Project acronym ADAPT
Project Origins and factors governing adaptation: Insights from experimental evolution and population genomic data
Researcher (PI) Thomas, Martin Jean Bataillon
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary "I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Summary
"I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Max ERC Funding
1 159 857 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym CIRCUITASSEMBLY
Project Development of functional organization of the visual circuits in mice
Researcher (PI) Keisuke Yonehara
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Summary
The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym ECOGENOMICINBREEDING
Project Comparative studies of inbreeding effects on evolutionary processes in non-model animal populations
Researcher (PI) Trine Bilde
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Comparative studies of inbreeding and evolution in non-model animal populations: a research proposal directed towards integrating ecological and evolutionary research on inbreeding. Specifically, my aim is to apply novel ecogenomics tools in the study of evolutionary consequences of inbreeding in non-model animal populations. At present, our understanding of inbreeding is dominated by studies of a small number of model organisms. I will undertake comparative studies on inbreeding effects in a genus of spiders containing independently evolved naturally inbreeding species as well as outcrossing sister species. The study of a naturally inbreeding animal species will provide unique insights to consequences of inbreeding for population genetic structure, genome-wide genetic diversity, and evolution of life history traits. Social spiders are not only unique because they naturally inbreed, but also by being cooperative and showing allomaternal brood care including self-sacrifice, and they evolve highly female-biased sex-ratios, a trait that is not well understood in diploid species. My research objectives are 1) to establish a robust phylogeny for comparative studies; 2) to quantify the effects of inbreeding on the genetic diversity within and between populations; 3) to estimate gene flow among inbred lineages to determine whether inbred lineages diversify but retain the potential for gene exchange, or undergo cryptic speciation; 4) to determine effects of inbreeding on gene expression; 5) to investigate the mechanism underlying the genetic sex determination system that cause female biased sex-ratios; and finally 6) to determine whether sex-ratio is under adaptive parental control in response to genetic relatedness and ecological constraints. Addressing these objectives will generate novel insights and expand current knowledge on the evolutionary ecology of inbreeding in wild animal populations.
Summary
Comparative studies of inbreeding and evolution in non-model animal populations: a research proposal directed towards integrating ecological and evolutionary research on inbreeding. Specifically, my aim is to apply novel ecogenomics tools in the study of evolutionary consequences of inbreeding in non-model animal populations. At present, our understanding of inbreeding is dominated by studies of a small number of model organisms. I will undertake comparative studies on inbreeding effects in a genus of spiders containing independently evolved naturally inbreeding species as well as outcrossing sister species. The study of a naturally inbreeding animal species will provide unique insights to consequences of inbreeding for population genetic structure, genome-wide genetic diversity, and evolution of life history traits. Social spiders are not only unique because they naturally inbreed, but also by being cooperative and showing allomaternal brood care including self-sacrifice, and they evolve highly female-biased sex-ratios, a trait that is not well understood in diploid species. My research objectives are 1) to establish a robust phylogeny for comparative studies; 2) to quantify the effects of inbreeding on the genetic diversity within and between populations; 3) to estimate gene flow among inbred lineages to determine whether inbred lineages diversify but retain the potential for gene exchange, or undergo cryptic speciation; 4) to determine effects of inbreeding on gene expression; 5) to investigate the mechanism underlying the genetic sex determination system that cause female biased sex-ratios; and finally 6) to determine whether sex-ratio is under adaptive parental control in response to genetic relatedness and ecological constraints. Addressing these objectives will generate novel insights and expand current knowledge on the evolutionary ecology of inbreeding in wild animal populations.
Max ERC Funding
1 497 248 €
Duration
Start date: 2012-01-01, End date: 2017-09-30
Project acronym ELEVATE
Project Eco-physiological tradeoffs with crop domestication: have farming ants cracked the code?
Researcher (PI) Jonathan Zvi SHIK
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2017-STG
Summary Domesticated crops hardly resemble their wild ancestors, and often trade higher yield in artificially optimized conditions for lower performance in fluctuating environments. Leafcutter ants (genus Atta) provide fascinating parallels with human farmers, harvesting fresh vegetation used as compost to produce domesticated fungal crops that feed massive societies with millions of workers. However, while human agricultural systems are imperiled by rapid global changes, leafcutter ants have managed to grow one type of cultivar from Texas to Argentina, thriving across extreme rainfall and temperature gradients and across diverse climates over millions of years. However, the eco-physiological mechanisms governing this farming resiliency are poorly understood.
I propose a new in vitro mapping paradigm to visualize the niche requirements of fungal cultivars. Creating multidimensional landscapes of nutrient availability (e.g. protein, carbohydrates, Na, P) and environmental stress (e.g. temperature, moisture, plant toxins, crop pathogens) I will answer three main questions:
1) What genes and biochemical pathways shape cultivar performance across interacting gradients of nutrition and stress?
2) Do colonies harvest substrates to navigate nutritional contours of cultivar performance maps and avoid production tradeoffs?
3) Do locally adaptive cultivar traits shape the performance of farming societies across regional ecological gradients, and over 60 million years of co-evolutionary crop domestication by farming ants?
My cutting-edge approach will deliver transformative advances to the field of eco-physiology, enabling seamless integration between field and laboratory experiments, and providing new ways to visualize evolutionary mechanisms across levels of biological organization from genes to symbiotic partnerships, and from within diverse farming assemblages to across populations spanning entire continents.
Summary
Domesticated crops hardly resemble their wild ancestors, and often trade higher yield in artificially optimized conditions for lower performance in fluctuating environments. Leafcutter ants (genus Atta) provide fascinating parallels with human farmers, harvesting fresh vegetation used as compost to produce domesticated fungal crops that feed massive societies with millions of workers. However, while human agricultural systems are imperiled by rapid global changes, leafcutter ants have managed to grow one type of cultivar from Texas to Argentina, thriving across extreme rainfall and temperature gradients and across diverse climates over millions of years. However, the eco-physiological mechanisms governing this farming resiliency are poorly understood.
I propose a new in vitro mapping paradigm to visualize the niche requirements of fungal cultivars. Creating multidimensional landscapes of nutrient availability (e.g. protein, carbohydrates, Na, P) and environmental stress (e.g. temperature, moisture, plant toxins, crop pathogens) I will answer three main questions:
1) What genes and biochemical pathways shape cultivar performance across interacting gradients of nutrition and stress?
2) Do colonies harvest substrates to navigate nutritional contours of cultivar performance maps and avoid production tradeoffs?
3) Do locally adaptive cultivar traits shape the performance of farming societies across regional ecological gradients, and over 60 million years of co-evolutionary crop domestication by farming ants?
My cutting-edge approach will deliver transformative advances to the field of eco-physiology, enabling seamless integration between field and laboratory experiments, and providing new ways to visualize evolutionary mechanisms across levels of biological organization from genes to symbiotic partnerships, and from within diverse farming assemblages to across populations spanning entire continents.
Max ERC Funding
1 427 741 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym HISTFUNC
Project Macroecological studies of long-term historical constraints on functional diversity and ecosystem functioning across continents
Researcher (PI) Jens-Christian Svenning
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary "Earth’s environment is ongoing massive changes with strong impacts on ecosystems and their services to human societies. It is thus crucial to improve understanding of ecosystem functioning and its dynamics under environmental change. I propose to do this by assessing the novel hypothesis that ecosystem functioning is subject to long-term constraints mediated by biodiversity effects and driven by past climate change and other historical factors. If supported, we will have to rethink ecosystem ecology, as traditionally ecosystem functioning is understood as the outcome of contemporary environmental drivers and their interplay with dominant species. I will employ an unconventional macroecological approach to ecosystem ecology to investigate this hypothesis for major organism groups and ecosystems across continents, modeling effects of historical factors such as past climate change. My specific objectives are to assess if and how (1) large-scale patterns in functional diversity of a key producer group, vascular plants, and (2) a key consumer group, mammals, are affected by historical factors; (3) if and how plant and mammal functional diversity are linked, and, if such links exist, how and to what extent they are shaped by historical factors; (4) if and how large-scale patterns in vegetation-related ecosystem functioning are shaped by historical factors; (5) if ecosystem functioning is linked to diversity of plants and mammals, and if such links exist, if they are shaped by historical factors; and finally (6) directly translate my findings into a novel framework for predicting spatiotemporal dynamics of ecosystem functioning that accounts for historical constraints. The project relies on extensive geospatial data now available on ecosystem functioning, species distributions, and functional traits as well as on paleodistributions, phylogenies, paleoclimate, environment, and human impacts, in combination with advanced statistical and mechanistic modeling."
Summary
"Earth’s environment is ongoing massive changes with strong impacts on ecosystems and their services to human societies. It is thus crucial to improve understanding of ecosystem functioning and its dynamics under environmental change. I propose to do this by assessing the novel hypothesis that ecosystem functioning is subject to long-term constraints mediated by biodiversity effects and driven by past climate change and other historical factors. If supported, we will have to rethink ecosystem ecology, as traditionally ecosystem functioning is understood as the outcome of contemporary environmental drivers and their interplay with dominant species. I will employ an unconventional macroecological approach to ecosystem ecology to investigate this hypothesis for major organism groups and ecosystems across continents, modeling effects of historical factors such as past climate change. My specific objectives are to assess if and how (1) large-scale patterns in functional diversity of a key producer group, vascular plants, and (2) a key consumer group, mammals, are affected by historical factors; (3) if and how plant and mammal functional diversity are linked, and, if such links exist, how and to what extent they are shaped by historical factors; (4) if and how large-scale patterns in vegetation-related ecosystem functioning are shaped by historical factors; (5) if ecosystem functioning is linked to diversity of plants and mammals, and if such links exist, if they are shaped by historical factors; and finally (6) directly translate my findings into a novel framework for predicting spatiotemporal dynamics of ecosystem functioning that accounts for historical constraints. The project relies on extensive geospatial data now available on ecosystem functioning, species distributions, and functional traits as well as on paleodistributions, phylogenies, paleoclimate, environment, and human impacts, in combination with advanced statistical and mechanistic modeling."
Max ERC Funding
1 499 930 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym SELECTIONDRIVEN
Project Gaining insights into human evolution and disease prevention from adaptive natural selection driven by lethal epidemics
Researcher (PI) Ida MOLTKE
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary Background
Lethal epidemics like the Black Death have killed millions of people and must pose an extreme selective pressure on any genetic variant that confers disease protection. Therefore, such epidemics have been hypothesized to play a key role in the evolution of humans. To what extent this is true, is a fundamental question of wide interest. Yet, it remains unanswered, in part due to limitations of the current methods to detect signatures of selection.
Objectives
I wish to accomplish three linked goals with the proposed project. The first goal is to develop new statistical methods for detecting signatures of adaptive natural selection driven by lethal epidemics. The second goal is to use these new methods to investigate the role of epidemics in recent human evolution by applying them to genetic data from several recent epidemics. The third goal is to gain insights into mechanisms that protect against infectious disease via the identification of genetic variants that have been under selection because they confer disease protection.
Methods
To reach these goals, extensive simulations will be performed to carefully characterize the genetic signatures of adaptive selection acting on a protective genetic variant during an epidemic. Then new statistical methods that can detect these signatures will be developed. Next, the new methods will be applied to several real datasets, including one from a recent Ebola epidemic. Finally, all signatures of selection detected in these real datasets will be further investigated.
Expected outcome and importance
This project will deliver new statistical methods that will move the field of selection studies a substantial step beyond the state-of-the-art by filling an important methodological gap. It will also yield key insights into the role of epidemics in recent evolutionary history. Finally, it has the potential to provide new knowledge on the genetics of disease resistance that could help prevent future lethal epidemics.
Summary
Background
Lethal epidemics like the Black Death have killed millions of people and must pose an extreme selective pressure on any genetic variant that confers disease protection. Therefore, such epidemics have been hypothesized to play a key role in the evolution of humans. To what extent this is true, is a fundamental question of wide interest. Yet, it remains unanswered, in part due to limitations of the current methods to detect signatures of selection.
Objectives
I wish to accomplish three linked goals with the proposed project. The first goal is to develop new statistical methods for detecting signatures of adaptive natural selection driven by lethal epidemics. The second goal is to use these new methods to investigate the role of epidemics in recent human evolution by applying them to genetic data from several recent epidemics. The third goal is to gain insights into mechanisms that protect against infectious disease via the identification of genetic variants that have been under selection because they confer disease protection.
Methods
To reach these goals, extensive simulations will be performed to carefully characterize the genetic signatures of adaptive selection acting on a protective genetic variant during an epidemic. Then new statistical methods that can detect these signatures will be developed. Next, the new methods will be applied to several real datasets, including one from a recent Ebola epidemic. Finally, all signatures of selection detected in these real datasets will be further investigated.
Expected outcome and importance
This project will deliver new statistical methods that will move the field of selection studies a substantial step beyond the state-of-the-art by filling an important methodological gap. It will also yield key insights into the role of epidemics in recent evolutionary history. Finally, it has the potential to provide new knowledge on the genetics of disease resistance that could help prevent future lethal epidemics.
Max ERC Funding
1 499 600 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym STC
Project Synaptic Tagging and Capture: From Synapses to Behavior
Researcher (PI) Sayyed Mohammad Sadegh Nabavi
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2015-STG
Summary It is shown that long-term potentiation (LTP) is the cellular basis of memory formation. However, since all but small fraction of memories are forgotten, LTP has been further divided into early LTP (e-LTP), the mechanism by which short-term memories are formed, and a more stable late LTP (L-LTP), by which long-term memories are formed. Remarkably, it has been shown that an e-LTP can be stabilized if it is preceded or followed by heterosynaptic L-LTP.
According to Synaptic Tagging and Capture (STC) hypothesis, e-LTP is stabilized by capturing proteins that are made by L-LTP induction. The model proposes that this mechanism underlies the formation of late associative memory, where the stability of a memory is not only defined by the stimuli that induce the change but also by events happening before and after these stimuli. As such, the model explicitly predicts that a short-term memory can be stabilized by inducing heterosynaptic L-LTP.
In this grant, I will put this hypothesis into test. Specifically, I will test two explicit predictions of STC model: 1) A naturally formed short-term memory can be stabilized by induction of heterosynaptic L-LTP. 2) This stabilization is caused by the protein synthesis feature of L-LTP. To do this, using optogenetics, I will engineer a short-term memory in auditory fear circuit, in which an animal transiently associates a foot shock to a tone. Subsequently, I will examine if optogenetic delivery of L-LTP to the visual inputs converging on the same population of neurons in the amygdala will stabilize the short-term tone fear memory.
To be able to engineer natural memory by manipulating synaptic plasticity I will develop two systems: 1) A two-color optical activation system which permits selective manipulation of distinct neuronal populations with precise temporal and spatial resolution; 2) An inducible and activity-dependent expression system by which those neurons that are activated by a natural stimulus will be optically tagged.
Summary
It is shown that long-term potentiation (LTP) is the cellular basis of memory formation. However, since all but small fraction of memories are forgotten, LTP has been further divided into early LTP (e-LTP), the mechanism by which short-term memories are formed, and a more stable late LTP (L-LTP), by which long-term memories are formed. Remarkably, it has been shown that an e-LTP can be stabilized if it is preceded or followed by heterosynaptic L-LTP.
According to Synaptic Tagging and Capture (STC) hypothesis, e-LTP is stabilized by capturing proteins that are made by L-LTP induction. The model proposes that this mechanism underlies the formation of late associative memory, where the stability of a memory is not only defined by the stimuli that induce the change but also by events happening before and after these stimuli. As such, the model explicitly predicts that a short-term memory can be stabilized by inducing heterosynaptic L-LTP.
In this grant, I will put this hypothesis into test. Specifically, I will test two explicit predictions of STC model: 1) A naturally formed short-term memory can be stabilized by induction of heterosynaptic L-LTP. 2) This stabilization is caused by the protein synthesis feature of L-LTP. To do this, using optogenetics, I will engineer a short-term memory in auditory fear circuit, in which an animal transiently associates a foot shock to a tone. Subsequently, I will examine if optogenetic delivery of L-LTP to the visual inputs converging on the same population of neurons in the amygdala will stabilize the short-term tone fear memory.
To be able to engineer natural memory by manipulating synaptic plasticity I will develop two systems: 1) A two-color optical activation system which permits selective manipulation of distinct neuronal populations with precise temporal and spatial resolution; 2) An inducible and activity-dependent expression system by which those neurons that are activated by a natural stimulus will be optically tagged.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31