Project acronym 19TH-CENTURY_EUCLID
Project Nineteenth-Century Euclid: Geometry and the Literary Imagination from Wordsworth to Wells
Researcher (PI) Alice Jenkins
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Summary
This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Max ERC Funding
323 118 €
Duration
Start date: 2009-01-01, End date: 2011-10-31
Project acronym 2-3-AUT
Project Surfaces, 3-manifolds and automorphism groups
Researcher (PI) Nathalie Wahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Summary
The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Max ERC Funding
724 992 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym 20SComplexity
Project An integrative approach to uncover the multilevel regulation of 20S proteasome degradation
Researcher (PI) Michal Sharon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Summary
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym 3DCellPhase-
Project In situ Structural Analysis of Molecular Crowding and Phase Separation
Researcher (PI) Julia MAHAMID
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Call Details Starting Grant (StG), LS1, ERC-2017-STG
Summary This proposal brings together two fields in biology, namely the emerging field of phase-separated assemblies in cell biology and state-of-the-art cellular cryo-electron tomography, to advance our understanding on a fundamental, yet illusive, question: the molecular organization of the cytoplasm.
Eukaryotes organize their biochemical reactions into functionally distinct compartments. Intriguingly, many, if not most, cellular compartments are not membrane enclosed. Rather, they assemble dynamically by phase separation, typically triggered upon a specific event. Despite significant progress on reconstituting such liquid-like assemblies in vitro, we lack information as to whether these compartments in vivo are indeed amorphous liquids, or whether they exhibit structural features such as gels or fibers. My recent work on sample preparation of cells for cryo-electron tomography, including cryo-focused ion beam thinning, guided by 3D correlative fluorescence microscopy, shows that we can now prepare site-specific ‘electron-transparent windows’ in suitable eukaryotic systems, which allow direct examination of structural features of cellular compartments in their cellular context. Here, we will use these techniques to elucidate the structural principles and cytoplasmic environment driving the dynamic assembly of two phase-separated compartments: Stress granules, which are RNA bodies that form rapidly in the cytoplasm upon cellular stress, and centrosomes, which are sites of microtubule nucleation. We will combine these studies with a quantitative description of the crowded nature of cytoplasm and of its local variations, to provide a direct readout of the impact of excluded volume on molecular assembly in living cells. Taken together, these studies will provide fundamental insights into the structural basis by which cells form biochemical compartments.
Summary
This proposal brings together two fields in biology, namely the emerging field of phase-separated assemblies in cell biology and state-of-the-art cellular cryo-electron tomography, to advance our understanding on a fundamental, yet illusive, question: the molecular organization of the cytoplasm.
Eukaryotes organize their biochemical reactions into functionally distinct compartments. Intriguingly, many, if not most, cellular compartments are not membrane enclosed. Rather, they assemble dynamically by phase separation, typically triggered upon a specific event. Despite significant progress on reconstituting such liquid-like assemblies in vitro, we lack information as to whether these compartments in vivo are indeed amorphous liquids, or whether they exhibit structural features such as gels or fibers. My recent work on sample preparation of cells for cryo-electron tomography, including cryo-focused ion beam thinning, guided by 3D correlative fluorescence microscopy, shows that we can now prepare site-specific ‘electron-transparent windows’ in suitable eukaryotic systems, which allow direct examination of structural features of cellular compartments in their cellular context. Here, we will use these techniques to elucidate the structural principles and cytoplasmic environment driving the dynamic assembly of two phase-separated compartments: Stress granules, which are RNA bodies that form rapidly in the cytoplasm upon cellular stress, and centrosomes, which are sites of microtubule nucleation. We will combine these studies with a quantitative description of the crowded nature of cytoplasm and of its local variations, to provide a direct readout of the impact of excluded volume on molecular assembly in living cells. Taken together, these studies will provide fundamental insights into the structural basis by which cells form biochemical compartments.
Max ERC Funding
1 228 125 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym 3DWATERWAVES
Project Mathematical aspects of three-dimensional water waves with vorticity
Researcher (PI) Erik Torsten Wahlén
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE1, ERC-2015-STG
Summary The goal of this project is to develop a mathematical theory for steady three-dimensional water waves with vorticity. The mathematical model consists of the incompressible Euler equations with a free surface, and vorticity is important for modelling the interaction of surface waves with non-uniform currents. In the two-dimensional case, there has been a lot of progress on water waves with vorticity in the last decade. This progress has mainly been based on the stream function formulation, in which the problem is reformulated as a nonlinear elliptic free boundary problem. An analogue of this formulation is not available in three dimensions, and the theory has therefore so far been restricted to irrotational flow. In this project we seek to go beyond this restriction using two different approaches. In the first approach we will adapt methods which have been used to construct three-dimensional ideal flows with vorticity in domains with a fixed boundary to the free boundary context (for example Beltrami flows). In the second approach we will develop methods which are new even in the case of a fixed boundary, by performing a detailed study of the structure of the equations close to a given shear flow using ideas from infinite-dimensional bifurcation theory. This involves handling infinitely many resonances.
Summary
The goal of this project is to develop a mathematical theory for steady three-dimensional water waves with vorticity. The mathematical model consists of the incompressible Euler equations with a free surface, and vorticity is important for modelling the interaction of surface waves with non-uniform currents. In the two-dimensional case, there has been a lot of progress on water waves with vorticity in the last decade. This progress has mainly been based on the stream function formulation, in which the problem is reformulated as a nonlinear elliptic free boundary problem. An analogue of this formulation is not available in three dimensions, and the theory has therefore so far been restricted to irrotational flow. In this project we seek to go beyond this restriction using two different approaches. In the first approach we will adapt methods which have been used to construct three-dimensional ideal flows with vorticity in domains with a fixed boundary to the free boundary context (for example Beltrami flows). In the second approach we will develop methods which are new even in the case of a fixed boundary, by performing a detailed study of the structure of the equations close to a given shear flow using ideas from infinite-dimensional bifurcation theory. This involves handling infinitely many resonances.
Max ERC Funding
1 203 627 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym AAMDDR
Project DNA damage response and genome stability: The role of ATM, ATR and the Mre11 complex
Researcher (PI) Vincenzo Costanzo
Host Institution (HI) CANCER RESEARCH UK LBG
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Summary
Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym AAS
Project Approximate algebraic structure and applications
Researcher (PI) Ben Green
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE1, ERC-2011-StG_20101014
Summary This project studies several mathematical topics with a related theme, all of them part of the relatively new discipline known as additive combinatorics.
We look at approximate, or rough, variants of familiar mathematical notions such as group, polynomial or homomorphism. In each case we seek to describe the structure of these approximate objects, and then to give applications of the resulting theorems. This endeavour has already lead to groundbreaking results in the theory of prime numbers, group theory and combinatorial number theory.
Summary
This project studies several mathematical topics with a related theme, all of them part of the relatively new discipline known as additive combinatorics.
We look at approximate, or rough, variants of familiar mathematical notions such as group, polynomial or homomorphism. In each case we seek to describe the structure of these approximate objects, and then to give applications of the resulting theorems. This endeavour has already lead to groundbreaking results in the theory of prime numbers, group theory and combinatorial number theory.
Max ERC Funding
1 000 000 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym ABACUS
Project Advancing Behavioral and Cognitive Understanding of Speech
Researcher (PI) Bart De Boer
Host Institution (HI) VRIJE UNIVERSITEIT BRUSSEL
Call Details Starting Grant (StG), SH4, ERC-2011-StG_20101124
Summary I intend to investigate what cognitive mechanisms give us combinatorial speech. Combinatorial speech is the ability to make new words using pre-existing speech sounds. Humans are the only apes that can do this, yet we do not know how our brains do it, nor how exactly we differ from other apes. Using new experimental techniques to study human behavior and new computational techniques to model human cognition, I will find out how we deal with combinatorial speech.
The experimental part will study individual and cultural learning. Experimental cultural learning is a new technique that simulates cultural evolution in the laboratory. Two types of cultural learning will be used: iterated learning, which simulates language transfer across generations, and social coordination, which simulates emergence of norms in a language community. Using the two types of cultural learning together with individual learning experiments will help to zero in, from three angles, on how humans deal with combinatorial speech. In addition it will make a methodological contribution by comparing the strengths and weaknesses of the three methods.
The computer modeling part will formalize hypotheses about how our brains deal with combinatorial speech. Two models will be built: a high-level model that will establish the basic algorithms with which combinatorial speech is learned and reproduced, and a neural model that will establish in more detail how the algorithms are implemented in the brain. In addition, the models, through increasing understanding of how humans deal with speech, will help bridge the performance gap between human and computer speech recognition.
The project will advance science in four ways: it will provide insight into how our unique ability for using combinatorial speech works, it will tell us how this is implemented in the brain, it will extend the novel methodology of experimental cultural learning and it will create new computer models for dealing with human speech.
Summary
I intend to investigate what cognitive mechanisms give us combinatorial speech. Combinatorial speech is the ability to make new words using pre-existing speech sounds. Humans are the only apes that can do this, yet we do not know how our brains do it, nor how exactly we differ from other apes. Using new experimental techniques to study human behavior and new computational techniques to model human cognition, I will find out how we deal with combinatorial speech.
The experimental part will study individual and cultural learning. Experimental cultural learning is a new technique that simulates cultural evolution in the laboratory. Two types of cultural learning will be used: iterated learning, which simulates language transfer across generations, and social coordination, which simulates emergence of norms in a language community. Using the two types of cultural learning together with individual learning experiments will help to zero in, from three angles, on how humans deal with combinatorial speech. In addition it will make a methodological contribution by comparing the strengths and weaknesses of the three methods.
The computer modeling part will formalize hypotheses about how our brains deal with combinatorial speech. Two models will be built: a high-level model that will establish the basic algorithms with which combinatorial speech is learned and reproduced, and a neural model that will establish in more detail how the algorithms are implemented in the brain. In addition, the models, through increasing understanding of how humans deal with speech, will help bridge the performance gap between human and computer speech recognition.
The project will advance science in four ways: it will provide insight into how our unique ability for using combinatorial speech works, it will tell us how this is implemented in the brain, it will extend the novel methodology of experimental cultural learning and it will create new computer models for dealing with human speech.
Max ERC Funding
1 276 620 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ABCTRANSPORT
Project Minimalist multipurpose ATP-binding cassette transporters
Researcher (PI) Dirk Jan Slotboom
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary Many Gram-positive (pathogenic) bacteria are dependent on the uptake of vitamins from the environment or from the infected host. We have recently discovered the long-elusive family of membrane protein complexes catalyzing such transport. The vitamin transporters have an unprecedented modular architecture consisting of a single multipurpose energizing module (the Energy Coupling Factor, ECF) and multiple exchangeable membrane proteins responsible for substrate recognition (S-components). The S-components have characteristics of ion-gradient driven transporters (secondary active transporters), whereas the energizing modules are related to ATP-binding cassette (ABC) transporters (primary active transporters).
The aim of the proposal is threefold: First, we will address the question how properties of primary and secondary transporters are combined in ECF transporters to obtain a novel transport mechanism. Second, we will study the fundamental and unresolved question how protein-protein recognition takes place in the hydrophobic environment of the lipid bilayer. The modular nature of the ECF proteins offers a natural system to study the driving forces used for membrane protein interaction. Third, we will assess whether the ECF transport systems could become targets for antibacterial drugs. ECF transporters are found exclusively in prokaryotes, and their activity is often essential for viability of Gram-positive pathogens. Thus they could turn out to be an Achilles’ heel for the organisms.
Structural and mechanistic studies (X-ray crystallography, microscopy, spectroscopy and biochemistry) will reveal how the different transport modes are combined in a single protein complex, how transport is energized and catalyzed, and how protein-protein recognition takes place. Microbiological screens will be developed to search for compounds that inhibit prokaryote-specific steps of the mechanism of ECF transporters.
Summary
Many Gram-positive (pathogenic) bacteria are dependent on the uptake of vitamins from the environment or from the infected host. We have recently discovered the long-elusive family of membrane protein complexes catalyzing such transport. The vitamin transporters have an unprecedented modular architecture consisting of a single multipurpose energizing module (the Energy Coupling Factor, ECF) and multiple exchangeable membrane proteins responsible for substrate recognition (S-components). The S-components have characteristics of ion-gradient driven transporters (secondary active transporters), whereas the energizing modules are related to ATP-binding cassette (ABC) transporters (primary active transporters).
The aim of the proposal is threefold: First, we will address the question how properties of primary and secondary transporters are combined in ECF transporters to obtain a novel transport mechanism. Second, we will study the fundamental and unresolved question how protein-protein recognition takes place in the hydrophobic environment of the lipid bilayer. The modular nature of the ECF proteins offers a natural system to study the driving forces used for membrane protein interaction. Third, we will assess whether the ECF transport systems could become targets for antibacterial drugs. ECF transporters are found exclusively in prokaryotes, and their activity is often essential for viability of Gram-positive pathogens. Thus they could turn out to be an Achilles’ heel for the organisms.
Structural and mechanistic studies (X-ray crystallography, microscopy, spectroscopy and biochemistry) will reveal how the different transport modes are combined in a single protein complex, how transport is energized and catalyzed, and how protein-protein recognition takes place. Microbiological screens will be developed to search for compounds that inhibit prokaryote-specific steps of the mechanism of ECF transporters.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym ACCENT
Project Unravelling the architecture and the cartography of the human centriole
Researcher (PI) Paul, Philippe, Desiré GUICHARD
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Summary
The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Max ERC Funding
1 498 965 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym ADAPTIVES
Project Algorithmic Development and Analysis of Pioneer Techniques for Imaging with waVES
Researcher (PI) Chrysoula Tsogka
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Our results are expected to have a strong impact in a wide range of applications, including underwater acoustics, exploration geophysics and ultrasound non-destructive testing. Our machinery is coherent interferometry (CINT), a state-of-the-art statistically stable imaging methodology, highly suitable for the development of imaging methods in clutter. We aim to extend CINT along two complementary directions: novel types of applications, and further mathematical and numerical development so as to assess and extend its range of applicability. CINT is designed for imaging with partially coherent array data recorded in richly scattering media. It uses statistical smoothing techniques to obtain results that are independent of the clutter realization. Quantifying the amount of smoothing needed is difficult, especially when there is no a priori knowledge about the propagation medium. We intend to address this question by coupling the imaging process with the estimation of the medium's large scale features. Our algorithms rely on the residual coherence in the data. When the coherent signal is too weak, the CINT results are unsatisfactory. We propose two ways for enhancing the resolution of CINT: filter the data prior to imaging (noise reduction) and waveform design (optimize the source distribution). Finally, we propose to extend the applicability of our imaging-in-clutter methodologies by investigating the possibility of utilizing ambient noise sources to perform passive sensor imaging, as well as by studying the imaging problem in random waveguides.
Summary
The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Our results are expected to have a strong impact in a wide range of applications, including underwater acoustics, exploration geophysics and ultrasound non-destructive testing. Our machinery is coherent interferometry (CINT), a state-of-the-art statistically stable imaging methodology, highly suitable for the development of imaging methods in clutter. We aim to extend CINT along two complementary directions: novel types of applications, and further mathematical and numerical development so as to assess and extend its range of applicability. CINT is designed for imaging with partially coherent array data recorded in richly scattering media. It uses statistical smoothing techniques to obtain results that are independent of the clutter realization. Quantifying the amount of smoothing needed is difficult, especially when there is no a priori knowledge about the propagation medium. We intend to address this question by coupling the imaging process with the estimation of the medium's large scale features. Our algorithms rely on the residual coherence in the data. When the coherent signal is too weak, the CINT results are unsatisfactory. We propose two ways for enhancing the resolution of CINT: filter the data prior to imaging (noise reduction) and waveform design (optimize the source distribution). Finally, we propose to extend the applicability of our imaging-in-clutter methodologies by investigating the possibility of utilizing ambient noise sources to perform passive sensor imaging, as well as by studying the imaging problem in random waveguides.
Max ERC Funding
690 000 €
Duration
Start date: 2010-06-01, End date: 2015-11-30
Project acronym ADDICTION
Project Beyond the Genetics of Addiction
Researcher (PI) Jacqueline Mignon Vink
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Starting Grant (StG), SH4, ERC-2011-StG_20101124
Summary My proposal seeks to explain the complex interplay between genetic and environmental causes of individual variation in substance use and the risk for abuse. Substance use is common. Substances like nicotine and cannabis have well-known negative health consequences, while alcohol and caffeine use may be both beneficial and detrimental, depending on quantity and frequency of use. Twin studies (including my own) demonstrated that both heritable and environmental factors play a role.
My proposal on substance use (nicotine, alcohol, cannabis and caffeine) is organized around several key objectives: 1. To unravel the complex contribution of genetic and environmental factors to substance use by using extended twin family designs; 2. To identify and confirm genes and gene networks involved in substance use by using DNA-variant data; 3. To explore gene expression patterns with RNA data in substance users versus non-users; 4. To investigate biomarkers in substance users versus non-users using blood or urine; 5. To unravel relation between substance use and health by linking twin-family data to national medical databases.
To realize these aims I will use the extensive resources of the Netherlands Twin Register (NTR); including both the longitudinal phenotype database and the biological samples. I have been involved in data collection, coordination of data collection and analyzing NTR data since 1999. With my comprehensive experience in data collection, data analyses and my knowledge in the field of behavior genetics and addiction research I will be able to successfully lead this cutting-edge project. Additional data crucial for the project will be collected by my team. Large samples will be available for this study and state-of-the art methods will be used to analyze the data. All together, my project will offer powerful approaches to unravel the complex interaction between genetic and environmental causes of individual differences in substance use and the risk for abuse.
Summary
My proposal seeks to explain the complex interplay between genetic and environmental causes of individual variation in substance use and the risk for abuse. Substance use is common. Substances like nicotine and cannabis have well-known negative health consequences, while alcohol and caffeine use may be both beneficial and detrimental, depending on quantity and frequency of use. Twin studies (including my own) demonstrated that both heritable and environmental factors play a role.
My proposal on substance use (nicotine, alcohol, cannabis and caffeine) is organized around several key objectives: 1. To unravel the complex contribution of genetic and environmental factors to substance use by using extended twin family designs; 2. To identify and confirm genes and gene networks involved in substance use by using DNA-variant data; 3. To explore gene expression patterns with RNA data in substance users versus non-users; 4. To investigate biomarkers in substance users versus non-users using blood or urine; 5. To unravel relation between substance use and health by linking twin-family data to national medical databases.
To realize these aims I will use the extensive resources of the Netherlands Twin Register (NTR); including both the longitudinal phenotype database and the biological samples. I have been involved in data collection, coordination of data collection and analyzing NTR data since 1999. With my comprehensive experience in data collection, data analyses and my knowledge in the field of behavior genetics and addiction research I will be able to successfully lead this cutting-edge project. Additional data crucial for the project will be collected by my team. Large samples will be available for this study and state-of-the art methods will be used to analyze the data. All together, my project will offer powerful approaches to unravel the complex interaction between genetic and environmental causes of individual differences in substance use and the risk for abuse.
Max ERC Funding
1 491 964 €
Duration
Start date: 2011-12-01, End date: 2017-05-31
Project acronym AF and MSOGR
Project Automorphic Forms and Moduli Spaces of Galois Representations
Researcher (PI) Toby Gee
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.
The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.
The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.
Summary
I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.
The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.
The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.
Max ERC Funding
1 131 339 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym AFDMATS
Project Anton Francesco Doni – Multimedia Archive Texts and Sources
Researcher (PI) Giovanna Rizzarelli
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This project aims at creating a multimedia archive of the printed works of Anton Francesco Doni, who was not only an author but also a typographer, a publisher and a member of the Giolito and Marcolini’s editorial staff. The analysis of Doni’s work may be a good way to investigate appropriation, text rewriting and image reusing practices which are typical of several authors of the 16th Century, as clearly shown by the critics in the last decades. This project intends to bring to light the wide range of impulses from which Doni’s texts are generated, with a great emphasis on the figurative aspect. The encoding of these texts will be carried out using the TEI (Text Encoding Initiative) guidelines, which will enable any single text to interact with a range of intertextual references both at a local level (inside the same text) and at a macrostructural level (references to other texts by Doni or to other authors). The elements that will emerge from the textual encoding concern: A) The use of images Real images: the complex relation between Doni’s writing and the xylographies available in Marcolini’s printing-house or belonging to other collections. Mental images: the remarkable presence of verbal images, as descriptions, ekphràseis, figurative visions, dreams and iconographic allusions not accompanied by illustrations, but related to a recognizable visual repertoire or to real images that will be reproduced. B) The use of sources A parallel archive of the texts most used by Doni will be created. Digital anastatic reproductions of the 16th-Century editions known by Doni will be provided whenever available. The various forms of intertextuality will be divided into the following typologies: allusions; citations; rewritings; plagiarisms; self-quotations. Finally, the different forms of narrative (tales, short stories, anecdotes, lyrics) and the different idiomatic expressions (proverbial forms and wellerisms) will also be encoded.
Summary
This project aims at creating a multimedia archive of the printed works of Anton Francesco Doni, who was not only an author but also a typographer, a publisher and a member of the Giolito and Marcolini’s editorial staff. The analysis of Doni’s work may be a good way to investigate appropriation, text rewriting and image reusing practices which are typical of several authors of the 16th Century, as clearly shown by the critics in the last decades. This project intends to bring to light the wide range of impulses from which Doni’s texts are generated, with a great emphasis on the figurative aspect. The encoding of these texts will be carried out using the TEI (Text Encoding Initiative) guidelines, which will enable any single text to interact with a range of intertextual references both at a local level (inside the same text) and at a macrostructural level (references to other texts by Doni or to other authors). The elements that will emerge from the textual encoding concern: A) The use of images Real images: the complex relation between Doni’s writing and the xylographies available in Marcolini’s printing-house or belonging to other collections. Mental images: the remarkable presence of verbal images, as descriptions, ekphràseis, figurative visions, dreams and iconographic allusions not accompanied by illustrations, but related to a recognizable visual repertoire or to real images that will be reproduced. B) The use of sources A parallel archive of the texts most used by Doni will be created. Digital anastatic reproductions of the 16th-Century editions known by Doni will be provided whenever available. The various forms of intertextuality will be divided into the following typologies: allusions; citations; rewritings; plagiarisms; self-quotations. Finally, the different forms of narrative (tales, short stories, anecdotes, lyrics) and the different idiomatic expressions (proverbial forms and wellerisms) will also be encoded.
Max ERC Funding
559 200 €
Duration
Start date: 2008-08-01, End date: 2012-07-31
Project acronym AFFORDS-HIGHER
Project Skilled Intentionality for 'Higher' Embodied Cognition: Joining forces with a field of affordances in flux
Researcher (PI) Dirk Willem Rietveld
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), SH4, ERC-2015-STG
Summary In many situations experts act adequately, yet without deliberation. Architects e.g, immediately sense opportunities offered by the site of a new project. One could label these manifestations of expert intuition as ‘higher-level’ cognition, but still these experts act unreflectively. The aim of my project is to develop the Skilled Intentionality Framework (SIF), a new conceptual framework for the field of embodied/enactive cognitive science (Chemero, 2009; Thompson, 2007). I argue that affordances - possibilities for action provided by our surroundings - are highly significant in cases of unreflective and reflective ‘higher’ cognition. Skilled Intentionality is skilled coordination with multiple affordances simultaneously.
The two central ideas behind this proposal are (a) that episodes of skilled ‘higher’ cognition can be understood as responsiveness to affordances for ‘higher’ cognition and (b) that our surroundings are highly resourceful and contribute to skillful action and cognition in a far more fundamental way than is generally acknowledged. I use embedded philosophical research in a particular practice of architecture to shed new light on the ways in which affordances for ‘higher’ cognition support creative imagination, anticipation, explicit planning and self-reflection.
The Skilled Intentionality Framework is groundbreaking in relating findings established at several complementary levels of analysis: philosophy/phenomenology, ecological psychology, affective science and neurodynamics.
Empirical findings thought to be exclusively valid for everyday unreflective action can now be used to explain skilled ‘higher’ cognition as well. Moreover, SIF brings both the context and the social back into cognitive science. I will show SIF’s relevance for Friston’s work on the anticipating brain, and apply it in the domain of architecture and public health. SIF will radically widen the scope of the increasingly influential field of embodied cognitive science.
Summary
In many situations experts act adequately, yet without deliberation. Architects e.g, immediately sense opportunities offered by the site of a new project. One could label these manifestations of expert intuition as ‘higher-level’ cognition, but still these experts act unreflectively. The aim of my project is to develop the Skilled Intentionality Framework (SIF), a new conceptual framework for the field of embodied/enactive cognitive science (Chemero, 2009; Thompson, 2007). I argue that affordances - possibilities for action provided by our surroundings - are highly significant in cases of unreflective and reflective ‘higher’ cognition. Skilled Intentionality is skilled coordination with multiple affordances simultaneously.
The two central ideas behind this proposal are (a) that episodes of skilled ‘higher’ cognition can be understood as responsiveness to affordances for ‘higher’ cognition and (b) that our surroundings are highly resourceful and contribute to skillful action and cognition in a far more fundamental way than is generally acknowledged. I use embedded philosophical research in a particular practice of architecture to shed new light on the ways in which affordances for ‘higher’ cognition support creative imagination, anticipation, explicit planning and self-reflection.
The Skilled Intentionality Framework is groundbreaking in relating findings established at several complementary levels of analysis: philosophy/phenomenology, ecological psychology, affective science and neurodynamics.
Empirical findings thought to be exclusively valid for everyday unreflective action can now be used to explain skilled ‘higher’ cognition as well. Moreover, SIF brings both the context and the social back into cognitive science. I will show SIF’s relevance for Friston’s work on the anticipating brain, and apply it in the domain of architecture and public health. SIF will radically widen the scope of the increasingly influential field of embodied cognitive science.
Max ERC Funding
1 499 850 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym AGALT
Project Asymptotic Geometric Analysis and Learning Theory
Researcher (PI) Shahar Mendelson
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary In a typical learning problem one tries to approximate an unknown function by a function from a given class using random data, sampled according to an unknown measure. In this project we will be interested in parameters that govern the complexity of a learning problem. It turns out that this complexity is determined by the geometry of certain sets in high dimension that are connected to the given class (random coordinate projections of the class). Thus, one has to understand the structure of these sets as a function of the dimension - which is given by the cardinality of the random sample. The resulting analysis leads to many theoretical questions in Asymptotic Geometric Analysis, Probability (most notably, Empirical Processes Theory) and Combinatorics, which are of independent interest beyond the application to Learning Theory. Our main goal is to describe the role of various complexity parameters involved in a learning problem, to analyze the connections between them and to investigate the way they determine the geometry of the relevant high dimensional sets. Some of the questions we intend to tackle are well known open problems and making progress towards their solution will have a significant theoretical impact. Moreover, this project should lead to a more complete theory of learning and is likely to have some practical impact, for example, in the design of more efficient learning algorithms.
Summary
In a typical learning problem one tries to approximate an unknown function by a function from a given class using random data, sampled according to an unknown measure. In this project we will be interested in parameters that govern the complexity of a learning problem. It turns out that this complexity is determined by the geometry of certain sets in high dimension that are connected to the given class (random coordinate projections of the class). Thus, one has to understand the structure of these sets as a function of the dimension - which is given by the cardinality of the random sample. The resulting analysis leads to many theoretical questions in Asymptotic Geometric Analysis, Probability (most notably, Empirical Processes Theory) and Combinatorics, which are of independent interest beyond the application to Learning Theory. Our main goal is to describe the role of various complexity parameters involved in a learning problem, to analyze the connections between them and to investigate the way they determine the geometry of the relevant high dimensional sets. Some of the questions we intend to tackle are well known open problems and making progress towards their solution will have a significant theoretical impact. Moreover, this project should lead to a more complete theory of learning and is likely to have some practical impact, for example, in the design of more efficient learning algorithms.
Max ERC Funding
750 000 €
Duration
Start date: 2009-03-01, End date: 2014-02-28
Project acronym AlgTateGro
Project Constructing line bundles on algebraic varieties --around conjectures of Tate and Grothendieck
Researcher (PI) François CHARLES
Host Institution (HI) UNIVERSITE PARIS-SUD
Call Details Starting Grant (StG), PE1, ERC-2016-STG
Summary The goal of this project is to investigate two conjectures in arithmetic geometry pertaining to the geometry of projective varieties over finite and number fields. These two conjectures, formulated by Tate and Grothendieck in the 1960s, predict which cohomology classes are chern classes of line bundles. They both form an arithmetic counterpart of a theorem of Lefschetz, proved in the 1940s, which itself is the only known case of the Hodge conjecture. These two long-standing conjectures are one of the aspects of a more general web of questions regarding the topology of algebraic varieties which have been emphasized by Grothendieck and have since had a central role in modern arithmetic geometry. Special cases of these conjectures, appearing for instance in the work of Tate, Deligne, Faltings, Schneider-Lang, Masser-Wüstholz, have all had important consequences.
My goal is to investigate different lines of attack towards these conjectures, building on recent work on myself and Jean-Benoît Bost on related problems. The two main directions of the proposal are as follows. Over finite fields, the Tate conjecture is related to finiteness results for certain cohomological objects. I want to understand how to relate these to hidden boundedness properties of algebraic varieties that have appeared in my recent geometric proof of the Tate conjecture for K3 surfaces. The existence and relevance of a theory of Donaldson invariants for moduli spaces of twisted sheaves over finite fields seems to be a promising and novel direction. Over number fields, I want to combine the geometric insight above with algebraization techniques developed by Bost. In a joint project, we want to investigate how these can be used to first understand geometrically major results in transcendence theory and then attack the Grothendieck period conjecture for divisors via a number-theoretic and complex-analytic understanding of universal vector extensions of abelian schemes over curves.
Summary
The goal of this project is to investigate two conjectures in arithmetic geometry pertaining to the geometry of projective varieties over finite and number fields. These two conjectures, formulated by Tate and Grothendieck in the 1960s, predict which cohomology classes are chern classes of line bundles. They both form an arithmetic counterpart of a theorem of Lefschetz, proved in the 1940s, which itself is the only known case of the Hodge conjecture. These two long-standing conjectures are one of the aspects of a more general web of questions regarding the topology of algebraic varieties which have been emphasized by Grothendieck and have since had a central role in modern arithmetic geometry. Special cases of these conjectures, appearing for instance in the work of Tate, Deligne, Faltings, Schneider-Lang, Masser-Wüstholz, have all had important consequences.
My goal is to investigate different lines of attack towards these conjectures, building on recent work on myself and Jean-Benoît Bost on related problems. The two main directions of the proposal are as follows. Over finite fields, the Tate conjecture is related to finiteness results for certain cohomological objects. I want to understand how to relate these to hidden boundedness properties of algebraic varieties that have appeared in my recent geometric proof of the Tate conjecture for K3 surfaces. The existence and relevance of a theory of Donaldson invariants for moduli spaces of twisted sheaves over finite fields seems to be a promising and novel direction. Over number fields, I want to combine the geometric insight above with algebraization techniques developed by Bost. In a joint project, we want to investigate how these can be used to first understand geometrically major results in transcendence theory and then attack the Grothendieck period conjecture for divisors via a number-theoretic and complex-analytic understanding of universal vector extensions of abelian schemes over curves.
Max ERC Funding
1 222 329 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym altEJrepair
Project Characterisation of DNA Double-Strand Break Repair by Alternative End-Joining: Potential Targets for Cancer Therapy
Researcher (PI) Raphael CECCALDI
Host Institution (HI) INSTITUT CURIE
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary DNA repair pathways evolved as an intricate network that senses DNA damage and resolves it in order to minimise genetic lesions and thus preventing tumour formation. Gaining in recognition the last few years, the alternative end-joining (alt-EJ) DNA repair pathway was recently shown to be up-regulated and required for cancer cell viability in the absence of homologous recombination-mediated repair (HR). Despite this integral role, the alt-EJ repair pathway remains poorly characterised in humans. As such, its molecular composition, regulation and crosstalk with HR and other repair pathways remain elusive. Additionally, the contribution of the alt-EJ pathway to tumour progression as well as the identification of a mutational signature associated with the use of alt-EJ has not yet been investigated. Moreover, the clinical relevance of developing small-molecule inhibitors targeting players in the alt-EJ pathway, such as the polymerase Pol Theta (Polθ), is of importance as current anticancer drug treatments have shown limited effectiveness in achieving cancer remission in patients with HR-deficient (HRD) tumours.
Here, we propose a novel, multidisciplinary approach that aims to characterise the players and mechanisms of action involved in the utilisation of alt-EJ in cancer. This understanding will better elucidate the changing interplay between different DNA repair pathways, thus shedding light on whether and how the use of alt-EJ contributes to the pathogenic history and survival of HRD tumours, eventually paving the way for the development of novel anticancer therapeutics.
For all the abovementioned reasons, we are convinced this project will have important implications in: 1) elucidating critical interconnections between DNA repair pathways, 2) improving the basic understanding of the composition, regulation and function of the alt-EJ pathway, and 3) facilitating the development of new synthetic lethality-based chemotherapeutics for the treatment of HRD tumours.
Summary
DNA repair pathways evolved as an intricate network that senses DNA damage and resolves it in order to minimise genetic lesions and thus preventing tumour formation. Gaining in recognition the last few years, the alternative end-joining (alt-EJ) DNA repair pathway was recently shown to be up-regulated and required for cancer cell viability in the absence of homologous recombination-mediated repair (HR). Despite this integral role, the alt-EJ repair pathway remains poorly characterised in humans. As such, its molecular composition, regulation and crosstalk with HR and other repair pathways remain elusive. Additionally, the contribution of the alt-EJ pathway to tumour progression as well as the identification of a mutational signature associated with the use of alt-EJ has not yet been investigated. Moreover, the clinical relevance of developing small-molecule inhibitors targeting players in the alt-EJ pathway, such as the polymerase Pol Theta (Polθ), is of importance as current anticancer drug treatments have shown limited effectiveness in achieving cancer remission in patients with HR-deficient (HRD) tumours.
Here, we propose a novel, multidisciplinary approach that aims to characterise the players and mechanisms of action involved in the utilisation of alt-EJ in cancer. This understanding will better elucidate the changing interplay between different DNA repair pathways, thus shedding light on whether and how the use of alt-EJ contributes to the pathogenic history and survival of HRD tumours, eventually paving the way for the development of novel anticancer therapeutics.
For all the abovementioned reasons, we are convinced this project will have important implications in: 1) elucidating critical interconnections between DNA repair pathways, 2) improving the basic understanding of the composition, regulation and function of the alt-EJ pathway, and 3) facilitating the development of new synthetic lethality-based chemotherapeutics for the treatment of HRD tumours.
Max ERC Funding
1 498 750 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym AMORE
Project A distributional MOdel of Reference to Entities
Researcher (PI) Gemma BOLEDA TORRENT
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary "When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Summary
"When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Max ERC Funding
1 499 805 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym ANADEL
Project Analysis of Geometrical Effects on Dispersive Equations
Researcher (PI) Danela Oana IVANOVICI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE1, ERC-2017-STG
Summary We are concerned with localization properties of solutions to hyperbolic PDEs, especially problems with a geometric component: how do boundaries and heterogeneous media influence spreading and concentration of solutions. While our first focus is on wave and Schrödinger equations on manifolds with boundary, strong connections exist with phase space localization for (clusters of) eigenfunctions, which are of independent interest. Motivations come from nonlinear dispersive models (in physically relevant settings), properties of eigenfunctions in quantum chaos (related to both physics of optic fiber design as well as number theoretic questions), or harmonic analysis on manifolds.
Waves propagation in real life physics occur in media which are neither homogeneous or spatially infinity. The birth of radar/sonar technologies (and the raise of computed tomography) greatly motivated numerous developments in microlocal analysis and the linear theory. Only recently toy nonlinear models have been studied on a curved background, sometimes compact or rough. Understanding how to extend such tools, dealing with wave dispersion or focusing, will allow us to significantly progress in our mathematical understanding of physically relevant models. There, boundaries appear naturally and most earlier developments related to propagation of singularities in this context have limited scope with respect to crucial dispersive effects. Despite great progress over the last decade, driven by the study of quasilinear equations, our knowledge is still very limited. Going beyond this recent activity requires new tools whose development is at the heart of this proposal, including good approximate solutions (parametrices) going over arbitrarily large numbers of caustics, sharp pointwise bounds on Green functions, development of efficient wave packets methods, quantitative refinements of propagation of singularities (with direct applications in control theory), only to name a few important ones.
Summary
We are concerned with localization properties of solutions to hyperbolic PDEs, especially problems with a geometric component: how do boundaries and heterogeneous media influence spreading and concentration of solutions. While our first focus is on wave and Schrödinger equations on manifolds with boundary, strong connections exist with phase space localization for (clusters of) eigenfunctions, which are of independent interest. Motivations come from nonlinear dispersive models (in physically relevant settings), properties of eigenfunctions in quantum chaos (related to both physics of optic fiber design as well as number theoretic questions), or harmonic analysis on manifolds.
Waves propagation in real life physics occur in media which are neither homogeneous or spatially infinity. The birth of radar/sonar technologies (and the raise of computed tomography) greatly motivated numerous developments in microlocal analysis and the linear theory. Only recently toy nonlinear models have been studied on a curved background, sometimes compact or rough. Understanding how to extend such tools, dealing with wave dispersion or focusing, will allow us to significantly progress in our mathematical understanding of physically relevant models. There, boundaries appear naturally and most earlier developments related to propagation of singularities in this context have limited scope with respect to crucial dispersive effects. Despite great progress over the last decade, driven by the study of quasilinear equations, our knowledge is still very limited. Going beyond this recent activity requires new tools whose development is at the heart of this proposal, including good approximate solutions (parametrices) going over arbitrarily large numbers of caustics, sharp pointwise bounds on Green functions, development of efficient wave packets methods, quantitative refinements of propagation of singularities (with direct applications in control theory), only to name a few important ones.
Max ERC Funding
1 293 763 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ANALYTIC
Project ANALYTIC PROPERTIES OF INFINITE GROUPS:
limits, curvature, and randomness
Researcher (PI) Gulnara Arzhantseva
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The overall goal of this project is to develop new concepts and techniques in geometric and asymptotic group theory for a systematic study of the analytic properties of discrete groups. These are properties depending on the unitary representation theory of the group. The fundamental examples are amenability, discovered by von Neumann in 1929, and property (T), introduced by Kazhdan in 1967.
My main objective is to establish the precise relations between groups recently appeared in K-theory and topology such as C*-exact groups and groups coarsely embeddable into a Hilbert space, versus those discovered in ergodic theory and operator algebra, for example, sofic and hyperlinear groups. This is a first ever attempt to confront the analytic behavior of so different nature. I plan to work on crucial open questions: Is every coarsely embeddable group C*-exact? Is every group sofic? Is every hyperlinear group sofic?
My motivation is two-fold:
- Many outstanding conjectures were recently solved for these groups, e.g. the Novikov conjecture (1965) for coarsely embeddable groups by Yu in 2000 and the Gottschalk surjunctivity conjecture (1973) for sofic groups by Gromov in 1999. However, their group-theoretical structure remains mysterious.
- In recent years, geometric group theory has undergone significant changes, mainly due to the growing impact of this theory on other branches of mathematics. However, the interplay between geometric, asymptotic, and analytic group properties has not yet been fully understood.
The main innovative contribution of this proposal lies in the interaction between 3 axes: (i) limits of groups, in the space of marked groups or metric ultralimits; (ii) analytic properties of groups with curvature, of lacunary or relatively hyperbolic groups; (iii) random groups, in a topological or statistical meaning. As a result, I will describe the above apparently unrelated classes of groups in a unified way and will detail their algebraic behavior.
Summary
The overall goal of this project is to develop new concepts and techniques in geometric and asymptotic group theory for a systematic study of the analytic properties of discrete groups. These are properties depending on the unitary representation theory of the group. The fundamental examples are amenability, discovered by von Neumann in 1929, and property (T), introduced by Kazhdan in 1967.
My main objective is to establish the precise relations between groups recently appeared in K-theory and topology such as C*-exact groups and groups coarsely embeddable into a Hilbert space, versus those discovered in ergodic theory and operator algebra, for example, sofic and hyperlinear groups. This is a first ever attempt to confront the analytic behavior of so different nature. I plan to work on crucial open questions: Is every coarsely embeddable group C*-exact? Is every group sofic? Is every hyperlinear group sofic?
My motivation is two-fold:
- Many outstanding conjectures were recently solved for these groups, e.g. the Novikov conjecture (1965) for coarsely embeddable groups by Yu in 2000 and the Gottschalk surjunctivity conjecture (1973) for sofic groups by Gromov in 1999. However, their group-theoretical structure remains mysterious.
- In recent years, geometric group theory has undergone significant changes, mainly due to the growing impact of this theory on other branches of mathematics. However, the interplay between geometric, asymptotic, and analytic group properties has not yet been fully understood.
The main innovative contribution of this proposal lies in the interaction between 3 axes: (i) limits of groups, in the space of marked groups or metric ultralimits; (ii) analytic properties of groups with curvature, of lacunary or relatively hyperbolic groups; (iii) random groups, in a topological or statistical meaning. As a result, I will describe the above apparently unrelated classes of groups in a unified way and will detail their algebraic behavior.
Max ERC Funding
1 065 500 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym ANOPTSETCON
Project Analysis of optimal sets and optimal constants: old questions and new results
Researcher (PI) Aldo Pratelli
Host Institution (HI) FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The analysis of geometric and functional inequalities naturally leads to consider the extremal cases, thus
looking for optimal sets, or optimal functions, or optimal constants. The most classical examples are the (different versions of the) isoperimetric inequality and the Sobolev-like inequalities. Much is known about equality cases and best constants, but there are still many questions which seem quite natural but yet have no answer. For instance, it is not known, even in the 2-dimensional space, the answer of a question by Brezis: which set,
among those with a given volume, has the biggest Sobolev-Poincaré constant for p=1? This is a very natural problem, and it appears reasonable that the optimal set should be the ball, but this has never been proved. The interest in problems like this relies not only in the extreme simplicity of the questions and in their classical flavour, but also in the new ideas and techniques which are needed to provide the answers.
The main techniques that we aim to use are fine arguments of symmetrization, geometric constructions and tools from mass transportation (which is well known to be deeply connected with functional inequalities). These are the basic tools that we already used to reach, in last years, many results in a specific direction, namely the search of sharp quantitative inequalities. Our first result, together with Fusco and Maggi, showed what follows. Everybody knows that the set which minimizes the perimeter with given volume is the ball.
But is it true that a set which almost minimizes the perimeter must be close to a ball? The question had been posed in the 1920's and many partial result appeared in the years. In our paper (Ann. of Math., 2007) we proved the sharp result. Many other results of this kind were obtained in last two years.
Summary
The analysis of geometric and functional inequalities naturally leads to consider the extremal cases, thus
looking for optimal sets, or optimal functions, or optimal constants. The most classical examples are the (different versions of the) isoperimetric inequality and the Sobolev-like inequalities. Much is known about equality cases and best constants, but there are still many questions which seem quite natural but yet have no answer. For instance, it is not known, even in the 2-dimensional space, the answer of a question by Brezis: which set,
among those with a given volume, has the biggest Sobolev-Poincaré constant for p=1? This is a very natural problem, and it appears reasonable that the optimal set should be the ball, but this has never been proved. The interest in problems like this relies not only in the extreme simplicity of the questions and in their classical flavour, but also in the new ideas and techniques which are needed to provide the answers.
The main techniques that we aim to use are fine arguments of symmetrization, geometric constructions and tools from mass transportation (which is well known to be deeply connected with functional inequalities). These are the basic tools that we already used to reach, in last years, many results in a specific direction, namely the search of sharp quantitative inequalities. Our first result, together with Fusco and Maggi, showed what follows. Everybody knows that the set which minimizes the perimeter with given volume is the ball.
But is it true that a set which almost minimizes the perimeter must be close to a ball? The question had been posed in the 1920's and many partial result appeared in the years. In our paper (Ann. of Math., 2007) we proved the sharp result. Many other results of this kind were obtained in last two years.
Max ERC Funding
540 000 €
Duration
Start date: 2010-08-01, End date: 2015-07-31
Project acronym ANPROB
Project Analytic-probabilistic methods for borderline singular integrals
Researcher (PI) Tuomas Pentinpoika Hytönen
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE1, ERC-2011-StG_20101014
Summary The proposal consists of an extensive research program to advance the understanding of singular integral operators of Harmonic Analysis in various situations on the borderline of the existing theory. This is to be achieved by a creative combination of techniques from Analysis and Probability. On top of the standard arsenal of modern Harmonic Analysis, the main probabilistic tools are the martingale transform inequalities of Burkholder, and random geometric constructions in the spirit of the random dyadic cubes introduced to Nonhomogeneous Analysis by Nazarov, Treil and Volberg.
The problems to be addressed fall under the following subtitles, with many interconnections and overlap: (i) sharp weighted inequalities; (ii) nonhomogeneous singular integrals on metric spaces; (iii) local Tb theorems with borderline assumptions; (iv) functional calculus of rough differential operators; and (v) vector-valued singular integrals.
Topic (i) is a part of Classical Analysis, where new methods have led to substantial recent progress, culminating in my solution in July 2010 of a celebrated problem on the linear dependence of the weighted operator norm on the Muckenhoupt norm of the weight. The proof should be extendible to several related questions, and the aim is to also address some outstanding open problems in the area.
Topics (ii) and (v) deal with extensions of the theory of singular integrals to functions with more general domain and range spaces, allowing them to be abstract metric and Banach spaces, respectively. In case (ii), I have recently been able to relax the requirements on the space compared to the established theories, opening a new research direction here. Topics (iii) and (iv) are concerned with weakening the assumptions on singular integrals in the usual Euclidean space, to allow certain applications in the theory of Partial Differential Equations. The goal is to maintain a close contact and exchange of ideas between such abstract and concrete questions.
Summary
The proposal consists of an extensive research program to advance the understanding of singular integral operators of Harmonic Analysis in various situations on the borderline of the existing theory. This is to be achieved by a creative combination of techniques from Analysis and Probability. On top of the standard arsenal of modern Harmonic Analysis, the main probabilistic tools are the martingale transform inequalities of Burkholder, and random geometric constructions in the spirit of the random dyadic cubes introduced to Nonhomogeneous Analysis by Nazarov, Treil and Volberg.
The problems to be addressed fall under the following subtitles, with many interconnections and overlap: (i) sharp weighted inequalities; (ii) nonhomogeneous singular integrals on metric spaces; (iii) local Tb theorems with borderline assumptions; (iv) functional calculus of rough differential operators; and (v) vector-valued singular integrals.
Topic (i) is a part of Classical Analysis, where new methods have led to substantial recent progress, culminating in my solution in July 2010 of a celebrated problem on the linear dependence of the weighted operator norm on the Muckenhoupt norm of the weight. The proof should be extendible to several related questions, and the aim is to also address some outstanding open problems in the area.
Topics (ii) and (v) deal with extensions of the theory of singular integrals to functions with more general domain and range spaces, allowing them to be abstract metric and Banach spaces, respectively. In case (ii), I have recently been able to relax the requirements on the space compared to the established theories, opening a new research direction here. Topics (iii) and (iv) are concerned with weakening the assumptions on singular integrals in the usual Euclidean space, to allow certain applications in the theory of Partial Differential Equations. The goal is to maintain a close contact and exchange of ideas between such abstract and concrete questions.
Max ERC Funding
1 100 000 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym ANTHOS
Project Analytic Number Theory: Higher Order Structures
Researcher (PI) Valentin Blomer
Host Institution (HI) GEORG-AUGUST-UNIVERSITAT GOTTINGENSTIFTUNG OFFENTLICHEN RECHTS
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary This is a proposal for research at the interface of analytic number theory, automorphic forms and algebraic geometry. Motivated by fundamental conjectures in number theory, classical problems will be investigated in higher order situations: general number fields, automorphic forms on higher rank groups, the arithmetic of algebraic varieties of higher degree. In particular, I want to focus on
- computation of moments of L-function of degree 3 and higher with applications to subconvexity and/or non-vanishing, as well as subconvexity for multiple L-functions;
- bounds for sup-norms of cusp forms on various spaces and equidistribution of Hecke correspondences;
- automorphic forms on higher rank groups and general number fields, in particular new bounds towards the Ramanujan conjecture;
- a proof of Manin's conjecture for a certain class of singular algebraic varieties.
The underlying methods are closely related; for example, rational points on algebraic varieties
will be counted by a multiple L-series technique.
Summary
This is a proposal for research at the interface of analytic number theory, automorphic forms and algebraic geometry. Motivated by fundamental conjectures in number theory, classical problems will be investigated in higher order situations: general number fields, automorphic forms on higher rank groups, the arithmetic of algebraic varieties of higher degree. In particular, I want to focus on
- computation of moments of L-function of degree 3 and higher with applications to subconvexity and/or non-vanishing, as well as subconvexity for multiple L-functions;
- bounds for sup-norms of cusp forms on various spaces and equidistribution of Hecke correspondences;
- automorphic forms on higher rank groups and general number fields, in particular new bounds towards the Ramanujan conjecture;
- a proof of Manin's conjecture for a certain class of singular algebraic varieties.
The underlying methods are closely related; for example, rational points on algebraic varieties
will be counted by a multiple L-series technique.
Max ERC Funding
1 004 000 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym ApeAttachment
Project Are social skills determined by early live experiences?
Researcher (PI) Catherine Delia Crockford
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), SH4, ERC-2015-STG
Summary Social bonding success in life impacts on health, survival and fitness. It is proposed that early and later social experience as well as heritable factors determine social bonding abilities in adulthood, although the relative influence of each is unclear. In humans, the resulting uncertainty likely impedes psychological and psychiatric assessment and therapy. One problem hampering progress for human studies is that social bonding success is hard to objectively quantify, particularly in adults. I propose to directly address this problem by determining the key influences on social bonding abilities in chimpanzees, our closest living relative, where social bonding success can be objectively quantified, and is defined as number of affiliative relationships maintained over time with high rates of affiliation.
Objectives. This project will quantify the relative impact of early and later social experience as well as heritable factors on social hormone levels, social cognition and social bonding success in 270 wild and captive chimpanzees, using both cohort and longitudinal data. This will reveal the degree of plasticity in social cognition and bonding behaviour throughout life. Finally, it will evaluate the potential for using endogenous hormone levels as non-invasive biomarkers of social bonding success, as well as identifying social contexts that act as strong natural social hormone releasers.
Outcomes. This project will expose what makes some better at social bonding than others. Specifically, it will show the extent to which later social experience can compensate for early social experience or heritable factors in terms of adult social bonding success, the latter being a key factor in determining health and happiness in life. This project also offers the potential for using hormonal biomarkers in clincial settings, as objective assessment of changes in relationships over time, and in therapy by engaging in social behaviours that act as strong social hormone releasers.
Summary
Social bonding success in life impacts on health, survival and fitness. It is proposed that early and later social experience as well as heritable factors determine social bonding abilities in adulthood, although the relative influence of each is unclear. In humans, the resulting uncertainty likely impedes psychological and psychiatric assessment and therapy. One problem hampering progress for human studies is that social bonding success is hard to objectively quantify, particularly in adults. I propose to directly address this problem by determining the key influences on social bonding abilities in chimpanzees, our closest living relative, where social bonding success can be objectively quantified, and is defined as number of affiliative relationships maintained over time with high rates of affiliation.
Objectives. This project will quantify the relative impact of early and later social experience as well as heritable factors on social hormone levels, social cognition and social bonding success in 270 wild and captive chimpanzees, using both cohort and longitudinal data. This will reveal the degree of plasticity in social cognition and bonding behaviour throughout life. Finally, it will evaluate the potential for using endogenous hormone levels as non-invasive biomarkers of social bonding success, as well as identifying social contexts that act as strong natural social hormone releasers.
Outcomes. This project will expose what makes some better at social bonding than others. Specifically, it will show the extent to which later social experience can compensate for early social experience or heritable factors in terms of adult social bonding success, the latter being a key factor in determining health and happiness in life. This project also offers the potential for using hormonal biomarkers in clincial settings, as objective assessment of changes in relationships over time, and in therapy by engaging in social behaviours that act as strong social hormone releasers.
Max ERC Funding
1 495 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym APGRAPH
Project Asymptotic Graph Properties
Researcher (PI) Deryk Osthus
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary Many parts of Graph Theory have witnessed a huge growth over the last years, partly because of their relation to Theoretical Computer Science and Statistical Physics. These connections arise because graphs can be used to model many diverse structures.
The focus of this proposal is on asymptotic results, i.e. the graphs under consideration are large. This often unveils patterns and connections which remain obscure when considering only small graphs.
It also allows for the use of powerful techniques such as probabilistic arguments, which have led to spectacular new developments. In particular, my aim is to make decisive progress on central problems in the following 4 areas:
(1) Factorizations: Factorizations of graphs can be viewed as partitions of the edges of a graph into simple regular structures. They have a rich history and arise in many different settings, such as edge-colouring problems, decomposition problems and in information theory. They also have applications to finding good tours for the famous Travelling salesman problem.
(2) Hamilton cycles: A Hamilton cycle is a cycle which contains all the vertices of the graph. One of the most fundamental problems in Graph Theory/Theoretical Computer Science is to find conditions which guarantee the existence of a Hamilton cycle in a graph.
(3) Embeddings of graphs: This is a natural (but difficult) continuation of the previous question where the aim is to embed more general structures than Hamilton cycles - there has been exciting progress here in recent years which has opened up new avenues.
(4) Resilience of graphs: In many cases, it is important to know whether a graph `strongly’ possesses some property, i.e. one cannot destroy the property by changing a few edges. The systematic study of this notion is a new and rapidly growing area.
I have developed new methods for deep and long-standing problems in these areas which will certainly lead to further applications elsewhere.
Summary
Many parts of Graph Theory have witnessed a huge growth over the last years, partly because of their relation to Theoretical Computer Science and Statistical Physics. These connections arise because graphs can be used to model many diverse structures.
The focus of this proposal is on asymptotic results, i.e. the graphs under consideration are large. This often unveils patterns and connections which remain obscure when considering only small graphs.
It also allows for the use of powerful techniques such as probabilistic arguments, which have led to spectacular new developments. In particular, my aim is to make decisive progress on central problems in the following 4 areas:
(1) Factorizations: Factorizations of graphs can be viewed as partitions of the edges of a graph into simple regular structures. They have a rich history and arise in many different settings, such as edge-colouring problems, decomposition problems and in information theory. They also have applications to finding good tours for the famous Travelling salesman problem.
(2) Hamilton cycles: A Hamilton cycle is a cycle which contains all the vertices of the graph. One of the most fundamental problems in Graph Theory/Theoretical Computer Science is to find conditions which guarantee the existence of a Hamilton cycle in a graph.
(3) Embeddings of graphs: This is a natural (but difficult) continuation of the previous question where the aim is to embed more general structures than Hamilton cycles - there has been exciting progress here in recent years which has opened up new avenues.
(4) Resilience of graphs: In many cases, it is important to know whether a graph `strongly’ possesses some property, i.e. one cannot destroy the property by changing a few edges. The systematic study of this notion is a new and rapidly growing area.
I have developed new methods for deep and long-standing problems in these areas which will certainly lead to further applications elsewhere.
Max ERC Funding
818 414 €
Duration
Start date: 2012-12-01, End date: 2018-11-30
Project acronym ARCHOFCON
Project The Architecture of Consciousness
Researcher (PI) Timothy John Bayne
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The nature of consciousness is one of the great unsolved mysteries of science. Although the global research effort dedicated to explaining how consciousness arises from neural and cognitive activity is now more than two decades old, as yet there is no widely accepted theory of consciousness. One reason for why no adequate theory of consciousness has yet been found is that there is a lack of clarity about what exactly a theory of consciousness needs to explain. What is needed is thus a model of the general features of consciousness — a model of the ‘architecture’ of consciousness — that will systematize the structural differences between conscious states, processes and creatures on the one hand and unconscious states, processes and creatures on the other. The aim of this project is to remove one of the central impediments to the progress of the science of consciousness by constructing such a model.
A great many of the data required for this task already exist, but these data concern different aspects of consciousness and are distributed across many disciplines. As a result, there have been few attempts to develop a truly comprehensive model of the architecture of consciousness. This project will overcome the limitations of previous work by drawing on research in philosophy, psychology, psychiatry, and cognitive neuroscience to develop a model of the architecture of consciousness that is structured around five of its core features: its subjectivity, its temporality, its unity, its selectivity, and its dimensionality (that is, the relationship between the levels of consciousness and the contents of consciousness). By providing a comprehensive characterization of what a theory of consciousness needs to explain, this project will provide a crucial piece of the puzzle of consciousness, enabling future generations of researchers to bridge the gap between raw data on the one hand and a full-blown theory of consciousness on the other
Summary
The nature of consciousness is one of the great unsolved mysteries of science. Although the global research effort dedicated to explaining how consciousness arises from neural and cognitive activity is now more than two decades old, as yet there is no widely accepted theory of consciousness. One reason for why no adequate theory of consciousness has yet been found is that there is a lack of clarity about what exactly a theory of consciousness needs to explain. What is needed is thus a model of the general features of consciousness — a model of the ‘architecture’ of consciousness — that will systematize the structural differences between conscious states, processes and creatures on the one hand and unconscious states, processes and creatures on the other. The aim of this project is to remove one of the central impediments to the progress of the science of consciousness by constructing such a model.
A great many of the data required for this task already exist, but these data concern different aspects of consciousness and are distributed across many disciplines. As a result, there have been few attempts to develop a truly comprehensive model of the architecture of consciousness. This project will overcome the limitations of previous work by drawing on research in philosophy, psychology, psychiatry, and cognitive neuroscience to develop a model of the architecture of consciousness that is structured around five of its core features: its subjectivity, its temporality, its unity, its selectivity, and its dimensionality (that is, the relationship between the levels of consciousness and the contents of consciousness). By providing a comprehensive characterization of what a theory of consciousness needs to explain, this project will provide a crucial piece of the puzzle of consciousness, enabling future generations of researchers to bridge the gap between raw data on the one hand and a full-blown theory of consciousness on the other
Max ERC Funding
1 477 483 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym ASAP
Project Thylakoid membrane in action: acclimation strategies in algae and plants
Researcher (PI) Roberta Croce
Host Institution (HI) STICHTING VU
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary Life on earth is sustained by the process that converts sunlight energy into chemical energy: photosynthesis. This process is operating near the boundary between life and death: if the absorbed energy exceeds the capacity of the metabolic reactions, it can result in photo-oxidation events that can cause the death of the organism. Over-excitation is happening quite often: oxygenic organisms are exposed to (drastic) changes in environmental conditions (light intensity, light quality and temperature), which influence the physical (light-harvesting) and chemical (enzymatic reactions) parts of the photosynthetic process to a different extent, leading to severe imbalances. However, daily experience tells us that plants are able to deal with most of these situations, surviving and happily growing. How do they manage? The photosynthetic membrane is highly flexible and it is able to change its supramolecular organization and composition and even the function of some of its components on a time scale as fast as a few seconds, thereby regulating the light-harvesting capacity. However, the structural/functional changes in the membrane are far from being fully characterized and the molecular mechanisms of their regulation are far from being understood. This is due to the fact that all these mechanisms require the simultaneous presence of various factors and thus the system should be analyzed at a high level of complexity; however, to obtain molecular details of a very complex system as the thylakoid membrane in action has not been possible so far. Over the last years we have developed and optimized a range of methods that now allow us to take up this challenge. This involves a high level of integration of biological and physical approaches, ranging from plant transformation and in vivo knock out of individual pigments to ultrafast-spectroscopy in a mix that is rather unique for my laboratory and will allow us to unravel the photoprotective mechanisms in algae and plants.
Summary
Life on earth is sustained by the process that converts sunlight energy into chemical energy: photosynthesis. This process is operating near the boundary between life and death: if the absorbed energy exceeds the capacity of the metabolic reactions, it can result in photo-oxidation events that can cause the death of the organism. Over-excitation is happening quite often: oxygenic organisms are exposed to (drastic) changes in environmental conditions (light intensity, light quality and temperature), which influence the physical (light-harvesting) and chemical (enzymatic reactions) parts of the photosynthetic process to a different extent, leading to severe imbalances. However, daily experience tells us that plants are able to deal with most of these situations, surviving and happily growing. How do they manage? The photosynthetic membrane is highly flexible and it is able to change its supramolecular organization and composition and even the function of some of its components on a time scale as fast as a few seconds, thereby regulating the light-harvesting capacity. However, the structural/functional changes in the membrane are far from being fully characterized and the molecular mechanisms of their regulation are far from being understood. This is due to the fact that all these mechanisms require the simultaneous presence of various factors and thus the system should be analyzed at a high level of complexity; however, to obtain molecular details of a very complex system as the thylakoid membrane in action has not been possible so far. Over the last years we have developed and optimized a range of methods that now allow us to take up this challenge. This involves a high level of integration of biological and physical approaches, ranging from plant transformation and in vivo knock out of individual pigments to ultrafast-spectroscopy in a mix that is rather unique for my laboratory and will allow us to unravel the photoprotective mechanisms in algae and plants.
Max ERC Funding
1 696 961 €
Duration
Start date: 2011-12-01, End date: 2017-11-30
Project acronym ATMINDDR
Project ATMINistrating ATM signalling: exploring the significance of ATM regulation by ATMIN
Researcher (PI) Axel Behrens
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary ATM is the protein kinase that is mutated in the hereditary autosomal recessive disease ataxia telangiectasia (A-T). A-T patients display immune deficiencies, cancer predisposition and radiosensitivity. The molecular role of ATM is to respond to DNA damage by phosphorylating its substrates, thereby promoting repair of damage or arresting the cell cycle. Following the induction of double-strand breaks (DSBs), the NBS1 protein is required for activation of ATM. But ATM can also be activated in the absence of DNA damage. Treatment of cultured cells with hypotonic stress leads to the activation of ATM, presumably due to changes in chromatin structure. We have recently described a second ATM cofactor, ATMIN (ATM INteractor). ATMIN is dispensable for DSBs-induced ATM signalling, but ATM activation following hypotonic stress is mediated by ATMIN. While the biological role of ATM activation by DSBs and NBS1 is well established, the significance, if any, of ATM activation by ATMIN and changes in chromatin was up to now completely enigmatic.
ATM is required for class switch recombination (CSR) and the suppression of translocations in B cells. In order to determine whether ATMIN is required for any of the physiological functions of ATM, we generated a conditional knock-out mouse model for ATMIN. ATM signaling was dramatically reduced following osmotic stress in ATMIN-mutant B cells. ATMIN deficiency led to impaired CSR, and consequently ATMIN-mutant mice developed B cell lymphomas. Thus ablation of ATMIN resulted in a severe defect in ATM function. Our data strongly argue for the existence of a second NBS1-independent mode of ATM activation that is physiologically relevant. While a large amount of scientific effort has gone into characterising ATM signaling triggered by DSBs, essentially nothing is known about NBS1-independent ATM signaling. The experiments outlined in this proposal have the aim to identify and understand the molecular pathway of ATMIN-dependent ATM signaling.
Summary
ATM is the protein kinase that is mutated in the hereditary autosomal recessive disease ataxia telangiectasia (A-T). A-T patients display immune deficiencies, cancer predisposition and radiosensitivity. The molecular role of ATM is to respond to DNA damage by phosphorylating its substrates, thereby promoting repair of damage or arresting the cell cycle. Following the induction of double-strand breaks (DSBs), the NBS1 protein is required for activation of ATM. But ATM can also be activated in the absence of DNA damage. Treatment of cultured cells with hypotonic stress leads to the activation of ATM, presumably due to changes in chromatin structure. We have recently described a second ATM cofactor, ATMIN (ATM INteractor). ATMIN is dispensable for DSBs-induced ATM signalling, but ATM activation following hypotonic stress is mediated by ATMIN. While the biological role of ATM activation by DSBs and NBS1 is well established, the significance, if any, of ATM activation by ATMIN and changes in chromatin was up to now completely enigmatic.
ATM is required for class switch recombination (CSR) and the suppression of translocations in B cells. In order to determine whether ATMIN is required for any of the physiological functions of ATM, we generated a conditional knock-out mouse model for ATMIN. ATM signaling was dramatically reduced following osmotic stress in ATMIN-mutant B cells. ATMIN deficiency led to impaired CSR, and consequently ATMIN-mutant mice developed B cell lymphomas. Thus ablation of ATMIN resulted in a severe defect in ATM function. Our data strongly argue for the existence of a second NBS1-independent mode of ATM activation that is physiologically relevant. While a large amount of scientific effort has gone into characterising ATM signaling triggered by DSBs, essentially nothing is known about NBS1-independent ATM signaling. The experiments outlined in this proposal have the aim to identify and understand the molecular pathway of ATMIN-dependent ATM signaling.
Max ERC Funding
1 499 881 €
Duration
Start date: 2012-02-01, End date: 2018-01-31
Project acronym AUTISMS
Project Decomposing Heterogeneity in Autism Spectrum Disorders
Researcher (PI) Michael LOMBARDO
Host Institution (HI) FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Call Details Starting Grant (StG), SH4, ERC-2017-STG
Summary Autism spectrum disorders (ASD) affect 1-2% of the population and are a major public health issue. Heterogeneity between affected ASD individuals is substantial both at clinical and etiological levels, thus warranting the idea that we should begin characterizing the ASD population as multiple kinds of ‘autisms’. Without an advanced understanding of how heterogeneity manifests in ASD, it is likely that we will not make pronounced progress towards translational research goals that can have real impact on patient’s lives. This research program is focused on decomposing heterogeneity in ASD at multiple levels of analysis. Using multiple ‘big data’ resources that are both ‘broad’ (large sample size) and ‘deep’ (multiple levels of analysis measured within each individual), I will examine how known variables such as sex, early language development, early social preferences, and early intervention treatment response may be important stratification variables that differentiate ASD subgroups at phenotypic, neural systems/circuits, and genomic levels of analysis. In addition to examining known stratification variables, this research program will engage in data-driven discovery via application of advanced unsupervised computational techniques that can highlight novel multivariate distinctions in the data that signal important ASD subgroups. These data-driven approaches may hold promise for discovering novel ASD subgroups at biological and phenotypic levels of analysis that may be valuable for prioritization in future work developing personalized assessment, monitoring, and treatment strategies for subsets of the ASD population. By enhancing the precision of our understanding about multiple subtypes of ASD this work will help accelerate progress towards the ideals of personalized medicine and help to reduce the burden of ASD on individuals, families, and society.
Summary
Autism spectrum disorders (ASD) affect 1-2% of the population and are a major public health issue. Heterogeneity between affected ASD individuals is substantial both at clinical and etiological levels, thus warranting the idea that we should begin characterizing the ASD population as multiple kinds of ‘autisms’. Without an advanced understanding of how heterogeneity manifests in ASD, it is likely that we will not make pronounced progress towards translational research goals that can have real impact on patient’s lives. This research program is focused on decomposing heterogeneity in ASD at multiple levels of analysis. Using multiple ‘big data’ resources that are both ‘broad’ (large sample size) and ‘deep’ (multiple levels of analysis measured within each individual), I will examine how known variables such as sex, early language development, early social preferences, and early intervention treatment response may be important stratification variables that differentiate ASD subgroups at phenotypic, neural systems/circuits, and genomic levels of analysis. In addition to examining known stratification variables, this research program will engage in data-driven discovery via application of advanced unsupervised computational techniques that can highlight novel multivariate distinctions in the data that signal important ASD subgroups. These data-driven approaches may hold promise for discovering novel ASD subgroups at biological and phenotypic levels of analysis that may be valuable for prioritization in future work developing personalized assessment, monitoring, and treatment strategies for subsets of the ASD population. By enhancing the precision of our understanding about multiple subtypes of ASD this work will help accelerate progress towards the ideals of personalized medicine and help to reduce the burden of ASD on individuals, families, and society.
Max ERC Funding
1 499 444 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym Autophagy in vitro
Project Reconstituting Autophagosome Biogenesis in vitro
Researcher (PI) Thomas Wollert
Host Institution (HI) INSTITUT PASTEUR
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary Autophagy is a catabolic pathway that delivers cytoplasmic material to lysosomes for degradation. Under vegetative conditions, the pathway serves as quality control system, specifically targeting damaged or superfluous organelles and protein-aggregates. Cytotoxic stresses and starvation, however, induces the formation of larger autophagosomes that capture cargo unselectively. Autophagosomes are being generated from a cup-shaped precursor membrane, the isolation membrane, which expands to engulf cytoplasmic components. Sealing of this structure gives rise to the double-membrane surrounded autophagosomes. Two interconnected ubiquitin (Ub)-like conjugation systems coordinate the expansion of autophagosomes by conjugating the autophagy related (Atg)-protein Atg8 to the isolation membrane. In an effort to unravel the function of Atg8, we reconstituted the system on model membranes in vitro and found that Atg8 forms together with the Atg12–Atg5-Atg16 complex a membrane scaffold which is required for productive autophagy in yeast. Humans possess seven Atg8-homologs and two mutually exclusive Atg16-variants. Here, we propose to investigate the function of the human Ub-like conjugation system using a fully reconstituted in vitro system. The spatiotemporal organization of recombinant fluorescent-labeled proteins with synthetic model membranes will be investigated using confocal and TIRF-microscopy. Structural information will be obtained by atomic force and electron microscopy. Mechanistic insights, obtained from the in vitro work, will be tested in vivo in cultured human cells. We belief that revealing 1) the function of the human Ub-like conjugation system in autophagy, 2) the functional differences of Atg8-homologs and the two Atg16-variants Atg16L1 and TECPR1 and 3) how Atg16L1 coordinates non-canonical autophagy will provide essential insights into the pathophysiology of cancer, neurodegenerative, and autoimmune diseases.
Summary
Autophagy is a catabolic pathway that delivers cytoplasmic material to lysosomes for degradation. Under vegetative conditions, the pathway serves as quality control system, specifically targeting damaged or superfluous organelles and protein-aggregates. Cytotoxic stresses and starvation, however, induces the formation of larger autophagosomes that capture cargo unselectively. Autophagosomes are being generated from a cup-shaped precursor membrane, the isolation membrane, which expands to engulf cytoplasmic components. Sealing of this structure gives rise to the double-membrane surrounded autophagosomes. Two interconnected ubiquitin (Ub)-like conjugation systems coordinate the expansion of autophagosomes by conjugating the autophagy related (Atg)-protein Atg8 to the isolation membrane. In an effort to unravel the function of Atg8, we reconstituted the system on model membranes in vitro and found that Atg8 forms together with the Atg12–Atg5-Atg16 complex a membrane scaffold which is required for productive autophagy in yeast. Humans possess seven Atg8-homologs and two mutually exclusive Atg16-variants. Here, we propose to investigate the function of the human Ub-like conjugation system using a fully reconstituted in vitro system. The spatiotemporal organization of recombinant fluorescent-labeled proteins with synthetic model membranes will be investigated using confocal and TIRF-microscopy. Structural information will be obtained by atomic force and electron microscopy. Mechanistic insights, obtained from the in vitro work, will be tested in vivo in cultured human cells. We belief that revealing 1) the function of the human Ub-like conjugation system in autophagy, 2) the functional differences of Atg8-homologs and the two Atg16-variants Atg16L1 and TECPR1 and 3) how Atg16L1 coordinates non-canonical autophagy will provide essential insights into the pathophysiology of cancer, neurodegenerative, and autoimmune diseases.
Max ERC Funding
1 499 726 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym BAYES OR BUST!
Project Bayes or Bust: Sensible Hypothesis Tests for Social Scientists
Researcher (PI) Eric-Jan Wagenmakers
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), SH4, ERC-2011-StG_20101124
Summary The goal of this proposal is to develop and promote Bayesian hypothesis tests for social scientists. By and large, social scientists have ignored the Bayesian revolution in statistics, and, consequently, most social scientists still assess the veracity of experimental effects using the same methodology that was used by their advisors and the advisors before them. This state of affairs is undesirable: social scientists conduct groundbreaking, innovative research only to analyze their results using methods that are old-fashioned or even inappropriate. This imbalance between the science and the statistics has gradually increased the pressure on the field to change the way inferences are drawn from their data. However, three requirements need to be fulfilled before social scientists are ready to adopt Bayesian tests of hypotheses. First, the Bayesian tests need to be developed for problems that social scientists work with on a regular basis; second, the Bayesian tests need to be default or objective; and, third, the Bayesian tests need to be available in a user-friendly computer program. This proposal seeks to make major progress on all three fronts.
Concretely, the projects in this proposal build on recent developments in the field of statistics and use the default Jeffreys-Zellner-Siow priors to compute Bayesian hypothesis tests for regression, correlation, the t-test, and different versions of analysis of variance (ANOVA). A similar approach will be used to develop Bayesian hypothesis tests for logistic regression and the analysis of contingency tables, as well as for popular latent process methods such as factor analysis and structural equation modeling. We aim to implement the various tests in a new computer program, Bayes-SPSS, with a similar look and feel as the frequentist spreadsheet program SPSS (i.e., Statistical Package for the Social Sciences). Together, these projects may help revolutionize the way social scientists analyze their data.
Summary
The goal of this proposal is to develop and promote Bayesian hypothesis tests for social scientists. By and large, social scientists have ignored the Bayesian revolution in statistics, and, consequently, most social scientists still assess the veracity of experimental effects using the same methodology that was used by their advisors and the advisors before them. This state of affairs is undesirable: social scientists conduct groundbreaking, innovative research only to analyze their results using methods that are old-fashioned or even inappropriate. This imbalance between the science and the statistics has gradually increased the pressure on the field to change the way inferences are drawn from their data. However, three requirements need to be fulfilled before social scientists are ready to adopt Bayesian tests of hypotheses. First, the Bayesian tests need to be developed for problems that social scientists work with on a regular basis; second, the Bayesian tests need to be default or objective; and, third, the Bayesian tests need to be available in a user-friendly computer program. This proposal seeks to make major progress on all three fronts.
Concretely, the projects in this proposal build on recent developments in the field of statistics and use the default Jeffreys-Zellner-Siow priors to compute Bayesian hypothesis tests for regression, correlation, the t-test, and different versions of analysis of variance (ANOVA). A similar approach will be used to develop Bayesian hypothesis tests for logistic regression and the analysis of contingency tables, as well as for popular latent process methods such as factor analysis and structural equation modeling. We aim to implement the various tests in a new computer program, Bayes-SPSS, with a similar look and feel as the frequentist spreadsheet program SPSS (i.e., Statistical Package for the Social Sciences). Together, these projects may help revolutionize the way social scientists analyze their data.
Max ERC Funding
1 498 286 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym BBRhythms
Project Brain and body rhythms: on the relationship between movement and percept
Researcher (PI) Barbara Haendel
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Starting Grant (StG), SH4, ERC-2015-STG
Summary Exciting findings from animal electrophysiological research in the last years suggest that an increased rate of body movements results in an enhanced response of neurons within the visual system despite the absence of visual changes. It is unclear why such modulation occurs in areas which process visual input. In humans, little is known about the influence of body movements on sensory brain areas mainly due to the technical challenges of measuring brain responses during pronounced muscle activity. However, psychophysical studies in humans show that also percept and perceptual demands are connected to the rate of movements. These two lines of evidence suggest a general link between rhythmic body movements and perceptual processes.
The main aim of the proposed research is to decode the relationship between body movements and percept and to identify the underlying mechanism. To this end human non-invasive recordings from electro- and magnetoencephalography (EEG, MEG) as well as invasive human and animal multi-electrode recordings collected during movement execution will be analyzed. Directly relating perceptual processes and their underlying neuronal oscillations to rhythmic body movements offers an approach circumventing some of the methodological problems.
This research could uncover a new mechanism of how our system modulates perceptual processes through body movements. The proof of such a mechanism would constitute a ground-breaking step in understanding perception during natural behavior. We need to keep in mind that in the awake state our body is constantly in motion. However, up to now, the vast majority of studies which investigate sensory brain responses are conducted under strict movement suppression. Besides facilitating exciting new insights, this research can strengthen the assumption that the knowledge we have gathered about artificial situations generalizes to our natural behavior.
Summary
Exciting findings from animal electrophysiological research in the last years suggest that an increased rate of body movements results in an enhanced response of neurons within the visual system despite the absence of visual changes. It is unclear why such modulation occurs in areas which process visual input. In humans, little is known about the influence of body movements on sensory brain areas mainly due to the technical challenges of measuring brain responses during pronounced muscle activity. However, psychophysical studies in humans show that also percept and perceptual demands are connected to the rate of movements. These two lines of evidence suggest a general link between rhythmic body movements and perceptual processes.
The main aim of the proposed research is to decode the relationship between body movements and percept and to identify the underlying mechanism. To this end human non-invasive recordings from electro- and magnetoencephalography (EEG, MEG) as well as invasive human and animal multi-electrode recordings collected during movement execution will be analyzed. Directly relating perceptual processes and their underlying neuronal oscillations to rhythmic body movements offers an approach circumventing some of the methodological problems.
This research could uncover a new mechanism of how our system modulates perceptual processes through body movements. The proof of such a mechanism would constitute a ground-breaking step in understanding perception during natural behavior. We need to keep in mind that in the awake state our body is constantly in motion. However, up to now, the vast majority of studies which investigate sensory brain responses are conducted under strict movement suppression. Besides facilitating exciting new insights, this research can strengthen the assumption that the knowledge we have gathered about artificial situations generalizes to our natural behavior.
Max ERC Funding
1 422 907 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym Becoming Social
Project Social Interaction Perception and the Social Brain Across Typical and Atypical Development
Researcher (PI) Kami KOLDEWYN
Host Institution (HI) BANGOR UNIVERSITY
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary Social interactions are multifaceted and subtle, yet we can almost instantaneously discern if two people are cooperating or competing, flirting or fighting, or helping or hindering each other. Surprisingly, the development and brain basis of this remarkable ability has remained largely unexplored. At the same time, understanding how we develop the ability to process and use social information from other people is widely recognized as a core challenge facing developmental cognitive neuroscience. The Becoming Social project meets this challenge by proposing the most complete investigation to date of the development of the behavioural and neurobiological systems that support complex social perception. To achieve this, we first systematically map how the social interactions we observe are coded in the brain by testing typical adults. Next, we investigate developmental change both behaviourally and neurally during a key stage in social development in typically developing children. Finally, we explore whether social interaction perception is clinically relevant by investigating it developmentally in autism spectrum disorder. The Becoming Social project is expected to lead to a novel conception of the neurocognitive architecture supporting the perception of social interactions. In addition, neuroimaging and behavioural tasks measured longitudinally during development will allow us to determine how individual differences in brain and behaviour are causally related to real-world social ability and social learning. The planned studies as well as those generated during the project will enable the Becoming Social team to become a world-leading group bridging social cognition, neuroscience and developmental psychology.
Summary
Social interactions are multifaceted and subtle, yet we can almost instantaneously discern if two people are cooperating or competing, flirting or fighting, or helping or hindering each other. Surprisingly, the development and brain basis of this remarkable ability has remained largely unexplored. At the same time, understanding how we develop the ability to process and use social information from other people is widely recognized as a core challenge facing developmental cognitive neuroscience. The Becoming Social project meets this challenge by proposing the most complete investigation to date of the development of the behavioural and neurobiological systems that support complex social perception. To achieve this, we first systematically map how the social interactions we observe are coded in the brain by testing typical adults. Next, we investigate developmental change both behaviourally and neurally during a key stage in social development in typically developing children. Finally, we explore whether social interaction perception is clinically relevant by investigating it developmentally in autism spectrum disorder. The Becoming Social project is expected to lead to a novel conception of the neurocognitive architecture supporting the perception of social interactions. In addition, neuroimaging and behavioural tasks measured longitudinally during development will allow us to determine how individual differences in brain and behaviour are causally related to real-world social ability and social learning. The planned studies as well as those generated during the project will enable the Becoming Social team to become a world-leading group bridging social cognition, neuroscience and developmental psychology.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BFTERRA
Project Biogenesis and Functions of Telomeric Repeat-containing RNA
Researcher (PI) Claus Maria Azzalin
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS1, ERC-2009-StG
Summary Telomeres are heterochromatic nucleoprotein complexes located at the end of linear eukaryotic chromosomes. Contrarily to a longstanding dogma, we have recently demonstrated that mammalian telomeres are transcribed into TElomeric Repeat containing RNA (TERRA) molecules. TERRA transcripts contain telomeric RNA repeats and are produced at least in part by DNA-dependent RNA polymerase II-mediated transcription of telomeric DNA. TERRA molecules form discrete nuclear foci that co-localize with telomeric heterochromatin in both interphase and transcriptionally inactive metaphase cells. This indicates that TERRA is an integral component of telomeres and suggests that TERRA might participate in maintaining proper telomere heterochromatin. We will use a variety of biochemistry, cell biology, molecular biology and microscopy based approaches applied to cultured mammalian cells and to the yeast Schizosaccharomyces pombe, to achieve four distinct major goals: i) We will over-express or deplete TERRA in mammalian cells in order to characterize the molecular details of putative TERRA-associated functions in maintaining normal telomere structure and function; ii) We will locate TERRA promoter regions on different human chromosome ends; iii) We will generate mammalian cellular systems in which to study artificially seeded telomeres that can be transcribed in an inducible fashion; iv) We will identify physiological regulators of TERRA by analyzing it in mammalian cultured cells where the functions of candidate factors are compromised. In parallel, taking advantage of the recent discovery of TERRA also in fission yeast, we will systematically analyze TERRA levels in fission yeast mutants derived from a complete gene knockout collection. The study of TERRA regulation and function at chromosome ends will strongly contribute to our understanding of how telomeres are maintained and will help to clarify the general functions of mammalian non-coding RNAs.
Summary
Telomeres are heterochromatic nucleoprotein complexes located at the end of linear eukaryotic chromosomes. Contrarily to a longstanding dogma, we have recently demonstrated that mammalian telomeres are transcribed into TElomeric Repeat containing RNA (TERRA) molecules. TERRA transcripts contain telomeric RNA repeats and are produced at least in part by DNA-dependent RNA polymerase II-mediated transcription of telomeric DNA. TERRA molecules form discrete nuclear foci that co-localize with telomeric heterochromatin in both interphase and transcriptionally inactive metaphase cells. This indicates that TERRA is an integral component of telomeres and suggests that TERRA might participate in maintaining proper telomere heterochromatin. We will use a variety of biochemistry, cell biology, molecular biology and microscopy based approaches applied to cultured mammalian cells and to the yeast Schizosaccharomyces pombe, to achieve four distinct major goals: i) We will over-express or deplete TERRA in mammalian cells in order to characterize the molecular details of putative TERRA-associated functions in maintaining normal telomere structure and function; ii) We will locate TERRA promoter regions on different human chromosome ends; iii) We will generate mammalian cellular systems in which to study artificially seeded telomeres that can be transcribed in an inducible fashion; iv) We will identify physiological regulators of TERRA by analyzing it in mammalian cultured cells where the functions of candidate factors are compromised. In parallel, taking advantage of the recent discovery of TERRA also in fission yeast, we will systematically analyze TERRA levels in fission yeast mutants derived from a complete gene knockout collection. The study of TERRA regulation and function at chromosome ends will strongly contribute to our understanding of how telomeres are maintained and will help to clarify the general functions of mammalian non-coding RNAs.
Max ERC Funding
1 602 600 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym BIOCON
Project Biological origins of linguistic constraints
Researcher (PI) Juan Manuel Toro
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Summary
The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Max ERC Funding
1 305 973 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym BioMatrix
Project Structural Biology of Exopolysaccharide Secretion in Bacterial Biofilms
Researcher (PI) Petya Violinova KRASTEVA
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS1, ERC-2017-STG
Summary Bacterial biofilm formation is a paramount developmental process in both Gram-positive and Gram-negative species and in many pathogens has been associated with processes of horizontal gene transfer, antibiotic resistance development and pathogen persistence. Bacterial biofilms are collaborative sessile macrocolonies embedded in complex extracellular matrix that secures both mechanical resistance and a medium for intercellular exchange.
Biogenesis platforms for the secretion of biofilm matrix components - many of which controlled directly or indirectly by the intracellular second messenger c-di-GMP - are important determinants for biofilm formation and bacterial disease, and therefore present compelling targets for the development of novel therapeutics. During my Ph.D. and post-doctoral work I studied the structure and function of c-di-GMP-sensing protein factors controling extracellular matrix production by DNA-binding at the transcription initiation level or by inside-out signalling mechanisms at the cell envelope, as well as membrane exporters involved directly in downstream matrix component secretion.
Here, I propose to apply my expertise in microbiology, protein science and structural biology to study the structure and function of exopolysaccharide secretion systems in Gram-negative species. Using Pseudomonas aeruginosa, Vibrio spp. and Escherichia coli as model organisms, my team will aim to reveal the global architecture and individual building components of several expolysaccharide-producing protein megacomplexes. We will combine X-ray crystallography, biophysical and biochemical assays, electron microscopy and in cellulo functional studies to provide a comprehensive view of extracellular matrix production that spans the different resolution levels and presents molecular blueprints for the development of novel anti-infectives. Over the last year I have laid the foundation of these studies and have demonstrated the overall feasibility of the project.
Summary
Bacterial biofilm formation is a paramount developmental process in both Gram-positive and Gram-negative species and in many pathogens has been associated with processes of horizontal gene transfer, antibiotic resistance development and pathogen persistence. Bacterial biofilms are collaborative sessile macrocolonies embedded in complex extracellular matrix that secures both mechanical resistance and a medium for intercellular exchange.
Biogenesis platforms for the secretion of biofilm matrix components - many of which controlled directly or indirectly by the intracellular second messenger c-di-GMP - are important determinants for biofilm formation and bacterial disease, and therefore present compelling targets for the development of novel therapeutics. During my Ph.D. and post-doctoral work I studied the structure and function of c-di-GMP-sensing protein factors controling extracellular matrix production by DNA-binding at the transcription initiation level or by inside-out signalling mechanisms at the cell envelope, as well as membrane exporters involved directly in downstream matrix component secretion.
Here, I propose to apply my expertise in microbiology, protein science and structural biology to study the structure and function of exopolysaccharide secretion systems in Gram-negative species. Using Pseudomonas aeruginosa, Vibrio spp. and Escherichia coli as model organisms, my team will aim to reveal the global architecture and individual building components of several expolysaccharide-producing protein megacomplexes. We will combine X-ray crystallography, biophysical and biochemical assays, electron microscopy and in cellulo functional studies to provide a comprehensive view of extracellular matrix production that spans the different resolution levels and presents molecular blueprints for the development of novel anti-infectives. Over the last year I have laid the foundation of these studies and have demonstrated the overall feasibility of the project.
Max ERC Funding
1 499 901 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym BIOSMA
Project Mathematics for Shape Memory Technologies in Biomechanics
Researcher (PI) Ulisse Stefanelli
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary Shape Memory Alloys (SMAs) are nowadays widely exploited for the realization of innovative devices and have a great impact on the development of a variety of biomedical applications ranging from orthodontic archwires to vascular stents. The design, realization, and optimization of such devices are quite demanding tasks. Mathematics is involved in this process as a major tool in order to let the modeling more accurate, the numerical simulations more reliable, and the design more effective. Many material properties of SMAs such as martensitic reorientation, training, and ferromagnetic behavior, are still to be properly and efficiently addressed. Therefore, new modeling ideas, along with original analytical and numerical techniques, are required. This project is aimed at addressing novel mathematical issues in order to move from experimental materials results toward the solution of real-scale biomechanical Engineering problems. The research focus will be multidisciplinary and include modeling, analytic, numerical, and computational issues. A progress in the macroscopic description of SMAs, the computational simulation of real-scale SMA devices, and the optimization of the production processes will contribute to advance in the direction of innovative applications.
Summary
Shape Memory Alloys (SMAs) are nowadays widely exploited for the realization of innovative devices and have a great impact on the development of a variety of biomedical applications ranging from orthodontic archwires to vascular stents. The design, realization, and optimization of such devices are quite demanding tasks. Mathematics is involved in this process as a major tool in order to let the modeling more accurate, the numerical simulations more reliable, and the design more effective. Many material properties of SMAs such as martensitic reorientation, training, and ferromagnetic behavior, are still to be properly and efficiently addressed. Therefore, new modeling ideas, along with original analytical and numerical techniques, are required. This project is aimed at addressing novel mathematical issues in order to move from experimental materials results toward the solution of real-scale biomechanical Engineering problems. The research focus will be multidisciplinary and include modeling, analytic, numerical, and computational issues. A progress in the macroscopic description of SMAs, the computational simulation of real-scale SMA devices, and the optimization of the production processes will contribute to advance in the direction of innovative applications.
Max ERC Funding
700 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym BIOSTRUCT
Project Multiscale mathematical modelling of dynamics of structure formation in cell systems
Researcher (PI) Anna Marciniak-Czochra
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary The aim of this transdisciplinary project is to develop and analyse multiscale mathematical models of pattern formation in multicellular systems controlled by the dynamics of intracellular signalling pathways and cell-to-cell communication and to develop new mathematical methods for the modelling of such complex processes. This aim will be achieved through a close collaboration with experimental groups and comprehensive analytical investigations of the mathematical problems arising in the modelling of these biological processes. The mathematical methods and techniques to be employed will be the analysis of systems of partial differential equations, asymptotic analysis, as well as methods of dynamical systems. These techniques will be used to formulate the models and to study the spatio-temporal behaviour of solutions, especially stability and dependence on characteristic scales, geometry, initial data and key parameters. Advanced numerical methods will be applied to simulate the models. This comprehensive methodology goes beyond the state-of-the-art, since usually the analyses are limited to a single aspect of model behaviour. Groundbreaking impacts envisioned are threefold: (i) The project will contribute to the understanding of mechanisms of structure formation in the developmental process, in the context of recently discovered signalling pathways. In addition, some of the factors and mechanisms playing a role in developmental processes, such as Wnt signalling, are implicated in carcinogenesis, for instance colon and lung cancer. (ii) Accurate quantitative and predictive mathematical models of cell proliferation and differentiation are important for the control of tumour growth and tissue egeneration; (iii) Qualitative analysis of multiscale mathematical models of biological phenomena generates challenging mathematical problems and, therefore, the project will lead to the development of new mathematical theories and tools.
Summary
The aim of this transdisciplinary project is to develop and analyse multiscale mathematical models of pattern formation in multicellular systems controlled by the dynamics of intracellular signalling pathways and cell-to-cell communication and to develop new mathematical methods for the modelling of such complex processes. This aim will be achieved through a close collaboration with experimental groups and comprehensive analytical investigations of the mathematical problems arising in the modelling of these biological processes. The mathematical methods and techniques to be employed will be the analysis of systems of partial differential equations, asymptotic analysis, as well as methods of dynamical systems. These techniques will be used to formulate the models and to study the spatio-temporal behaviour of solutions, especially stability and dependence on characteristic scales, geometry, initial data and key parameters. Advanced numerical methods will be applied to simulate the models. This comprehensive methodology goes beyond the state-of-the-art, since usually the analyses are limited to a single aspect of model behaviour. Groundbreaking impacts envisioned are threefold: (i) The project will contribute to the understanding of mechanisms of structure formation in the developmental process, in the context of recently discovered signalling pathways. In addition, some of the factors and mechanisms playing a role in developmental processes, such as Wnt signalling, are implicated in carcinogenesis, for instance colon and lung cancer. (ii) Accurate quantitative and predictive mathematical models of cell proliferation and differentiation are important for the control of tumour growth and tissue egeneration; (iii) Qualitative analysis of multiscale mathematical models of biological phenomena generates challenging mathematical problems and, therefore, the project will lead to the development of new mathematical theories and tools.
Max ERC Funding
750 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym BLENDS
Project Between Direct and Indirect Discourse: Shifting Perspective in Blended Discourse
Researcher (PI) Emar Maier
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Starting Grant (StG), SH4, ERC-2010-StG_20091209
Summary A fundamental feature of language is that it allows us to reproduce what others have said. It is traditionally assumed that there
are two ways of doing this: direct discourse, where you preserve the original speech act verbatim, and indirect discourse,
where you paraphrase it in your own words. In accordance with this dichotomy, linguists have posited a number of universal
characteristics to distinguish the two modes. At the same time, we are seeing more and more examples that seem to fall
somewhere in between. I reject the direct indirect distinction and replace it with a new paradigm of blended discourse.
Combining insights from philosophy and linguistics, my framework has only one kind of speech reporting, in which a speaker
always attempts to convey the content of the reported words from her own perspective, but can quote certain parts verbatim,
thereby effectively switching to the reported perspective.
To explain why some languages are shiftier than others, I hypothesize that a greater distance from face-to-face
communication, with the possibility of extra- and paralinguistic perspective marking, necessitated the introduction of
an artificial direct indirect separation. I test this hypothesis by investigating languages that are closely tied to direct
communication: Dutch child language, as recent studies hint at a very late acquisition of the direct indirect distinction; Dutch
Sign Language, which has a special role shift marker that bears a striking resemblance to the quotational shift of blended
discourse; and Ancient Greek, where philologists have long been observing perspective shifts.
In sum, my research combines a new philosophical insight on the nature of reported speech with formal semantic rigor and
linguistic data from child language experiments, native signers, and Greek philology.
Summary
A fundamental feature of language is that it allows us to reproduce what others have said. It is traditionally assumed that there
are two ways of doing this: direct discourse, where you preserve the original speech act verbatim, and indirect discourse,
where you paraphrase it in your own words. In accordance with this dichotomy, linguists have posited a number of universal
characteristics to distinguish the two modes. At the same time, we are seeing more and more examples that seem to fall
somewhere in between. I reject the direct indirect distinction and replace it with a new paradigm of blended discourse.
Combining insights from philosophy and linguistics, my framework has only one kind of speech reporting, in which a speaker
always attempts to convey the content of the reported words from her own perspective, but can quote certain parts verbatim,
thereby effectively switching to the reported perspective.
To explain why some languages are shiftier than others, I hypothesize that a greater distance from face-to-face
communication, with the possibility of extra- and paralinguistic perspective marking, necessitated the introduction of
an artificial direct indirect separation. I test this hypothesis by investigating languages that are closely tied to direct
communication: Dutch child language, as recent studies hint at a very late acquisition of the direct indirect distinction; Dutch
Sign Language, which has a special role shift marker that bears a striking resemblance to the quotational shift of blended
discourse; and Ancient Greek, where philologists have long been observing perspective shifts.
In sum, my research combines a new philosophical insight on the nature of reported speech with formal semantic rigor and
linguistic data from child language experiments, native signers, and Greek philology.
Max ERC Funding
677 254 €
Duration
Start date: 2011-03-01, End date: 2016-08-31
Project acronym BLOC
Project Mathematical study of Boundary Layers in Oceanic Motions
Researcher (PI) Anne-Laure Perrine Dalibard
Host Institution (HI) SORBONNE UNIVERSITE
Call Details Starting Grant (StG), PE1, ERC-2014-STG
Summary Boundary layer theory is a large component of fluid dynamics. It is ubiquitous in Oceanography, where boundary layer currents, such as the Gulf Stream, play an important role in the global circulation. Comprehending the underlying mechanisms in the formation of boundary layers is therefore crucial for applications. However, the treatment of boundary layers in ocean dynamics remains poorly understood at a theoretical level, due to the variety and complexity of the forces at stake.
The goal of this project is to develop several tools to bridge the gap between the mathematical state of the art and the physical reality of oceanic motion. There are four points on which we will mainly focus: degeneracy issues, including the treatment Stewartson boundary layers near the equator; rough boundaries (meaning boundaries with small amplitude and high frequency variations); the inclusion of the advection term in the construction of stationary boundary layers; and the linear and nonlinear stability of the boundary layers. We will address separately Ekman layers and western boundary layers, since they are ruled by equations whose mathematical behaviour is very different.
This project will allow us to have a better understanding of small scale phenomena in fluid mechanics, and in particular of the inviscid limit of incompressible fluids.
The team will be composed of the PI, two PhD students and three two-year postdocs over the whole period. We will also rely on the historical expertise of the host institution on fluid mechanics and asymptotic methods.
Summary
Boundary layer theory is a large component of fluid dynamics. It is ubiquitous in Oceanography, where boundary layer currents, such as the Gulf Stream, play an important role in the global circulation. Comprehending the underlying mechanisms in the formation of boundary layers is therefore crucial for applications. However, the treatment of boundary layers in ocean dynamics remains poorly understood at a theoretical level, due to the variety and complexity of the forces at stake.
The goal of this project is to develop several tools to bridge the gap between the mathematical state of the art and the physical reality of oceanic motion. There are four points on which we will mainly focus: degeneracy issues, including the treatment Stewartson boundary layers near the equator; rough boundaries (meaning boundaries with small amplitude and high frequency variations); the inclusion of the advection term in the construction of stationary boundary layers; and the linear and nonlinear stability of the boundary layers. We will address separately Ekman layers and western boundary layers, since they are ruled by equations whose mathematical behaviour is very different.
This project will allow us to have a better understanding of small scale phenomena in fluid mechanics, and in particular of the inviscid limit of incompressible fluids.
The team will be composed of the PI, two PhD students and three two-year postdocs over the whole period. We will also rely on the historical expertise of the host institution on fluid mechanics and asymptotic methods.
Max ERC Funding
1 267 500 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym BODILY SELF
Project Embodied Minds and Mentalised Bodies
Researcher (PI) Aikaterini (Katerina) Fotopoulou
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary How does our acting, sensing and feeling body shape our mind? The mechanisms by which bodily signals are integrated and re-represented in the brain, as well as the relation between these processes and body awareness remain unknown. To this date, neuropsychological disorders of body awareness represent an indispensible window of insight into phenomenally rich states of body unawareness. Unfortunately, only few experimental studies have been conducted in these disorders. The BODILY SELF will aim to apply methods from cognitive neuroscience to experimental and neuroimaging studies in healthy volunteers, as well as in patients with neuropsychological disorders of body awareness. A first subproject will assess which combination of deficits in sensorimotor afferent and efferent signals leads to unawareness. The second subproject will attempt to use experimental, psychophysical interventions to treat unawareness and measure the corresponding, dynamic changes in the brain. The third subproject will assess how some bodily signals and their integration is influenced by social mechanisms. The planned studies surpass the existing state-of-the-art in the relevant fields in five ground-breaking ways, ultimately allowing us to (1) acquire an unprecedented ‘on-line’ experimental ‘handle’ over dynamic changes in body awareness; (2) restore awareness and improve health outcomes (3) understand the brain’s potential for reorganisation and plasticity in relation to higher-order processes such as awareness; (4) understand how our own body experience is modulated by our interactions and relations with others; (5) address in a genuinely interdisciplinary manner some of the oldest questions in psychology, philosophy and medicine; how embodiment influences the mind, how others influence the self and how mind–body processes affect healing.
Summary
How does our acting, sensing and feeling body shape our mind? The mechanisms by which bodily signals are integrated and re-represented in the brain, as well as the relation between these processes and body awareness remain unknown. To this date, neuropsychological disorders of body awareness represent an indispensible window of insight into phenomenally rich states of body unawareness. Unfortunately, only few experimental studies have been conducted in these disorders. The BODILY SELF will aim to apply methods from cognitive neuroscience to experimental and neuroimaging studies in healthy volunteers, as well as in patients with neuropsychological disorders of body awareness. A first subproject will assess which combination of deficits in sensorimotor afferent and efferent signals leads to unawareness. The second subproject will attempt to use experimental, psychophysical interventions to treat unawareness and measure the corresponding, dynamic changes in the brain. The third subproject will assess how some bodily signals and their integration is influenced by social mechanisms. The planned studies surpass the existing state-of-the-art in the relevant fields in five ground-breaking ways, ultimately allowing us to (1) acquire an unprecedented ‘on-line’ experimental ‘handle’ over dynamic changes in body awareness; (2) restore awareness and improve health outcomes (3) understand the brain’s potential for reorganisation and plasticity in relation to higher-order processes such as awareness; (4) understand how our own body experience is modulated by our interactions and relations with others; (5) address in a genuinely interdisciplinary manner some of the oldest questions in psychology, philosophy and medicine; how embodiment influences the mind, how others influence the self and how mind–body processes affect healing.
Max ERC Funding
1 453 284 €
Duration
Start date: 2013-04-01, End date: 2018-09-30
Project acronym BOYS WILL BE BOYS?
Project Boys will be boys? Gender differences in the socialization of disruptive behaviour in early childhood
Researcher (PI) Judit Mesman
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), SH4, ERC-2009-StG
Summary The aim of the proposed project is to shed light on early childhood gender-differentiated socialization and gender-specific susceptibility to parenting within families in relation to disruptive behaviour in boys and girls in the first four years of life. The popular saying boys will be boys refers to the observation that boys show more disruptive behaviours (e.g., noncompliance or aggression) than girls, a pattern that has been confirmed frequently in scientific research. There is also evidence that parents treat boys differently from girls in ways that are likely to foster boys disruptive behaviour, and that boys are more susceptible to problematic family functioning than girls. The crucial question is whether gender differences in socialization, susceptibility to socialization, and children s behavioural outcomes are also salient when the same parents are doing the parenting of both a boy and a girl. Within-family comparisons are necessary to account for structural differences between families. To this end, families with two children born 22-26 months apart will be recruited from the general population. To account for birth order and gender-combination effects, the sample includes four groups of 150 families each, with the following sibling combinations: girl-boy, boy-girl, girl-girl, and boy-boy. The study has a four-wave longitudinal design, based on the youngest sibling with assessments at ages 12, 24, 36, and 48 months, because gender differences in disruptive behaviour develop during the toddler years. Each assessment consists of two home visits: one with mother and one with father, including observations of both children and of the children separately. Parenting behaviours will be studied in reaction to specific child behaviours, including aggression, noncompliance, and prosocial behaviours.
Summary
The aim of the proposed project is to shed light on early childhood gender-differentiated socialization and gender-specific susceptibility to parenting within families in relation to disruptive behaviour in boys and girls in the first four years of life. The popular saying boys will be boys refers to the observation that boys show more disruptive behaviours (e.g., noncompliance or aggression) than girls, a pattern that has been confirmed frequently in scientific research. There is also evidence that parents treat boys differently from girls in ways that are likely to foster boys disruptive behaviour, and that boys are more susceptible to problematic family functioning than girls. The crucial question is whether gender differences in socialization, susceptibility to socialization, and children s behavioural outcomes are also salient when the same parents are doing the parenting of both a boy and a girl. Within-family comparisons are necessary to account for structural differences between families. To this end, families with two children born 22-26 months apart will be recruited from the general population. To account for birth order and gender-combination effects, the sample includes four groups of 150 families each, with the following sibling combinations: girl-boy, boy-girl, girl-girl, and boy-boy. The study has a four-wave longitudinal design, based on the youngest sibling with assessments at ages 12, 24, 36, and 48 months, because gender differences in disruptive behaviour develop during the toddler years. Each assessment consists of two home visits: one with mother and one with father, including observations of both children and of the children separately. Parenting behaviours will be studied in reaction to specific child behaviours, including aggression, noncompliance, and prosocial behaviours.
Max ERC Funding
1 611 970 €
Duration
Start date: 2010-02-01, End date: 2015-03-31
Project acronym Brain2Bee
Project How dopamine affects social and motor ability - from the human brain to the honey bee
Researcher (PI) Jennifer COOK
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), SH4, ERC-2017-STG
Summary Parkinson’s Disease is usually characterised by motor impairment, and Autism by social difficulties. However, the co-occurrence of social and motor symptoms is critically underappreciated; Parkinson’s Disease patients exhibit social symptoms, and motor difficulties are common in Autism. At present, the biological basis of co-occurring social and motor impairment is unclear. Notably, both Autism and Parkinson’s Disease have been associated with dopamine (DA) system dysfunction and, in non-clinical populations, DA has been linked with social and motor ability. These disparate strands of research have never been combined.
Brain2Bee will use psychopharmacology in typical individuals to develop a model of the relationship between DA, Motor, and Social behaviour – the DAMS model. Brain2Bee will use sophisticated genetic analysis to refine DAMS, elucidating the contributions of DA-related biological processes (e.g. synthesis, receptor expression, reuptake). Brain2Bee will then test DAMS’ predictions in patients with Parkinson’s Disease and Autism. Finally, Brain2Bee will investigate whether DAMS generalises to an animal model, the honey bee, enabling future research to unpack the cascade of biological events linking DA-related genes with social and motor behaviour.
Brain2Bee will unite disparate research fields and establish the DAMS model. The causal structure of DAMS will identify the impact of dopaminergic variation on social and motor function in clinical and non-clinical populations, elucidating, for example, whether social difficulties in Parkinson’s Disease are a product of the motor difficulties caused by DA dysfunction. DAMS’ biological specificity will provide unique insight into the DA-related processes linking social and motor difficulties in Autism. Thus, Brain2Bee will determine the type of dopaminergic drugs (e.g. receptor blockers, reuptake inhibitors) most likely to improve both social and motor function.
Summary
Parkinson’s Disease is usually characterised by motor impairment, and Autism by social difficulties. However, the co-occurrence of social and motor symptoms is critically underappreciated; Parkinson’s Disease patients exhibit social symptoms, and motor difficulties are common in Autism. At present, the biological basis of co-occurring social and motor impairment is unclear. Notably, both Autism and Parkinson’s Disease have been associated with dopamine (DA) system dysfunction and, in non-clinical populations, DA has been linked with social and motor ability. These disparate strands of research have never been combined.
Brain2Bee will use psychopharmacology in typical individuals to develop a model of the relationship between DA, Motor, and Social behaviour – the DAMS model. Brain2Bee will use sophisticated genetic analysis to refine DAMS, elucidating the contributions of DA-related biological processes (e.g. synthesis, receptor expression, reuptake). Brain2Bee will then test DAMS’ predictions in patients with Parkinson’s Disease and Autism. Finally, Brain2Bee will investigate whether DAMS generalises to an animal model, the honey bee, enabling future research to unpack the cascade of biological events linking DA-related genes with social and motor behaviour.
Brain2Bee will unite disparate research fields and establish the DAMS model. The causal structure of DAMS will identify the impact of dopaminergic variation on social and motor function in clinical and non-clinical populations, elucidating, for example, whether social difficulties in Parkinson’s Disease are a product of the motor difficulties caused by DA dysfunction. DAMS’ biological specificity will provide unique insight into the DA-related processes linking social and motor difficulties in Autism. Thus, Brain2Bee will determine the type of dopaminergic drugs (e.g. receptor blockers, reuptake inhibitors) most likely to improve both social and motor function.
Max ERC Funding
1 783 147 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym BRAINBALANCE
Project Rebalancing the brain:
Guiding brain recovery after stroke
Researcher (PI) Alexander Thomas Sack
Host Institution (HI) UNIVERSITEIT MAASTRICHT
Call Details Starting Grant (StG), SH4, ERC-2010-StG_20091209
Summary Damage to parietal cortex after stroke causes patients to become unaware of large parts of their surroundings and body parts. This so-called spatial neglect is hypothesised to be brought about by a stroke-induced imbalance between the left and right hemisphere. Some patients experience a partial recovery of lost abilities, but the factors that drive this rebalancing are unknown. The research proposed here will overcome this bottleneck in our understanding of the brain recovery phenomenon, and develop therapeutic approaches that for the first time will control, steer and speed up brain rebalancing after stroke. To that goal, we introduce a revolutionary approach in which TMS, fMRI, and EEG are applied simultaneously in healthy human volunteers to artificially unbalance the brain, and then study and control processes of rebalancing. Because we are one of the few groups worldwide that has accomplished this methodology, and that has the expertise to fully analyse the data it will yield, we are in a unique position to deliver both fundamental insights into brain plasticity, and derived new therapies. In brief, we will use TMS to (i) mimic spatial neglect in healthy volunteers while simultaneously monitoring the underlying neural network effects using fMRI/EEG, and to (ii) determine which exact brain reorganisation leads to an optimal behavioral recovery after injury. Importantly, we will use cutting-edge fMRI pattern recognition and machine learning algorithms to predict which concrete TMS treatment will specifically support this optimal functional reorganisation in the unbalanced brain. Finally, we will directly translate these fundamental findings into clinical practise and apply novel TMS protocols to rebalance the brain in patients suffering from parietal stroke.
Summary
Damage to parietal cortex after stroke causes patients to become unaware of large parts of their surroundings and body parts. This so-called spatial neglect is hypothesised to be brought about by a stroke-induced imbalance between the left and right hemisphere. Some patients experience a partial recovery of lost abilities, but the factors that drive this rebalancing are unknown. The research proposed here will overcome this bottleneck in our understanding of the brain recovery phenomenon, and develop therapeutic approaches that for the first time will control, steer and speed up brain rebalancing after stroke. To that goal, we introduce a revolutionary approach in which TMS, fMRI, and EEG are applied simultaneously in healthy human volunteers to artificially unbalance the brain, and then study and control processes of rebalancing. Because we are one of the few groups worldwide that has accomplished this methodology, and that has the expertise to fully analyse the data it will yield, we are in a unique position to deliver both fundamental insights into brain plasticity, and derived new therapies. In brief, we will use TMS to (i) mimic spatial neglect in healthy volunteers while simultaneously monitoring the underlying neural network effects using fMRI/EEG, and to (ii) determine which exact brain reorganisation leads to an optimal behavioral recovery after injury. Importantly, we will use cutting-edge fMRI pattern recognition and machine learning algorithms to predict which concrete TMS treatment will specifically support this optimal functional reorganisation in the unbalanced brain. Finally, we will directly translate these fundamental findings into clinical practise and apply novel TMS protocols to rebalance the brain in patients suffering from parietal stroke.
Max ERC Funding
1 344 853 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym BRAINBELIEFS
Project Proving or improving yourself: longitudinal effects of ability beliefs on neural feedback processing and school outcomes
Researcher (PI) Nienke VAN ATTEVELDT
Host Institution (HI) STICHTING VU
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary To successfully complete secondary education, persistent learning behavior is essential. Why are some adolescents more resilient to setbacks at school than others? In addition to actual ability, students’ implicit beliefs about the nature of their abilities have major impact on their motivation and achievements. Ability beliefs range from viewing abilities as “entities” that cannot be improved much by effort (entity beliefs), to believing that they are incremental with effort and time (incremental beliefs). Importantly, ability beliefs shape which goals a student pursues at school; proving themselves (performance goals) or improving themselves (learning goals). The central aims of the proposal are to unravel 1) the underlying processing mechanisms of how beliefs and goals shape resilience to setbacks at school and 2) how to influence these mechanisms to stimulate persistent learning behavior.
Functional brain research, including my own, has revealed the profound top-down influence of goals on selective information processing. Goals may thus determine which learning-related information is attended. Project 1 jointly investigates the essential psychological and neurobiological processes to unravel the longitudinal effects of beliefs and goals on how the brain prioritizes information during learning, and how this relates to school outcomes. Project 2 reveals how to influence this interplay with the aim to long-lastingly stimulate persistent learning behavior. I will move beyond existing approaches by introducing a novel intervention in which students experience their own learning-related brain activity and its malleability.
The results will demonstrate how ability beliefs and goals shape functional brain development and school outcomes during adolescence, and how we can optimally stimulate this interplay. The research has high scientific impact as it bridges multiple disciplines and thereby provides a strong impulse to the emerging field of educational neuroscience.
Summary
To successfully complete secondary education, persistent learning behavior is essential. Why are some adolescents more resilient to setbacks at school than others? In addition to actual ability, students’ implicit beliefs about the nature of their abilities have major impact on their motivation and achievements. Ability beliefs range from viewing abilities as “entities” that cannot be improved much by effort (entity beliefs), to believing that they are incremental with effort and time (incremental beliefs). Importantly, ability beliefs shape which goals a student pursues at school; proving themselves (performance goals) or improving themselves (learning goals). The central aims of the proposal are to unravel 1) the underlying processing mechanisms of how beliefs and goals shape resilience to setbacks at school and 2) how to influence these mechanisms to stimulate persistent learning behavior.
Functional brain research, including my own, has revealed the profound top-down influence of goals on selective information processing. Goals may thus determine which learning-related information is attended. Project 1 jointly investigates the essential psychological and neurobiological processes to unravel the longitudinal effects of beliefs and goals on how the brain prioritizes information during learning, and how this relates to school outcomes. Project 2 reveals how to influence this interplay with the aim to long-lastingly stimulate persistent learning behavior. I will move beyond existing approaches by introducing a novel intervention in which students experience their own learning-related brain activity and its malleability.
The results will demonstrate how ability beliefs and goals shape functional brain development and school outcomes during adolescence, and how we can optimally stimulate this interplay. The research has high scientific impact as it bridges multiple disciplines and thereby provides a strong impulse to the emerging field of educational neuroscience.
Max ERC Funding
1 597 291 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym BRAINDEVELOPMENT
Project How brain development underlies advances in cognition and emotion in childhood and adolescence
Researcher (PI) Eveline Adriana Maria Crone
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), SH4, ERC-2010-StG_20091209
Summary Thanks to the recent advances in mapping brain activation during task performance using functional Magnetic Resonance Imaging (i.e., studying the brain in action), it is now possible to study one of the oldest questions in psychology: how the development of neural circuitry underlies the development of cognition and emotion. The ‘Storm and Stress’ of adolescence, a period during which adolescents develop cognitively with great speed but are also risk-takers and sensitive to opinions of their peer group, has puzzled scientists for centuries. New technologies of brain mapping have the potential to shed new light on the mystery of adolescence. The approach proposed here concerns the investigation of brain regions which underlie developmental changes in cognitive, emotional and social-emotional functions over the course of child and adolescent development.
For this purpose I will measure functional brain development longitudinally across the age range 8-20 years by using a combined cross-sectional longitudinal design including 240 participants. Participants will take part in two testing sessions over a four-year-period in order to track the within-subject time courses of functional brain development for cognitive, emotional and social-emotional functions and to understand how these functions develop relative to each other in the same individuals, using multilevel models for change. The cross-sectional longitudinal assessment of cognitive, emotional and social-emotional functional brain development in relation to brain structure and hormone levels is unique in the international field and has the potential to provide new explanations for old questions. The application of brain mapping combined with multilevel models for change is original, and allows for the examination of developmental trajectories rather than age comparisons. An integrative mapping (i.e., combined with task performance and with biological markers) of functional brain development is important not only for theory development, but also for understanding how children learn new tasks and participate in a complex social world, and eventually to tailor educational programs to the needs of children.
Summary
Thanks to the recent advances in mapping brain activation during task performance using functional Magnetic Resonance Imaging (i.e., studying the brain in action), it is now possible to study one of the oldest questions in psychology: how the development of neural circuitry underlies the development of cognition and emotion. The ‘Storm and Stress’ of adolescence, a period during which adolescents develop cognitively with great speed but are also risk-takers and sensitive to opinions of their peer group, has puzzled scientists for centuries. New technologies of brain mapping have the potential to shed new light on the mystery of adolescence. The approach proposed here concerns the investigation of brain regions which underlie developmental changes in cognitive, emotional and social-emotional functions over the course of child and adolescent development.
For this purpose I will measure functional brain development longitudinally across the age range 8-20 years by using a combined cross-sectional longitudinal design including 240 participants. Participants will take part in two testing sessions over a four-year-period in order to track the within-subject time courses of functional brain development for cognitive, emotional and social-emotional functions and to understand how these functions develop relative to each other in the same individuals, using multilevel models for change. The cross-sectional longitudinal assessment of cognitive, emotional and social-emotional functional brain development in relation to brain structure and hormone levels is unique in the international field and has the potential to provide new explanations for old questions. The application of brain mapping combined with multilevel models for change is original, and allows for the examination of developmental trajectories rather than age comparisons. An integrative mapping (i.e., combined with task performance and with biological markers) of functional brain development is important not only for theory development, but also for understanding how children learn new tasks and participate in a complex social world, and eventually to tailor educational programs to the needs of children.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym BRISC
Project Bounded Rationality in Sensorimotor Coordination
Researcher (PI) Daniel Alexander Braun
Host Institution (HI) UNIVERSITAET ULM
Call Details Starting Grant (StG), SH4, ERC-2015-STG
Summary Despite their many successes and great computational power and speed, why are machines still so blatantly outperformed by humans in uncertain environments that require flexible sensorimotor behavior like playing football or navigating a disaster zone? Answering this question requires understanding the mathematical principles of biological sensorimotor control and learning. Over the recent years Bayes-optimal actor models have widely become the gold standard in the mathematical understanding of sensorimotor processing in well-controlled laboratory tasks. However, these models quickly become intractable for real-world problems because they ignore the computational effort required to search for the Bayes-optimum. What is therefore needed is a framework of sensorimotor processing that takes the limited information-processing capacity of bounded rational actors into account and that explains their robust real-world performance. It is the aim of BRISC to establish such a framework by drawing out theoretical predictions and gathering experimental evidence in human motor control, in particular to understand (i) how single bounded rational actors deviate from Bayes-optimal behavior in motor tasks, (ii) how multiple bounded rational actors organize themselves to solve motor tasks that no individual can solve by themselves and (iii) how this drives the emergence of hierarchical control structures that simultaneously process multiple degrees of abstraction at different time scales. Understanding how abstract concepts are formed autonomously from the sensorimotor stream based on resource allocation principles will establish an essential missing link between high-level symbolic and low-level perceptual processing. These advances will provide a decisive step towards a framework for robust and flexible sensorimotor processing, which is not only essential for understanding the fundamental principles of intelligent behavior, but it is also of potentially great technological value.
Summary
Despite their many successes and great computational power and speed, why are machines still so blatantly outperformed by humans in uncertain environments that require flexible sensorimotor behavior like playing football or navigating a disaster zone? Answering this question requires understanding the mathematical principles of biological sensorimotor control and learning. Over the recent years Bayes-optimal actor models have widely become the gold standard in the mathematical understanding of sensorimotor processing in well-controlled laboratory tasks. However, these models quickly become intractable for real-world problems because they ignore the computational effort required to search for the Bayes-optimum. What is therefore needed is a framework of sensorimotor processing that takes the limited information-processing capacity of bounded rational actors into account and that explains their robust real-world performance. It is the aim of BRISC to establish such a framework by drawing out theoretical predictions and gathering experimental evidence in human motor control, in particular to understand (i) how single bounded rational actors deviate from Bayes-optimal behavior in motor tasks, (ii) how multiple bounded rational actors organize themselves to solve motor tasks that no individual can solve by themselves and (iii) how this drives the emergence of hierarchical control structures that simultaneously process multiple degrees of abstraction at different time scales. Understanding how abstract concepts are formed autonomously from the sensorimotor stream based on resource allocation principles will establish an essential missing link between high-level symbolic and low-level perceptual processing. These advances will provide a decisive step towards a framework for robust and flexible sensorimotor processing, which is not only essential for understanding the fundamental principles of intelligent behavior, but it is also of potentially great technological value.
Max ERC Funding
1 434 250 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym BUNDLEFORCE
Project Unravelling the Mechanosensitivity of Actin Bundles in Filopodia
Researcher (PI) Antoine Guillaume Jegou
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS1, ERC-2015-STG
Summary Eukaryotic cells constantly convert signals between biochemical energy and mechanical work to timely accomplish many key functions such as migration, division or development. Filopodia are essential finger-like structures that emerge at the cell front to orient the cell in response to its chemical and mechanical environment. Yet, the molecular interactions that make the filopodia mechanosensitive are not known. To tackle this challenge we propose unique biophysical in vitro and in vivo experiments of increasing complexity. Here we will focus on how the underlying actin filament bundle regulates filopodium growth and retraction cycles at the micrometer and seconds scales. These parallel actin filaments are mainly elongated at their barbed-end by formins and cross-linked by bundling proteins such as fascins.
We aim to:
1) Elucidate how formin and fascin functions are regulated by mechanics at the single filament level. We will investigate how formin partners and competitors present in filopodia affect formin processivity; how fascin affinity for the side of filaments is modified by filament tension and formin presence at the barbed-end.
2) Reconstitute filopodium-like actin bundles in vitro to understand how actin bundle size and fate are regulated down to the molecular scale. Using a unique experimental setup that combines microfluidics and optical tweezers, we will uncover for the first time actin bundles mechanosensitive capabilities, both in tension and compression.
3) Decipher in vivo the mechanics of actin bundles in filopodia, using fascins and formins with integrated fluorescent tension sensors.
This framework spanning from in vitro single filament to in vivo meso-scale actin networks will bring unprecedented insights into the role of actin bundles in filopodia mechanosensitivity.
Summary
Eukaryotic cells constantly convert signals between biochemical energy and mechanical work to timely accomplish many key functions such as migration, division or development. Filopodia are essential finger-like structures that emerge at the cell front to orient the cell in response to its chemical and mechanical environment. Yet, the molecular interactions that make the filopodia mechanosensitive are not known. To tackle this challenge we propose unique biophysical in vitro and in vivo experiments of increasing complexity. Here we will focus on how the underlying actin filament bundle regulates filopodium growth and retraction cycles at the micrometer and seconds scales. These parallel actin filaments are mainly elongated at their barbed-end by formins and cross-linked by bundling proteins such as fascins.
We aim to:
1) Elucidate how formin and fascin functions are regulated by mechanics at the single filament level. We will investigate how formin partners and competitors present in filopodia affect formin processivity; how fascin affinity for the side of filaments is modified by filament tension and formin presence at the barbed-end.
2) Reconstitute filopodium-like actin bundles in vitro to understand how actin bundle size and fate are regulated down to the molecular scale. Using a unique experimental setup that combines microfluidics and optical tweezers, we will uncover for the first time actin bundles mechanosensitive capabilities, both in tension and compression.
3) Decipher in vivo the mechanics of actin bundles in filopodia, using fascins and formins with integrated fluorescent tension sensors.
This framework spanning from in vitro single filament to in vivo meso-scale actin networks will bring unprecedented insights into the role of actin bundles in filopodia mechanosensitivity.
Max ERC Funding
1 499 190 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym BURSTREG
Project Single-molecule visualization of transcription dynamics to understand regulatory mechanisms of transcriptional bursting and its effects on cellular fitness
Researcher (PI) Tineke LENSTRA
Host Institution (HI) STICHTING HET NEDERLANDS KANKER INSTITUUT-ANTONI VAN LEEUWENHOEK ZIEKENHUIS
Call Details Starting Grant (StG), LS1, ERC-2017-STG
Summary Transcription in single cells is a stochastic process that arises from the random collision of molecules, resulting in heterogeneity in gene expression in cell populations. This heterogeneity in gene expression influences cell fate decisions and disease progression. Interestingly, gene expression variability is not the same for every gene: noise can vary by several orders of magnitude across transcriptomes. The reason for this transcript-specific behavior is that genes are not transcribed in a continuous fashion, but can show transcriptional bursting, with periods of gene activity followed by periods of inactivity. The noisiness of a gene can be tuned by changing the duration and the rate of switching between periods of activity and inactivity. Even though transcriptional bursting is conserved from bacteria to yeast to human cells, the origin and regulators of bursting remain largely unknown. Here, I will use cutting-edge single-molecule RNA imaging techniques to directly observe and measure transcriptional bursting in living yeast cells. First, bursting properties will be quantified at different endogenous and mutated genes to evaluate the contribution of cis-regulatory promoter elements on bursting. Second, the role of trans-regulatory complexes will be characterized by dynamic depletion or gene-specific targeting of transcription regulatory proteins and observing changes in RNA synthesis in real-time. Third, I will develop a new technology to visualize the binding dynamics of single transcription factor molecules at the transcription site, so that the stability of upstream regulatory factors and the RNA output can directly be compared in the same cell. Finally, I will examine the phenotypic effect of different bursting patterns on organismal fitness. Overall, these approaches will reveal how bursting is regulated at the molecular level and how different bursting patterns affect the heterogeneity and fitness of the organism.
Summary
Transcription in single cells is a stochastic process that arises from the random collision of molecules, resulting in heterogeneity in gene expression in cell populations. This heterogeneity in gene expression influences cell fate decisions and disease progression. Interestingly, gene expression variability is not the same for every gene: noise can vary by several orders of magnitude across transcriptomes. The reason for this transcript-specific behavior is that genes are not transcribed in a continuous fashion, but can show transcriptional bursting, with periods of gene activity followed by periods of inactivity. The noisiness of a gene can be tuned by changing the duration and the rate of switching between periods of activity and inactivity. Even though transcriptional bursting is conserved from bacteria to yeast to human cells, the origin and regulators of bursting remain largely unknown. Here, I will use cutting-edge single-molecule RNA imaging techniques to directly observe and measure transcriptional bursting in living yeast cells. First, bursting properties will be quantified at different endogenous and mutated genes to evaluate the contribution of cis-regulatory promoter elements on bursting. Second, the role of trans-regulatory complexes will be characterized by dynamic depletion or gene-specific targeting of transcription regulatory proteins and observing changes in RNA synthesis in real-time. Third, I will develop a new technology to visualize the binding dynamics of single transcription factor molecules at the transcription site, so that the stability of upstream regulatory factors and the RNA output can directly be compared in the same cell. Finally, I will examine the phenotypic effect of different bursting patterns on organismal fitness. Overall, these approaches will reveal how bursting is regulated at the molecular level and how different bursting patterns affect the heterogeneity and fitness of the organism.
Max ERC Funding
1 950 775 €
Duration
Start date: 2018-01-01, End date: 2022-12-31