and consequently reducing cancer risk without the need for surgery and being able to monitor the efficacy using multicellular epigenetic outcome predictors will be a major scientific and medical breakthrough and possibly applicable to other chronic diseases.
Max ERC Funding
2 497 841 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BYONIC
Project Beyond the Iron Curtain
Researcher (PI) Alessandro TAGLIABUE
Host Institution (HI) THE UNIVERSITY OF LIVERPOOL
Call Details Consolidator Grant (CoG), PE10, ERC-2016-COG
Summary As one of the largest carbon reservoirs in the Earth system, the ocean is central to understanding past, present and future fluctuations in atmospheric carbon dioxide. In this context, microscopic plants called phytoplankton are key as they consume carbon dioxide during photosynthesis and transfer part of this carbon to the ocean’s interior and ultimately the lithosphere. The overall abundance of phytoplankton also forms the foundation of ocean food webs and drives the richness of marine fisheries.
It is key that we understand drivers of variations in phytoplankton growth, so we can explain changes in ocean productivity and the global carbon cycle, as well as project future trends with confidence. The numerical models we rely on for these tasks are prevented from doing so at present, however, due to a major theoretical gap concerning the role of trace metals in shaping phytoplankton growth in the ocean. This omission is particularly lacking at regional scales, where subtle interactions can lead to their co-limitation of biological activity. While we have long known that trace metals are fundamentally important to the photosynthesis and respiration of phytoplankton, it is only very recently that the necessary large-scale oceanic datasets required by numerical models have become available. I am leading such efforts with the trace metal iron, but we urgently need to expand our approach to other essential trace metals such as cobalt, copper, manganese and zinc.
This project will combine knowledge of biological requirement for trace metals with these newly emerging datasets to move ‘beyond the iron curtain’ and develop the first ever complete numerical model of resource limitation of phytoplankton growth, accounting for co-limiting interactions. Via a progressive combination of data synthesis and state of the art modelling, I will deliver a step-change into how we think resource availability controls life in the ocean.
Summary
As one of the largest carbon reservoirs in the Earth system, the ocean is central to understanding past, present and future fluctuations in atmospheric carbon dioxide. In this context, microscopic plants called phytoplankton are key as they consume carbon dioxide during photosynthesis and transfer part of this carbon to the ocean’s interior and ultimately the lithosphere. The overall abundance of phytoplankton also forms the foundation of ocean food webs and drives the richness of marine fisheries.
It is key that we understand drivers of variations in phytoplankton growth, so we can explain changes in ocean productivity and the global carbon cycle, as well as project future trends with confidence. The numerical models we rely on for these tasks are prevented from doing so at present, however, due to a major theoretical gap concerning the role of trace metals in shaping phytoplankton growth in the ocean. This omission is particularly lacking at regional scales, where subtle interactions can lead to their co-limitation of biological activity. While we have long known that trace metals are fundamentally important to the photosynthesis and respiration of phytoplankton, it is only very recently that the necessary large-scale oceanic datasets required by numerical models have become available. I am leading such efforts with the trace metal iron, but we urgently need to expand our approach to other essential trace metals such as cobalt, copper, manganese and zinc.
This project will combine knowledge of biological requirement for trace metals with these newly emerging datasets to move ‘beyond the iron curtain’ and develop the first ever complete numerical model of resource limitation of phytoplankton growth, accounting for co-limiting interactions. Via a progressive combination of data synthesis and state of the art modelling, I will deliver a step-change into how we think resource availability controls life in the ocean.
Max ERC Funding
1 668 418 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym CAJS
Project The Christian Appropriation of the Jewish Scriptures: Allegory, Pauline Exegesis, and the Negotiation of Religious Identities
Researcher (PI) Hagit Amirav
Host Institution (HI) STICHTING VU
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This project focuses on the appropriation of the Old Testament by early Christian interpreters of the Bible. A historical approach, not commonly adopted in the study of biblical interpretation, will enable us to study how this process contributed to the formation of distinctive Christian identities within the multicultural society of the late Roman principate and early Byzantine rule. The exegetes of this period were to a great extent responsible for the creation of a distinctive, sophisticated, and uncompromising discourse—a ‘totalising Christian discourse’, which determines Christian identities up to this day. In two projects, carried out by three researchers, we will make cross sections of the relevant material. It was allegorizing interpretation that enabled exegetes belonging to the so-called School of Alexandria to recognize Christ everywhere in the Old Testament, and thus to appropriate it and make it useful to the Church. Thus the Song of Songs was no longer considered an earthly love song, but was said to describe Christ’s love for the Church. Exegetes associated with the School of Antioch opposed to this kind of approach. They are often described as literalists. The traditional understanding of the distinctions between the two schools needs to be broadened and corrected by a picture of the actual practice of their hermeneutics. In my view the Antiochene opposition was brought about by the fact that pagan and ‘heretic’ critics did not accept the Alexandrian use of allegory. My innovative hypothesis is related to the central role played by the letters of the apostle Paul in the Antiochene reaction against Alexandria. For the Antiochenes, the use of Paul became an alternative means to bridge the gap between the two Testaments. Instead of a book in which every jot and tittle referred to Christ through allegory, the Antiochenes came to view the Old Testament as an amalgamation of moral lessons that agreed with Paul's teaching.
Summary
This project focuses on the appropriation of the Old Testament by early Christian interpreters of the Bible. A historical approach, not commonly adopted in the study of biblical interpretation, will enable us to study how this process contributed to the formation of distinctive Christian identities within the multicultural society of the late Roman principate and early Byzantine rule. The exegetes of this period were to a great extent responsible for the creation of a distinctive, sophisticated, and uncompromising discourse—a ‘totalising Christian discourse’, which determines Christian identities up to this day. In two projects, carried out by three researchers, we will make cross sections of the relevant material. It was allegorizing interpretation that enabled exegetes belonging to the so-called School of Alexandria to recognize Christ everywhere in the Old Testament, and thus to appropriate it and make it useful to the Church. Thus the Song of Songs was no longer considered an earthly love song, but was said to describe Christ’s love for the Church. Exegetes associated with the School of Antioch opposed to this kind of approach. They are often described as literalists. The traditional understanding of the distinctions between the two schools needs to be broadened and corrected by a picture of the actual practice of their hermeneutics. In my view the Antiochene opposition was brought about by the fact that pagan and ‘heretic’ critics did not accept the Alexandrian use of allegory. My innovative hypothesis is related to the central role played by the letters of the apostle Paul in the Antiochene reaction against Alexandria. For the Antiochenes, the use of Paul became an alternative means to bridge the gap between the two Testaments. Instead of a book in which every jot and tittle referred to Christ through allegory, the Antiochenes came to view the Old Testament as an amalgamation of moral lessons that agreed with Paul's teaching.
Max ERC Funding
655 309 €
Duration
Start date: 2008-09-01, End date: 2013-12-31
Project acronym CALCEAM
Project Cooperative Acceptor Ligands for Catalysis with Earth-Abundant Metals
Researcher (PI) Marc-Etienne Moret
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary Homogeneous catalysis is of prime importance for the selective synthesis of high added value chemicals. Many of the currently available catalysts rely on noble metals (Ru, Os, Rh, Ir, Pd, Pt), which suffer from a high toxicity and environmental impact in addition to their high cost, calling for the development of new systems based on first-row transition metals (Mn, Fe, Co, Ni, Cu). The historical paradigm for catalyst design, i.e. one or more donor ligands giving electron density to stabilize a metal center and tune its reactivity, is currently being challenged by the development of acceptor ligands that mostly withdraw electron density from the metal center upon binding. In the last decade, such ligands – mostly based on boron and heavier main-group elements – have evolved from a structural curiosity to a powerful tool in designing new reactive units for homogeneous catalysis.
I will develop a novel class of ligands that use C=E (E=O, S, NR) multiple bonds anchored in close proximity to the metal by phosphine tethers. The electrophilic C=E multiple bond is designed to act as an acceptor moiety that adapts its binding mode to the electronic structure of reactive intermediates with the unique additional possibility of involving the lone pairs on heteroelement E in cooperative reactivity. Building on preliminary results showing that a C=O bond can function as a hemilabile ligand in a catalytic cycle, I will undertake a systematic, experimental and theoretical investigation of the structure and reactivity of M–C–E three membered rings formed by side-on coordination of C=E bonds to a first-row metal. Their ability to facilitate multi-electron transformations (oxidative addition, atom/group transfer reactions) will be investigated. In particular, hemilability of the C=E bond is expected to facilitate challenging C–C bond forming reactions mediated by Fe and Ni. This approach will demonstrate a new conceptual tool for the design of efficient base-metal catalysts.
Summary
Homogeneous catalysis is of prime importance for the selective synthesis of high added value chemicals. Many of the currently available catalysts rely on noble metals (Ru, Os, Rh, Ir, Pd, Pt), which suffer from a high toxicity and environmental impact in addition to their high cost, calling for the development of new systems based on first-row transition metals (Mn, Fe, Co, Ni, Cu). The historical paradigm for catalyst design, i.e. one or more donor ligands giving electron density to stabilize a metal center and tune its reactivity, is currently being challenged by the development of acceptor ligands that mostly withdraw electron density from the metal center upon binding. In the last decade, such ligands – mostly based on boron and heavier main-group elements – have evolved from a structural curiosity to a powerful tool in designing new reactive units for homogeneous catalysis.
I will develop a novel class of ligands that use C=E (E=O, S, NR) multiple bonds anchored in close proximity to the metal by phosphine tethers. The electrophilic C=E multiple bond is designed to act as an acceptor moiety that adapts its binding mode to the electronic structure of reactive intermediates with the unique additional possibility of involving the lone pairs on heteroelement E in cooperative reactivity. Building on preliminary results showing that a C=O bond can function as a hemilabile ligand in a catalytic cycle, I will undertake a systematic, experimental and theoretical investigation of the structure and reactivity of M–C–E three membered rings formed by side-on coordination of C=E bonds to a first-row metal. Their ability to facilitate multi-electron transformations (oxidative addition, atom/group transfer reactions) will be investigated. In particular, hemilability of the C=E bond is expected to facilitate challenging C–C bond forming reactions mediated by Fe and Ni. This approach will demonstrate a new conceptual tool for the design of efficient base-metal catalysts.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-08-01, End date: 2022-07-31