Project acronym CALC
Project Computer-Assisted Language Comparison: Reconciling Computational and Classical Approaches in Historical Linguistics
Researcher (PI) Johann-Mattis LIST
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary By comparing the languages of the world, we gain invaluable insights into human prehistory, predating the appearance of written records by thousands of years. The traditional methods for language comparison are based on manual data inspection. With more and more data available, they reach their practical limits. Computer applications, however, are not capable of replacing experts' experience and intuition. In a situation where computers cannot replace experts and experts do not have enough time to analyse the massive amounts of data, a new framework, neither completely computer-driven, nor ignorant of the help computers provide, becomes urgent. Such frameworks are well-established in biology and translation, where computational tools cannot provide the accuracy needed to arrive at convincing results, but do assist humans to digest large data sets.
This project establishes a computer-assisted framework for historical linguistics. We pursue an interdisciplinary approach that adapts methods from computer science and bioinformatics for the use in historical linguistics. While purely computational approaches are common today, the project focuses on the communication between classical and computational linguists, developing interfaces that allow historical linguists to produce their data in machine readable formats while at the same time presenting the results of computational analyses in a transparent and human-readable way.
As a litmus test which proves the suitability of the new framework, the project will create an etymological database of Sino-Tibetan languages. The abundance of language contact and the peculiarity of complex processes of language change in which sporadic patterns of morphological change mask regular patterns of sound change make the Sino-Tibetan language family an ideal test case for a new overarching framework that combines the best of two worlds: the experience of experts
and the consistency of computational models.
Summary
By comparing the languages of the world, we gain invaluable insights into human prehistory, predating the appearance of written records by thousands of years. The traditional methods for language comparison are based on manual data inspection. With more and more data available, they reach their practical limits. Computer applications, however, are not capable of replacing experts' experience and intuition. In a situation where computers cannot replace experts and experts do not have enough time to analyse the massive amounts of data, a new framework, neither completely computer-driven, nor ignorant of the help computers provide, becomes urgent. Such frameworks are well-established in biology and translation, where computational tools cannot provide the accuracy needed to arrive at convincing results, but do assist humans to digest large data sets.
This project establishes a computer-assisted framework for historical linguistics. We pursue an interdisciplinary approach that adapts methods from computer science and bioinformatics for the use in historical linguistics. While purely computational approaches are common today, the project focuses on the communication between classical and computational linguists, developing interfaces that allow historical linguists to produce their data in machine readable formats while at the same time presenting the results of computational analyses in a transparent and human-readable way.
As a litmus test which proves the suitability of the new framework, the project will create an etymological database of Sino-Tibetan languages. The abundance of language contact and the peculiarity of complex processes of language change in which sporadic patterns of morphological change mask regular patterns of sound change make the Sino-Tibetan language family an ideal test case for a new overarching framework that combines the best of two worlds: the experience of experts
and the consistency of computational models.
Max ERC Funding
1 499 438 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym CANCERSTEM
Project Stem cells in epithelial cancer initiation and growth
Researcher (PI) Cédric Blanpain
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary Cancer is the result of a multi-step process requiring the accumulation of mutations in several genes. For most cancers, the target cells of oncogenic mutations are unknown. Adult stem cells (SCs) might be the initial target cells as they self-renew for extended periods of time, providing increased opportunity to accumulate the mutations required for cancer formation. Certain cancers contain cells characteristics of SC with high self-renewal capacities and the ability to reform the parental tumor upon transplantation. However, whether the initial oncogenic mutations arise in normal stem cells or in more differentiated cells that re-acquire stem cell-like properties remains to be determined. The demonstration that SCs are the target cells of the initial transforming events and that cancers contain cells with SC characteristics await the development of tools allowing for the isolation and characterization of normal adult SCs. In most epithelia from which cancers naturally arise, such tools are not yet available. We have recently developed novel methods to specifically mark and isolate multipotent epidermal slow-cycling SCs, making it now possible to determine the role of SC during epithelial cancer formation. In this project, we will use mice epidermis as a model to define the role of SC in epithelial cancer initiation and growth. Specifically, we will determine whether epithelial SCs are the initial target cells of oncogenic mutations during skin cancer formation, whether oncogenic mutations lead preferentially to skin cancer when they arise in SC rather than in more committed cells and whether cancer stem cells contribute to epithelial tumor growth and relapse after therapy.
Summary
Cancer is the result of a multi-step process requiring the accumulation of mutations in several genes. For most cancers, the target cells of oncogenic mutations are unknown. Adult stem cells (SCs) might be the initial target cells as they self-renew for extended periods of time, providing increased opportunity to accumulate the mutations required for cancer formation. Certain cancers contain cells characteristics of SC with high self-renewal capacities and the ability to reform the parental tumor upon transplantation. However, whether the initial oncogenic mutations arise in normal stem cells or in more differentiated cells that re-acquire stem cell-like properties remains to be determined. The demonstration that SCs are the target cells of the initial transforming events and that cancers contain cells with SC characteristics await the development of tools allowing for the isolation and characterization of normal adult SCs. In most epithelia from which cancers naturally arise, such tools are not yet available. We have recently developed novel methods to specifically mark and isolate multipotent epidermal slow-cycling SCs, making it now possible to determine the role of SC during epithelial cancer formation. In this project, we will use mice epidermis as a model to define the role of SC in epithelial cancer initiation and growth. Specifically, we will determine whether epithelial SCs are the initial target cells of oncogenic mutations during skin cancer formation, whether oncogenic mutations lead preferentially to skin cancer when they arise in SC rather than in more committed cells and whether cancer stem cells contribute to epithelial tumor growth and relapse after therapy.
Max ERC Funding
1 600 000 €
Duration
Start date: 2008-07-01, End date: 2013-12-31
Project acronym CapReal
Project Performance Capture of the Real World in Motion
Researcher (PI) Christian Theobalt
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE6, ERC-2013-StG
Summary Computer graphics technology for realistic rendering has improved
dramatically; however, the technology to create scene models to be rendered,
e.g., for movies, has not developed at the same pace. In practice, the state
of the art in model creation still requires months of complex manual design,
and this is a serious threat to progress. To attack this problem, computer
graphics and computer vision researchers jointly developed methods that
capture scene models from real world examples. Of particular importance is
the capturing of moving scenes. The pinnacle of dynamic scene capture
technology in research is marker-less performance capture. From multi-view
video, they capture dynamic surface and texture models of the real world.
Performance capture is hardly used in practice due to profound limitations:
recording is usually limited to indoor studios, controlled lighting, and
dense static camera arrays. Methods are often limited to single objects, and
reconstructed shape detail is very limited. Assumptions about materials,
reflectance, and lighting in a scene are simplistic, and we cannot easily
modify captured data.
In this project, we will pioneer a new generation of performance capture
techniques to overcome these limitations. Our methods will allow the
reconstruction of dynamic surface models of unprecedented shape detail. They
will succeed on general scenes outside of the lab and outdoors, scenes with
complex material and reflectance distributions, and scenes in which lighting
is general, uncontrolled, and unknown. They will capture dense and crowded
scenes with complex shape deformations. They will reconstruct conveniently
modifiable scene models. They will work with sparse and moving sets of
cameras, ultimately even with mobile phones. This far-reaching,
multi-disciplinary project will turn performance capture from a research
technology into a practical technology, provide groundbreaking scientific
insights, and open up revolutionary new applications.
Summary
Computer graphics technology for realistic rendering has improved
dramatically; however, the technology to create scene models to be rendered,
e.g., for movies, has not developed at the same pace. In practice, the state
of the art in model creation still requires months of complex manual design,
and this is a serious threat to progress. To attack this problem, computer
graphics and computer vision researchers jointly developed methods that
capture scene models from real world examples. Of particular importance is
the capturing of moving scenes. The pinnacle of dynamic scene capture
technology in research is marker-less performance capture. From multi-view
video, they capture dynamic surface and texture models of the real world.
Performance capture is hardly used in practice due to profound limitations:
recording is usually limited to indoor studios, controlled lighting, and
dense static camera arrays. Methods are often limited to single objects, and
reconstructed shape detail is very limited. Assumptions about materials,
reflectance, and lighting in a scene are simplistic, and we cannot easily
modify captured data.
In this project, we will pioneer a new generation of performance capture
techniques to overcome these limitations. Our methods will allow the
reconstruction of dynamic surface models of unprecedented shape detail. They
will succeed on general scenes outside of the lab and outdoors, scenes with
complex material and reflectance distributions, and scenes in which lighting
is general, uncontrolled, and unknown. They will capture dense and crowded
scenes with complex shape deformations. They will reconstruct conveniently
modifiable scene models. They will work with sparse and moving sets of
cameras, ultimately even with mobile phones. This far-reaching,
multi-disciplinary project will turn performance capture from a research
technology into a practical technology, provide groundbreaking scientific
insights, and open up revolutionary new applications.
Max ERC Funding
1 480 800 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym CAPS
Project Capillary suspensions: a novel route for versatile, cost efficient and environmentally friendly material design
Researcher (PI) Erin Crystal Koos
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary A wide variety of materials including coatings and adhesives, emerging materials for nanotechnology products, as well as everyday food products are processed or delivered as suspensions. The flow properties of such suspensions must be finely adjusted according to the demands of the respective processing techniques, even for the feel of cosmetics and the perception of food products is highly influenced by their rheological properties. The recently developed capillary suspensions concept has the potential to revolutionize product formulations and material design. When a small amount (less than 1%) of a second immiscible liquid is added to the continuous phase of a suspension, the rheological properties of the mixture are dramatically altered from a fluid-like to a gel-like state or from a weak to a strong gel and the strength can be tuned in a wide range covering orders of magnitude. Capillary suspensions can be used to create smart, tunable fluids, stabilize mixtures that would otherwise phase separate, significantly reduce the amount organic or polymeric additives, and the strong particle network can be used as a precursor for the manufacturing of cost-efficient porous ceramics and foams with unprecedented properties.
This project will investigate the influence of factors determining capillary suspension formation, the strength of these admixtures as a function of these aspects, and how capillary suspensions depend on external forces. Only such a fundamental understanding of the network formation in capillary suspensions on both the micro- and macroscopic scale will allow for the design of sophisticated new materials. The main objectives of this proposal are to quantify and predict the strength of these admixtures and then use this information to design a variety of new materials in very different application areas including, e.g., porous materials, water-based coatings, ultra low fat foods, and conductive films.
Summary
A wide variety of materials including coatings and adhesives, emerging materials for nanotechnology products, as well as everyday food products are processed or delivered as suspensions. The flow properties of such suspensions must be finely adjusted according to the demands of the respective processing techniques, even for the feel of cosmetics and the perception of food products is highly influenced by their rheological properties. The recently developed capillary suspensions concept has the potential to revolutionize product formulations and material design. When a small amount (less than 1%) of a second immiscible liquid is added to the continuous phase of a suspension, the rheological properties of the mixture are dramatically altered from a fluid-like to a gel-like state or from a weak to a strong gel and the strength can be tuned in a wide range covering orders of magnitude. Capillary suspensions can be used to create smart, tunable fluids, stabilize mixtures that would otherwise phase separate, significantly reduce the amount organic or polymeric additives, and the strong particle network can be used as a precursor for the manufacturing of cost-efficient porous ceramics and foams with unprecedented properties.
This project will investigate the influence of factors determining capillary suspension formation, the strength of these admixtures as a function of these aspects, and how capillary suspensions depend on external forces. Only such a fundamental understanding of the network formation in capillary suspensions on both the micro- and macroscopic scale will allow for the design of sophisticated new materials. The main objectives of this proposal are to quantify and predict the strength of these admixtures and then use this information to design a variety of new materials in very different application areas including, e.g., porous materials, water-based coatings, ultra low fat foods, and conductive films.
Max ERC Funding
1 489 618 €
Duration
Start date: 2013-08-01, End date: 2018-07-31
Project acronym CAPSEVO
Project Evolution of flower morphology: the selfing syndrome in Capsella
Researcher (PI) Michael Lenhard
Host Institution (HI) UNIVERSITAET POTSDAM
Call Details Starting Grant (StG), LS3, ERC-2010-StG_20091118
Summary The change from reproduction by outbreeding to selfing is one of the most frequent evolutionary transitions in plants. This transition is generally accompanied by changes in flower morphology and function, termed the selfing syndrome, including a reduction in flower size and a more closed flower structure. While the loss of self-incompatibility is relatively well understood, little is known about the molecular basis of the associated morphological changes and their evolutionary history. We will address these problems using the species pair Capsella grandiflora (the ancestral outbreeder) and C. rubella (the derived selfing species) as a genetically tractable model. We have established recombinant inbred lines from a cross of C. grandiflora x C. rubella and mapped quantitative trait loci affecting flower size and flower opening. Using this resource, the proposal will address four objectives. (1) We will isolate causal genes underlying the variation in flower size and opening, by combining genetic mapping with next-generation sequencing. (2) We will characterize the developmental and molecular functions of the isolated genes in Capsella and Arabidopsis. (3) We will dissect the molecular basis of the different allelic effects of the causal genes to determine which kinds of mutations have led to the morphological changes. (4) Based on population-genetic analyses of the isolated genes, the evolutionary history of the morphological changes will be retraced. Together, these strands of investigation will provide a detailed understanding of general processes underlying morphological evolution in plants.
Summary
The change from reproduction by outbreeding to selfing is one of the most frequent evolutionary transitions in plants. This transition is generally accompanied by changes in flower morphology and function, termed the selfing syndrome, including a reduction in flower size and a more closed flower structure. While the loss of self-incompatibility is relatively well understood, little is known about the molecular basis of the associated morphological changes and their evolutionary history. We will address these problems using the species pair Capsella grandiflora (the ancestral outbreeder) and C. rubella (the derived selfing species) as a genetically tractable model. We have established recombinant inbred lines from a cross of C. grandiflora x C. rubella and mapped quantitative trait loci affecting flower size and flower opening. Using this resource, the proposal will address four objectives. (1) We will isolate causal genes underlying the variation in flower size and opening, by combining genetic mapping with next-generation sequencing. (2) We will characterize the developmental and molecular functions of the isolated genes in Capsella and Arabidopsis. (3) We will dissect the molecular basis of the different allelic effects of the causal genes to determine which kinds of mutations have led to the morphological changes. (4) Based on population-genetic analyses of the isolated genes, the evolutionary history of the morphological changes will be retraced. Together, these strands of investigation will provide a detailed understanding of general processes underlying morphological evolution in plants.
Max ERC Funding
1 480 826 €
Duration
Start date: 2010-12-01, End date: 2016-11-30
Project acronym CARDIOSPLICE
Project A systems and targeted approach to alternative splicing in the developing and diseased heart: Translating basic cell biology to improved cardiac function
Researcher (PI) Michael Gotthardt
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Starting Grant (StG), LS4, ERC-2011-StG_20101109
Summary Cardiovascular disease keeps the top spot in mortality statistics in Europe with 2 million deaths annually and although prevention and therapy have continuously been improved, the prevalence of heart failure continues to rise. While contractile (systolic) dysfunction is readily accessible to pharmacological treatment, there is a lack of therapeutic options for reduced ventricular filling (diastolic dysfunction). The diastolic properties of the heart are largely determined by the giant sarcomeric protein titin, which is alternatively spliced to adjust the elastic properties of the cardiomyocyte. We have recently identified a titin splice factor that plays a parallel role in cardiac disease and postnatal development. It targets a subset of genes that concertedly affect biomechanics, electrical activity, and signal transduction and suggests alternative splicing as a novel therapeutic target in heart disease. Here we will build on the titin splice factor to identify regulatory principles and cofactors that adjust cardiac isoform expression. In a complementary approach we will investigate titin mRNA binding proteins to provide a comprehensive analysis of factors governing titin’s differential splicing in cardiac development, health, and disease. Based on its distinctive role in ventricular filling we will evaluate titin splicing as a therapeutic target in diastolic heart failure and use a titin based reporter assay to identify small molecules to interfere with titin isoform expression. Finally, we will evaluate the effects of altered alternative splicing on diastolic dysfunction in vivo utilizing the splice deficient mutant and our available animal models for diastolic dysfunction.
The overall scientific goal of the proposed work is to investigate the regulation of cardiac alternative splicing in development and disease and to evaluate if splice directed therapy can be used to improve diastolic function and specifically the elastic properties of the heart.
Summary
Cardiovascular disease keeps the top spot in mortality statistics in Europe with 2 million deaths annually and although prevention and therapy have continuously been improved, the prevalence of heart failure continues to rise. While contractile (systolic) dysfunction is readily accessible to pharmacological treatment, there is a lack of therapeutic options for reduced ventricular filling (diastolic dysfunction). The diastolic properties of the heart are largely determined by the giant sarcomeric protein titin, which is alternatively spliced to adjust the elastic properties of the cardiomyocyte. We have recently identified a titin splice factor that plays a parallel role in cardiac disease and postnatal development. It targets a subset of genes that concertedly affect biomechanics, electrical activity, and signal transduction and suggests alternative splicing as a novel therapeutic target in heart disease. Here we will build on the titin splice factor to identify regulatory principles and cofactors that adjust cardiac isoform expression. In a complementary approach we will investigate titin mRNA binding proteins to provide a comprehensive analysis of factors governing titin’s differential splicing in cardiac development, health, and disease. Based on its distinctive role in ventricular filling we will evaluate titin splicing as a therapeutic target in diastolic heart failure and use a titin based reporter assay to identify small molecules to interfere with titin isoform expression. Finally, we will evaluate the effects of altered alternative splicing on diastolic dysfunction in vivo utilizing the splice deficient mutant and our available animal models for diastolic dysfunction.
The overall scientific goal of the proposed work is to investigate the regulation of cardiac alternative splicing in development and disease and to evaluate if splice directed therapy can be used to improve diastolic function and specifically the elastic properties of the heart.
Max ERC Funding
1 499 191 €
Duration
Start date: 2012-01-01, End date: 2017-06-30
Project acronym CAstRA
Project Comet and Asteroid Re-Shaping through Activity
Researcher (PI) Jessica AGARWAL
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2017-STG
Summary The proposed project will significantly improve the insight in the processes that have changed a comet nucleus or asteroid since their formation. These processes typically go along with activity, the observable release of gas and/or dust. Understanding the evolutionary processes of comets and asteroids will allow us to answer the crucial question which aspects of these present-day bodies still provide essential clues to their formation in the protoplanetary disc of the early solar system.
Ground-breaking progress in understanding these fundamental questions can now be made thanks to the huge and unprecedented data set returned between 2014 and 2016 by the European Space Agency’s Rosetta mission to comet 67P/Churyumov-Gerasimenko, and by recent major advances in the observational study of active asteroids facilitated by the increased availability of sky surveys and follow-on observations with world-class telescopes.
The key aims of this proposal are to
- Obtain a unified quantitative picture of the different erosion processes active in comets and asteroids,
- Investigate how ice is stored in comets and asteroids,
- Characterize the ejected dust (size distribution, optical and thermal properties) and relate it to dust around other stars,
- Understand in which respects comet 67P can be considered as representative of a wider sample of comets or even asteroids.
We will follow a highly multi-disciplinary approach analyzing data from many Rosetta instruments, ground- and space-based telescopes, and connect these through numerical models of the dust dynamics and thermal properties.
Summary
The proposed project will significantly improve the insight in the processes that have changed a comet nucleus or asteroid since their formation. These processes typically go along with activity, the observable release of gas and/or dust. Understanding the evolutionary processes of comets and asteroids will allow us to answer the crucial question which aspects of these present-day bodies still provide essential clues to their formation in the protoplanetary disc of the early solar system.
Ground-breaking progress in understanding these fundamental questions can now be made thanks to the huge and unprecedented data set returned between 2014 and 2016 by the European Space Agency’s Rosetta mission to comet 67P/Churyumov-Gerasimenko, and by recent major advances in the observational study of active asteroids facilitated by the increased availability of sky surveys and follow-on observations with world-class telescopes.
The key aims of this proposal are to
- Obtain a unified quantitative picture of the different erosion processes active in comets and asteroids,
- Investigate how ice is stored in comets and asteroids,
- Characterize the ejected dust (size distribution, optical and thermal properties) and relate it to dust around other stars,
- Understand in which respects comet 67P can be considered as representative of a wider sample of comets or even asteroids.
We will follow a highly multi-disciplinary approach analyzing data from many Rosetta instruments, ground- and space-based telescopes, and connect these through numerical models of the dust dynamics and thermal properties.
Max ERC Funding
1 484 688 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CATALIGHT
Project Exploiting Energy Flow in Plasmonic-Catalytic Colloids
Researcher (PI) Emiliano CORTÉS
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary The aim of CATALIGHT is to use sunlight as a source of energy in order to trigger chemical reactions by harvesting photons with plasmonic nanoparticles and channelling the energy into catalytic materials. Plasmonic-catalytic devices would allow efficient harvest, transport, and injection of solar energy into molecules. To achieve this, imaging the energy flow at the nanoscale will be crucial for establishing the true potential of plasmonics, both in the context of yielding fundamental knowledge about the light-into-chemical energy conversion processes, and for moving from active towards efficient reactive devices within nanoscale environments.
CATALIGHT has roots in three underlying components, making this project an interwoven effort to break new grounds in a crucial field for the further development of nanoscale energy manipulation: A) Super-resolution imaging of the energy-flow at the nanoscale – with a view to unravel the most efficient mechanisms to guide solar energy into catalytic materials using plasmonic structures as photon harvesters. B) Scaling-up this process through the fabrication of hierarchical photocatalytic colloids – using image-learning for the design of colloidal sources for energy manipulation. C) Light-into-chemical energy conversion – boosting efficiencies in environmental and industrial catalytic processes using tailored photocatalysts.
The outcomes of this project will not only yield a substantial amount of fundamental knowledge in these crucial areas for the further development of the field, but also provide directly exploitable results for the applied sciences, particularly photocatalysis and fuel cells.
Summary
The aim of CATALIGHT is to use sunlight as a source of energy in order to trigger chemical reactions by harvesting photons with plasmonic nanoparticles and channelling the energy into catalytic materials. Plasmonic-catalytic devices would allow efficient harvest, transport, and injection of solar energy into molecules. To achieve this, imaging the energy flow at the nanoscale will be crucial for establishing the true potential of plasmonics, both in the context of yielding fundamental knowledge about the light-into-chemical energy conversion processes, and for moving from active towards efficient reactive devices within nanoscale environments.
CATALIGHT has roots in three underlying components, making this project an interwoven effort to break new grounds in a crucial field for the further development of nanoscale energy manipulation: A) Super-resolution imaging of the energy-flow at the nanoscale – with a view to unravel the most efficient mechanisms to guide solar energy into catalytic materials using plasmonic structures as photon harvesters. B) Scaling-up this process through the fabrication of hierarchical photocatalytic colloids – using image-learning for the design of colloidal sources for energy manipulation. C) Light-into-chemical energy conversion – boosting efficiencies in environmental and industrial catalytic processes using tailored photocatalysts.
The outcomes of this project will not only yield a substantial amount of fundamental knowledge in these crucial areas for the further development of the field, but also provide directly exploitable results for the applied sciences, particularly photocatalysis and fuel cells.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CatCHFun
Project Sustainable Catalytic C-H Bond Functionalization
Researcher (PI) Lutz Ackermann
Host Institution (HI) GEORG-AUGUST-UNIVERSITAT GOTTINGENSTIFTUNG OFFENTLICHEN RECHTS
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary The impressive progress in synthetic organic chemistry during the past century has propelled this discipline to its current central place as the key enabling technology in the physical and life sciences. Despite these remarkable advances, our ability to construct molecules of even moderate structural complexity remains unsatisfactory, since these syntheses continue to be inefficient, rely on a high number of reaction steps, and generate undesired, often toxic waste. These features led to the general need for greener transformations that will stimulate the development of more sustainable chemical industries.
Conventional approaches in synthetic organic chemistry make use of starting materials displaying specific functional groups, the installation of which results in costly reaction and purification steps. Therefore, an environmentally-sound and economically-attractive alternative is represented by the direct functionalization of ubiquitous carbon-hydrogen (C–H) bonds. These transition-metal-catalyzed processes avoid prefunctionalization strategies, prevent the formation of undesired waste, and thus enable an overall streamlining of organic synthesis.
While considerable recent progress has been accomplished in C–H bond functionalizations, available methodologies continue to be limited in scope, and key challenges are still to be overcome. Establishing a full set of sustainable C–H bond functionalization protocols will undeniably have a tremendous impact on various applied areas, such as drug discovery, chemical industries or material sciences.
Summary
The impressive progress in synthetic organic chemistry during the past century has propelled this discipline to its current central place as the key enabling technology in the physical and life sciences. Despite these remarkable advances, our ability to construct molecules of even moderate structural complexity remains unsatisfactory, since these syntheses continue to be inefficient, rely on a high number of reaction steps, and generate undesired, often toxic waste. These features led to the general need for greener transformations that will stimulate the development of more sustainable chemical industries.
Conventional approaches in synthetic organic chemistry make use of starting materials displaying specific functional groups, the installation of which results in costly reaction and purification steps. Therefore, an environmentally-sound and economically-attractive alternative is represented by the direct functionalization of ubiquitous carbon-hydrogen (C–H) bonds. These transition-metal-catalyzed processes avoid prefunctionalization strategies, prevent the formation of undesired waste, and thus enable an overall streamlining of organic synthesis.
While considerable recent progress has been accomplished in C–H bond functionalizations, available methodologies continue to be limited in scope, and key challenges are still to be overcome. Establishing a full set of sustainable C–H bond functionalization protocols will undeniably have a tremendous impact on various applied areas, such as drug discovery, chemical industries or material sciences.
Max ERC Funding
1 499 338 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym CCCAN
Project Characterizing and Controlling Carbon Nanomaterials
Researcher (PI) Janina Maultzsch
Host Institution (HI) TECHNISCHE UNIVERSITAT BERLIN
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary The aim of this project is to understand and control the fundamental physical properties of novel carbon nanomaterials:
carbon nanotubes and graphene. By a combination of complementary methods, i.e. vibrational spectroscopy, scanning probe microscopy, and theoretical modelling, a comprehensive understanding of the electronic, vibrational, optical properties, and their connection with the material’s structure will be obtained. A diagnostics “toolbox” will be established on the materials in
their most unperturbed, ideal states. Taking the results as reference, the materials will be studied under conditions relevant when incorporated into devices. These include imperfections of the materials and interaction with different environments, with other carbon nanotubes/graphene, and with extrinsic materials introduced during device processing. The gained insight and understanding on a fundamental level will also advance technological routes for scaling up carbon-nanomaterial electronic device fabrication, which is still lacking sufficient control over selectivity towards the desired physical properties. Control over the electronic and optical properties will be sought through deliberately induced interactions and chemical functionalization
of the materials. The project benefits from close collaborations between experimental and theoretical physics, chemistry, and materials science.
Summary
The aim of this project is to understand and control the fundamental physical properties of novel carbon nanomaterials:
carbon nanotubes and graphene. By a combination of complementary methods, i.e. vibrational spectroscopy, scanning probe microscopy, and theoretical modelling, a comprehensive understanding of the electronic, vibrational, optical properties, and their connection with the material’s structure will be obtained. A diagnostics “toolbox” will be established on the materials in
their most unperturbed, ideal states. Taking the results as reference, the materials will be studied under conditions relevant when incorporated into devices. These include imperfections of the materials and interaction with different environments, with other carbon nanotubes/graphene, and with extrinsic materials introduced during device processing. The gained insight and understanding on a fundamental level will also advance technological routes for scaling up carbon-nanomaterial electronic device fabrication, which is still lacking sufficient control over selectivity towards the desired physical properties. Control over the electronic and optical properties will be sought through deliberately induced interactions and chemical functionalization
of the materials. The project benefits from close collaborations between experimental and theoretical physics, chemistry, and materials science.
Max ERC Funding
1 468 960 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CCMP
Project Physics Of Magma Propagation and Emplacement: a multi-methodological Investigation
Researcher (PI) Eleonora Rivalta
Host Institution (HI) HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ
Call Details Starting Grant (StG), PE10, ERC-2009-StG
Summary Dikes and sills are large sheet-like intrusions transporting and storing magma in the Earth’s crust.
When propagating, they generate seismicity and deformation and may lead to volcanic eruption. The physics of magma-filled structures is similar to that of any fluid-filled reservoir, such as oil fields and CO2 reservoirs created by sequestration. This project aims to address old and new unresolved challenging questions related to dike propagation, sill emplacement and in general to the dynamics of fluid and gas-filled reservoirs. I propose to focus on crustal deformation, induced seismicity and external stress fields to study the signals dikes
and sills produce, how they grow and why they reactivate after years of non-detected activity. I will combine experimental, numerical and analytical techniques, in close cooperation with volcano observatories providing us with the data necessary to validate our models. In the lab, I will simulate magma propagation injecting fluid into solidified gelatin. I will also contribute to a project, currently under evaluation, on the monitoring of a CO2
sequestration site. At the same time, I will address theoretical aspects, extending static models to dynamic cases and eventually developing a comprehensive picture of the multi faceted interaction between external stress field,
magma and rock properties, crustal deformation and seismicity. I also plan, besides presenting my team’s work in the major national and international geophysical conferences, to produce, with technical support from the media services of DKRZ (Deutsches Klimarechenzentrum), an audiovisual teaching DVD illustrating scientific advances and unresolved issues in magma dynamics, in the prediction of eruptive activity and in the physics of reservoirs.
Summary
Dikes and sills are large sheet-like intrusions transporting and storing magma in the Earth’s crust.
When propagating, they generate seismicity and deformation and may lead to volcanic eruption. The physics of magma-filled structures is similar to that of any fluid-filled reservoir, such as oil fields and CO2 reservoirs created by sequestration. This project aims to address old and new unresolved challenging questions related to dike propagation, sill emplacement and in general to the dynamics of fluid and gas-filled reservoirs. I propose to focus on crustal deformation, induced seismicity and external stress fields to study the signals dikes
and sills produce, how they grow and why they reactivate after years of non-detected activity. I will combine experimental, numerical and analytical techniques, in close cooperation with volcano observatories providing us with the data necessary to validate our models. In the lab, I will simulate magma propagation injecting fluid into solidified gelatin. I will also contribute to a project, currently under evaluation, on the monitoring of a CO2
sequestration site. At the same time, I will address theoretical aspects, extending static models to dynamic cases and eventually developing a comprehensive picture of the multi faceted interaction between external stress field,
magma and rock properties, crustal deformation and seismicity. I also plan, besides presenting my team’s work in the major national and international geophysical conferences, to produce, with technical support from the media services of DKRZ (Deutsches Klimarechenzentrum), an audiovisual teaching DVD illustrating scientific advances and unresolved issues in magma dynamics, in the prediction of eruptive activity and in the physics of reservoirs.
Max ERC Funding
1 507 679 €
Duration
Start date: 2010-07-01, End date: 2015-06-30
Project acronym CellInspired
Project Mechanotransduction mediating cell adhesion - towards cell-inspired adaptive materials
Researcher (PI) Christine Johanna Maria Selhuber-Unkel
Host Institution (HI) CHRISTIAN-ALBRECHTS-UNIVERSITAET ZU KIEL
Call Details Starting Grant (StG), PE3, ERC-2013-StG
Summary Adhesion is a key event for eukaryotic cells to establish contact with the extracellular matrix and other cells. It allows cells to quickly adapt to mechanical changes in their environment by either adhesion reinforcement or release. Understanding and mimicking the interplay between adhesion reinforcement and release could result in novel cell-inspired adaptive materials. In order to ultimately be able to transfer functional principles of cell adhesion to a next generation of biomimetic materials, we will elucidate the biophysics of cell adhesion in response to external force. We have already obtained important results that have provided new insights into cell adhesion. For example, we have found that the nanoscale spacing of adhesion sites controls cell adhesion reinforcement. With the project proposed here I want to advance our understanding of cell adhesion by generating a comprehensive model of mechanotransduction-mediated cell adhesion. Therefore, my group will develop new force measurement methods based on atomic force microscopy and 2D force sensor arrays that allow for a systematic investigation of key parameters in the cell adhesion system, including the concept of cellular mechanosensing. My hypothesis is that there is a transition between adhesion reinforcement and release as a function of external mechanical stress, stress history, and the biofunctionalization of the adhesive surface. Transferring our biophysical knowledge into materials science promises new materials with a dynamic adaptive mechanical and adhesion response. This transfer of biological concepts into cell-inspired materials will follow the construction principles of cells: the proposed material will be based on polymer fibers that are reversibly cross-linked and reinforce adhesion upon mechanical stress. The ultimate goal of the proposed project is to develop an intelligent polymer material with an adaptive adhesive and mechanical response similar to that found in living cells.
Summary
Adhesion is a key event for eukaryotic cells to establish contact with the extracellular matrix and other cells. It allows cells to quickly adapt to mechanical changes in their environment by either adhesion reinforcement or release. Understanding and mimicking the interplay between adhesion reinforcement and release could result in novel cell-inspired adaptive materials. In order to ultimately be able to transfer functional principles of cell adhesion to a next generation of biomimetic materials, we will elucidate the biophysics of cell adhesion in response to external force. We have already obtained important results that have provided new insights into cell adhesion. For example, we have found that the nanoscale spacing of adhesion sites controls cell adhesion reinforcement. With the project proposed here I want to advance our understanding of cell adhesion by generating a comprehensive model of mechanotransduction-mediated cell adhesion. Therefore, my group will develop new force measurement methods based on atomic force microscopy and 2D force sensor arrays that allow for a systematic investigation of key parameters in the cell adhesion system, including the concept of cellular mechanosensing. My hypothesis is that there is a transition between adhesion reinforcement and release as a function of external mechanical stress, stress history, and the biofunctionalization of the adhesive surface. Transferring our biophysical knowledge into materials science promises new materials with a dynamic adaptive mechanical and adhesion response. This transfer of biological concepts into cell-inspired materials will follow the construction principles of cells: the proposed material will be based on polymer fibers that are reversibly cross-linked and reinforce adhesion upon mechanical stress. The ultimate goal of the proposed project is to develop an intelligent polymer material with an adaptive adhesive and mechanical response similar to that found in living cells.
Max ERC Funding
1 467 483 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym CESYDE
Project Ceramide Synthases in Diabetic Beta Cell Demise
Researcher (PI) Bengt-Frederik BELGARDT
Host Institution (HI) DEUTSCHE DIABETES FORSCHUNGSGESELLSCHAFT EV
Call Details Starting Grant (StG), LS4, ERC-2017-STG
Summary Sphingolipids including ceramides are building blocks of cell membranes, but also act as regulated intracellular messenger molecules. Emerging data indicate that sphingolipids are dynamically regulated by nutrients, and in turn control systemic metabolism, for example, by modulating insulin secretion, proliferation and cell death of pancreatic beta cells. Dysfunction and death of beta cells are key events during the development of diabetes, from which more than 400 million patients suffer worldwide. While pharmacological inhibition of general ceramide biosynthesis is protective against diabetes in animal studies, side effects of total loss of ceramides prevent medical implementation. The de novo synthesis of ceramides is fully dependent on six ceramide synthase enzymes (CerS 1-6), which are expressed in a tissue specific manner, and generate ceramides with different chain lengths. Currently, the functional roles and regulatory modulators of each CerS are unknown in pancreatic beta cells. Importantly, the downstream mechanisms by which ceramides impair beta cell function and eventually cause diabetes are not defined. Here, I propose to combine genomics, proteomics and lipidomics to assess the function of ceramide synthases expressed in mouse and human beta cells. Furthermore, both the subcellular localisation and the post-translational modifications of CerS will be determined. The ceramide-interacting proteins mediating the deleterious effects of ceramides will be identified by lipid-protein crosslinking and functionally tested. Finally, in a translational approach, we will test the ability of recently generated novel specific CerS inhibitors with improved specificity to ameliorate beta cell stress, and improve insulin secretion in mouse and human beta cells. In sum, we will identify, characterize, validate and target ceramide synthases involved in beta cell biology and development of diabetes.
Summary
Sphingolipids including ceramides are building blocks of cell membranes, but also act as regulated intracellular messenger molecules. Emerging data indicate that sphingolipids are dynamically regulated by nutrients, and in turn control systemic metabolism, for example, by modulating insulin secretion, proliferation and cell death of pancreatic beta cells. Dysfunction and death of beta cells are key events during the development of diabetes, from which more than 400 million patients suffer worldwide. While pharmacological inhibition of general ceramide biosynthesis is protective against diabetes in animal studies, side effects of total loss of ceramides prevent medical implementation. The de novo synthesis of ceramides is fully dependent on six ceramide synthase enzymes (CerS 1-6), which are expressed in a tissue specific manner, and generate ceramides with different chain lengths. Currently, the functional roles and regulatory modulators of each CerS are unknown in pancreatic beta cells. Importantly, the downstream mechanisms by which ceramides impair beta cell function and eventually cause diabetes are not defined. Here, I propose to combine genomics, proteomics and lipidomics to assess the function of ceramide synthases expressed in mouse and human beta cells. Furthermore, both the subcellular localisation and the post-translational modifications of CerS will be determined. The ceramide-interacting proteins mediating the deleterious effects of ceramides will be identified by lipid-protein crosslinking and functionally tested. Finally, in a translational approach, we will test the ability of recently generated novel specific CerS inhibitors with improved specificity to ameliorate beta cell stress, and improve insulin secretion in mouse and human beta cells. In sum, we will identify, characterize, validate and target ceramide synthases involved in beta cell biology and development of diabetes.
Max ERC Funding
1 492 314 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CGinsideNP
Project Complexity Inside NP - A Computational Geometry Perspective
Researcher (PI) Wolfgang MULZER
Host Institution (HI) FREIE UNIVERSITAET BERLIN
Call Details Starting Grant (StG), PE6, ERC-2017-STG
Summary Traditional complexity theory focuses on the dichotomy between P and NP-hard
problems. Lately, it has become increasingly clear that this misses a major part
of the picture. Results by the PI and others offer glimpses on a fascinating structure
hiding inside NP: new computational problems that seem to lie between polynomial
and NP-hard have been identified; new conditional lower bounds for problems with
large polynomial running times have been found; long-held beliefs on the difficulty
of problems in P have been overturned. Computational geometry plays a major role
in these developments, providing some of the main questions and concepts.
We propose to explore this fascinating landscape inside NP from the perspective
of computational geometry, guided by three complementary questions:
(A) What can we say about the complexity of search problems derived from
existence theorems in discrete geometry? These problems offer a new
perspective on complexity classes previously studied in algorithmic game
theory (PPAD, PLS, CLS). Preliminary work indicates that they have the
potential to answer long-standing open questions on these classes.
(B) Can we provide meaningful conditional lower bounds on geometric
problems for which we have only algorithms with large polynomial running
time? Prompted by a question raised by the PI and collaborators, such lower
bounds were developed for the Frechet distance. Are similar results possible
for problems not related to distance measures? If so, this could dramatically
extend the traditional theory based on 3SUM-hardness to a much more
diverse and nuanced picture.
(C) Can we find subquadratic decision trees and faster algorithms for
3SUM-hard problems? After recent results by Pettie and Gronlund on
3SUM and by the PI and collaborators on the Frechet distance, we
have the potential to gain new insights on this large class of well-studied
problems and to improve long-standing complexity bounds for them.
Summary
Traditional complexity theory focuses on the dichotomy between P and NP-hard
problems. Lately, it has become increasingly clear that this misses a major part
of the picture. Results by the PI and others offer glimpses on a fascinating structure
hiding inside NP: new computational problems that seem to lie between polynomial
and NP-hard have been identified; new conditional lower bounds for problems with
large polynomial running times have been found; long-held beliefs on the difficulty
of problems in P have been overturned. Computational geometry plays a major role
in these developments, providing some of the main questions and concepts.
We propose to explore this fascinating landscape inside NP from the perspective
of computational geometry, guided by three complementary questions:
(A) What can we say about the complexity of search problems derived from
existence theorems in discrete geometry? These problems offer a new
perspective on complexity classes previously studied in algorithmic game
theory (PPAD, PLS, CLS). Preliminary work indicates that they have the
potential to answer long-standing open questions on these classes.
(B) Can we provide meaningful conditional lower bounds on geometric
problems for which we have only algorithms with large polynomial running
time? Prompted by a question raised by the PI and collaborators, such lower
bounds were developed for the Frechet distance. Are similar results possible
for problems not related to distance measures? If so, this could dramatically
extend the traditional theory based on 3SUM-hardness to a much more
diverse and nuanced picture.
(C) Can we find subquadratic decision trees and faster algorithms for
3SUM-hard problems? After recent results by Pettie and Gronlund on
3SUM and by the PI and collaborators on the Frechet distance, we
have the potential to gain new insights on this large class of well-studied
problems and to improve long-standing complexity bounds for them.
Max ERC Funding
1 486 800 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym CHD-IPS
Project Modeling congenital heart disease (CHD) in ISL1+ cardiovascular progenitors from patient-specific iPS cells
Researcher (PI) Karl-Ludwig Laugwitz
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary Tetralogy of Fallot (TOF) is the most common congenital heart disease (CHD) occurring 1 in 3000 births. Genetic studies have identified numerous genes that are responsible for inherited and sporadic forms of TOF, most of which encode key molecules that are part of regulatory networks controlling heart development. The identification of two populations of cardiac precursors, one exclusively forming the left ventricle and the second the outflow tract, the right ventricle and the atria, has suggested a new approach to interpret CHDs, in particular in TOF, not as a defect in a specific gene, but rather as a defect in the formation, expansion, and differentiation of defined subsets of embryonic cardiac precursors. The LIM-homeodomain transcription factor ISL1 marks the second population of cardiac progenitors, but little is known about its downstream targets, and how causative genes of CHDs affect cell-fate decisions in the ISL1 lineage. The main goals of this research program are: (1) to decipher the functional role of Isl1 downstream targets identified by a genome-wide ChIP-Seq approach; (2) to generate induced pluripotent stem (iPS) cells from controls and patients affected by severe forms of TOF characterized by defects in heart compartments known to derive from ISL1 cardiac progenitors; (3) to direct these iPS cells to ISL1+ cardiovascular precursors and identify cell-surface makers enabling their antibody-based purification; and (4) to use TOF-iPS-derived ISL1+ progenitors as an unique in vitro model system for deciphering molecular mechanisms that govern the fates and differentiation of this progenitor lineage and determine the pathological phenotype seen in TOF. This work will shed light on the molecular mechanisms of ISL1+ cardiac progenitor lineage specification and will give important new insights into the mechanisms of how alterations in transcriptional and epigenetic programs translate to a distinct structural defect during cardiogenesis.
Summary
Tetralogy of Fallot (TOF) is the most common congenital heart disease (CHD) occurring 1 in 3000 births. Genetic studies have identified numerous genes that are responsible for inherited and sporadic forms of TOF, most of which encode key molecules that are part of regulatory networks controlling heart development. The identification of two populations of cardiac precursors, one exclusively forming the left ventricle and the second the outflow tract, the right ventricle and the atria, has suggested a new approach to interpret CHDs, in particular in TOF, not as a defect in a specific gene, but rather as a defect in the formation, expansion, and differentiation of defined subsets of embryonic cardiac precursors. The LIM-homeodomain transcription factor ISL1 marks the second population of cardiac progenitors, but little is known about its downstream targets, and how causative genes of CHDs affect cell-fate decisions in the ISL1 lineage. The main goals of this research program are: (1) to decipher the functional role of Isl1 downstream targets identified by a genome-wide ChIP-Seq approach; (2) to generate induced pluripotent stem (iPS) cells from controls and patients affected by severe forms of TOF characterized by defects in heart compartments known to derive from ISL1 cardiac progenitors; (3) to direct these iPS cells to ISL1+ cardiovascular precursors and identify cell-surface makers enabling their antibody-based purification; and (4) to use TOF-iPS-derived ISL1+ progenitors as an unique in vitro model system for deciphering molecular mechanisms that govern the fates and differentiation of this progenitor lineage and determine the pathological phenotype seen in TOF. This work will shed light on the molecular mechanisms of ISL1+ cardiac progenitor lineage specification and will give important new insights into the mechanisms of how alterations in transcriptional and epigenetic programs translate to a distinct structural defect during cardiogenesis.
Max ERC Funding
1 499 996 €
Duration
Start date: 2011-03-01, End date: 2017-02-28
Project acronym CHEMBIOLPBINT
Project Chemical biology of natural products in plant-bacteria interactions
Researcher (PI) Markus Kaiser
Host Institution (HI) UNIVERSITAET DUISBURG-ESSEN
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary This project deals with the elucidation of the biological role of natural products in plant-bacteria interactions. Plant-associated bacteria synthesize a vast number of biologically active natural products that modulate the physiology and functioning of their host plants. For example, plant pathogens often cause devastating crop losses by secreting low molecular weight
phytotoxins, while some symbiotic bacteria biosynthesize plant-protecting compounds that assist in lowering biotic and abiotic plant stresses. It is therefore surprising that although natural products seem to play key roles in the complex interaction network between bacteria and plants, most of their biological functions and molecular targets are still unknown.
To date, almost all studies on plant-bacteria interactions have been performed with biological approaches. Here, we propose to investigate the biological role of plant-associated natural products with the aid of a chemistry-driven approach, relying on the power of chemical synthesis to i) generate these natural products and/or suitable natural product derivatives, ii) to elucidate their targets in plants, and iii) to apply them in plant-bacteria studies. Although natural products have long been in the focus of chemical research, such a systematic chemistry-driven approach has, to our knowledge, never been performed before in plant-bacteria interactions. Our project will therefore not only serve to i) decipher basic research questions and ii) identify potential lead structures for agricultural and medicinal applications, but will also contribute to iii) the refinement of chemical syntheses strategies, iv) the advancement of target finding approaches and v) the establishment of chemical biology approaches in plant biology.
Summary
This project deals with the elucidation of the biological role of natural products in plant-bacteria interactions. Plant-associated bacteria synthesize a vast number of biologically active natural products that modulate the physiology and functioning of their host plants. For example, plant pathogens often cause devastating crop losses by secreting low molecular weight
phytotoxins, while some symbiotic bacteria biosynthesize plant-protecting compounds that assist in lowering biotic and abiotic plant stresses. It is therefore surprising that although natural products seem to play key roles in the complex interaction network between bacteria and plants, most of their biological functions and molecular targets are still unknown.
To date, almost all studies on plant-bacteria interactions have been performed with biological approaches. Here, we propose to investigate the biological role of plant-associated natural products with the aid of a chemistry-driven approach, relying on the power of chemical synthesis to i) generate these natural products and/or suitable natural product derivatives, ii) to elucidate their targets in plants, and iii) to apply them in plant-bacteria studies. Although natural products have long been in the focus of chemical research, such a systematic chemistry-driven approach has, to our knowledge, never been performed before in plant-bacteria interactions. Our project will therefore not only serve to i) decipher basic research questions and ii) identify potential lead structures for agricultural and medicinal applications, but will also contribute to iii) the refinement of chemical syntheses strategies, iv) the advancement of target finding approaches and v) the establishment of chemical biology approaches in plant biology.
Max ERC Funding
1 490 900 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym CHEMO-RISK
Project Chemometers for in situ risk assessment of mixtures of pollutants
Researcher (PI) Annika Jahnke Berger
Host Institution (HI) HELMHOLTZ-ZENTRUM FUR UMWELTFORSCHUNG GMBH - UFZ
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary CHEMO-RISK aims for a novel scientifically sound chemical risk assessment paradigm that integrates exposure and effect assessment of a broad range of chemicals into a single procedure and provides information relevant to ecosystem and human health. The key innovation is polymer “chemometers” that will be equilibrated with their surroundings and deliver information on the pollutant’s chemical activity in the environment, biota, and humans. A chemometer functions analogously to a thermometer, but instead of the temperature, it yields a measure of chemical activity. Chemical activity in turn indicates the thermodynamic potential for, e.g., partitioning, biouptake and toxicity. CHEMO-RISK aims at breaking the current paradigm in environmental risk assessment of single chemicals that disregards bioavailability, ignores mixture effects, lacks site-specificity and is difficult to extrapolate to human health.
The chemometer extracts will be investigated using top-notch (a) GC and LC/Orbitrap chemical analysis to characterise the pollutant mixtures and (b) cell-based reporter gene bioassays to determine mixture effects covering baseline toxicity, specific (e.g., endocrine disruption) and reactive (e.g., genotoxicity) modes of toxic action and adaptive stress responses. Within CHEMO-RISK, the following important research questions will be tackled: (A) Which processes drive the enrichment of pollutants in aquatic biota on a thermodynamic basis? (B) How do pollutants distribute within an organism, and which effects do they elicit at the key target sites? (C) Can we apply everyday-life items such as eyeglass-nose pads to replace invasive sampling in human health risk assessment? (D) To which degree can non-target analysis of chemometer extracts explain the observed toxicity profiles across media? By combining all these research efforts, CHEMO-RISK will provide a unified risk assessment paradigm with risk-based trigger values distinguishing acceptable from unacceptable effects.
Summary
CHEMO-RISK aims for a novel scientifically sound chemical risk assessment paradigm that integrates exposure and effect assessment of a broad range of chemicals into a single procedure and provides information relevant to ecosystem and human health. The key innovation is polymer “chemometers” that will be equilibrated with their surroundings and deliver information on the pollutant’s chemical activity in the environment, biota, and humans. A chemometer functions analogously to a thermometer, but instead of the temperature, it yields a measure of chemical activity. Chemical activity in turn indicates the thermodynamic potential for, e.g., partitioning, biouptake and toxicity. CHEMO-RISK aims at breaking the current paradigm in environmental risk assessment of single chemicals that disregards bioavailability, ignores mixture effects, lacks site-specificity and is difficult to extrapolate to human health.
The chemometer extracts will be investigated using top-notch (a) GC and LC/Orbitrap chemical analysis to characterise the pollutant mixtures and (b) cell-based reporter gene bioassays to determine mixture effects covering baseline toxicity, specific (e.g., endocrine disruption) and reactive (e.g., genotoxicity) modes of toxic action and adaptive stress responses. Within CHEMO-RISK, the following important research questions will be tackled: (A) Which processes drive the enrichment of pollutants in aquatic biota on a thermodynamic basis? (B) How do pollutants distribute within an organism, and which effects do they elicit at the key target sites? (C) Can we apply everyday-life items such as eyeglass-nose pads to replace invasive sampling in human health risk assessment? (D) To which degree can non-target analysis of chemometer extracts explain the observed toxicity profiles across media? By combining all these research efforts, CHEMO-RISK will provide a unified risk assessment paradigm with risk-based trigger values distinguishing acceptable from unacceptable effects.
Max ERC Funding
1 496 030 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym CHILDMOVE
Project The impact of flight experiences on the psychological wellbeing of unaccompanied refugee minors
Researcher (PI) Ilse DERLUYN
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), SH3, ERC-2016-STG
Summary Since early 2015, the media continuously confront us with images of refugee children drowning in the Mediterranean, surviving in appalling conditions in camps or walking across Europe. Within this group of fleeing children, a considerable number is travelling without parents, the unaccompanied refugee minors.
While the media images testify to these flight experiences and their possible huge impact on unaccompanied minors’ wellbeing, there has been no systematic research to fully capture these experiences, nor their mental health impact. Equally, no evidence exists on whether the emotional impact of these flight experiences should be differentiated from the impact of the traumatic events these minors endured in their home country or from the daily stressors in the country of settlement.
This project aims to fundamentally increase our knowledge of the impact of experiences during the flight in relation to past trauma and current stressors. To achieve this aim, it is essential to set up a longitudinal follow-up of a large group of unaccompanied refugee minors, whereby our study starts from different transit countries, crosses several European countries, and uses innovative methodological and mixed-methods approaches. I will hereby not only document the psychological impact these flight experiences may have, but also the way in which care and reception structures for unaccompanied minors in both transit and settlement countries can contribute to reducing this mental health impact.
This proposal will fundamentally change the field of migration studies, by introducing a whole new area of study and novel methodological approaches to study these themes. Moreover, other fields, such as trauma studies, will be directly informed by the project, as also clinical, educational and social work interventions for victims of multiple trauma. Last, the findings on the impact of reception and care structures will be highly informative for policy makers and practitioners.
Summary
Since early 2015, the media continuously confront us with images of refugee children drowning in the Mediterranean, surviving in appalling conditions in camps or walking across Europe. Within this group of fleeing children, a considerable number is travelling without parents, the unaccompanied refugee minors.
While the media images testify to these flight experiences and their possible huge impact on unaccompanied minors’ wellbeing, there has been no systematic research to fully capture these experiences, nor their mental health impact. Equally, no evidence exists on whether the emotional impact of these flight experiences should be differentiated from the impact of the traumatic events these minors endured in their home country or from the daily stressors in the country of settlement.
This project aims to fundamentally increase our knowledge of the impact of experiences during the flight in relation to past trauma and current stressors. To achieve this aim, it is essential to set up a longitudinal follow-up of a large group of unaccompanied refugee minors, whereby our study starts from different transit countries, crosses several European countries, and uses innovative methodological and mixed-methods approaches. I will hereby not only document the psychological impact these flight experiences may have, but also the way in which care and reception structures for unaccompanied minors in both transit and settlement countries can contribute to reducing this mental health impact.
This proposal will fundamentally change the field of migration studies, by introducing a whole new area of study and novel methodological approaches to study these themes. Moreover, other fields, such as trauma studies, will be directly informed by the project, as also clinical, educational and social work interventions for victims of multiple trauma. Last, the findings on the impact of reception and care structures will be highly informative for policy makers and practitioners.
Max ERC Funding
1 432 500 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym CHINA
Project Trade, Productivity, and Firm Capabilities in China's Manufacturing Sector
Researcher (PI) Johannes Van Biesebroeck
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), SH1, ERC-2009-StG
Summary China s economy has expanded at breakneck speed to become the 3rd largest trading country in the world and the largest recipient of foreign direct investment (FDI). Entry into the WTO in 2001 was a landmark event in this ongoing process and I propose to study several channels through which it spurred China s industrial development. Crucially, I will take an integrated view of the different ways in which Chinese and Western firms interact: through trade flows, as suppliers or competitors, FDI, or knowledge transfers. First, I investigate the existence and magnitude of a causal link from the trade reforms to productivity growth. Second, I look for evidence of capability upgrading, such as increased production efficiency, an ability to produce higher quality products, or introduce new products by innovating. Third, I study the mechanisms for the impact of trade and FDI on local firms, in particular assessing the relative importance of increased market competition and the transfer of know-how from foreign firms. For this analysis, I draw heavily on a unique data set. Information on the universe of Chinese manufacturing firms is being linked to the universe of Chinese trade transactions. These are unique research tools on their own, but as a linked data set, the only comparable one in the world is for the U.S. economy. The Chinese data has the advantage to contain detailed information on FDI, distinguishes between ordinary and processing trade, and contains information on innovation, such as R&D and sales of new goods. Answering the above questions is important for other developing countries wanting to learn from China s experience and for Western firms assessing how quickly Chinese firms will become viable suppliers of sophisticated inputs or direct competitors. By estimating models that are explicitly derived from new theories, I advance the literature at the interaction of international and development economics, industrial organization, economic geography.
Summary
China s economy has expanded at breakneck speed to become the 3rd largest trading country in the world and the largest recipient of foreign direct investment (FDI). Entry into the WTO in 2001 was a landmark event in this ongoing process and I propose to study several channels through which it spurred China s industrial development. Crucially, I will take an integrated view of the different ways in which Chinese and Western firms interact: through trade flows, as suppliers or competitors, FDI, or knowledge transfers. First, I investigate the existence and magnitude of a causal link from the trade reforms to productivity growth. Second, I look for evidence of capability upgrading, such as increased production efficiency, an ability to produce higher quality products, or introduce new products by innovating. Third, I study the mechanisms for the impact of trade and FDI on local firms, in particular assessing the relative importance of increased market competition and the transfer of know-how from foreign firms. For this analysis, I draw heavily on a unique data set. Information on the universe of Chinese manufacturing firms is being linked to the universe of Chinese trade transactions. These are unique research tools on their own, but as a linked data set, the only comparable one in the world is for the U.S. economy. The Chinese data has the advantage to contain detailed information on FDI, distinguishes between ordinary and processing trade, and contains information on innovation, such as R&D and sales of new goods. Answering the above questions is important for other developing countries wanting to learn from China s experience and for Western firms assessing how quickly Chinese firms will become viable suppliers of sophisticated inputs or direct competitors. By estimating models that are explicitly derived from new theories, I advance the literature at the interaction of international and development economics, industrial organization, economic geography.
Max ERC Funding
944 940 €
Duration
Start date: 2010-02-01, End date: 2016-01-31
Project acronym CHIRALMICROBOTS
Project Chiral Nanostructured Surfaces and Colloidal Microbots
Researcher (PI) Peer Fischer
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary "From scientific publications to the popular media, there have been numerous speculations about wirelessly controlled microrobots (microbots) navigating the human body. Microbots have the potential to revolutionize analytics, targeted drug delivery, and microsurgery, but until now there has not been any untethered microscopic system that could be properly moved let alone controlled in fluidic environments. Using glancing angle (physical vapor deposition) we will grow billions of micron-sized colloidal screw-propellers on a wafer. These chiral mesoscopic screws can be magnetized and moved through solution under computer control. The screw-propellers resemble artificial flagella and are the only ‘microbots’ to date that can be fully controlled in solution at micron length scales. The proposed work will advance the fabrication so that active microbots can be applied in rheological measurements and analytics. We will use these novel probes in bio-microrheology with the potential to probe the viscoelastic properties of membranes and tissues, and to explore questions of micro-hydrodynamics. At the same time we will develop these structures as ""colloidal molecules"" and grow asymmetric mesoscopic particles with tailored shapes and properties. We propose experiments that allow the observation of fundamental effects, such as chiral Brownian motion, something that exist at the molecular scale, but has never been observed to date. Similarly, we will be able to demonstrate for the first time chiral separations based purely on physical fields. The proposed technical advances of the growth of nanostructured surfaces will at the same time permit wafer-scale 3-D nano-structuring for photonic and plasmonic applications, which we plan to demonstrate. We will develop a system for targeted drug delivery, study the interaction of swarms of microbots and devise techniques to control and image these swarms."
Summary
"From scientific publications to the popular media, there have been numerous speculations about wirelessly controlled microrobots (microbots) navigating the human body. Microbots have the potential to revolutionize analytics, targeted drug delivery, and microsurgery, but until now there has not been any untethered microscopic system that could be properly moved let alone controlled in fluidic environments. Using glancing angle (physical vapor deposition) we will grow billions of micron-sized colloidal screw-propellers on a wafer. These chiral mesoscopic screws can be magnetized and moved through solution under computer control. The screw-propellers resemble artificial flagella and are the only ‘microbots’ to date that can be fully controlled in solution at micron length scales. The proposed work will advance the fabrication so that active microbots can be applied in rheological measurements and analytics. We will use these novel probes in bio-microrheology with the potential to probe the viscoelastic properties of membranes and tissues, and to explore questions of micro-hydrodynamics. At the same time we will develop these structures as ""colloidal molecules"" and grow asymmetric mesoscopic particles with tailored shapes and properties. We propose experiments that allow the observation of fundamental effects, such as chiral Brownian motion, something that exist at the molecular scale, but has never been observed to date. Similarly, we will be able to demonstrate for the first time chiral separations based purely on physical fields. The proposed technical advances of the growth of nanostructured surfaces will at the same time permit wafer-scale 3-D nano-structuring for photonic and plasmonic applications, which we plan to demonstrate. We will develop a system for targeted drug delivery, study the interaction of swarms of microbots and devise techniques to control and image these swarms."
Max ERC Funding
1 479 760 €
Duration
Start date: 2012-02-01, End date: 2018-01-31
Project acronym CHMIFLUORS
Project Carbohydrate Mimesis using Fluorinated Sugars for Chemical Biology: From Reaction Design to Applications in Molecular Imaging
Researcher (PI) Ryan Gilmour
Host Institution (HI) WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary The principle objective of this proposal is to validate fluorinated glyco-structures as effective carbohydrate mimics for the next frontier in pharmaceutical research. Herein we propose to capitalise on the major advances in statistical data analysis which are unravelling the complexity of mammalian and bacterial “glycospace”. Molecular mimicry is a powerful drug design approach. It is therefore envisaged to develop a focussed programme of research to validate fluorinated glycostructures, and in particular 2-fluoro sugars, as carbohydrate mimics for chemical biology, exploiting the ubiquitous role of carbohydrates in molecular recognition. Salient features of the 2-fluoro substituent include (i) enhanced hydrolytic stability to enzymatic degradation, (ii) the presence of a NMR active reporter nucleus (19F) for facile analysis, and (iii) the possibility for molecular imaging application when using 18F labelled glycostructures. Phase one of this project will aim to develop synthetic routes to the target fluoro-glycostructures. This will involve a substantial component of physical organic chemistry including conformational analysis, advanced 19F NMR spectroscopy and the possible isolation of oxo-carbenium analogues by exploiting advances in the development of large, weakly co-ordinating anions. From first principle reaction design and development, through a basic understanding of conformation and reactivity, phase 2 will focus on the application of these materials for chemical biology applications. Phase 2 will then heavily focus on the application of complex oligosaccharides containing the PET active 18F moiety. It is envisaged that by exploiting the ubiquitous role of carbohydrates in molecular recognition that this would conceivably lead to the development of selective imaging agents, thus bypassing the current problem of relying on the metabolically controlled distribution of the commonly used PET tracer 2-fluorodeoxy glucose (18F-FDG).
Summary
The principle objective of this proposal is to validate fluorinated glyco-structures as effective carbohydrate mimics for the next frontier in pharmaceutical research. Herein we propose to capitalise on the major advances in statistical data analysis which are unravelling the complexity of mammalian and bacterial “glycospace”. Molecular mimicry is a powerful drug design approach. It is therefore envisaged to develop a focussed programme of research to validate fluorinated glycostructures, and in particular 2-fluoro sugars, as carbohydrate mimics for chemical biology, exploiting the ubiquitous role of carbohydrates in molecular recognition. Salient features of the 2-fluoro substituent include (i) enhanced hydrolytic stability to enzymatic degradation, (ii) the presence of a NMR active reporter nucleus (19F) for facile analysis, and (iii) the possibility for molecular imaging application when using 18F labelled glycostructures. Phase one of this project will aim to develop synthetic routes to the target fluoro-glycostructures. This will involve a substantial component of physical organic chemistry including conformational analysis, advanced 19F NMR spectroscopy and the possible isolation of oxo-carbenium analogues by exploiting advances in the development of large, weakly co-ordinating anions. From first principle reaction design and development, through a basic understanding of conformation and reactivity, phase 2 will focus on the application of these materials for chemical biology applications. Phase 2 will then heavily focus on the application of complex oligosaccharides containing the PET active 18F moiety. It is envisaged that by exploiting the ubiquitous role of carbohydrates in molecular recognition that this would conceivably lead to the development of selective imaging agents, thus bypassing the current problem of relying on the metabolically controlled distribution of the commonly used PET tracer 2-fluorodeoxy glucose (18F-FDG).
Max ERC Funding
1 253 880 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym ChromArch
Project Single Molecule Mechanisms of Spatio-Temporal Chromatin Architecture
Researcher (PI) Johann Christof Manuel Gebhardt
Host Institution (HI) UNIVERSITAET ULM
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary Chromatin packaging into the nucleus of eukaryotic cells is highly sophisticated. It not only serves to condense the genomic content into restricted space, but mainly to encode epigenetic traits ensuring temporally controlled and balanced transcription of genes and coordinated DNA replication and repair. The non-random three-dimensional chromatin architecture including looped structures between genomic control elements relies on the action of architectural proteins. However, despite increasing interest in spatio-temporal chromatin organization, mechanistic details of their contributions are not well understood.
With this proposal I aim at unveiling molecular mechanisms of protein–mediated chromatin organization by in vivo single molecule tracking and quantitative super-resolution imaging of architectural proteins using reflected light sheet microscopy (RLSM). I will measure the interaction dynamics, the spatial distribution and the stoichiometry of architectural proteins throughout the nucleus and at specific chromatin loci within single cells. In complement single molecule force spectroscopy experiments using magnetic tweezers (MT), I will study mechanisms of DNA loop formation in vitro by structure-mediating proteins.
Integrating these spatio-temporal and mechanical single molecule information, I will in the third sup-project measure the dynamics of relative end-to-end movements and the forces acting within a looped chromatin structure in living cells.
Taken together, my experiments will greatly enhance our mechanistic understanding of three-dimensional chromatin architecture and inspire future experiments on its regulatory effects on nuclear functions and potential therapeutic utility upon controlled modification.
Summary
Chromatin packaging into the nucleus of eukaryotic cells is highly sophisticated. It not only serves to condense the genomic content into restricted space, but mainly to encode epigenetic traits ensuring temporally controlled and balanced transcription of genes and coordinated DNA replication and repair. The non-random three-dimensional chromatin architecture including looped structures between genomic control elements relies on the action of architectural proteins. However, despite increasing interest in spatio-temporal chromatin organization, mechanistic details of their contributions are not well understood.
With this proposal I aim at unveiling molecular mechanisms of protein–mediated chromatin organization by in vivo single molecule tracking and quantitative super-resolution imaging of architectural proteins using reflected light sheet microscopy (RLSM). I will measure the interaction dynamics, the spatial distribution and the stoichiometry of architectural proteins throughout the nucleus and at specific chromatin loci within single cells. In complement single molecule force spectroscopy experiments using magnetic tweezers (MT), I will study mechanisms of DNA loop formation in vitro by structure-mediating proteins.
Integrating these spatio-temporal and mechanical single molecule information, I will in the third sup-project measure the dynamics of relative end-to-end movements and the forces acting within a looped chromatin structure in living cells.
Taken together, my experiments will greatly enhance our mechanistic understanding of three-dimensional chromatin architecture and inspire future experiments on its regulatory effects on nuclear functions and potential therapeutic utility upon controlled modification.
Max ERC Funding
1 486 578 €
Duration
Start date: 2015-05-01, End date: 2021-04-30
Project acronym CHROMATADS
Project Chromatin Packing and Architectural Proteins in Plants
Researcher (PI) Chang LIU
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Starting Grant (StG), LS2, ERC-2017-STG
Summary The three-dimensional organization of the genome, which strikingly correlates with gene activity, is critical for many cellular processes. The evolution of molecular techniques has allowed us to unveil chromatin structure at an unprecedented resolution. The most intriguing chromatin structures observed in animals are TADs (Topologically Associating Domains), which represent the functional and structural chromatin domains demarcating the genome. Structural proteins such as insulators proteins, on the other hand, have been shown to play crucial roles in mediating the formation of TADs. However, major structural factors relevant to chromatin structure are still waiting to be discovered in land plants. My preliminary work shows that TADs are widely distributed across the rice genome, and motif sequence analysis suggests the enrichment of plant-specific transcription factors at TAD boundaries, which jointly give rise to an exciting hypothesis that these proteins might be the long-sought-after insulators in land plants. By using various state-of-the-art molecular and computational tools, this timely project aims to fill a huge gap in plant functional genomics and substantially advance our understanding of three-dimensional chromatin structure. This project consists four major aims, which collectively will uncover the identities of plant insulator proteins and generate insights into the dynamics of structural chromatin domains during stress adaptation. Aim 1 will identify and characterize the stability and plasticity of functional chromatin domains in the rice genome during temperature stress adaptation. Aim 2 will identify insulator elements and other structural features of chromatin packing in the Marchantia polymorpha genome from a structural genomics approach. Aim 3 will establish the role of candidate proteins as plant insulators. Lastly, Aim 4 will generate functional insights into the molecular mechanism by which plant insulators shape the three-dimensional genome.
Summary
The three-dimensional organization of the genome, which strikingly correlates with gene activity, is critical for many cellular processes. The evolution of molecular techniques has allowed us to unveil chromatin structure at an unprecedented resolution. The most intriguing chromatin structures observed in animals are TADs (Topologically Associating Domains), which represent the functional and structural chromatin domains demarcating the genome. Structural proteins such as insulators proteins, on the other hand, have been shown to play crucial roles in mediating the formation of TADs. However, major structural factors relevant to chromatin structure are still waiting to be discovered in land plants. My preliminary work shows that TADs are widely distributed across the rice genome, and motif sequence analysis suggests the enrichment of plant-specific transcription factors at TAD boundaries, which jointly give rise to an exciting hypothesis that these proteins might be the long-sought-after insulators in land plants. By using various state-of-the-art molecular and computational tools, this timely project aims to fill a huge gap in plant functional genomics and substantially advance our understanding of three-dimensional chromatin structure. This project consists four major aims, which collectively will uncover the identities of plant insulator proteins and generate insights into the dynamics of structural chromatin domains during stress adaptation. Aim 1 will identify and characterize the stability and plasticity of functional chromatin domains in the rice genome during temperature stress adaptation. Aim 2 will identify insulator elements and other structural features of chromatin packing in the Marchantia polymorpha genome from a structural genomics approach. Aim 3 will establish the role of candidate proteins as plant insulators. Lastly, Aim 4 will generate functional insights into the molecular mechanism by which plant insulators shape the three-dimensional genome.
Max ERC Funding
1 498 216 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CHROMDECON
Project analysis of postmitotic chromatin decondensation
Researcher (PI) Wolfram Antonin
Host Institution (HI) UNIVERSITAETSKLINIKUM AACHEN
Call Details Starting Grant (StG), LS1, ERC-2012-StG_20111109
Summary Chromatin undergoes fascinating structural and functional changes during the metazoan cell cycle. It massively condenses at the beginning of mitosis with a degree of compaction up to fiftyfold higher than in interphase. At the end of mitosis, mitotic chromosomes decondense to re-establish their interphase chromatin structure. This process is indispensable for reinitiating transcription and treplication, and is thus of central importance in the cellular life cycle. Despite its significance to basic research as well as its potential medical implications, postmitotic chromatin decondensation is only poorly understood. It has been well described cytologically, but we lack an understanding of the underlying molecular events. We are ignorant about the proteins that mediate chromatin decondensation, the distinct steps in this multi-step procedure and their regulation.
Using a novel in vitro assay, which recapitulates the process in the simplicity of a cell free reaction, we will identify the molecular machinery mediating postmitotic chromatin decondensation and define the different steps of the process. The cell free assay offers the unique possibility to isolate and purify activities responsible for individual steps in chromatin decondensation, to identify their molecular composition and to analyse the molecular changes they induce on chromatin. Accompanied by live cell imaging in mammalian tissue culture cells, the proposed approach will not only facilitate the elucidation of the factors involved in chromatin decondensation, but will also provide insight into how this process is integrated into mitotic exit and nuclear reformation and linked to other concomitant processes such as nuclear envelope assembly or nuclear body formation.
Thus, using an unprecedented approach to study the ill-defined but important cell biological process of postmitotic chromatin decondensation, we aim to expand the frontiers in our knowledge on this topic.
Summary
Chromatin undergoes fascinating structural and functional changes during the metazoan cell cycle. It massively condenses at the beginning of mitosis with a degree of compaction up to fiftyfold higher than in interphase. At the end of mitosis, mitotic chromosomes decondense to re-establish their interphase chromatin structure. This process is indispensable for reinitiating transcription and treplication, and is thus of central importance in the cellular life cycle. Despite its significance to basic research as well as its potential medical implications, postmitotic chromatin decondensation is only poorly understood. It has been well described cytologically, but we lack an understanding of the underlying molecular events. We are ignorant about the proteins that mediate chromatin decondensation, the distinct steps in this multi-step procedure and their regulation.
Using a novel in vitro assay, which recapitulates the process in the simplicity of a cell free reaction, we will identify the molecular machinery mediating postmitotic chromatin decondensation and define the different steps of the process. The cell free assay offers the unique possibility to isolate and purify activities responsible for individual steps in chromatin decondensation, to identify their molecular composition and to analyse the molecular changes they induce on chromatin. Accompanied by live cell imaging in mammalian tissue culture cells, the proposed approach will not only facilitate the elucidation of the factors involved in chromatin decondensation, but will also provide insight into how this process is integrated into mitotic exit and nuclear reformation and linked to other concomitant processes such as nuclear envelope assembly or nuclear body formation.
Thus, using an unprecedented approach to study the ill-defined but important cell biological process of postmitotic chromatin decondensation, we aim to expand the frontiers in our knowledge on this topic.
Max ERC Funding
1 499 880 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym CHROMDOM
Project Chromosomal domain formation, compartmentalization and architecture
Researcher (PI) Johannes STIGLER
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS1, ERC-2017-STG
Summary The three-dimensional organization of chromosomes is necessary for hereditary fidelity and gene regulation. Recent studies have found that eukaryotic interphase chromosomes are spatially organized in compartments, chiefly topologically associated domains (TADs), in a hierarchical order of nested chromatin loops, coining the term “chromosome folding”. TADs are clusters of genes and regulatory elements that are confined to their genomic compartment by spatially constricting their accessible range of action. The folded structure of chromosomes through long-range loops enables mutual interactions of distant genomic loci that otherwise would not be in contact.
While crosslinking-based chromosome conformation capture (3C) techniques have revealed the underlying structure of interphase chromosomes, the molecular mechanism of how chromosome-organizing proteins, such as the insulator CTCF or the structural maintenance of chromosomes (SMC) complex cohesin build the chromosomal scaffold and contribute to genomic organization, is not understood.
Due to the complexity of the processes involved, biochemical information on how chromosomal proteins contribute to the establishment of TADs is scarce. I have previously demonstrated that single molecule techniques can be used to study the interactions of single cohesin complexes with DNA, chromatin and DNA-bound proteins and to resolve processes that are inaccessible in bulk biochemical experiments. In this project, I will use and expand the high-throughput single molecule technique of DNA curtains to study the molecular details of how chromosomal scaffolding proteins and genetic insulators form the basis for the three-dimensional folding of chromosomes. My experiments will build a novel experimental platform to study the dynamics of chromosomal configuration and maintenance in a reconstituted single molecule assay and will reveal the molecular details that drive the organization of chromosomes into hierarchically organized structures.
Summary
The three-dimensional organization of chromosomes is necessary for hereditary fidelity and gene regulation. Recent studies have found that eukaryotic interphase chromosomes are spatially organized in compartments, chiefly topologically associated domains (TADs), in a hierarchical order of nested chromatin loops, coining the term “chromosome folding”. TADs are clusters of genes and regulatory elements that are confined to their genomic compartment by spatially constricting their accessible range of action. The folded structure of chromosomes through long-range loops enables mutual interactions of distant genomic loci that otherwise would not be in contact.
While crosslinking-based chromosome conformation capture (3C) techniques have revealed the underlying structure of interphase chromosomes, the molecular mechanism of how chromosome-organizing proteins, such as the insulator CTCF or the structural maintenance of chromosomes (SMC) complex cohesin build the chromosomal scaffold and contribute to genomic organization, is not understood.
Due to the complexity of the processes involved, biochemical information on how chromosomal proteins contribute to the establishment of TADs is scarce. I have previously demonstrated that single molecule techniques can be used to study the interactions of single cohesin complexes with DNA, chromatin and DNA-bound proteins and to resolve processes that are inaccessible in bulk biochemical experiments. In this project, I will use and expand the high-throughput single molecule technique of DNA curtains to study the molecular details of how chromosomal scaffolding proteins and genetic insulators form the basis for the three-dimensional folding of chromosomes. My experiments will build a novel experimental platform to study the dynamics of chromosomal configuration and maintenance in a reconstituted single molecule assay and will reveal the molecular details that drive the organization of chromosomes into hierarchically organized structures.
Max ERC Funding
1 499 350 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym CHROMOOCYTE
Project Mechanisms of chromosome segregation in mammalian oocytes
Researcher (PI) Melina Schuh
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS3, ERC-2013-StG
Summary All animal life starts with the fertilization of an egg. A haploid egg and a haploid sperm fuse and together they form a new genetically unique embryo. But surprisingly, eggs frequently contain an incorrect number of chromosomes. Depending on the age of the woman, 10-50% of eggs are chromosomally abnormal. This high percentage of abnormal eggs results from chromosome segregation errors during oocyte maturation, the process by which a diploid oocyte matures into a haploid egg. Thus, errors during meiosis in human oocytes are the most common cause of pregnancy losses and contribute to approximately 95% of human aneuploidy such as Down’s syndrome. Surprisingly, we still know very little about how mammalian oocytes mature into eggs, and it is still unclear why chromosome segregation during meiosis is so much more error-prone than during mitosis.
My proposal combines three innovative and complementary approaches towards understanding how homologous chromosomes are segregated and why oocyte maturation in mammals is so error-prone. Specifically, we will work towards the following three aims: 1. We will complete the first large scale screen for genes required for accurate progression through meiosis in mammalian oocytes and characterize the function of a few selected genes in detail. 2. We will analyse meiosis and investigate potential causes of chromosome segregation errors directly in live human oocytes. 3. We will study the function of an F-actin spindle and a chromosome-associated myosin that might be required for chromosome segregation in mammalian oocytes.
Because errors during oocyte maturation lead to pregnancy loss, birth defects and infertility, this work will not only provide important insights into fundamental cellular mechanisms, but will also have important implications for human health.
Summary
All animal life starts with the fertilization of an egg. A haploid egg and a haploid sperm fuse and together they form a new genetically unique embryo. But surprisingly, eggs frequently contain an incorrect number of chromosomes. Depending on the age of the woman, 10-50% of eggs are chromosomally abnormal. This high percentage of abnormal eggs results from chromosome segregation errors during oocyte maturation, the process by which a diploid oocyte matures into a haploid egg. Thus, errors during meiosis in human oocytes are the most common cause of pregnancy losses and contribute to approximately 95% of human aneuploidy such as Down’s syndrome. Surprisingly, we still know very little about how mammalian oocytes mature into eggs, and it is still unclear why chromosome segregation during meiosis is so much more error-prone than during mitosis.
My proposal combines three innovative and complementary approaches towards understanding how homologous chromosomes are segregated and why oocyte maturation in mammals is so error-prone. Specifically, we will work towards the following three aims: 1. We will complete the first large scale screen for genes required for accurate progression through meiosis in mammalian oocytes and characterize the function of a few selected genes in detail. 2. We will analyse meiosis and investigate potential causes of chromosome segregation errors directly in live human oocytes. 3. We will study the function of an F-actin spindle and a chromosome-associated myosin that might be required for chromosome segregation in mammalian oocytes.
Because errors during oocyte maturation lead to pregnancy loss, birth defects and infertility, this work will not only provide important insights into fundamental cellular mechanisms, but will also have important implications for human health.
Max ERC Funding
1 487 611 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CHROMOTHRIPSIS
Project Dissecting the Molecular Mechanism of Catastrophic DNA Rearrangement in Cancer
Researcher (PI) Jan Oliver Korbel
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary Recent cancer genome analyses have led to the discovery of a process involving massive genome structural rearrangement (SR) formation in a one-step, cataclysmic event, coined chromothripsis. The term chromothripsis (chromo from chromosome; thripsis for shattering into pieces) stands for a hypothetical process in which individual chromosomes are pulverised, resulting in a multitude of fragments, some of which are lost to the cell whereas others are erroneously rejoined. Compelling evidence was presented that chromothripsis plays a crucial role in the development, or progression of a notable subset of human cancers – thus, tumorigensis models involving gradual acquisitions of alterations may need to be revised in these cancers.
Presently, chromothripsis lacks a mechanistic basis. We recently showed that in childhood medulloblastoma brain tumours driven by Sonic Hedgehog (Shh) signalling, chromothripsis is linked with predisposing TP53 mutations. Thus, rather than occurring in isolation, chromothripsis appears to be prone to happen in conjunction with (or instigated by) gradually acquired alterations, or in the context of active signalling pathways, the inference of which may lead to further mechanistic insights. Using such rationale, I propose to dissect the mechanism behind chromothripsis using interdisciplinary approaches. First, we will develop a computational approach to accurately detect chromothripsis. Second, we will use this approach to link chromothripsis with novel factors and contexts. Third, we will develop highly controllable cell line-based systems to test concrete mechanistic hypotheses, thereby taking into account our data on linked factors and contexts. Fourth, we will generate transcriptome data to monitor pathways involved in inducing chromothripsis, and such involved in coping with the massive SRs occurring. We will also combine findings from all these approaches to build a comprehensive model of chromothripsis and its associated pathways.
Summary
Recent cancer genome analyses have led to the discovery of a process involving massive genome structural rearrangement (SR) formation in a one-step, cataclysmic event, coined chromothripsis. The term chromothripsis (chromo from chromosome; thripsis for shattering into pieces) stands for a hypothetical process in which individual chromosomes are pulverised, resulting in a multitude of fragments, some of which are lost to the cell whereas others are erroneously rejoined. Compelling evidence was presented that chromothripsis plays a crucial role in the development, or progression of a notable subset of human cancers – thus, tumorigensis models involving gradual acquisitions of alterations may need to be revised in these cancers.
Presently, chromothripsis lacks a mechanistic basis. We recently showed that in childhood medulloblastoma brain tumours driven by Sonic Hedgehog (Shh) signalling, chromothripsis is linked with predisposing TP53 mutations. Thus, rather than occurring in isolation, chromothripsis appears to be prone to happen in conjunction with (or instigated by) gradually acquired alterations, or in the context of active signalling pathways, the inference of which may lead to further mechanistic insights. Using such rationale, I propose to dissect the mechanism behind chromothripsis using interdisciplinary approaches. First, we will develop a computational approach to accurately detect chromothripsis. Second, we will use this approach to link chromothripsis with novel factors and contexts. Third, we will develop highly controllable cell line-based systems to test concrete mechanistic hypotheses, thereby taking into account our data on linked factors and contexts. Fourth, we will generate transcriptome data to monitor pathways involved in inducing chromothripsis, and such involved in coping with the massive SRs occurring. We will also combine findings from all these approaches to build a comprehensive model of chromothripsis and its associated pathways.
Max ERC Funding
1 471 964 €
Duration
Start date: 2014-04-01, End date: 2019-01-31
Project acronym CILIARYDISEASE
Project Deciphering mechanisms of ciliary disease
Researcher (PI) Heiko Lickert
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS3, ERC-2009-StG
Summary Ciliopathies are pleiotropic diseases with a wide spectrum of human phenotypes. These include cyst formation in the liver and pancreas, respiratory disorders and a predisposition to diabetes and cancer. The pleiotropic nature of these disorders may reflect the many roles cilia play in physiology and signalling, highlighting the clinical importance of understanding their function in organ development and homeostasis. Despite the biological importance of cilia and decades of research, many aspects of cilia assembly and disassembly remain elusive. The earliest steps of cilia assembly involve conversion of the centrosome into a basal body, which anchors the cilia to the plasma membrane. Odf2 is one of the only proteins known to be important for this process, thus Ofd2 mutant cells lack cilia. During cell cycle re-entry primary cilia disassemble, the basal body dislodges from the plasma membrane and duplicates to serve as the mitotic centrosome. We recently identified Pitchfork, which functions in basal body-to-centrosome conversion and regulates embryonic patterning. The overall aim of this proposal is to better understand the cellular and bio-molecular mechanisms underlying ciliary disease. We will conditionally delete Odf2 and Pitchfork during embryogenesis and organogenesis. This will reveal the different requirements for the process of cilia assembly and disassembly in embryonic development, organ formation and homeostasis. The phenotypes will be analyzed at all levels of complexity. Subcellular imaging and identification of protein interaction partners will uncover the molecular basis of cilia assembly and disassembly. In summary, this project will decipher mechanisms underlying a wide spectrum of human ciliary disease and will open new avenues of clinical research.
Summary
Ciliopathies are pleiotropic diseases with a wide spectrum of human phenotypes. These include cyst formation in the liver and pancreas, respiratory disorders and a predisposition to diabetes and cancer. The pleiotropic nature of these disorders may reflect the many roles cilia play in physiology and signalling, highlighting the clinical importance of understanding their function in organ development and homeostasis. Despite the biological importance of cilia and decades of research, many aspects of cilia assembly and disassembly remain elusive. The earliest steps of cilia assembly involve conversion of the centrosome into a basal body, which anchors the cilia to the plasma membrane. Odf2 is one of the only proteins known to be important for this process, thus Ofd2 mutant cells lack cilia. During cell cycle re-entry primary cilia disassemble, the basal body dislodges from the plasma membrane and duplicates to serve as the mitotic centrosome. We recently identified Pitchfork, which functions in basal body-to-centrosome conversion and regulates embryonic patterning. The overall aim of this proposal is to better understand the cellular and bio-molecular mechanisms underlying ciliary disease. We will conditionally delete Odf2 and Pitchfork during embryogenesis and organogenesis. This will reveal the different requirements for the process of cilia assembly and disassembly in embryonic development, organ formation and homeostasis. The phenotypes will be analyzed at all levels of complexity. Subcellular imaging and identification of protein interaction partners will uncover the molecular basis of cilia assembly and disassembly. In summary, this project will decipher mechanisms underlying a wide spectrum of human ciliary disease and will open new avenues of clinical research.
Max ERC Funding
1 449 640 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym CiliTransport
Project Structural Studies and Regulation of Intraflagellar Transport Complexes
Researcher (PI) Esben Lorentzen
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS1, ERC-2012-StG_20111109
Summary The cilium is an organelle that protrudes from the cell body and is responsible for the motility of unicellular organisms and of vertebrate cell types such as sperm cells. In addition, most vertebrate cells have primary non-motile cilia important for sensory reception and signalling. The assembly and function of cilia rely on intraflagellar transport (IFT), the bi-directional movement of macromolecules between the cell body and the cilium. As cilia do not contain ribosomes, IFT is required to move the approximately 600 different ciliary proteins from their site of synthesis in the cell body to their site of function in the cilium. IFT is powered by kinesin and dynein motors, which move cargoes along the microtubule-based axoneme of the cilium. The interaction between motors and cargoes is mediated by the IFT complex, a 1.6 MDa complex formed by 20 different proteins. Despite the importance of the IFT complex, very little is known about its architecture and how it is regulated. In this proposal, we want to address both aspects using a combination of structural and functional studies. The structural analysis of the IFT complex is daunting given its size and complexity. We are proceeding with the biochemical reconstitution of the core subcomplexes, which we plan to analyze using X-ray crystallography and electron microscopy. To date, we have solved the X-ray structure of a dimeric complex between an IFT GTPase and its binding factor, and have reconstituted one of the two core complexes (the 8-subunit IFT-B complex) in amounts and purity suitable for structural studies. While these studies are progressing, we plan to use similar approaches to tackle the other core complex (IFT-A) and the plethora of ciliary GTPases, with the ambitious goal of understanding the architecture and regulation of the the entire IFT complex. This will shed light on the molecular basis of ciliogenesis and the pathological consequences of its disruption.
Summary
The cilium is an organelle that protrudes from the cell body and is responsible for the motility of unicellular organisms and of vertebrate cell types such as sperm cells. In addition, most vertebrate cells have primary non-motile cilia important for sensory reception and signalling. The assembly and function of cilia rely on intraflagellar transport (IFT), the bi-directional movement of macromolecules between the cell body and the cilium. As cilia do not contain ribosomes, IFT is required to move the approximately 600 different ciliary proteins from their site of synthesis in the cell body to their site of function in the cilium. IFT is powered by kinesin and dynein motors, which move cargoes along the microtubule-based axoneme of the cilium. The interaction between motors and cargoes is mediated by the IFT complex, a 1.6 MDa complex formed by 20 different proteins. Despite the importance of the IFT complex, very little is known about its architecture and how it is regulated. In this proposal, we want to address both aspects using a combination of structural and functional studies. The structural analysis of the IFT complex is daunting given its size and complexity. We are proceeding with the biochemical reconstitution of the core subcomplexes, which we plan to analyze using X-ray crystallography and electron microscopy. To date, we have solved the X-ray structure of a dimeric complex between an IFT GTPase and its binding factor, and have reconstituted one of the two core complexes (the 8-subunit IFT-B complex) in amounts and purity suitable for structural studies. While these studies are progressing, we plan to use similar approaches to tackle the other core complex (IFT-A) and the plethora of ciliary GTPases, with the ambitious goal of understanding the architecture and regulation of the the entire IFT complex. This will shed light on the molecular basis of ciliogenesis and the pathological consequences of its disruption.
Max ERC Funding
1 498 650 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym CIRCODE
Project Cell-type specific mechanisms regulating rhythms in leukocyte homing
Researcher (PI) Christoph Andreas Scheiermann
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary Leukocytes are the key components of the immune system that fight infections and provide tissue repair, yet their migration patterns throughout the body over the course of a day are completely unknown. Circadian, ~24 hour rhythms are emerging as important novel regulators of immune cell migration and function, which impacts inflammatory diseases such as myocardial infarction and sepsis. Altering leukocyte tissue infiltration and activation at the proper times provides an option for therapy that would maximize the clinical impact of drugs and vaccinations and minimize side effects.
We aim to create a four-dimensional map of leukocyte migration to organs in time and space and investigate with epigenetics techniques the molecular mechanisms that regulate cell-type specific rhythms. We will functionally define the daily oscillating molecular signature(s) of leukocytes and endothelial cells with novel proteomics approaches and thus identify a circadian traffic code that dictates the rhythmic migration of leukocyte subsets to specific organs under steady-state and inflammatory conditions with pharmacological and genetic tools. We will assess the impact of lineage-specific arrhythmicities on immune homeostasis and leukocyte trafficking using an innovative combination of novel genetic tools. Based on these data we will create a model predicting circadian leukocyte migration to tissues.
The project combines the disciplines of immunology and chronobiology by obtaining unprecedented information in time and space of circadian leukocyte trafficking and investigating how immune-cell specific oscillations are generated at the molecular level, which is of broad impact for both fields. Our extensive experience in the rhythmic control of the immune system makes us well poised to characterize the molecular components that orchestrate circadian leukocyte distribution across the body.
Summary
Leukocytes are the key components of the immune system that fight infections and provide tissue repair, yet their migration patterns throughout the body over the course of a day are completely unknown. Circadian, ~24 hour rhythms are emerging as important novel regulators of immune cell migration and function, which impacts inflammatory diseases such as myocardial infarction and sepsis. Altering leukocyte tissue infiltration and activation at the proper times provides an option for therapy that would maximize the clinical impact of drugs and vaccinations and minimize side effects.
We aim to create a four-dimensional map of leukocyte migration to organs in time and space and investigate with epigenetics techniques the molecular mechanisms that regulate cell-type specific rhythms. We will functionally define the daily oscillating molecular signature(s) of leukocytes and endothelial cells with novel proteomics approaches and thus identify a circadian traffic code that dictates the rhythmic migration of leukocyte subsets to specific organs under steady-state and inflammatory conditions with pharmacological and genetic tools. We will assess the impact of lineage-specific arrhythmicities on immune homeostasis and leukocyte trafficking using an innovative combination of novel genetic tools. Based on these data we will create a model predicting circadian leukocyte migration to tissues.
The project combines the disciplines of immunology and chronobiology by obtaining unprecedented information in time and space of circadian leukocyte trafficking and investigating how immune-cell specific oscillations are generated at the molecular level, which is of broad impact for both fields. Our extensive experience in the rhythmic control of the immune system makes us well poised to characterize the molecular components that orchestrate circadian leukocyte distribution across the body.
Max ERC Funding
1 497 688 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym CM3
Project Controlled Mechanical Manipulation of Molecules
Researcher (PI) Christian Wagner
Host Institution (HI) FORSCHUNGSZENTRUM JULICH GMBH
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The idea to freely control the atomic-scale structure of matter has intrigued scientists for many decades. The low-temperature scanning probe microscope (LT SPM) has become the instrument of choice for this task since it allows the rearrangement of atoms and molecules on a surface. There is, however, no generic SPM-based method for the manipulation of molecules beyond lateral rearrangement. The goal of this project is to develop controlled mechanical manipulation of molecules (CM3) in which a LT SPM is used to handle large organic molecules in three dimensions with optimal control over position, orientation and shape. CM3 will become a game-changing technique for research on molecular properties and molecular-scale engineering, because it combines fully deterministic manipulation with broad access to molecular degrees of freedom for the first time. In CM3 the tip is attached to a single reactive atom within a molecule. Tip displacement guides the molecule into a desired conformation while the surface provides a second (weaker) fixation. The fundamental challenge addressed by this project is the identification of precise molecular conformations at any time during manipulation. The solution is a big data approach where large batches of automatically recorded SPM manipulation data are structured using machine learning and interpreted by comparison to atomistic simulations. The key idea is a comparison of entire conformation spaces at once, which is robust, even if the theory is not fully quantitative. The obtained map of the conformation space is used to determine molecular conformations during manipulation by methods of control theory. The effectiveness of this approach will be demonstrated in experiments that unambiguously reveal the structure-conductance relation for a series of molecules and that realize the engineering paradigm of piecewise assembly on the molecular scale by constructing a direct current rotor / motor from individual components.
Summary
The idea to freely control the atomic-scale structure of matter has intrigued scientists for many decades. The low-temperature scanning probe microscope (LT SPM) has become the instrument of choice for this task since it allows the rearrangement of atoms and molecules on a surface. There is, however, no generic SPM-based method for the manipulation of molecules beyond lateral rearrangement. The goal of this project is to develop controlled mechanical manipulation of molecules (CM3) in which a LT SPM is used to handle large organic molecules in three dimensions with optimal control over position, orientation and shape. CM3 will become a game-changing technique for research on molecular properties and molecular-scale engineering, because it combines fully deterministic manipulation with broad access to molecular degrees of freedom for the first time. In CM3 the tip is attached to a single reactive atom within a molecule. Tip displacement guides the molecule into a desired conformation while the surface provides a second (weaker) fixation. The fundamental challenge addressed by this project is the identification of precise molecular conformations at any time during manipulation. The solution is a big data approach where large batches of automatically recorded SPM manipulation data are structured using machine learning and interpreted by comparison to atomistic simulations. The key idea is a comparison of entire conformation spaces at once, which is robust, even if the theory is not fully quantitative. The obtained map of the conformation space is used to determine molecular conformations during manipulation by methods of control theory. The effectiveness of this approach will be demonstrated in experiments that unambiguously reveal the structure-conductance relation for a series of molecules and that realize the engineering paradigm of piecewise assembly on the molecular scale by constructing a direct current rotor / motor from individual components.
Max ERC Funding
1 465 944 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CMVAGSTIMULUS
Project Molecular mechanisms of persistent antigenic stimulation in cytomegalovirus infection
Researcher (PI) Luka Cicin-Sain
Host Institution (HI) HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBH
Call Details Starting Grant (StG), LS6, ERC-2010-StG_20091118
Summary Cytomegalovirus (CMV) is a ubiquitous herpesvirus, latently persisting in the majority of the adult population worldwide. In these hosts, CMV-specific memory cells dominate the immune memory compartment. It follows that CMV-specific T-cells dominate the memory compartment of the majority of the human population worldwide.
I propose to define within this project the molecular mechanisms driving the inflation of CMV-specific T-cells. My central hypothesis is that expression levels of CMV peptides during latency, along with the avidity of T-cell receptors for peptide MHC complexes, define the amplitude of T-cell responses. A corollary hypothesis is that vigorous T-cell responses in CMV infection are defined by factors that drive CMV gene expression during latency, such as inflammatory stimuli.
This hypothesis will be verified in a model of in vivo CMV latency and immune monitoring. We will benefit from state-of-the-art inducible genetic systems, where recombinant mouse CMV will be deployed in transgenic mice. In latently infected mice, we will induce or suppress the expression of immunodominant CMV genes, and define downstream effects on T-cell response kinetics. In parallel, we will define the T-cell responses to high and low avidity peptides.
Understanding the mechanisms driving the strong T-cell response to CMV is of outstanding biological and clinical relevance. If strong T-cell responses may be redirected to target heterologous antigens of interest, CMV-based vaccine vectors might potentially allow the development of HIV or tumor vaccines. On the other hand, it is speculated that the control of latent CMV may overcommit the aging immune system and exhaust the T-cell repertoire. Given the CMV pervasiveness, discerning the mechanisms of its T-cell induction may define novel molecular targets for rejuvenation strategies. In either case, the proposed research has groundbreaking potential in the field of infection and immunity.
Summary
Cytomegalovirus (CMV) is a ubiquitous herpesvirus, latently persisting in the majority of the adult population worldwide. In these hosts, CMV-specific memory cells dominate the immune memory compartment. It follows that CMV-specific T-cells dominate the memory compartment of the majority of the human population worldwide.
I propose to define within this project the molecular mechanisms driving the inflation of CMV-specific T-cells. My central hypothesis is that expression levels of CMV peptides during latency, along with the avidity of T-cell receptors for peptide MHC complexes, define the amplitude of T-cell responses. A corollary hypothesis is that vigorous T-cell responses in CMV infection are defined by factors that drive CMV gene expression during latency, such as inflammatory stimuli.
This hypothesis will be verified in a model of in vivo CMV latency and immune monitoring. We will benefit from state-of-the-art inducible genetic systems, where recombinant mouse CMV will be deployed in transgenic mice. In latently infected mice, we will induce or suppress the expression of immunodominant CMV genes, and define downstream effects on T-cell response kinetics. In parallel, we will define the T-cell responses to high and low avidity peptides.
Understanding the mechanisms driving the strong T-cell response to CMV is of outstanding biological and clinical relevance. If strong T-cell responses may be redirected to target heterologous antigens of interest, CMV-based vaccine vectors might potentially allow the development of HIV or tumor vaccines. On the other hand, it is speculated that the control of latent CMV may overcommit the aging immune system and exhaust the T-cell repertoire. Given the CMV pervasiveness, discerning the mechanisms of its T-cell induction may define novel molecular targets for rejuvenation strategies. In either case, the proposed research has groundbreaking potential in the field of infection and immunity.
Max ERC Funding
1 498 456 €
Duration
Start date: 2011-04-01, End date: 2016-09-30
Project acronym CO2LIFE
Project BIOMIMETIC FIXATION OF CO2 AS SOURCE OF SALTS AND GLUCOSE
Researcher (PI) Patricia LUIS ALCONERO
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary The continued increase in the atmospheric concentration of CO2 due to anthropogenic emissions is leading to significant changes in climate, with the industry accounting for one-third of all the energy used globally and for almost 40% of worldwide CO2 emissions. Fast actions are required to decrease the concentration of this greenhouse gas in the atmosphere, value that has currently reaching 400 ppm. Among the technological possibilities that are on the table to reduce CO2 emissions, carbon capture and storage into geological deposits is one of the main strategies that is being applied. However, the final objective of this strategy is to remove CO2 without considering the enormous potential of this molecule as a source of carbon for the production of valuable compounds. Nature has developed an effective and equilibrated mechanism to concentrate CO2 and fixate the inorganic carbon into organic material (e.g., glucose) by means of enzymatic action. Mimicking Nature and take advantage of millions of years of evolution should be considered as a basic starting point in the development of smart and highly effective processes. In addition, the use of amino-acid salts for CO2 capture is envisaged as a potential approach to recover CO2 in the form of (bi)carbonates.
The project CO2LIFE presents the overall objective of developing a chemical process that converts carbon dioxide into valuable molecules using membrane technology. The strategy followed in this project is two-fold: i) CO2 membrane-based absorption-crystallization process on basis of using amino-acid salts, and ii) CO2 conversion into glucose or salts by using enzymes as catalysts supported on or retained by membranes. The final product, i.e. (bi)carbonates or glucose, has a large interest in the (bio)chemical industry, thus, new CO2 emissions are avoided and the carbon cycle is closed. This project will provide a technological solution at industrial scale for the removal and reutilization of CO2.
Summary
The continued increase in the atmospheric concentration of CO2 due to anthropogenic emissions is leading to significant changes in climate, with the industry accounting for one-third of all the energy used globally and for almost 40% of worldwide CO2 emissions. Fast actions are required to decrease the concentration of this greenhouse gas in the atmosphere, value that has currently reaching 400 ppm. Among the technological possibilities that are on the table to reduce CO2 emissions, carbon capture and storage into geological deposits is one of the main strategies that is being applied. However, the final objective of this strategy is to remove CO2 without considering the enormous potential of this molecule as a source of carbon for the production of valuable compounds. Nature has developed an effective and equilibrated mechanism to concentrate CO2 and fixate the inorganic carbon into organic material (e.g., glucose) by means of enzymatic action. Mimicking Nature and take advantage of millions of years of evolution should be considered as a basic starting point in the development of smart and highly effective processes. In addition, the use of amino-acid salts for CO2 capture is envisaged as a potential approach to recover CO2 in the form of (bi)carbonates.
The project CO2LIFE presents the overall objective of developing a chemical process that converts carbon dioxide into valuable molecules using membrane technology. The strategy followed in this project is two-fold: i) CO2 membrane-based absorption-crystallization process on basis of using amino-acid salts, and ii) CO2 conversion into glucose or salts by using enzymes as catalysts supported on or retained by membranes. The final product, i.e. (bi)carbonates or glucose, has a large interest in the (bio)chemical industry, thus, new CO2 emissions are avoided and the carbon cycle is closed. This project will provide a technological solution at industrial scale for the removal and reutilization of CO2.
Max ERC Funding
1 302 710 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym COCOON
Project Conformal coating of nanoporous materials
Researcher (PI) Christophe Detavernier
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), PE8, ERC-2009-StG
Summary CONTEXT - Nanoporous structures are used for application in catalysis, molecular separation, fuel cells, dye sensitized solar cells etc. Given the near molecular size of the porous network, it is extremely challenging to modify the interior surface of the pores after the nanoporous material has been synthesized.
THIS PROPOSAL - Atomic Layer Deposition (ALD) is envisioned as a novel technique for creating catalytically active sites and for controlling the pore size distribution in nanoporous materials. ALD is a self-limited growth method that is characterized by alternating exposure of the growing film to precursor vapours, resulting in the sequential deposition of (sub)monolayers. It provides atomic level control of thickness and composition, and is currently used in micro-electronics to grow films into structures with aspect ratios of up to 100 / 1. We aim to make the fundamental breakthroughs necessary to enable atomic layer deposition to engineer the composition, size and shape of the interior surface of nanoporous materials with aspect ratios in excess of 10,000 / 1.
POTENTIAL IMPACT Achieving these objectives will enable atomic level engineering of the interior surface of any porous material. We plan to focus on three specific applications where our results will have both medium and long term impacts:
- Engineering the composition of pore walls using ALD, e.g. to create catalytic sites (e.g. Al for acid sites, Ti for redox sites, or Pt, Pd or Ni)
- chemical functionalization of the pore walls with atomic level control can result in breakthrough applications in the fields of catalysis and sensors.
- Atomic level control of the size of nanopores through ALD controlling the pore size distribution of molecular sieves can potentially lead to breakthrough applications in molecular separation and filtration.
- Nanocasting replication of a mesoporous template by means of ALD can result in the mass-scale production of nanotubes.
Summary
CONTEXT - Nanoporous structures are used for application in catalysis, molecular separation, fuel cells, dye sensitized solar cells etc. Given the near molecular size of the porous network, it is extremely challenging to modify the interior surface of the pores after the nanoporous material has been synthesized.
THIS PROPOSAL - Atomic Layer Deposition (ALD) is envisioned as a novel technique for creating catalytically active sites and for controlling the pore size distribution in nanoporous materials. ALD is a self-limited growth method that is characterized by alternating exposure of the growing film to precursor vapours, resulting in the sequential deposition of (sub)monolayers. It provides atomic level control of thickness and composition, and is currently used in micro-electronics to grow films into structures with aspect ratios of up to 100 / 1. We aim to make the fundamental breakthroughs necessary to enable atomic layer deposition to engineer the composition, size and shape of the interior surface of nanoporous materials with aspect ratios in excess of 10,000 / 1.
POTENTIAL IMPACT Achieving these objectives will enable atomic level engineering of the interior surface of any porous material. We plan to focus on three specific applications where our results will have both medium and long term impacts:
- Engineering the composition of pore walls using ALD, e.g. to create catalytic sites (e.g. Al for acid sites, Ti for redox sites, or Pt, Pd or Ni)
- chemical functionalization of the pore walls with atomic level control can result in breakthrough applications in the fields of catalysis and sensors.
- Atomic level control of the size of nanopores through ALD controlling the pore size distribution of molecular sieves can potentially lead to breakthrough applications in molecular separation and filtration.
- Nanocasting replication of a mesoporous template by means of ALD can result in the mass-scale production of nanotubes.
Max ERC Funding
1 432 800 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym CODAMODA
Project Controlling Data Movement in the Digital Age
Researcher (PI) Aggelos Kiayias
Host Institution (HI) ETHNIKO KAI KAPODISTRIAKO PANEPISTIMIO ATHINON
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary Nowadays human intellectual product is increasingly produced and disseminated solely in digital form. The capability of digital data for effortless reproduction and transfer has lead to a true revolution that impacts every aspect of human creativity. Nevertheless, as with every technological revolution, this digital media revolution comes with a dark side that, if left unaddressed, it will limit its impact and may counter its potential advantages. In particular, the way we produce and disseminate digital content today does not lend itself to controlling the way data move and change. It turns out that the power of being digital can be a double-edged sword: the ease of production, dissemination and editing also implies the ease of misappropriation, plagiarism and improper modification.
To counter the above problems, the proposed research activity will focus on the development of a new generation of enabling cryptographic technologies that have the power to facilitate the appropriate controls for data movement. Using the techniques developed in this project it will be feasible to build digital content distribution systems where content producers will have the full possible control on the dissemination of their intellectual product, while at the same time the rights of the end-users in terms of privacy and fair use can be preserved. The PI is uniquely qualified to carry out the proposed research activity as he has extensive prior experience in making innovations in the area of digital content distribution as well as in the management of research projects. As part of the project activities, the PI will establish the CODAMODA laboratory in the University of Athens and will seek opportunities for technology transfer and interdisciplinary work with the legal science community.
Summary
Nowadays human intellectual product is increasingly produced and disseminated solely in digital form. The capability of digital data for effortless reproduction and transfer has lead to a true revolution that impacts every aspect of human creativity. Nevertheless, as with every technological revolution, this digital media revolution comes with a dark side that, if left unaddressed, it will limit its impact and may counter its potential advantages. In particular, the way we produce and disseminate digital content today does not lend itself to controlling the way data move and change. It turns out that the power of being digital can be a double-edged sword: the ease of production, dissemination and editing also implies the ease of misappropriation, plagiarism and improper modification.
To counter the above problems, the proposed research activity will focus on the development of a new generation of enabling cryptographic technologies that have the power to facilitate the appropriate controls for data movement. Using the techniques developed in this project it will be feasible to build digital content distribution systems where content producers will have the full possible control on the dissemination of their intellectual product, while at the same time the rights of the end-users in terms of privacy and fair use can be preserved. The PI is uniquely qualified to carry out the proposed research activity as he has extensive prior experience in making innovations in the area of digital content distribution as well as in the management of research projects. As part of the project activities, the PI will establish the CODAMODA laboratory in the University of Athens and will seek opportunities for technology transfer and interdisciplinary work with the legal science community.
Max ERC Funding
1 212 960 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym CoDisEASe
Project Communicable Disease in the Age of Seafaring
Researcher (PI) Kirsten BOS
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary Infectious diseases have had an intimate history with humans and have shaped our genetic makeup through generating strong selective pressures. Although disease emergence and epidemics occur on a local scale, human interrelationships formed through travel and trade can lead to exchanges of pathogenic communities. While such transfers were common among the interconnected Eurasian and North African cultures throughout most of human history, the rest of the world experienced relative ecological autonomy. The terminal Pleistocene witnessed the colonisation of vast territory on the American continents, after which interactions between New and Old World peoples were limited for millennia by geographical barriers. These ecological worlds collided at the end of the fifteenth century, when improvements in navigation and the discovery of the Americas by Europeans permitted regular contact and plentiful opportunities for biological interchange. The identities of most diseases that played leading roles during this period of exchange are known, though details on the directions of their movement and temporal introductions remain the subject of scholarly debate. The work programme presented here will use an underexplored data source – ancient pathogen genomes – to identify infectious insults in pre- and post-contact New and Old World skeletal series, thus enabling an evaluation of changing disease landscapes at contact. Complementary to this goal, genomic loci for human immunity genes will be interrogated, thus permitting quantitative evaluations of disease adaptation. Ancient molecular data will be acquired through use of the most sensitive and up to date methods in the field of ancient DNA with the aim of bringing diseases not easily seen from skeletal morphology or historical documents to light in clear detail. This will permit an unprecedented resolution of past disease experience and host-pathogen interactions during this dynamic period of global ecological unification.
Summary
Infectious diseases have had an intimate history with humans and have shaped our genetic makeup through generating strong selective pressures. Although disease emergence and epidemics occur on a local scale, human interrelationships formed through travel and trade can lead to exchanges of pathogenic communities. While such transfers were common among the interconnected Eurasian and North African cultures throughout most of human history, the rest of the world experienced relative ecological autonomy. The terminal Pleistocene witnessed the colonisation of vast territory on the American continents, after which interactions between New and Old World peoples were limited for millennia by geographical barriers. These ecological worlds collided at the end of the fifteenth century, when improvements in navigation and the discovery of the Americas by Europeans permitted regular contact and plentiful opportunities for biological interchange. The identities of most diseases that played leading roles during this period of exchange are known, though details on the directions of their movement and temporal introductions remain the subject of scholarly debate. The work programme presented here will use an underexplored data source – ancient pathogen genomes – to identify infectious insults in pre- and post-contact New and Old World skeletal series, thus enabling an evaluation of changing disease landscapes at contact. Complementary to this goal, genomic loci for human immunity genes will be interrogated, thus permitting quantitative evaluations of disease adaptation. Ancient molecular data will be acquired through use of the most sensitive and up to date methods in the field of ancient DNA with the aim of bringing diseases not easily seen from skeletal morphology or historical documents to light in clear detail. This will permit an unprecedented resolution of past disease experience and host-pathogen interactions during this dynamic period of global ecological unification.
Max ERC Funding
1 490 043 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym COEVOLVE
Project From Forest to Farmland and Meadow to Metropolis: What Role for Humans in Explaining the Enigma of Holocene CO2 and Methane Concentrations?
Researcher (PI) Jed Oliver Kaplan
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), SH3, ERC-2012-StG_20111124
Summary The Holocene record of atmospheric CO2 and methane concentrations is an enigma. Concentrations of both gases increased from the beginning of the epoch 11,700 years ago to about 10,000 BP, then declined for several thousand years, but by 6000 BP, concentrations of both gases were steadily increasing again. This mid-late Holocene rise in greenhouse gases is unusual; similar patterns are not observed during previous interglacials. While various mechanisms have been proposed to explain these changes in Holocene CO2 and methane, there is one undisputed feature of this epoch that we know is different from the rest of Earth history: the existence of behaviorally modern humans. How humanity could have influenced the Holocene increase in CO2 and methane concentrations is the subject of the COEVOLVE project.
In an interdisciplinary study that combines the social and natural sciences, we will reconstruct anthropogenic CO2 and methane emissions over the Holocene using a state-of-the-art model of terrestrial biogeochemistry and earth surface processes. The novelty of our approach is to develop a geodatabase of anthropogenic activities derived from historical and archaeological observations to drive our model, and to evaluate our simulations against a new, comprehensive global reconstruction of past land cover. COEVOLVE is organized around three activities: 1) synthesis of observations of past land cover change from paleoecological archives, 2) development of a spatial database of the spread of technology, industry, culture, and trade that influenced global land use and resource consumption patterns and 3) informed by parts 1 and 2, modeling of terrestrial biogeochemical cycles and land surface processes including deforestation, soil erosion, and fire. With a new perspective on preindustrial environmental impact, the COEVOLVE project will make a breakthrough in our understanding of the influence of humans on greenhouse gas concentrations and global climate during the Holocene.
Summary
The Holocene record of atmospheric CO2 and methane concentrations is an enigma. Concentrations of both gases increased from the beginning of the epoch 11,700 years ago to about 10,000 BP, then declined for several thousand years, but by 6000 BP, concentrations of both gases were steadily increasing again. This mid-late Holocene rise in greenhouse gases is unusual; similar patterns are not observed during previous interglacials. While various mechanisms have been proposed to explain these changes in Holocene CO2 and methane, there is one undisputed feature of this epoch that we know is different from the rest of Earth history: the existence of behaviorally modern humans. How humanity could have influenced the Holocene increase in CO2 and methane concentrations is the subject of the COEVOLVE project.
In an interdisciplinary study that combines the social and natural sciences, we will reconstruct anthropogenic CO2 and methane emissions over the Holocene using a state-of-the-art model of terrestrial biogeochemistry and earth surface processes. The novelty of our approach is to develop a geodatabase of anthropogenic activities derived from historical and archaeological observations to drive our model, and to evaluate our simulations against a new, comprehensive global reconstruction of past land cover. COEVOLVE is organized around three activities: 1) synthesis of observations of past land cover change from paleoecological archives, 2) development of a spatial database of the spread of technology, industry, culture, and trade that influenced global land use and resource consumption patterns and 3) informed by parts 1 and 2, modeling of terrestrial biogeochemical cycles and land surface processes including deforestation, soil erosion, and fire. With a new perspective on preindustrial environmental impact, the COEVOLVE project will make a breakthrough in our understanding of the influence of humans on greenhouse gas concentrations and global climate during the Holocene.
Max ERC Funding
1 500 000 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym COFLeaf
Project Fuel from sunlight: Covalent organic frameworks as integrated platforms for photocatalytic water splitting and CO2 reduction
Researcher (PI) Bettina Valeska Lotsch
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE5, ERC-2014-STG
Summary The efficient conversion of solar energy into renewable chemical fuels has been identified as one of the grand challenges facing society today and one of the major driving forces of materials innovation.
Nature’s photosynthesis producing chemical fuels through the revaluation of sunlight has inspired generations of chemists to develop platforms mimicking the natural photosynthetic process, albeit at lower levels of complexity. While artificial photosynthesis remains a considerable challenge due to the intricate interplay between materials design, photochemistry and catalysis, the spotlights – light-driven water splitting into hydrogen and oxygen and carbon dioxide reduction into methane or methanol – have emerged as viable pathways into both a clean and sustainable energy future. With this proposal, we aim at introducing a new class of polymeric photocatalysts based on covalent organic frameworks, COFs, to bridge the gap between semiconductor and molecular systems and explore rational ways to design single-site heterogeneous photocatalysts offering both chemical tunability and stability.
The development of a photocatalytic model system is proposed, which will be tailored by molecular synthetic protocols and optimized by solid-state chemical procedures and crystal engineering so as to provide insights into the architectures, reactive intermediates and mechanistic steps involved in the photocatalytic process, with complementary insights from theory. We envision the integration of various molecular subsystems including photosensitizers, redox shuttles and molecular co-catalysts in a single semiconducting COF backbone. Taking advantage of the hallmarks of COFs – molecular definition and tunability, crystallinity, porosity and rigidity – we describe the design of COF systems capable of light-induced hydrogen evolution, oxygen evolution and overall water splitting, and delineate strategies to use COFs as integrated platforms for CO2 capture, activation and conversion.
Summary
The efficient conversion of solar energy into renewable chemical fuels has been identified as one of the grand challenges facing society today and one of the major driving forces of materials innovation.
Nature’s photosynthesis producing chemical fuels through the revaluation of sunlight has inspired generations of chemists to develop platforms mimicking the natural photosynthetic process, albeit at lower levels of complexity. While artificial photosynthesis remains a considerable challenge due to the intricate interplay between materials design, photochemistry and catalysis, the spotlights – light-driven water splitting into hydrogen and oxygen and carbon dioxide reduction into methane or methanol – have emerged as viable pathways into both a clean and sustainable energy future. With this proposal, we aim at introducing a new class of polymeric photocatalysts based on covalent organic frameworks, COFs, to bridge the gap between semiconductor and molecular systems and explore rational ways to design single-site heterogeneous photocatalysts offering both chemical tunability and stability.
The development of a photocatalytic model system is proposed, which will be tailored by molecular synthetic protocols and optimized by solid-state chemical procedures and crystal engineering so as to provide insights into the architectures, reactive intermediates and mechanistic steps involved in the photocatalytic process, with complementary insights from theory. We envision the integration of various molecular subsystems including photosensitizers, redox shuttles and molecular co-catalysts in a single semiconducting COF backbone. Taking advantage of the hallmarks of COFs – molecular definition and tunability, crystallinity, porosity and rigidity – we describe the design of COF systems capable of light-induced hydrogen evolution, oxygen evolution and overall water splitting, and delineate strategies to use COFs as integrated platforms for CO2 capture, activation and conversion.
Max ERC Funding
1 497 125 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym COGNAP
Project To nap or not to nap? Why napping habits interfere with cognitive fitness in ageing
Researcher (PI) Christina Hildegard SCHMIDT
Host Institution (HI) UNIVERSITE DE LIEGE
Call Details Starting Grant (StG), SH4, ERC-2017-STG
Summary All of us know of individuals who remain cognitively sharp at an advanced age. Identifying novel factors which associate with inter-individual variability in -and can be considered protective for- cognitive decline is a promising area in ageing research. Considering its strong implication in neuroprotective function, COGNAP predicts that variability in circadian rhythmicity explains a significant part of the age-related changes in human cognition. Circadian rhythms -one of the most fundamental processes of living organisms- are present throughout the nervous system and act on cognitive brain function. Circadian rhythms shape the temporal organization of sleep and wakefulness to achieve human diurnality, characterized by a consolidated bout of sleep during night-time and a continuous period of wakefulness during the day. Of prime importance is that the temporal organization of sleep and wakefulness evolves throughout the adult lifespan, leading to higher sleep-wake fragmentation with ageing. The increasing occurrence of daytime napping is the most visible manifestation of this fragmentation. Contrary to the common belief, napping stands as a health risk factor in seniors in epidemiological data. I posit that chronic napping in older people primarily reflects circadian disruption. Based on my preliminary findings, I predict that this disruption will lead to lower cognitive fitness. I further hypothesise that a re-stabilization of circadian sleep-wake organization through a nap prevention intervention will reduce age-related cognitive decline. Characterizing the link between cognitive ageing and the temporal distribution of sleep and wakefulness will not only bring ground-breaking advances at the scientific level, but is also timely in the ageing society. Cognitive decline, as well as inadequately timed sleep, represent dominant determinants of the health span of our fast ageing population and easy implementable intervention programs are urgently needed.
Summary
All of us know of individuals who remain cognitively sharp at an advanced age. Identifying novel factors which associate with inter-individual variability in -and can be considered protective for- cognitive decline is a promising area in ageing research. Considering its strong implication in neuroprotective function, COGNAP predicts that variability in circadian rhythmicity explains a significant part of the age-related changes in human cognition. Circadian rhythms -one of the most fundamental processes of living organisms- are present throughout the nervous system and act on cognitive brain function. Circadian rhythms shape the temporal organization of sleep and wakefulness to achieve human diurnality, characterized by a consolidated bout of sleep during night-time and a continuous period of wakefulness during the day. Of prime importance is that the temporal organization of sleep and wakefulness evolves throughout the adult lifespan, leading to higher sleep-wake fragmentation with ageing. The increasing occurrence of daytime napping is the most visible manifestation of this fragmentation. Contrary to the common belief, napping stands as a health risk factor in seniors in epidemiological data. I posit that chronic napping in older people primarily reflects circadian disruption. Based on my preliminary findings, I predict that this disruption will lead to lower cognitive fitness. I further hypothesise that a re-stabilization of circadian sleep-wake organization through a nap prevention intervention will reduce age-related cognitive decline. Characterizing the link between cognitive ageing and the temporal distribution of sleep and wakefulness will not only bring ground-breaking advances at the scientific level, but is also timely in the ageing society. Cognitive decline, as well as inadequately timed sleep, represent dominant determinants of the health span of our fast ageing population and easy implementable intervention programs are urgently needed.
Max ERC Funding
1 499 125 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym COGNIMUND
Project Cognitive Image Understanding: Image representations and Multimodal learning
Researcher (PI) Tinne Tuytelaars
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE6, ERC-2009-StG
Summary One of the primary and most appealing goals of computer vision is to automatically understand the content of images on a cognitive level. Ultimately we want to have computers interpret images as we humans do, recognizing all the objects, scenes, and people as well as their relations as they appear in natural images or video. With this project, I want to advance the state of the art in this field in two directions, which I believe to be crucial to build the next generation of image understanding tools. First, novel more robust yet descriptive image representations will be designed, that incorporate the intrinsic structure of images. These should already go a long way towards removing irrelevant sources of variability while capturing the essence of the image content. I believe the importance of further research into image representations is currently underestimated within the research community, yet I claim this is a crucial step with lots of opportunities good learning cannot easily make up for bad features. Second, weakly supervised methods to learn from multimodal input (especially the combination of images and text) will be investigated, making it possible to leverage the large amount of weak annotations available via the internet. This is essential if we want to scale the methods to a larger number of object categories (several hundreds instead of a few tens). As more data can be used for training, such weakly supervised methods might in the end even come on par with or outperform supervised schemes. Here we will call upon the latest results in semi-supervised learning, datamining, and computational linguistics.
Summary
One of the primary and most appealing goals of computer vision is to automatically understand the content of images on a cognitive level. Ultimately we want to have computers interpret images as we humans do, recognizing all the objects, scenes, and people as well as their relations as they appear in natural images or video. With this project, I want to advance the state of the art in this field in two directions, which I believe to be crucial to build the next generation of image understanding tools. First, novel more robust yet descriptive image representations will be designed, that incorporate the intrinsic structure of images. These should already go a long way towards removing irrelevant sources of variability while capturing the essence of the image content. I believe the importance of further research into image representations is currently underestimated within the research community, yet I claim this is a crucial step with lots of opportunities good learning cannot easily make up for bad features. Second, weakly supervised methods to learn from multimodal input (especially the combination of images and text) will be investigated, making it possible to leverage the large amount of weak annotations available via the internet. This is essential if we want to scale the methods to a larger number of object categories (several hundreds instead of a few tens). As more data can be used for training, such weakly supervised methods might in the end even come on par with or outperform supervised schemes. Here we will call upon the latest results in semi-supervised learning, datamining, and computational linguistics.
Max ERC Funding
1 538 380 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym COINFLIP
Project Coupled Organic Inorganic Nanostructures for Fast, Light-Induced Data Processing
Researcher (PI) Marcus Scheele
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary The main objective of this project is to design optical switches with a response time < 5 ps, a switching energy < 1 fJ/bit and compatibility with silicon technology to excel in high-speed data processing at low heat dissipation. This will be pursued by combining the chemistry of inorganic, nanocrystalline colloids and organic semiconductor molecules to fabricate thin films of organic-inorganic hybrid nanostructures. Optical switches play a pivotal role in modern data processing based on silicon photonics, where they control the interface between photonic optical fibers used for data transmission and electronic processing units for computing. Data transfer across this interface is slow compared to that in optical interconnects and high-speed silicon transistors, such that faster optical switching accelerates the overall speed of data processing of the system as a whole. By modifying the surface of the inorganic nanocrystals with conductive molecular linkers and self-assembly into macroscopic solid state materials, new electronic and photonic properties arise due to charge transfer at the organic/inorganic interface. The multiple optical resonances in these hybrid materials result in strong optoelectronic interactions with external light beams, which are exploited for converting photonic into electronic signals at unprecedented speed. A key concept here is an activated absorption mechanism, in which the nanocrystals act as sensitizers with short-lived excited states, which are activated by a first optical pump beam. Efficient charge transfer at the organic/inorganic interface temporarily creates additional resonances in the molecular linkers, which may be probed by a second optical beam for as long as the sensitizer is in its excited state. Utilizing nanocrystals with excited state lifetimes < 5ps will reward ultrafast response times to pave the way for novel optical switches and high-speed data processing rates for silicon photonics.
Summary
The main objective of this project is to design optical switches with a response time < 5 ps, a switching energy < 1 fJ/bit and compatibility with silicon technology to excel in high-speed data processing at low heat dissipation. This will be pursued by combining the chemistry of inorganic, nanocrystalline colloids and organic semiconductor molecules to fabricate thin films of organic-inorganic hybrid nanostructures. Optical switches play a pivotal role in modern data processing based on silicon photonics, where they control the interface between photonic optical fibers used for data transmission and electronic processing units for computing. Data transfer across this interface is slow compared to that in optical interconnects and high-speed silicon transistors, such that faster optical switching accelerates the overall speed of data processing of the system as a whole. By modifying the surface of the inorganic nanocrystals with conductive molecular linkers and self-assembly into macroscopic solid state materials, new electronic and photonic properties arise due to charge transfer at the organic/inorganic interface. The multiple optical resonances in these hybrid materials result in strong optoelectronic interactions with external light beams, which are exploited for converting photonic into electronic signals at unprecedented speed. A key concept here is an activated absorption mechanism, in which the nanocrystals act as sensitizers with short-lived excited states, which are activated by a first optical pump beam. Efficient charge transfer at the organic/inorganic interface temporarily creates additional resonances in the molecular linkers, which may be probed by a second optical beam for as long as the sensitizer is in its excited state. Utilizing nanocrystals with excited state lifetimes < 5ps will reward ultrafast response times to pave the way for novel optical switches and high-speed data processing rates for silicon photonics.
Max ERC Funding
1 497 375 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym COLD
Project Climate Sensitivity of Glacial Landscape Dynamics
Researcher (PI) Dirk SCHERLER
Host Institution (HI) HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary How do erosion rates in glacial landscapes vary with climate change and how do such changes affect the dynamics of mountain glaciers? Providing quantitative constraints towards this question is the main objective of COLD. These constraints are so important because mountain glaciers are sensitive to climate change and their deposits provide a unique history of Earths terrestrial climate that allows reconstructing leads and lags in the climate system.
The climate sensitivity of mountain glaciers is influenced by debris on their surface that impedes ice melting. Theoretical models of frost-related bedrock fracturing predict that rates of debris production are temperature-sensitive and that its supply to mountain glaciers increases during warming periods. Thus a previously unrecognized negative feedback emerges that lowers ice melt rates and potentially buffers part of the ice retreat due to warming. However, the temperature-sensitivity of debris production in glacial landscapes is poorly understood. Specifically, we lack robust erosion rate estimates for these landscapes, which are key for testing models of frost-related bedrock fracturing.
Here, I propose an innovative combination of new tools that capitalize on recent developments in cosmogenic nuclide geochemistry, landscape evolution modelling, and planetary-scale remote sensing analysis. I will use these tools to quantify headwall erosion rates in mountainous glacial landscapes and to gauge the sensitivity of mountain glaciers to variations in debris supply. Expected results will provide a basis for assessing the impacts of global warming, for improved predictions of valley glacier evolution, and for palaeoclimate interpretations of glacial landforms. COLD will focus on glacial landscapes, but the inverse modelling approach I will develop is applicable to any landscape on Earth and has the potential to fundamentally transform how we use cosmogenic nuclides to constrain Earth surface dynamics.
Summary
How do erosion rates in glacial landscapes vary with climate change and how do such changes affect the dynamics of mountain glaciers? Providing quantitative constraints towards this question is the main objective of COLD. These constraints are so important because mountain glaciers are sensitive to climate change and their deposits provide a unique history of Earths terrestrial climate that allows reconstructing leads and lags in the climate system.
The climate sensitivity of mountain glaciers is influenced by debris on their surface that impedes ice melting. Theoretical models of frost-related bedrock fracturing predict that rates of debris production are temperature-sensitive and that its supply to mountain glaciers increases during warming periods. Thus a previously unrecognized negative feedback emerges that lowers ice melt rates and potentially buffers part of the ice retreat due to warming. However, the temperature-sensitivity of debris production in glacial landscapes is poorly understood. Specifically, we lack robust erosion rate estimates for these landscapes, which are key for testing models of frost-related bedrock fracturing.
Here, I propose an innovative combination of new tools that capitalize on recent developments in cosmogenic nuclide geochemistry, landscape evolution modelling, and planetary-scale remote sensing analysis. I will use these tools to quantify headwall erosion rates in mountainous glacial landscapes and to gauge the sensitivity of mountain glaciers to variations in debris supply. Expected results will provide a basis for assessing the impacts of global warming, for improved predictions of valley glacier evolution, and for palaeoclimate interpretations of glacial landforms. COLD will focus on glacial landscapes, but the inverse modelling approach I will develop is applicable to any landscape on Earth and has the potential to fundamentally transform how we use cosmogenic nuclides to constrain Earth surface dynamics.
Max ERC Funding
1 499 308 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym COLORAMAP
Project Constrained Low-Rank Matrix Approximations: Theoretical and Algorithmic Developments for Practitioners
Researcher (PI) Nicolas Benoit P Gillis
Host Institution (HI) UNIVERSITE DE MONS
Call Details Starting Grant (StG), PE6, ERC-2015-STG
Summary Low-rank matrix approximation (LRA) techniques such as principal component analysis (PCA) are powerful tools for the representation and analysis of high dimensional data, and are used in a wide variety of areas such as machine learning, signal and image processing, data mining, and optimization. Without any constraints and using the least squares error, LRA can be solved via the singular value decomposition. However, in practice, this model is often not suitable mainly because (i) the data might be contaminated with outliers, missing data and non-Gaussian noise, and (ii) the low-rank factors of the decomposition might have to satisfy some specific constraints. Hence, in recent years, many variants of LRA have been introduced, using different constraints on the factors and using different objective functions to assess the quality of the approximation; e.g., sparse PCA, PCA with missing data, independent component analysis and nonnegative matrix factorization. Although these new constrained LRA models have become very popular and standard in some fields, there is still a significant gap between theory and practice. In this project, our goal is to reduce this gap by attacking the problem in an integrated way making connections between LRA variants, and by using four very different but complementary perspectives: (1) computational complexity issues, (2) provably correct algorithms, (3) heuristics for difficult instances, and (4) application-oriented aspects. This unified and multi-disciplinary approach will enable us to understand these problems better, to develop and analyze new and existing algorithms and to then use them for applications. Our ultimate goal is to provide practitioners with new tools and to allow them to decide which method to use in which situation and to know what to expect from it.
Summary
Low-rank matrix approximation (LRA) techniques such as principal component analysis (PCA) are powerful tools for the representation and analysis of high dimensional data, and are used in a wide variety of areas such as machine learning, signal and image processing, data mining, and optimization. Without any constraints and using the least squares error, LRA can be solved via the singular value decomposition. However, in practice, this model is often not suitable mainly because (i) the data might be contaminated with outliers, missing data and non-Gaussian noise, and (ii) the low-rank factors of the decomposition might have to satisfy some specific constraints. Hence, in recent years, many variants of LRA have been introduced, using different constraints on the factors and using different objective functions to assess the quality of the approximation; e.g., sparse PCA, PCA with missing data, independent component analysis and nonnegative matrix factorization. Although these new constrained LRA models have become very popular and standard in some fields, there is still a significant gap between theory and practice. In this project, our goal is to reduce this gap by attacking the problem in an integrated way making connections between LRA variants, and by using four very different but complementary perspectives: (1) computational complexity issues, (2) provably correct algorithms, (3) heuristics for difficult instances, and (4) application-oriented aspects. This unified and multi-disciplinary approach will enable us to understand these problems better, to develop and analyze new and existing algorithms and to then use them for applications. Our ultimate goal is to provide practitioners with new tools and to allow them to decide which method to use in which situation and to know what to expect from it.
Max ERC Funding
1 291 750 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym COLOURATOM
Project Colouring Atoms in 3 Dimensions
Researcher (PI) Sara Bals
Host Institution (HI) UNIVERSITEIT ANTWERPEN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary "Matter is a three dimensional (3D) agglomeration of atoms. The properties of materials are determined by the positions of the atoms, their chemical nature and the bonding between them. If we are able to determine these parameters in 3D, we will be able to provide the necessary input for predicting the properties and we can guide the synthesis and development of new nanomaterials.
The aim of this project is therefore to provide a complete 3D characterisation of complex hetero-nanosystems down to the atomic scale. The combination of advanced aberration corrected electron microscopy and novel 3D reconstruction algorithms is envisioned as a groundbreaking new approach to quantify the position AND the colour (chemical nature and bonding) of each individual atom in 3D for any given nanomaterial.
So far, only 3D imaging at the atomic scale was carried out for model-like systems. Measuring the position and the colour of the atoms in a complex nanomaterial can therefore be considered as an extremely challenging goal that will lead to a wealth of new information. Our objectives will enable 3D strain measurements at the atomic scale, localisation of atomic vacancies and interface characterisation in hetero-nanocrystals or hybrid soft-hard matter nanocompounds. Quantification of the oxidation states of surface atoms and of 3D surface relaxation will yield new insights concerning preferential functionalities.
Although these goals already go beyond the state-of-the-art, we plan to break fundamental limits and completely eliminate the need to tilt the sample for electron tomography. Especially for beam sensitive materials, this technique, so-called ""multi-detector stereoscopy"", can be considered as a groundbreaking approach to obtain 3D information at the atomic scale. As an ultimate ambition, we will investigate the dynamic behaviour of ultra-small binary clusters."
Summary
"Matter is a three dimensional (3D) agglomeration of atoms. The properties of materials are determined by the positions of the atoms, their chemical nature and the bonding between them. If we are able to determine these parameters in 3D, we will be able to provide the necessary input for predicting the properties and we can guide the synthesis and development of new nanomaterials.
The aim of this project is therefore to provide a complete 3D characterisation of complex hetero-nanosystems down to the atomic scale. The combination of advanced aberration corrected electron microscopy and novel 3D reconstruction algorithms is envisioned as a groundbreaking new approach to quantify the position AND the colour (chemical nature and bonding) of each individual atom in 3D for any given nanomaterial.
So far, only 3D imaging at the atomic scale was carried out for model-like systems. Measuring the position and the colour of the atoms in a complex nanomaterial can therefore be considered as an extremely challenging goal that will lead to a wealth of new information. Our objectives will enable 3D strain measurements at the atomic scale, localisation of atomic vacancies and interface characterisation in hetero-nanocrystals or hybrid soft-hard matter nanocompounds. Quantification of the oxidation states of surface atoms and of 3D surface relaxation will yield new insights concerning preferential functionalities.
Although these goals already go beyond the state-of-the-art, we plan to break fundamental limits and completely eliminate the need to tilt the sample for electron tomography. Especially for beam sensitive materials, this technique, so-called ""multi-detector stereoscopy"", can be considered as a groundbreaking approach to obtain 3D information at the atomic scale. As an ultimate ambition, we will investigate the dynamic behaviour of ultra-small binary clusters."
Max ERC Funding
1 461 466 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym COLSOC
Project The Legacy of Colonialism: Origins and Outcomes of Social Protection
Researcher (PI) Carina SCHMITT
Host Institution (HI) UNIVERSITAET BREMEN
Call Details Starting Grant (StG), SH3, ERC-2017-STG
Summary Social protection has been one of the most popular instruments for promoting human development across the globe. However, the great majority of the global population is not or only partly covered by social protection. Especially in developing countries it is often the very poorest who do not receive essential social benefits. This is highly problematic since inclusive social protection is assumed to be a key factor for national productivity, global economic growth and domestic stability. Social protection in many developing countries can be traced back to colonial times. Surprisingly, the influence of colonialism has been a blind spot for existing theories and empirical studies of comparative social policy. In this project it is argued that the colonial legacy in terms of the imperial strategy of the colonial power, the characteristics of the colonized society and the interplay between the two is crucial in explaining early and contemporary social protection. Hence, the main objective of this project is to systematically understand how colonialism has shaped the remarkable differences in social protection and its postcolonial outcomes. Given the paucity of our information and understanding of social protection in former colonies, an interactive dataset on the characteristics, origins and outcomes of social protection will be developed including comprehensive data on former British and French colonies from the beginning of the 20th century until today. The dataset will be backed by insights derived from four case studies elucidating the causal mechanisms between the colonial legacy and early and contemporary social protection. The proposed project breaks new ground by improving our understanding of why social protection in some developing countries has led to more inclusive societies while reinforcing existing inequalities in others. Such an understanding is a prerequisite in informing the contemporary struggle against poverty and social inequality.
Summary
Social protection has been one of the most popular instruments for promoting human development across the globe. However, the great majority of the global population is not or only partly covered by social protection. Especially in developing countries it is often the very poorest who do not receive essential social benefits. This is highly problematic since inclusive social protection is assumed to be a key factor for national productivity, global economic growth and domestic stability. Social protection in many developing countries can be traced back to colonial times. Surprisingly, the influence of colonialism has been a blind spot for existing theories and empirical studies of comparative social policy. In this project it is argued that the colonial legacy in terms of the imperial strategy of the colonial power, the characteristics of the colonized society and the interplay between the two is crucial in explaining early and contemporary social protection. Hence, the main objective of this project is to systematically understand how colonialism has shaped the remarkable differences in social protection and its postcolonial outcomes. Given the paucity of our information and understanding of social protection in former colonies, an interactive dataset on the characteristics, origins and outcomes of social protection will be developed including comprehensive data on former British and French colonies from the beginning of the 20th century until today. The dataset will be backed by insights derived from four case studies elucidating the causal mechanisms between the colonial legacy and early and contemporary social protection. The proposed project breaks new ground by improving our understanding of why social protection in some developing countries has led to more inclusive societies while reinforcing existing inequalities in others. Such an understanding is a prerequisite in informing the contemporary struggle against poverty and social inequality.
Max ERC Funding
1 486 250 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym COMBIOSCOPY
Project Computational Biophotonics for Endoscopic Cancer Diagnosis and Therapy
Researcher (PI) Lena Maier-Hein
Host Institution (HI) DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERG
Call Details Starting Grant (StG), LS7, ERC-2014-STG
Summary Key challenges in endoscopic tumor diagnosis and therapy consist of the detection and discrimination of malignant tissue as well as the precise navigation of medical instruments. Currently, a low level of sensitivity and specificity in tumor detection and lack of global orientation lead to both over- and undertreatment, tumor recurrence, intra-operative complications, and high costs. The goal of this multidisciplinary project is to revolutionize clinical endoscopic imaging based on the systematic integration of two new but independant fields of research up until this point: Biophotonics and computer-assisted interventions (COMputational BIOphotonics in endoSCOPY).
For the first time, quantitative multi-modal imaging biomarkers based on structural and functional data are being developed to enhance the physician’s view by providing information that cannot be seen with the naked eye. To this extent, white light images co-registered with multispectral optical and photoacoustic images will be processed in a combined manner to dynamically reconstruct not only the visible surface in 3D but also subsurface anatomical and functional detail such as 3D vessel topology, blood volume and oxygenation. Spatio-temporal registration of multi-modal data acquired before and during the procedure will enable (1) the highly specific local tissue classification and discrimination based on tissue shape, texture, function and radiological contrast imagery as well as (2) global context-aware instrument guidance.
This innovative approach to radiation-free real-time imaging will be implemented and evaluated by means of computer-assisted colonoscopy and laparoscopy. The potential socioeconomic impact of providing high precision minimally-invasive tumor diagnosis and therapy at low cost is extremely high.
Summary
Key challenges in endoscopic tumor diagnosis and therapy consist of the detection and discrimination of malignant tissue as well as the precise navigation of medical instruments. Currently, a low level of sensitivity and specificity in tumor detection and lack of global orientation lead to both over- and undertreatment, tumor recurrence, intra-operative complications, and high costs. The goal of this multidisciplinary project is to revolutionize clinical endoscopic imaging based on the systematic integration of two new but independant fields of research up until this point: Biophotonics and computer-assisted interventions (COMputational BIOphotonics in endoSCOPY).
For the first time, quantitative multi-modal imaging biomarkers based on structural and functional data are being developed to enhance the physician’s view by providing information that cannot be seen with the naked eye. To this extent, white light images co-registered with multispectral optical and photoacoustic images will be processed in a combined manner to dynamically reconstruct not only the visible surface in 3D but also subsurface anatomical and functional detail such as 3D vessel topology, blood volume and oxygenation. Spatio-temporal registration of multi-modal data acquired before and during the procedure will enable (1) the highly specific local tissue classification and discrimination based on tissue shape, texture, function and radiological contrast imagery as well as (2) global context-aware instrument guidance.
This innovative approach to radiation-free real-time imaging will be implemented and evaluated by means of computer-assisted colonoscopy and laparoscopy. The potential socioeconomic impact of providing high precision minimally-invasive tumor diagnosis and therapy at low cost is extremely high.
Max ERC Funding
1 499 699 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym COMBIPATTERNING
Project Combinatorial Patterning of Particles for High Density Peptide Arrays
Researcher (PI) Alexander Nesterov-Mueller
Host Institution (HI) KARLSRUHER INSTITUT FUER TECHNOLOGIE
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary We want to use selective laser melting to pattern a substrate with different solid micro particles at a density of 1 million spots per cm2. First, a homogeneous particle layer is deposited on a substrate and a pattern of micro spots of melted matrix is generated by laser radiation. Then, non-melted particles are blown away. Embedded within the particles are different chemically reactive amino acid derivatives that will start coupling to very small synthesis sites upon melting the particle pattern in an oven. This is done once all of the 20 different amino acid particles have been glued by laser patterning to the surface. Washing away uncoupled material, removing Fmoc protecting group, and repeating the patterning steps according to standard Merrifield synthesis, leads to the combinatorial synthesis of very high-density peptide arrays. The main objective of this proposal is to develop this method up to the level of a semi-automated synthesis machine. In addition, we will use the manufactured very high-density peptide arrays to readout the information that is deposited in the immune system, i.e. find a peptide binder for every one of the 200-500 antibody species that patrol the serum of an individual in elevated levels. These experiments might lead to novel tools to find out the causes of hitherto enigmatic diseases because then we might be able to correlate antibody patterns with disease status without knowing in advance the disease-specific antibodies. Beyond the life sciences, we want to embed 10.000 peptides per cm2 within an insulating layer of alkane thiols, each on a different gold pad of a specially designed screening chip. Then, we could readout I/V characteristics of individual peptide species, and eventually find peptide-based diodes. These could be modified in their sequence and screened again for better performance. This evolution-inspired screening approach might lead to novel materials that could be used in fuel cells.
Summary
We want to use selective laser melting to pattern a substrate with different solid micro particles at a density of 1 million spots per cm2. First, a homogeneous particle layer is deposited on a substrate and a pattern of micro spots of melted matrix is generated by laser radiation. Then, non-melted particles are blown away. Embedded within the particles are different chemically reactive amino acid derivatives that will start coupling to very small synthesis sites upon melting the particle pattern in an oven. This is done once all of the 20 different amino acid particles have been glued by laser patterning to the surface. Washing away uncoupled material, removing Fmoc protecting group, and repeating the patterning steps according to standard Merrifield synthesis, leads to the combinatorial synthesis of very high-density peptide arrays. The main objective of this proposal is to develop this method up to the level of a semi-automated synthesis machine. In addition, we will use the manufactured very high-density peptide arrays to readout the information that is deposited in the immune system, i.e. find a peptide binder for every one of the 200-500 antibody species that patrol the serum of an individual in elevated levels. These experiments might lead to novel tools to find out the causes of hitherto enigmatic diseases because then we might be able to correlate antibody patterns with disease status without knowing in advance the disease-specific antibodies. Beyond the life sciences, we want to embed 10.000 peptides per cm2 within an insulating layer of alkane thiols, each on a different gold pad of a specially designed screening chip. Then, we could readout I/V characteristics of individual peptide species, and eventually find peptide-based diodes. These could be modified in their sequence and screened again for better performance. This evolution-inspired screening approach might lead to novel materials that could be used in fuel cells.
Max ERC Funding
1 494 600 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym COMICS
Project Children in Comics: An Intercultural History from 1865 to Today
Researcher (PI) Maaheen AHMED
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), SH5, ERC-2017-STG
Summary Owing to their visual essence and status as a popular, modern medium, comics – newspaper strips, comics magazines and graphic novels – provide valuable insight into the transformation of collective consciousness. This project advances the hypothesis that children in comics are distinctive embodiments of the complex experience of modernity, channeling and tempering modern anxieties and incarnating the freedom denied to adults. In testing this hypothesis, the project constructs the first intercultural history of children in European comics, tracing the changing conceptualizations of child protagonists in popular comics for both children and adults from the mid-19th century to the present. In doing so, it takes key points in European history as well as the history of comics into account.
Assembling a team of six multilingual researchers, the project uses an interdisciplinary methodology combining comics studies and childhood studies while also incorporating specific insights from cultural studies (history of family life, history of public life, history of the body, affect theory and scholarship on the carnivalesque). This enables the project to analyze the transposition of modern anxieties, conceptualizations of childishness, child-adult power relations, notions of liberty, visualizations of the body, family life, school and public life as well as the presence of affects such as nostalgia and happiness in comics starring children.
The project thus opens up a new field of research lying at the intersection of comics studies and childhood studies and illustrates its potential. In studying popular but often overlooked comics, the project provides crucial historical and analytical material that will shape future comics criticism and the fields associated with childhood studies. Furthermore, the project’s outreach activities will increase collective knowledge about comic strips, which form an important, increasingly visible part of cultural heritage.
Summary
Owing to their visual essence and status as a popular, modern medium, comics – newspaper strips, comics magazines and graphic novels – provide valuable insight into the transformation of collective consciousness. This project advances the hypothesis that children in comics are distinctive embodiments of the complex experience of modernity, channeling and tempering modern anxieties and incarnating the freedom denied to adults. In testing this hypothesis, the project constructs the first intercultural history of children in European comics, tracing the changing conceptualizations of child protagonists in popular comics for both children and adults from the mid-19th century to the present. In doing so, it takes key points in European history as well as the history of comics into account.
Assembling a team of six multilingual researchers, the project uses an interdisciplinary methodology combining comics studies and childhood studies while also incorporating specific insights from cultural studies (history of family life, history of public life, history of the body, affect theory and scholarship on the carnivalesque). This enables the project to analyze the transposition of modern anxieties, conceptualizations of childishness, child-adult power relations, notions of liberty, visualizations of the body, family life, school and public life as well as the presence of affects such as nostalgia and happiness in comics starring children.
The project thus opens up a new field of research lying at the intersection of comics studies and childhood studies and illustrates its potential. In studying popular but often overlooked comics, the project provides crucial historical and analytical material that will shape future comics criticism and the fields associated with childhood studies. Furthermore, the project’s outreach activities will increase collective knowledge about comic strips, which form an important, increasingly visible part of cultural heritage.
Max ERC Funding
1 452 500 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym COMMOTS
Project Communication Motifs: Principles of bacterial communication in non-genetically diversified populations
Researcher (PI) Ilka Bischofs-Pfeifer
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Cell-to-cell communication is a central aspect for understanding how cells form and organize multi-cellular communities involving progressive cell specialization. Multi-cellularity cell specialization cell communication those keywords are frequently used to distinguish metazoans from bacteria. Yet bacteria can form morphologically complex multi-cellular communities, they can non-genetically diversify and they can communicate. This implies that even prokaryotic networks must possess the properties to facilitate these complex functions. Thus basic network features ( motifs ) determining these functions can be discovered and characterized from studying simpler bacterial networks. We want to focus on communication motifs that are present in the gene-regulatory network of Bacillus subtilis. Our proposed methodology involves a combination of quantitative fluorescence microscopy techniques (QFTLM, FRET), developmental assays, signal transduction studies in controlled micro-environments and information theory to quantitatively characterize communication motifs..
Summary
Cell-to-cell communication is a central aspect for understanding how cells form and organize multi-cellular communities involving progressive cell specialization. Multi-cellularity cell specialization cell communication those keywords are frequently used to distinguish metazoans from bacteria. Yet bacteria can form morphologically complex multi-cellular communities, they can non-genetically diversify and they can communicate. This implies that even prokaryotic networks must possess the properties to facilitate these complex functions. Thus basic network features ( motifs ) determining these functions can be discovered and characterized from studying simpler bacterial networks. We want to focus on communication motifs that are present in the gene-regulatory network of Bacillus subtilis. Our proposed methodology involves a combination of quantitative fluorescence microscopy techniques (QFTLM, FRET), developmental assays, signal transduction studies in controlled micro-environments and information theory to quantitatively characterize communication motifs..
Max ERC Funding
1 496 840 €
Duration
Start date: 2011-09-01, End date: 2016-08-31
Project acronym COMPBIOMAT
Project Computing Biomaterials
Researcher (PI) Wilfried Weber
Host Institution (HI) ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary The objective of the proposal is to establish the foundations of a new discipline at the intersections of Materials Science, Synthetic Biology and Computer Science: the development of Computing Biomaterials. Computing biomaterials will be able to perceive multiple input signals, to process these signals by complex computational operations and to produce a corresponding output signal. The design principle of computing biomaterials will be inspired by computer science, the molecular control elements will be derived from synthetic biology and the overall framework for the construction of biomaterials will rely on materials science.
The design principle will be hierarchical: at the basis, synthetic biology tools will act as sensor, processor and actuator. These tools will be integrated into biomaterials to build logic gates that perceive different input signals, process these signals by Boolean algebra and produce a corresponding readout. By the functional interconnected of several such gates, we will construct integrated biomaterial circuits that perform complex computational operations.
The fundamental and generally applicable design principles as established in this proposal, will enable the rapid and predictable synthesis of integrated biomaterial circuits that function as integrated sensor, processor and actuator with custom-tailored performance and will show a vast application potential in emerging disciplines like biomedicine or microsystems engineering.
Summary
The objective of the proposal is to establish the foundations of a new discipline at the intersections of Materials Science, Synthetic Biology and Computer Science: the development of Computing Biomaterials. Computing biomaterials will be able to perceive multiple input signals, to process these signals by complex computational operations and to produce a corresponding output signal. The design principle of computing biomaterials will be inspired by computer science, the molecular control elements will be derived from synthetic biology and the overall framework for the construction of biomaterials will rely on materials science.
The design principle will be hierarchical: at the basis, synthetic biology tools will act as sensor, processor and actuator. These tools will be integrated into biomaterials to build logic gates that perceive different input signals, process these signals by Boolean algebra and produce a corresponding readout. By the functional interconnected of several such gates, we will construct integrated biomaterial circuits that perform complex computational operations.
The fundamental and generally applicable design principles as established in this proposal, will enable the rapid and predictable synthesis of integrated biomaterial circuits that function as integrated sensor, processor and actuator with custom-tailored performance and will show a vast application potential in emerging disciplines like biomedicine or microsystems engineering.
Max ERC Funding
1 499 040 €
Duration
Start date: 2010-12-01, End date: 2015-11-30