Project acronym ARISTOTLE
Project Aristotle in the Italian Vernacular: Rethinking Renaissance and Early-Modern Intellectual History (c. 1400–c. 1650)
Researcher (PI) Marco Sgarbi
Host Institution (HI) UNIVERSITA CA' FOSCARI VENEZIA
Call Details Starting Grant (StG), SH5, ERC-2013-StG
Summary From the twelfth to the seventeenth century, Aristotle’s writings lay at the foundation of Western culture, providing a body of knowledge and a set of analytical tools applicable to all areas of human investigation. Scholars of the Renaissance have emphasized the remarkable longevity and versatility of Aristotelianism, but their attention has remained firmly, and almost exclusively, fixed on the transmission of Aristotle’s works in Latin. Scarce attention has gone to works in the vernacular. Nonetheless, several important Renaissance figures wished to make Aristotle’s works accessible and available outside the narrow circle of professional philosophers and university professors. They believed that his works could provide essential knowledge to a broad set of readers, and embarked on an intense programme of translation and commentary to see this happen. It is the argument of this project that vernacular Aristotelianism made fundamental contributions to the thought of the period, anticipating many of the features of early modern philosophy and contributing to a new encyclopaedia of knowledge. Our project aims to offer the first detailed and comprehensive study of the vernacular diffusion of Aristotle through a series of analyses of its main texts. We will thus study works that fall within the two main Renaissance divisions of speculative philosophy (metaphysics, natural philosophy, mathematics, and logic) and civil philosophy (ethics, politics, rhetoric, and poetics). We will give strong attention to the contextualization of the texts they examine, as is standard practice in the best kind of intellectual history, focusing on institutional contexts, reading publics, the value of the vernacular, new visions of knowledge and eclecticism. With the work of the PI, two professors, 5 post-docs and two PhD students we aim to make considerable advances in the understanding of both speculative and civil philosophy within vernacular Aristotelianism.
Summary
From the twelfth to the seventeenth century, Aristotle’s writings lay at the foundation of Western culture, providing a body of knowledge and a set of analytical tools applicable to all areas of human investigation. Scholars of the Renaissance have emphasized the remarkable longevity and versatility of Aristotelianism, but their attention has remained firmly, and almost exclusively, fixed on the transmission of Aristotle’s works in Latin. Scarce attention has gone to works in the vernacular. Nonetheless, several important Renaissance figures wished to make Aristotle’s works accessible and available outside the narrow circle of professional philosophers and university professors. They believed that his works could provide essential knowledge to a broad set of readers, and embarked on an intense programme of translation and commentary to see this happen. It is the argument of this project that vernacular Aristotelianism made fundamental contributions to the thought of the period, anticipating many of the features of early modern philosophy and contributing to a new encyclopaedia of knowledge. Our project aims to offer the first detailed and comprehensive study of the vernacular diffusion of Aristotle through a series of analyses of its main texts. We will thus study works that fall within the two main Renaissance divisions of speculative philosophy (metaphysics, natural philosophy, mathematics, and logic) and civil philosophy (ethics, politics, rhetoric, and poetics). We will give strong attention to the contextualization of the texts they examine, as is standard practice in the best kind of intellectual history, focusing on institutional contexts, reading publics, the value of the vernacular, new visions of knowledge and eclecticism. With the work of the PI, two professors, 5 post-docs and two PhD students we aim to make considerable advances in the understanding of both speculative and civil philosophy within vernacular Aristotelianism.
Max ERC Funding
1 483 180 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ARITHMUS
Project Peopling Europe: How data make a people
Researcher (PI) Evelyn Sharon Ruppert
Host Institution (HI) GOLDSMITHS' COLLEGE
Call Details Consolidator Grant (CoG), SH3, ERC-2013-CoG
Summary Who are the people of Europe? This question is facing statisticians as they grapple with standardising national census methods so that their numbers can be assembled into a European population. Yet, by so doing—intentionally or otherwise—they also contribute to the making of a European people. This, at least, is the central thesis of ARITHMUS. While typically framed as a methodological or statistical problem, the project approaches this as a practical and political problem of assembling multiple national populations into a European population and people.
Why is this both an urgent political and practical problem? Politically, Europe is said to be unable to address itself to a constituted polity and people, which is crucial to European integration. Practically, its efforts to constitute a European population are also being challenged by digital technologies, which are being used to diversify census methods and bringing into question the comparability of national population data. Consequently, over the next several years Eurostat and national statistical institutes are negotiating regulations for the 2020 census round towards ensuring 'Europe-wide comparability.'
ARITHMUS will follow this process and investigate the practices of statisticians as they juggle scientific independence, national autonomy and EU comparability to innovate census methods. It will then connect this practical work to political questions of the making and governing of a European people and polity. It will do so by going beyond state-of-the art scholarship on methods, politics and science and technology studies. Five case studies involving discourse analysis and ethnographic methods will investigate the situated practices of EU and national statisticians as they remake census methods, arguably the most fundamental changes since modern censuses were launched over two centuries ago. At the same time it will attend to how these practices affect the constitution of who are the people of Europe.
Summary
Who are the people of Europe? This question is facing statisticians as they grapple with standardising national census methods so that their numbers can be assembled into a European population. Yet, by so doing—intentionally or otherwise—they also contribute to the making of a European people. This, at least, is the central thesis of ARITHMUS. While typically framed as a methodological or statistical problem, the project approaches this as a practical and political problem of assembling multiple national populations into a European population and people.
Why is this both an urgent political and practical problem? Politically, Europe is said to be unable to address itself to a constituted polity and people, which is crucial to European integration. Practically, its efforts to constitute a European population are also being challenged by digital technologies, which are being used to diversify census methods and bringing into question the comparability of national population data. Consequently, over the next several years Eurostat and national statistical institutes are negotiating regulations for the 2020 census round towards ensuring 'Europe-wide comparability.'
ARITHMUS will follow this process and investigate the practices of statisticians as they juggle scientific independence, national autonomy and EU comparability to innovate census methods. It will then connect this practical work to political questions of the making and governing of a European people and polity. It will do so by going beyond state-of-the art scholarship on methods, politics and science and technology studies. Five case studies involving discourse analysis and ethnographic methods will investigate the situated practices of EU and national statisticians as they remake census methods, arguably the most fundamental changes since modern censuses were launched over two centuries ago. At the same time it will attend to how these practices affect the constitution of who are the people of Europe.
Max ERC Funding
1 833 649 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ART
Project Aberrant RNA degradation in T-cell leukemia
Researcher (PI) Jan Cools
Host Institution (HI) VIB
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary "The deregulation of transcription is an important driver of leukemia development. Typically, transcription in leukemia cells is altered by the ectopic expression of transcription factors, by modulation of signaling pathways or by epigenetic changes. In addition to these factors that affect the production of RNAs, also changes in the processing of RNA (its splicing, transport and decay) may contribute to determine steady-state RNA levels in leukemia cells. Indeed, acquired mutations in various genes encoding RNA splice factors have recently been identified in myeloid leukemias and in chronic lymphocytic leukemia. In our study of T-cell acute lymphoblastic leukemia (T-ALL), we have identified mutations in RNA decay factors, including mutations in CNOT3, a protein believed to function in deadenylation of mRNA. It remains, however, unclear how mutations in RNA processing can contribute to the development of leukemia.
In this project, we aim to further characterize the mechanisms of RNA regulation in T-cell acute lymphoblastic leukemia (T-ALL) to obtain insight in the interplay between RNA generation and RNA decay and its role in leukemia development. We will study RNA decay in human T-ALL cells and mouse models of T-ALL, with the aim to identify the molecular consequences that contribute to leukemia development. We will use new technologies such as RNA-sequencing in combination with bromouridine labeling of RNA to measure RNA transcription and decay rates in a transcriptome wide manner allowing unbiased discoveries. These studies will be complemented with screens in Drosophila melanogaster using an established eye cancer model, previously also successfully used for the studies of T-ALL oncogenes.
This study will contribute to our understanding of the pathogenesis of T-ALL and may identify new targets for therapy of this leukemia. In addition, our study will provide a better understanding of how RNA processing is implicated in cancer development in general."
Summary
"The deregulation of transcription is an important driver of leukemia development. Typically, transcription in leukemia cells is altered by the ectopic expression of transcription factors, by modulation of signaling pathways or by epigenetic changes. In addition to these factors that affect the production of RNAs, also changes in the processing of RNA (its splicing, transport and decay) may contribute to determine steady-state RNA levels in leukemia cells. Indeed, acquired mutations in various genes encoding RNA splice factors have recently been identified in myeloid leukemias and in chronic lymphocytic leukemia. In our study of T-cell acute lymphoblastic leukemia (T-ALL), we have identified mutations in RNA decay factors, including mutations in CNOT3, a protein believed to function in deadenylation of mRNA. It remains, however, unclear how mutations in RNA processing can contribute to the development of leukemia.
In this project, we aim to further characterize the mechanisms of RNA regulation in T-cell acute lymphoblastic leukemia (T-ALL) to obtain insight in the interplay between RNA generation and RNA decay and its role in leukemia development. We will study RNA decay in human T-ALL cells and mouse models of T-ALL, with the aim to identify the molecular consequences that contribute to leukemia development. We will use new technologies such as RNA-sequencing in combination with bromouridine labeling of RNA to measure RNA transcription and decay rates in a transcriptome wide manner allowing unbiased discoveries. These studies will be complemented with screens in Drosophila melanogaster using an established eye cancer model, previously also successfully used for the studies of T-ALL oncogenes.
This study will contribute to our understanding of the pathogenesis of T-ALL and may identify new targets for therapy of this leukemia. In addition, our study will provide a better understanding of how RNA processing is implicated in cancer development in general."
Max ERC Funding
1 998 300 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ARYLATOR
Project New Catalytic Reactions and Exchange Pathways: Delivering Versatile and Reliable Arylation
Researcher (PI) Guy Charles Lloyd-Jones
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), PE5, ERC-2013-ADG
Summary This proposal details the mechanism-based discovery of ground-breaking new catalyst systems for a broad range of arylation processes that will be of immediate and long-lasting utility to the pharmaceutical, agrochemical, and materials chemistry industries. These industries have become highly dependent on coupling technologies employing homogeneous late transition metal catalysis and this reliance will grow further, particularly if the substrate scope can be broadened, the economics, in terms of reagents and catalyst, made more favourable, the reliability at scale-up improved, and the generation of side-products, of particular importance for optical and electronic properties of materials, minimized or eliminated.
This proposal addresses these issues by conducting a detailed and comprehensive mechanistic investigation of direct arylation, so that a substantial expansion of the reaction scope can be achieved. At present, the regioselectivity can be very high, however catalyst turnover rates are moderate, and the arene is required to be in a fairly narrow window of activity. Specific aspects to be addressed in terms of mechanistic study are: catalyst speciation and pathways for deactivation; pathways for homocoupling; influence of anions and dummy ligands; protodemetalloidation pathways. Areas proposed for mechanism-informed development are: expansion of metalloid tolerance; expansion of arene scope; use of traceless activators and directors, new couplings via ligand exchange, the evolution of simpler / cheaper and more selective / active catalysts; expansion to oxidative double arylations (Ar-H + Ar’-H) with control, and without resort to super-stoichiometric bias.
The long-term legacy of these studies will be detailed insight for current and emerging systems, as well as readily extrapolated information for the design of new, more efficient catalyst systems in academia, and their scaleable application in industry
Summary
This proposal details the mechanism-based discovery of ground-breaking new catalyst systems for a broad range of arylation processes that will be of immediate and long-lasting utility to the pharmaceutical, agrochemical, and materials chemistry industries. These industries have become highly dependent on coupling technologies employing homogeneous late transition metal catalysis and this reliance will grow further, particularly if the substrate scope can be broadened, the economics, in terms of reagents and catalyst, made more favourable, the reliability at scale-up improved, and the generation of side-products, of particular importance for optical and electronic properties of materials, minimized or eliminated.
This proposal addresses these issues by conducting a detailed and comprehensive mechanistic investigation of direct arylation, so that a substantial expansion of the reaction scope can be achieved. At present, the regioselectivity can be very high, however catalyst turnover rates are moderate, and the arene is required to be in a fairly narrow window of activity. Specific aspects to be addressed in terms of mechanistic study are: catalyst speciation and pathways for deactivation; pathways for homocoupling; influence of anions and dummy ligands; protodemetalloidation pathways. Areas proposed for mechanism-informed development are: expansion of metalloid tolerance; expansion of arene scope; use of traceless activators and directors, new couplings via ligand exchange, the evolution of simpler / cheaper and more selective / active catalysts; expansion to oxidative double arylations (Ar-H + Ar’-H) with control, and without resort to super-stoichiometric bias.
The long-term legacy of these studies will be detailed insight for current and emerging systems, as well as readily extrapolated information for the design of new, more efficient catalyst systems in academia, and their scaleable application in industry
Max ERC Funding
2 114 223 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ASIA
Project Beyond Boundaries: Religion, Region, Language and the State
Researcher (PI) Sam Julius Van Schaik
Host Institution (HI) BRITISH MUSEUM
Call Details Synergy Grants (SyG), SYG6, ERC-2013-SyG
Summary The Gupta dynasty dominated South Asia during the 4th and 5th centuries. Their period was marked by political stability and an astonishing florescence in every field of endeavor. The Gupta kingdom and its networks had an enduring impact on India and a profound reach across Central and Southeast Asia in a host of cultural, religious and socio-political spheres. Sometimes characterized as a ‘Golden Age’, this was a pivotal moment in Asian history. The Guptas have received considerable scholarly attention over the last century, as have, separately, the kingdoms of Central and Southeast Asia. Recent advances notwithstanding, knowledge and research activity are fragmented by entrenched disciplinary protocols, distorted by nationalist historiographies and constrained by regional languages and associated cultural and political agendas. Hemmed in by modern intellectual, geographical and political boundaries, the diverse cultures, complex polities and varied networks of the Gupta period remain specialist subjects, little-mentioned outside area studies and traditional disciplinary frameworks. The aim of this project is to work beyond these boundaries for the first time and so recover this profoundly influential dispensation, presenting it as a vibrant entity with connections across several regions and sub-continental areas. To address this aim, three PIs have formed an interdisciplinary team spanning linguistics, history, religious studies, geography, archaeology, Indology, Sinology and GIS/IT technologies. This team will establish a scientific laboratory in London that will generate the synergies needed to delineate and assess the significance of the Gupta Age and its pan-Asian impacts. The project's wider objective is to place Central,South and Southeast Asia on the global historical stage, significantly influence practices in Asian research and support EU leadership in Asian studies.
Summary
The Gupta dynasty dominated South Asia during the 4th and 5th centuries. Their period was marked by political stability and an astonishing florescence in every field of endeavor. The Gupta kingdom and its networks had an enduring impact on India and a profound reach across Central and Southeast Asia in a host of cultural, religious and socio-political spheres. Sometimes characterized as a ‘Golden Age’, this was a pivotal moment in Asian history. The Guptas have received considerable scholarly attention over the last century, as have, separately, the kingdoms of Central and Southeast Asia. Recent advances notwithstanding, knowledge and research activity are fragmented by entrenched disciplinary protocols, distorted by nationalist historiographies and constrained by regional languages and associated cultural and political agendas. Hemmed in by modern intellectual, geographical and political boundaries, the diverse cultures, complex polities and varied networks of the Gupta period remain specialist subjects, little-mentioned outside area studies and traditional disciplinary frameworks. The aim of this project is to work beyond these boundaries for the first time and so recover this profoundly influential dispensation, presenting it as a vibrant entity with connections across several regions and sub-continental areas. To address this aim, three PIs have formed an interdisciplinary team spanning linguistics, history, religious studies, geography, archaeology, Indology, Sinology and GIS/IT technologies. This team will establish a scientific laboratory in London that will generate the synergies needed to delineate and assess the significance of the Gupta Age and its pan-Asian impacts. The project's wider objective is to place Central,South and Southeast Asia on the global historical stage, significantly influence practices in Asian research and support EU leadership in Asian studies.
Max ERC Funding
8 053 715 €
Duration
Start date: 2014-09-01, End date: 2020-08-31
Project acronym ASIBIA
Project Arctic sea ice, biogeochemistry and impacts on the atmosphere: Past, present, future
Researcher (PI) Roland Von Glasow
Host Institution (HI) UNIVERSITY OF EAST ANGLIA
Call Details Consolidator Grant (CoG), PE10, ERC-2013-CoG
Summary The Arctic Ocean is a vast expanse of sea ice. Most of it is snow covered as are large continental regions for about half of the year. However, Global Change is arguably greatest in the Arctic, where temperatures have risen more than anywhere else in the last few decades. New record lows occurred in snow extent in June 2012 and sea ice extent in September 2012. Many observations show that widespread and sustained change is occurring in the Arctic driving this unique environmental system into a new state. This project focuses on the biogeochemical links between sea ice and snow and the composition and chemistry of the troposphere (the lowest ~10km of the atmosphere). This is an important topic because the concentrations of greenhouse gases and aerosol particles, which scatter sunlight directly and influence cloud properties, play key roles for our climate. Additionally, changes in the composition of the troposphere also affect the so-called oxidation capacity, the capability of the atmosphere to cleanse itself from pollutants.
This project aims to deliver a step change improvement in our quantitative understanding of chemical exchanges between ocean, sea ice, snow and the atmosphere in polar regions, especially the Arctic and of Arctic tropospheric chemistry. Answering these fundamental questions is essential to predict future change in the Arctic and globally. To this end a unique sea ice chamber will be constructed in the laboratory and used to quantify exchange processes in sea ice. Furthermore a hierarchy of numerical models will be used, operating at different spatial and temporal scales and degree of process description from a very detailed 1D to a global Earth System model. This will allow a breakthrough in our understanding of the importance of the changes for the composition and oxidation capacity of the atmosphere and climate and will allow us to calculate adjusted Greenhouse Warming Potentials that include these processes.
Summary
The Arctic Ocean is a vast expanse of sea ice. Most of it is snow covered as are large continental regions for about half of the year. However, Global Change is arguably greatest in the Arctic, where temperatures have risen more than anywhere else in the last few decades. New record lows occurred in snow extent in June 2012 and sea ice extent in September 2012. Many observations show that widespread and sustained change is occurring in the Arctic driving this unique environmental system into a new state. This project focuses on the biogeochemical links between sea ice and snow and the composition and chemistry of the troposphere (the lowest ~10km of the atmosphere). This is an important topic because the concentrations of greenhouse gases and aerosol particles, which scatter sunlight directly and influence cloud properties, play key roles for our climate. Additionally, changes in the composition of the troposphere also affect the so-called oxidation capacity, the capability of the atmosphere to cleanse itself from pollutants.
This project aims to deliver a step change improvement in our quantitative understanding of chemical exchanges between ocean, sea ice, snow and the atmosphere in polar regions, especially the Arctic and of Arctic tropospheric chemistry. Answering these fundamental questions is essential to predict future change in the Arctic and globally. To this end a unique sea ice chamber will be constructed in the laboratory and used to quantify exchange processes in sea ice. Furthermore a hierarchy of numerical models will be used, operating at different spatial and temporal scales and degree of process description from a very detailed 1D to a global Earth System model. This will allow a breakthrough in our understanding of the importance of the changes for the composition and oxidation capacity of the atmosphere and climate and will allow us to calculate adjusted Greenhouse Warming Potentials that include these processes.
Max ERC Funding
1 192 911 €
Duration
Start date: 2014-05-01, End date: 2016-09-30
Project acronym assemblyNMR
Project 3D structures of bacterial supramolecular assemblies by solid-state NMR
Researcher (PI) Adam Lange
Host Institution (HI) FORSCHUNGSVERBUND BERLIN EV
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary Supramolecular assemblies – formed by the self-assembly of hundreds of protein subunits – are part of bacterial nanomachines involved in key cellular processes. Important examples in pathogenic bacteria are pili and type 3 secretion systems (T3SS) that mediate adhesion to host cells and injection of virulence proteins. Structure determination at atomic resolution of such assemblies by standard techniques such as X-ray crystallography or solution NMR is severely limited: Intact T3SSs or pili cannot be crystallized and are also inherently insoluble. Cryo-electron microscopy techniques have recently made it possible to obtain low- and medium-resolution models, but atomic details have not been accessible at the resolution obtained in these studies, leading sometimes to inaccurate models.
I propose to use solid-state NMR (ssNMR) to fill this knowledge-gap. I could recently show that ssNMR on in vitro preparations of Salmonella T3SS needles constitutes a powerful approach to study the structure of this virulence factor. Our integrated approach also included results from electron microscopy and modeling as well as in vivo assays (Loquet et al., Nature 2012). This is the foundation of this application. I propose to extend ssNMR methodology to tackle the structures of even larger or more complex homo-oligomeric assemblies with up to 200 residues per monomeric subunit. We will apply such techniques to address the currently unknown 3D structures of type I pili and cytoskeletal bactofilin filaments. Furthermore, I want to develop strategies to directly study assemblies in a native-like setting. As a first application, I will study the 3D structure of T3SS needles when they are complemented with intact T3SSs purified from Salmonella or Shigella. The ultimate goal of this proposal is to establish ssNMR as a generally applicable method that allows solving the currently unknown structures of bacterial supramolecular assemblies at atomic resolution.
Summary
Supramolecular assemblies – formed by the self-assembly of hundreds of protein subunits – are part of bacterial nanomachines involved in key cellular processes. Important examples in pathogenic bacteria are pili and type 3 secretion systems (T3SS) that mediate adhesion to host cells and injection of virulence proteins. Structure determination at atomic resolution of such assemblies by standard techniques such as X-ray crystallography or solution NMR is severely limited: Intact T3SSs or pili cannot be crystallized and are also inherently insoluble. Cryo-electron microscopy techniques have recently made it possible to obtain low- and medium-resolution models, but atomic details have not been accessible at the resolution obtained in these studies, leading sometimes to inaccurate models.
I propose to use solid-state NMR (ssNMR) to fill this knowledge-gap. I could recently show that ssNMR on in vitro preparations of Salmonella T3SS needles constitutes a powerful approach to study the structure of this virulence factor. Our integrated approach also included results from electron microscopy and modeling as well as in vivo assays (Loquet et al., Nature 2012). This is the foundation of this application. I propose to extend ssNMR methodology to tackle the structures of even larger or more complex homo-oligomeric assemblies with up to 200 residues per monomeric subunit. We will apply such techniques to address the currently unknown 3D structures of type I pili and cytoskeletal bactofilin filaments. Furthermore, I want to develop strategies to directly study assemblies in a native-like setting. As a first application, I will study the 3D structure of T3SS needles when they are complemented with intact T3SSs purified from Salmonella or Shigella. The ultimate goal of this proposal is to establish ssNMR as a generally applicable method that allows solving the currently unknown structures of bacterial supramolecular assemblies at atomic resolution.
Max ERC Funding
1 456 000 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym AsthmaVir
Project The roles of innate lymphoid cells and rhinovirus in asthma exacerbations
Researcher (PI) Hergen Spits
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), LS6, ERC-2013-ADG
Summary Asthma exacerbations represent a high unmet medical need in particular in young children. Human Rhinoviruses (HRV) are the main triggers of these exacerbations. Till now Th2 cells were considered the main initiating effector cell type in asthma in general and asthma exacerbations in particular. However, exaggerated Th2 cell activities alone do not explain all aspects of asthma and exacerbations. Building on our recent discovery of type 2 human innate lymphoid cells (ILC2) capable of promptly producing high amounts of IL-5, IL-9 and IL-13 upon activation and on mouse data pointing to an essential role of these cells in asthma and asthma exacerbations, ILC2 may be the main initiating cells in asthma exacerbations in humans. Thus we hypothesize that HRV directly or indirectly stimulate ILC2s to produce cytokines driving the effector functions leading to the end organ effects that characterize this debilitating disease. Targeting ILC2 and HRV in parallel will provide a highly attractive therapeutic option for the treatment of asthma exacerbations. In depth study of the mechanisms of ILC2 differentiation and function will lead to the design effective drugs targeting these cells; thus the first two objectives of this project are: 1) To unravel the lineage relationship of ILC populations and to decipher the signal transduction pathways that regulate the function of ILCs, 2) to test the functions of lung-residing human ILCs and the effects of compounds that affect these functions in mice which harbour a human immune system and human lung epithelium under homeostatic conditions and after infections with respiratory viruses. The third objective of this project is developing reagents that target HRV; to this end we will develop broadly reacting highly neutralizing human monoclonal antibodies that can be used for prophylaxis and therapy of patients at high risk for developing severe asthma exacerbations.
Summary
Asthma exacerbations represent a high unmet medical need in particular in young children. Human Rhinoviruses (HRV) are the main triggers of these exacerbations. Till now Th2 cells were considered the main initiating effector cell type in asthma in general and asthma exacerbations in particular. However, exaggerated Th2 cell activities alone do not explain all aspects of asthma and exacerbations. Building on our recent discovery of type 2 human innate lymphoid cells (ILC2) capable of promptly producing high amounts of IL-5, IL-9 and IL-13 upon activation and on mouse data pointing to an essential role of these cells in asthma and asthma exacerbations, ILC2 may be the main initiating cells in asthma exacerbations in humans. Thus we hypothesize that HRV directly or indirectly stimulate ILC2s to produce cytokines driving the effector functions leading to the end organ effects that characterize this debilitating disease. Targeting ILC2 and HRV in parallel will provide a highly attractive therapeutic option for the treatment of asthma exacerbations. In depth study of the mechanisms of ILC2 differentiation and function will lead to the design effective drugs targeting these cells; thus the first two objectives of this project are: 1) To unravel the lineage relationship of ILC populations and to decipher the signal transduction pathways that regulate the function of ILCs, 2) to test the functions of lung-residing human ILCs and the effects of compounds that affect these functions in mice which harbour a human immune system and human lung epithelium under homeostatic conditions and after infections with respiratory viruses. The third objective of this project is developing reagents that target HRV; to this end we will develop broadly reacting highly neutralizing human monoclonal antibodies that can be used for prophylaxis and therapy of patients at high risk for developing severe asthma exacerbations.
Max ERC Funding
2 499 593 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ASTONISH
Project Atomic-scale STudies Of the Nature of and conditions for Inducing Superconductivity at High-temperatures
Researcher (PI) Roland Martin Wiesendanger
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Advanced Grant (AdG), PE3, ERC-2013-ADG
Summary "One of the greatest challenges these days in condensed matter physics is the fundamental understanding of the mechanisms leading to high-Tc superconductivity and ultimately, as a result of that, the discovery of a material system exhibiting a superconducting state with a transition temperature Tc above room temperature. While several different classes of high-Tc materials have been discovered in the past decades, including the well-known CuO-based superconductors (cuprates) or the more recently discovered class of Fe-based superconductors (pnictides), the mechanisms behind high-Tc superconductivity remain controversial. Up to date, no theory exists which would allow for a rational design of a superconducting material with a transition temperature above room temperature. On the other hand, experiments on rather complex material systems often suffer from material imperfections or from a lack of tunability of materials’ properties within a wide range. Our experimental studies within this project therefore will focus on model-type systems which can be prepared and thoroughly characterized with atomic level precision. The growth of the model-type samples will be controlled vertically one atomic layer at a time and laterally by making use of single-atom manipulation techniques. Atomic-scale characterization at low energy-scales will be performed by low-temperature spin-resolved elastic and inelastic scanning tunnelling microscopy (STM) and spectroscopy (STS) as well as by non-contact atomic force microscopy and spectroscopy based techniques. Transport experiments will be conducted by a four-probe STM setup under well-defined ultra-high vacuum conditions. By having access to the electronic and spin, as well as to the vibrational degrees of freedom down to the atomic level, we hope to be able to identify the nature of and the conditions for inducing superconductivity at high temperatures, which could ultimately lead a knowledge-based design of high-Tc superconductors."
Summary
"One of the greatest challenges these days in condensed matter physics is the fundamental understanding of the mechanisms leading to high-Tc superconductivity and ultimately, as a result of that, the discovery of a material system exhibiting a superconducting state with a transition temperature Tc above room temperature. While several different classes of high-Tc materials have been discovered in the past decades, including the well-known CuO-based superconductors (cuprates) or the more recently discovered class of Fe-based superconductors (pnictides), the mechanisms behind high-Tc superconductivity remain controversial. Up to date, no theory exists which would allow for a rational design of a superconducting material with a transition temperature above room temperature. On the other hand, experiments on rather complex material systems often suffer from material imperfections or from a lack of tunability of materials’ properties within a wide range. Our experimental studies within this project therefore will focus on model-type systems which can be prepared and thoroughly characterized with atomic level precision. The growth of the model-type samples will be controlled vertically one atomic layer at a time and laterally by making use of single-atom manipulation techniques. Atomic-scale characterization at low energy-scales will be performed by low-temperature spin-resolved elastic and inelastic scanning tunnelling microscopy (STM) and spectroscopy (STS) as well as by non-contact atomic force microscopy and spectroscopy based techniques. Transport experiments will be conducted by a four-probe STM setup under well-defined ultra-high vacuum conditions. By having access to the electronic and spin, as well as to the vibrational degrees of freedom down to the atomic level, we hope to be able to identify the nature of and the conditions for inducing superconductivity at high temperatures, which could ultimately lead a knowledge-based design of high-Tc superconductors."
Max ERC Funding
2 170 696 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym astromnesis
Project The language of astrocytes: multilevel analysis to understand astrocyte communication and its role in memory-related brain operations and in cognitive behavior
Researcher (PI) Andrea Volterra
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Advanced Grant (AdG), LS5, ERC-2013-ADG
Summary In the 90s, two landmark observations brought to a paradigm shift about the role of astrocytes in brain function: 1) astrocytes respond to signals coming from other cells with transient Ca2+ elevations; 2) Ca2+ transients in astrocytes trigger release of neuroactive and vasoactive agents. Since then, many modulatory astrocytic actions and mechanisms were described, forming a complex - partly contradictory - picture, in which the exact roles and modes of astrocyte action remain ill defined. Our project wants to bring light into the “language of astrocytes”, i.e. into how they communicate with neurons and, ultimately, address their role in brain computations and cognitive behavior. To this end we will perform 4 complementary levels of analysis using highly innovative methodologies in order to obtain unprecedented results. We will study: 1) the subcellular organization of astrocytes underlying local microdomain communications by use of correlative light-electron microscopy; 2) the way individual astrocytes integrate inputs and control synaptic ensembles using 3D two-photon imaging, genetically-encoded Ca2+ indicators, optogenetics and electrophysiology; 3) the contribution of astrocyte ensembles to behavior-relevant circuit operations using miniaturized microscopes capturing neuronal/astrocytic population dynamics in freely-moving mice during memory tests; 4) the contribution of astrocytic signalling mechanisms to cognitive behavior using a set of new mouse lines with conditional, astrocyte-specific genetic modification of signalling pathways. We expect that this combination of groundbreaking ideas, innovative technologies and multilevel analysis makes our project highly attractive to the neuroscience community at large, bridging aspects of molecular, cellular, systems and behavioral neuroscience, with the goal of leading from a provocative hypothesis to the conclusive demonstration of whether and how “the language of astrocytes” participates in memory and cognition.
Summary
In the 90s, two landmark observations brought to a paradigm shift about the role of astrocytes in brain function: 1) astrocytes respond to signals coming from other cells with transient Ca2+ elevations; 2) Ca2+ transients in astrocytes trigger release of neuroactive and vasoactive agents. Since then, many modulatory astrocytic actions and mechanisms were described, forming a complex - partly contradictory - picture, in which the exact roles and modes of astrocyte action remain ill defined. Our project wants to bring light into the “language of astrocytes”, i.e. into how they communicate with neurons and, ultimately, address their role in brain computations and cognitive behavior. To this end we will perform 4 complementary levels of analysis using highly innovative methodologies in order to obtain unprecedented results. We will study: 1) the subcellular organization of astrocytes underlying local microdomain communications by use of correlative light-electron microscopy; 2) the way individual astrocytes integrate inputs and control synaptic ensembles using 3D two-photon imaging, genetically-encoded Ca2+ indicators, optogenetics and electrophysiology; 3) the contribution of astrocyte ensembles to behavior-relevant circuit operations using miniaturized microscopes capturing neuronal/astrocytic population dynamics in freely-moving mice during memory tests; 4) the contribution of astrocytic signalling mechanisms to cognitive behavior using a set of new mouse lines with conditional, astrocyte-specific genetic modification of signalling pathways. We expect that this combination of groundbreaking ideas, innovative technologies and multilevel analysis makes our project highly attractive to the neuroscience community at large, bridging aspects of molecular, cellular, systems and behavioral neuroscience, with the goal of leading from a provocative hypothesis to the conclusive demonstration of whether and how “the language of astrocytes” participates in memory and cognition.
Max ERC Funding
2 513 896 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AtomicGaugeSimulator
Project Classical and Atomic Quantum Simulation of Gauge Theories in Particle and Condensed Matter Physics
Researcher (PI) Uwe-Jens Richard Christian Wiese
Host Institution (HI) UNIVERSITAET BERN
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary Gauge theories play a central role in particle and condensed matter physics. Heavy-ion collisions explore the strong dynamics of quarks and gluons, which also governs the deep interior of neutron stars, while strongly correlated electrons determine the physics of high-temperature superconductors and spin liquids. Numerical simulations of such systems are often hindered by sign problems. In quantum link models - an alternative formulation of gauge theories developed by the applicant - gauge fields emerge from discrete quantum variables. In the past year, in close collaboration with atomic physicists, we have established quantum link models as a framework for the atomic quantum simulation of dynamical gauge fields. Abelian gauge theories can be realized with Bose-Fermi mixtures of ultracold atoms in an optical lattice, while non-Abelian gauge fields arise from fermionic constituents embodied by alkaline-earth atoms. Quantum simulators, which do not suffer from the sign problem, shall be constructed to address non-trivial dynamics, including quantum phase transitions in spin liquids, the real-time dynamics of confining strings as well as of chiral symmetry restoration at finite temperature and baryon density, baryon superfluidity, or color-flavor locking. New classical simulation algorithms shall be developed in order to solve severe sign problems, to investigate confining gauge theories, and to validate the proposed quantum simulators. Starting from U(1) and SU(2) gauge theories, an atomic physics tool box shall be developed for quantum simulation of gauge theories of increasing complexity, ultimately aiming at 4-d Quantum Chromodynamics (QCD). This project is based on innovative ideas from particle, condensed matter, and computational physics, and requires an interdisciplinary team of researchers. It has the potential to drastically increase the power of simulations and to address very challenging problems that cannot be solved with classical simulation methods.
Summary
Gauge theories play a central role in particle and condensed matter physics. Heavy-ion collisions explore the strong dynamics of quarks and gluons, which also governs the deep interior of neutron stars, while strongly correlated electrons determine the physics of high-temperature superconductors and spin liquids. Numerical simulations of such systems are often hindered by sign problems. In quantum link models - an alternative formulation of gauge theories developed by the applicant - gauge fields emerge from discrete quantum variables. In the past year, in close collaboration with atomic physicists, we have established quantum link models as a framework for the atomic quantum simulation of dynamical gauge fields. Abelian gauge theories can be realized with Bose-Fermi mixtures of ultracold atoms in an optical lattice, while non-Abelian gauge fields arise from fermionic constituents embodied by alkaline-earth atoms. Quantum simulators, which do not suffer from the sign problem, shall be constructed to address non-trivial dynamics, including quantum phase transitions in spin liquids, the real-time dynamics of confining strings as well as of chiral symmetry restoration at finite temperature and baryon density, baryon superfluidity, or color-flavor locking. New classical simulation algorithms shall be developed in order to solve severe sign problems, to investigate confining gauge theories, and to validate the proposed quantum simulators. Starting from U(1) and SU(2) gauge theories, an atomic physics tool box shall be developed for quantum simulation of gauge theories of increasing complexity, ultimately aiming at 4-d Quantum Chromodynamics (QCD). This project is based on innovative ideas from particle, condensed matter, and computational physics, and requires an interdisciplinary team of researchers. It has the potential to drastically increase the power of simulations and to address very challenging problems that cannot be solved with classical simulation methods.
Max ERC Funding
1 975 242 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AttentionCircuits
Project Modulation of neocortical microcircuits for attention
Researcher (PI) Johannes Jakob Letzkus
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary At every moment in time, the brain receives a vast amount of sensory information about the environment. This makes attention, the process by which we select currently relevant stimuli for processing and ignore irrelevant input, a fundamentally important brain function. Studies in primates have yielded a detailed description of how attention to a stimulus modifies the responses of neuronal ensembles in visual cortex, but how this modulation is produced mechanistically in the circuit is not well understood. Neuronal circuits comprise a large variety of neuron types, and to gain mechanistic insights, and to treat specific diseases of the nervous system, it is crucial to characterize the contribution of different identified cell types to information processing. Inhibition supplied by a small yet highly diverse set of interneurons controls all aspects of cortical function, and the central hypothesis of this proposal is that differential modulation of genetically-defined interneuron types is a key mechanism of attention in visual cortex. To identify the interneuron types underlying attentional modulation and to investigate how this, in turn, affects computations in the circuit we will use an innovative multidisciplinary approach combining genetic targeting in mice with cutting-edge in vivo 2-photon microscopy-based recordings and selective optogenetic manipulation of activity. Importantly, a key set of experiments will test whether the observed neuronal mechanisms are causally involved in attention at the level of behavior, the ultimate readout of the computations we are interested in. The expected results will provide a detailed, mechanistic dissection of the neuronal basis of attention. Beyond attention, selection of different functional states of the same hard-wired circuit by modulatory input is a fundamental, but poorly understood, phenomenon in the brain, and we predict that our insights will elucidate similar mechanisms in other brain areas and functional contexts.
Summary
At every moment in time, the brain receives a vast amount of sensory information about the environment. This makes attention, the process by which we select currently relevant stimuli for processing and ignore irrelevant input, a fundamentally important brain function. Studies in primates have yielded a detailed description of how attention to a stimulus modifies the responses of neuronal ensembles in visual cortex, but how this modulation is produced mechanistically in the circuit is not well understood. Neuronal circuits comprise a large variety of neuron types, and to gain mechanistic insights, and to treat specific diseases of the nervous system, it is crucial to characterize the contribution of different identified cell types to information processing. Inhibition supplied by a small yet highly diverse set of interneurons controls all aspects of cortical function, and the central hypothesis of this proposal is that differential modulation of genetically-defined interneuron types is a key mechanism of attention in visual cortex. To identify the interneuron types underlying attentional modulation and to investigate how this, in turn, affects computations in the circuit we will use an innovative multidisciplinary approach combining genetic targeting in mice with cutting-edge in vivo 2-photon microscopy-based recordings and selective optogenetic manipulation of activity. Importantly, a key set of experiments will test whether the observed neuronal mechanisms are causally involved in attention at the level of behavior, the ultimate readout of the computations we are interested in. The expected results will provide a detailed, mechanistic dissection of the neuronal basis of attention. Beyond attention, selection of different functional states of the same hard-wired circuit by modulatory input is a fundamental, but poorly understood, phenomenon in the brain, and we predict that our insights will elucidate similar mechanisms in other brain areas and functional contexts.
Max ERC Funding
1 466 505 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AUGURY
Project Reconstructing Earth’s mantle convection
Researcher (PI) Nicolas Coltice
Host Institution (HI) UNIVERSITE LYON 1 CLAUDE BERNARD
Call Details Consolidator Grant (CoG), PE10, ERC-2013-CoG
Summary Knowledge of the state of the Earth mantle and its temporal evolution is fundamental to a variety of disciplines in Earth Sciences, from the internal dynamics to its many expressions in the geological record (postglacial rebound, sea level change, ore deposit, tectonics or geomagnetic reversals). Mantle convection theory is the centerpiece to unravel the present and past state of the mantle. For the past 40 years considerable efforts have been made to improve the quality of numerical models of mantle convection. However, they are still sparsely used to estimate the convective history of the solid Earth, in comparison to ocean or atmospheric models for weather and climate prediction. The main shortcoming is their inability to successfully produce Earth-like seafloor spreading and continental drift self-consistently. Recent convection models have begun to successfully predict these processes (Coltice et al., Science 336, 335-33, 2012). Such breakthrough opens the opportunity to combine high-level data assimilation methodologies and convection models together with advanced tectonic datasets to retrieve Earth's mantle history. The scope of this project is to produce a new generation of tectonic and convection reconstructions, which are key to improve our understanding and knowledge of the evolution of the solid Earth. The development of sustainable high performance numerical models will set new standards for geodynamic data assimilation. The outcome of the AUGURY project will be a new generation of models crucial to a wide variety of disciplines.
Summary
Knowledge of the state of the Earth mantle and its temporal evolution is fundamental to a variety of disciplines in Earth Sciences, from the internal dynamics to its many expressions in the geological record (postglacial rebound, sea level change, ore deposit, tectonics or geomagnetic reversals). Mantle convection theory is the centerpiece to unravel the present and past state of the mantle. For the past 40 years considerable efforts have been made to improve the quality of numerical models of mantle convection. However, they are still sparsely used to estimate the convective history of the solid Earth, in comparison to ocean or atmospheric models for weather and climate prediction. The main shortcoming is their inability to successfully produce Earth-like seafloor spreading and continental drift self-consistently. Recent convection models have begun to successfully predict these processes (Coltice et al., Science 336, 335-33, 2012). Such breakthrough opens the opportunity to combine high-level data assimilation methodologies and convection models together with advanced tectonic datasets to retrieve Earth's mantle history. The scope of this project is to produce a new generation of tectonic and convection reconstructions, which are key to improve our understanding and knowledge of the evolution of the solid Earth. The development of sustainable high performance numerical models will set new standards for geodynamic data assimilation. The outcome of the AUGURY project will be a new generation of models crucial to a wide variety of disciplines.
Max ERC Funding
1 994 000 €
Duration
Start date: 2014-03-01, End date: 2020-02-29
Project acronym AUTHORITARIANISM2.0:
Project Authoritarianism2.0: The Internet, Political Discussion, and Authoritarian Rule in China
Researcher (PI) Daniela Stockmann
Host Institution (HI) HERTIE SCHOOL OF GOVERNANCE GEMMEINNUTZIGE GMBH
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary I suggest that perceptions of diversity and disagreement voiced in the on-line political discussion may play a key role in mobilizing citizens to voice their views and take action in authoritarian regimes. The empirical focus is the Chinese Internet. Subjective perceptions of group discussion among participants can significantly differ from the objective content of the discussion. These perceptions can have an independent effect on political engagement. Novel is also that I will study which technological settings (blogs, Weibo (Twitter), public hearings, etc) facilitate these perceptions.
I will address these novel issues by specifying the conditions and causal mechanisms that facilitate the rise of online public opinion. As an expansion to prior work, I will study passive in addition to active participants in online discussion. This is of particular interest because passive participants outnumber active participants.
My overall aim is to deepen our knowledge of how participants experience online political discussion in stabilizing or destabilizing authoritarian rule. To this end, I propose to work with one post-doc and two PhD research assistants on four objectives: Objective 1 is to explore what kinds of people engage in online discussions and differences between active and passive participants. Objective 2 is to understand how the technological settings that create the conditions for online discussion differ from each other. Objective 3 is to assess how active and passive participants see the diversity and disagreement in the discussion in these settings. Objective 4 is to assess whether citizens take action upon online political discussion depending on how they see it.
I will produce the first nationally representative survey on the experiences of participants in online political discussion in China. In addition to academics, this knowledge is of interest to policy-makers, professionals, and journalists aiming to understand authoritarian politics and media
Summary
I suggest that perceptions of diversity and disagreement voiced in the on-line political discussion may play a key role in mobilizing citizens to voice their views and take action in authoritarian regimes. The empirical focus is the Chinese Internet. Subjective perceptions of group discussion among participants can significantly differ from the objective content of the discussion. These perceptions can have an independent effect on political engagement. Novel is also that I will study which technological settings (blogs, Weibo (Twitter), public hearings, etc) facilitate these perceptions.
I will address these novel issues by specifying the conditions and causal mechanisms that facilitate the rise of online public opinion. As an expansion to prior work, I will study passive in addition to active participants in online discussion. This is of particular interest because passive participants outnumber active participants.
My overall aim is to deepen our knowledge of how participants experience online political discussion in stabilizing or destabilizing authoritarian rule. To this end, I propose to work with one post-doc and two PhD research assistants on four objectives: Objective 1 is to explore what kinds of people engage in online discussions and differences between active and passive participants. Objective 2 is to understand how the technological settings that create the conditions for online discussion differ from each other. Objective 3 is to assess how active and passive participants see the diversity and disagreement in the discussion in these settings. Objective 4 is to assess whether citizens take action upon online political discussion depending on how they see it.
I will produce the first nationally representative survey on the experiences of participants in online political discussion in China. In addition to academics, this knowledge is of interest to policy-makers, professionals, and journalists aiming to understand authoritarian politics and media
Max ERC Funding
1 499 780 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym AXONGROWTH
Project Systematic analysis of the molecular mechanisms underlying axon growth during development and following injury
Researcher (PI) Oren Schuldiner
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS5, ERC-2013-CoG
Summary Axon growth potential declines during development, contributing to the lack of effective regeneration in the adult central nervous system. What determines the intrinsic growth potential of neurites, and how such growth is regulated during development, disease and following injury is a fundamental question in neuroscience. Although multiple lines of evidence indicate that intrinsic growth capability is genetically encoded, its nature remains poorly defined. Neuronal remodeling of the Drosophila mushroom body offers a unique opportunity to study the mechanisms of various types of axon degeneration and growth. We have recently demonstrated that regrowth of axons following developmental pruning is not only distinct from initial outgrowth but also shares molecular similarities with regeneration following injury. In this proposal we combine state of the art tools from genomics, functional genetics and microscopy to perform a comprehensive study of the mechanisms underlying axon growth during development and following injury. First, we will combine genetic, biochemical and genomic studies to gain a mechanistic understanding of the developmental regrowth program. Next, we will perform extensive transcriptomic analyses and comparisons aimed at defining the genetic programs involved in initial axon growth, developmental regrowth, and regeneration following injury. Finally, we will harness the genetic power of Drosophila to perform a comprehensive functional analysis of genes and pathways, those previously known and new ones that we will discover, in various neurite growth paradigms. Importantly, these functional assays will be performed in the same organism, allowing us to use identical genetic mutations across our analyses. To this end, our identification of a new genetic program regulating developmental axon regrowth, together with emerging tools in genomics, places us in a unique position to gain a broad understanding of axon growth during development and following injury.
Summary
Axon growth potential declines during development, contributing to the lack of effective regeneration in the adult central nervous system. What determines the intrinsic growth potential of neurites, and how such growth is regulated during development, disease and following injury is a fundamental question in neuroscience. Although multiple lines of evidence indicate that intrinsic growth capability is genetically encoded, its nature remains poorly defined. Neuronal remodeling of the Drosophila mushroom body offers a unique opportunity to study the mechanisms of various types of axon degeneration and growth. We have recently demonstrated that regrowth of axons following developmental pruning is not only distinct from initial outgrowth but also shares molecular similarities with regeneration following injury. In this proposal we combine state of the art tools from genomics, functional genetics and microscopy to perform a comprehensive study of the mechanisms underlying axon growth during development and following injury. First, we will combine genetic, biochemical and genomic studies to gain a mechanistic understanding of the developmental regrowth program. Next, we will perform extensive transcriptomic analyses and comparisons aimed at defining the genetic programs involved in initial axon growth, developmental regrowth, and regeneration following injury. Finally, we will harness the genetic power of Drosophila to perform a comprehensive functional analysis of genes and pathways, those previously known and new ones that we will discover, in various neurite growth paradigms. Importantly, these functional assays will be performed in the same organism, allowing us to use identical genetic mutations across our analyses. To this end, our identification of a new genetic program regulating developmental axon regrowth, together with emerging tools in genomics, places us in a unique position to gain a broad understanding of axon growth during development and following injury.
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym AXSIS
Project Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy
Researcher (PI) Franz Xaver Kaertner
Host Institution (HI) STIFTUNG DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
Call Details Synergy Grants (SyG), SYG6, ERC-2013-SyG
Summary "X-ray crystallography yields atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes constituting the macromolecular machinery of life. Life is not static, and many of the most important reactions in chemistry and biology are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by ultrafast laser spectroscopy, but they reduce the vast complexity of the process to a few reaction coordinates. Here we develop attosecond serial crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology. We apply a fully coherent attosecond X-ray source based on coherent inverse Compton scattering off a free-electron crystal, developed in this project, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals [A. Cho, ""Breakthrough of the year"", Science 388, 1530 (2012)]. Our synergistic project will optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. The multidisciplinary team optimizes X-ray pulse parameters, in tandem with sample delivery, crystal size, and advanced X-ray detectors. We will apply our new capabilities to one of the most important problems in structural biology, which is to elucidate the dynamics of light reactions, electron transfer and protein structure in photosynthesis. Also, the attosecond source can provide a coherent seed and will help to overcome peak flux limitations of X-ray FELs by introducing chirped pulse amplification to FEL technology."
Summary
"X-ray crystallography yields atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes constituting the macromolecular machinery of life. Life is not static, and many of the most important reactions in chemistry and biology are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by ultrafast laser spectroscopy, but they reduce the vast complexity of the process to a few reaction coordinates. Here we develop attosecond serial crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology. We apply a fully coherent attosecond X-ray source based on coherent inverse Compton scattering off a free-electron crystal, developed in this project, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals [A. Cho, ""Breakthrough of the year"", Science 388, 1530 (2012)]. Our synergistic project will optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. The multidisciplinary team optimizes X-ray pulse parameters, in tandem with sample delivery, crystal size, and advanced X-ray detectors. We will apply our new capabilities to one of the most important problems in structural biology, which is to elucidate the dynamics of light reactions, electron transfer and protein structure in photosynthesis. Also, the attosecond source can provide a coherent seed and will help to overcome peak flux limitations of X-ray FELs by introducing chirped pulse amplification to FEL technology."
Max ERC Funding
13 884 200 €
Duration
Start date: 2014-08-01, End date: 2020-07-31
Project acronym AZIDRUGS
Project Molecular tattooing: azidated compounds pave the path towards light-activated covalent inhibitors for drug development
Researcher (PI) András MÁLNÁSI-CSIZMADIA
Host Institution (HI) DRUGMOTIF KORLATOLT FELELOSSEGU TARSASAG
Call Details Proof of Concept (PoC), PC1, ERC-2013-PoC
Summary Until now the greatest limitation in the application of bioactive compounds has been the inability of confining them specifically to single cells or subcellular components within the organism. Our recently synthesized photoactive forms of bioactive compounds solve this problem. We have developed effective chemical synthesis methods to attach an azide group to small drug-like molecules, which makes them photoactive. As a result, light irradiation can induce the covalent attachment of these molecules to their target enzymes. By controlling the timing and position of light irradiation it is possible to confine the effect of these molecules in time and space. It is important to emphasize that azidation is the smallest possible modification (adding 3 nitrogen atoms) that makes a compound photoactive and based on our experience it does not alter biological activities of most of the original compounds.
Azidated inhibitors give unprecedented freedom to researchers because the covalent compound-target formations allow them to address questions which could not have been addressed before. Three major advantages are obtained by using azidated compounds 1: determination of small molecule interactome becomes highly effective, especially, the weak interactions can be determined, which was not possible before 2: it improves the pharmacodynamic and pharmacokinetic properties of biological compounds as the covalent attachment prolongs their effect. 3: Recently, we showed that photoactivation can be initiated by two-photon excitation, thereby confining the effect to femtoliter volumes and well-controlled spatial locations. This feature provides unprecedented spatial and temporal control in localizing the effect of biological compounds in cellular and subcelluler level in in vivo experiments. By realizing the need for photoactive compounds, the PI has established Drugmotif Ltd., a spin-off company, which provides the customers with special azidated chemicals for high-tech research.
Summary
Until now the greatest limitation in the application of bioactive compounds has been the inability of confining them specifically to single cells or subcellular components within the organism. Our recently synthesized photoactive forms of bioactive compounds solve this problem. We have developed effective chemical synthesis methods to attach an azide group to small drug-like molecules, which makes them photoactive. As a result, light irradiation can induce the covalent attachment of these molecules to their target enzymes. By controlling the timing and position of light irradiation it is possible to confine the effect of these molecules in time and space. It is important to emphasize that azidation is the smallest possible modification (adding 3 nitrogen atoms) that makes a compound photoactive and based on our experience it does not alter biological activities of most of the original compounds.
Azidated inhibitors give unprecedented freedom to researchers because the covalent compound-target formations allow them to address questions which could not have been addressed before. Three major advantages are obtained by using azidated compounds 1: determination of small molecule interactome becomes highly effective, especially, the weak interactions can be determined, which was not possible before 2: it improves the pharmacodynamic and pharmacokinetic properties of biological compounds as the covalent attachment prolongs their effect. 3: Recently, we showed that photoactivation can be initiated by two-photon excitation, thereby confining the effect to femtoliter volumes and well-controlled spatial locations. This feature provides unprecedented spatial and temporal control in localizing the effect of biological compounds in cellular and subcelluler level in in vivo experiments. By realizing the need for photoactive compounds, the PI has established Drugmotif Ltd., a spin-off company, which provides the customers with special azidated chemicals for high-tech research.
Max ERC Funding
150 000 €
Duration
Start date: 2013-12-01, End date: 2014-11-30
Project acronym BacRafts
Project Architecture of bacterial lipid rafts; inhibition of virulence and antibiotic resistance using raft-disassembling small molecules
Researcher (PI) Daniel López Serrano
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), LS6, ERC-2013-StG
Summary Membranes of eukaryotic cells organize signal transduction proteins into microdomains or lipid rafts whose integrity is essential for numerous cellular processes. Lipid rafts has been considered a fundamental step to define the cellular complexity of eukaryotes, assuming that bacteria do not require such a sophisticated organization of their signaling networks. However, I have discovered that bacteria organize many signaling pathways in membrane microdomains similar to the eukaryotic lipid rafts. Perturbation of bacterial lipid rafts leads to a potent and simultaneous impairment of all raft-harbored signaling pathways. Consequently, the disassembly of lipid rafts in pathogens like Staphylococcus aureus generates a simultaneous inhibition of numerous infection-related processes that can be further explored to control bacterial infections. This unexpected sophistication in membrane organization is unprecedented in bacteria and hence, this proposal will explore the molecular basis of the assembly of bacterial lipid rafts and their role in the infection-related processes. These questions will be addressed in three main goals: First, I will elucidate the molecular components and the mechanism of assembly of bacterial lipid rafts using S. aureus as model organism. Second, I will dissect the molecular basis that links the functionality of the infection-related processes to the integrity of bacterial lipid rafts. Third, my collection of anti-raft small molecules that are able to disrupt lipid rafts will be tested as antimicrobial agents to prevent hospital-acquired infections, abrogate pre-existing infections and develop bacteria-free materials that can be used in clinical settings. I will use a number of molecular approaches in combination with cutting-edge techniques in flow cytometry, cell-imaging and transcriptomics to clarify the architecture and functionality of lipid rafts and demonstrate the feasibility of targeting lipid a new strategy for anti-microbial therapy.
Summary
Membranes of eukaryotic cells organize signal transduction proteins into microdomains or lipid rafts whose integrity is essential for numerous cellular processes. Lipid rafts has been considered a fundamental step to define the cellular complexity of eukaryotes, assuming that bacteria do not require such a sophisticated organization of their signaling networks. However, I have discovered that bacteria organize many signaling pathways in membrane microdomains similar to the eukaryotic lipid rafts. Perturbation of bacterial lipid rafts leads to a potent and simultaneous impairment of all raft-harbored signaling pathways. Consequently, the disassembly of lipid rafts in pathogens like Staphylococcus aureus generates a simultaneous inhibition of numerous infection-related processes that can be further explored to control bacterial infections. This unexpected sophistication in membrane organization is unprecedented in bacteria and hence, this proposal will explore the molecular basis of the assembly of bacterial lipid rafts and their role in the infection-related processes. These questions will be addressed in three main goals: First, I will elucidate the molecular components and the mechanism of assembly of bacterial lipid rafts using S. aureus as model organism. Second, I will dissect the molecular basis that links the functionality of the infection-related processes to the integrity of bacterial lipid rafts. Third, my collection of anti-raft small molecules that are able to disrupt lipid rafts will be tested as antimicrobial agents to prevent hospital-acquired infections, abrogate pre-existing infections and develop bacteria-free materials that can be used in clinical settings. I will use a number of molecular approaches in combination with cutting-edge techniques in flow cytometry, cell-imaging and transcriptomics to clarify the architecture and functionality of lipid rafts and demonstrate the feasibility of targeting lipid a new strategy for anti-microbial therapy.
Max ERC Funding
1 493 126 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym BACTERIAL RESPONSE
Project New Concepts in Bacterial Response to their Surroundings
Researcher (PI) Sigal Ben-Yehuda
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS6, ERC-2013-ADG
Summary Bacteria in nature exhibit remarkable capacity to sense their surroundings and rapidly adapt to diverse conditions by gaining new beneficial traits. This extraordinary feature facilitates their survival when facing extreme environments. Utilizing Bacillus subtilis as our primary model organism, we propose to study two facets of this vital bacterial attribute: communication via extracellular nanotubes, and persistence as resilient spores while maintaining the potential to revive. Exploring these fascinating aspects of bacterial physiology is likely to change our view as to how bacteria sense, respond, endure and communicate with their extracellular environment.
We have recently discovered a previously uncharacterized mode of bacterial communication, mediated by tubular extensions (nanotubes) that bridge neighboring cells, providing a route for exchange of intracellular molecules. Nanotube-mediated molecular sharing may represent a key form of bacterial communication in nature, allowing for the emergence of new phenotypes and increasing survival in fluctuating environments. Here we propose to develop strategies for observing nanotube formation and molecular exchange in living bacterial cells, and to characterize the molecular composition of nanotubes. We will explore the premise that nanotubes serve as a strategy to expand the cell surface, and will determine whether nanotubes provide a conduit for phage infection and spreading. Furthermore, the formation and functionality of interspecies nanotubes will be explored. An additional mode employed by bacteria to achieve extreme robustness is the ability to reside as long lasting spores. Previously held views considered the spore to be dormant and metabolically inert. However, we have recently shown that at least one week following spore formation, during an adaptive period, the spore senses and responds to environmental cues and undergoes corresponding molecular changes, influencing subsequent emergence from quiescence.
Summary
Bacteria in nature exhibit remarkable capacity to sense their surroundings and rapidly adapt to diverse conditions by gaining new beneficial traits. This extraordinary feature facilitates their survival when facing extreme environments. Utilizing Bacillus subtilis as our primary model organism, we propose to study two facets of this vital bacterial attribute: communication via extracellular nanotubes, and persistence as resilient spores while maintaining the potential to revive. Exploring these fascinating aspects of bacterial physiology is likely to change our view as to how bacteria sense, respond, endure and communicate with their extracellular environment.
We have recently discovered a previously uncharacterized mode of bacterial communication, mediated by tubular extensions (nanotubes) that bridge neighboring cells, providing a route for exchange of intracellular molecules. Nanotube-mediated molecular sharing may represent a key form of bacterial communication in nature, allowing for the emergence of new phenotypes and increasing survival in fluctuating environments. Here we propose to develop strategies for observing nanotube formation and molecular exchange in living bacterial cells, and to characterize the molecular composition of nanotubes. We will explore the premise that nanotubes serve as a strategy to expand the cell surface, and will determine whether nanotubes provide a conduit for phage infection and spreading. Furthermore, the formation and functionality of interspecies nanotubes will be explored. An additional mode employed by bacteria to achieve extreme robustness is the ability to reside as long lasting spores. Previously held views considered the spore to be dormant and metabolically inert. However, we have recently shown that at least one week following spore formation, during an adaptive period, the spore senses and responds to environmental cues and undergoes corresponding molecular changes, influencing subsequent emergence from quiescence.
Max ERC Funding
1 497 800 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BACTERIAL SYRINGES
Project Protein Translocation Through Bacterial Syringes
Researcher (PI) Stefan Raunser
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Consolidator Grant (CoG), LS1, ERC-2013-CoG
Summary "The main objective of this application is to study the molecular basis of cellular infection by bacterial ABC-type toxins (Tc). Tc complexes are important virulence factors of a range of bacteria, including Photorhabdus luminescens and Yersinia pseudotuberculosis that infect insects and humans. Belonging to the class of pore-forming toxins, tripartite Tc complexes perforate the host membrane by forming channels that translocate toxic enzymes into the host.
In our previous cryo-EM work on the P. luminescens Tc complex we discovered that Tcs use a special syringe-like device for cell entry. Building on these results, we now intend to unravel the molecular mechanism through which this unusual and complicated injection system allows membrane permeation and protein translocation. We will use a hybrid approach, including biochemical reconstitution, structural analysis by cryo-EM and X-ray crystallography, fluorescence-based assays and site-directed mutagenesis to provide a comprehensive description of the molecular mechanism of infection at an unprecedented level of molecular detail.
Our results will be paradigmatic for understanding the mechanism of action of ABC-type toxins and will shed new light on the interactions of bacterial pathogens with their hosts."
Summary
"The main objective of this application is to study the molecular basis of cellular infection by bacterial ABC-type toxins (Tc). Tc complexes are important virulence factors of a range of bacteria, including Photorhabdus luminescens and Yersinia pseudotuberculosis that infect insects and humans. Belonging to the class of pore-forming toxins, tripartite Tc complexes perforate the host membrane by forming channels that translocate toxic enzymes into the host.
In our previous cryo-EM work on the P. luminescens Tc complex we discovered that Tcs use a special syringe-like device for cell entry. Building on these results, we now intend to unravel the molecular mechanism through which this unusual and complicated injection system allows membrane permeation and protein translocation. We will use a hybrid approach, including biochemical reconstitution, structural analysis by cryo-EM and X-ray crystallography, fluorescence-based assays and site-directed mutagenesis to provide a comprehensive description of the molecular mechanism of infection at an unprecedented level of molecular detail.
Our results will be paradigmatic for understanding the mechanism of action of ABC-type toxins and will shed new light on the interactions of bacterial pathogens with their hosts."
Max ERC Funding
1 999 992 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym BARCODE
Project The use of genetic profiling to guide prostate cancer targeted screening and cancer care
Researcher (PI) Rosalind Anne Eeles
Host Institution (HI) THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary "Prostate cancer is the commonest solid cancer in men in the European Community. There is evidence for genetic predisposition to the development of prostate cancer and our group has found the largest number of such genetic variants described to date worldwide. The next challenge is to harness these discoveries to advance the clinical care of populations and prostate cancer patients to improve screening and target treatments. This proposal, BARCODE, aims to be ground-breaking in this area. BARCODE has two components (1) to profile a population in England using the current 77 genetic variant profile and compare screening outcomes with those from population based screening studies to determine if genetics can target screening more effectively in this disease by identifying prostate cancer that more often needs treatment and (2) genetically profiling men with prostate cancer in the uro-oncology clinic for a panel of genes which predict for worse outcome so that these men can be offered more intensive staging and treatment within clinical trials. This will use next generation sequencing technology using a barcoding system which we have developed to speed up throughput and reduce costs. The PI will spend 35% of her time on this project and she will not charge for her time spent on this grant as she is funded by The University of London UK. The research team at The Institute Of Cancer Research, London, UK is a multidisciplinary team which leads the field of genetic predisposition to prostate cancer and its clinical application and so is well placed to deliver on this research. This application will have a dramatic impact on other researchers as it is ground –breaking and state of the art in its application of genetic findings to public health and cancer care. It will therefore influence the work being undertaken in both these areas to integrate genetic profiling and gene panel analysis into population screening and cancer care respectively."
Summary
"Prostate cancer is the commonest solid cancer in men in the European Community. There is evidence for genetic predisposition to the development of prostate cancer and our group has found the largest number of such genetic variants described to date worldwide. The next challenge is to harness these discoveries to advance the clinical care of populations and prostate cancer patients to improve screening and target treatments. This proposal, BARCODE, aims to be ground-breaking in this area. BARCODE has two components (1) to profile a population in England using the current 77 genetic variant profile and compare screening outcomes with those from population based screening studies to determine if genetics can target screening more effectively in this disease by identifying prostate cancer that more often needs treatment and (2) genetically profiling men with prostate cancer in the uro-oncology clinic for a panel of genes which predict for worse outcome so that these men can be offered more intensive staging and treatment within clinical trials. This will use next generation sequencing technology using a barcoding system which we have developed to speed up throughput and reduce costs. The PI will spend 35% of her time on this project and she will not charge for her time spent on this grant as she is funded by The University of London UK. The research team at The Institute Of Cancer Research, London, UK is a multidisciplinary team which leads the field of genetic predisposition to prostate cancer and its clinical application and so is well placed to deliver on this research. This application will have a dramatic impact on other researchers as it is ground –breaking and state of the art in its application of genetic findings to public health and cancer care. It will therefore influence the work being undertaken in both these areas to integrate genetic profiling and gene panel analysis into population screening and cancer care respectively."
Max ERC Funding
2 499 123 €
Duration
Start date: 2014-10-01, End date: 2019-09-30
Project acronym BathyBiome
Project The Symbiome of Bathymodiolus Mussels from Hydrothermal Vents: From the Genome
to the Environment
Researcher (PI) Nicole Dubilier
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS8, ERC-2013-ADG
Summary The discovery of deep-sea hydrothermal vents in 1977 was one of the most profound findings of the 20th century, revolutionizing our perception of energy sources fueling primary productivity on Earth. These ecosystems are based on chemosynthesis, that is the fixation of carbon dioxide into organic compounds as in photosynthesis, but using inorganic compounds such as sulfide, methane or hydrogen, as energy sources instead of sunlight. Hydrothermal vents support tremendous biomass and productivity of which the majority is generated through symbiotic microbe-animal associations. Bathymodiolus mussels are able to build extraordinarily large and productive communities at hydrothermal vents because they harbor symbiotic bacteria that use inorganic energy sources from the vent fluids to feed their hosts via carbon fixation. In addition to their beneficial symbionts, the mussels are infected by a novel bacterial parasite that exclusively invades and multiplies in their nuclei. In the work proposed here, I will use a wide array of tools that range from deep-sea in situ instruments to sophisticated molecular, 'omic' and imaging analyses to study the microbiome associated with Bathymodiolus mussels. The proposed
research bridges biogeochemistry, ecological and evolutionary biology, and molecular microbiology to develop a systematic understanding of the symbiotic interactions between microbes, their hosts, and their environment in one of the most extreme and fascinating habitats on Earth, hydrothermal vents.
Summary
The discovery of deep-sea hydrothermal vents in 1977 was one of the most profound findings of the 20th century, revolutionizing our perception of energy sources fueling primary productivity on Earth. These ecosystems are based on chemosynthesis, that is the fixation of carbon dioxide into organic compounds as in photosynthesis, but using inorganic compounds such as sulfide, methane or hydrogen, as energy sources instead of sunlight. Hydrothermal vents support tremendous biomass and productivity of which the majority is generated through symbiotic microbe-animal associations. Bathymodiolus mussels are able to build extraordinarily large and productive communities at hydrothermal vents because they harbor symbiotic bacteria that use inorganic energy sources from the vent fluids to feed their hosts via carbon fixation. In addition to their beneficial symbionts, the mussels are infected by a novel bacterial parasite that exclusively invades and multiplies in their nuclei. In the work proposed here, I will use a wide array of tools that range from deep-sea in situ instruments to sophisticated molecular, 'omic' and imaging analyses to study the microbiome associated with Bathymodiolus mussels. The proposed
research bridges biogeochemistry, ecological and evolutionary biology, and molecular microbiology to develop a systematic understanding of the symbiotic interactions between microbes, their hosts, and their environment in one of the most extreme and fascinating habitats on Earth, hydrothermal vents.
Max ERC Funding
2 499 122 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BAYES-KNOWLEDGE
Project Effective Bayesian Modelling with Knowledge before Data
Researcher (PI) Norman Fenton
Host Institution (HI) QUEEN MARY UNIVERSITY OF LONDON
Call Details Advanced Grant (AdG), PE6, ERC-2013-ADG
Summary This project aims to improve evidence-based decision-making. What makes it radical is that it plans to do this in situations (common for critical risk assessment problems) where there is little or even no data, and hence where traditional statistics cannot be used. To address this problem Bayesian analysis, which enables domain experts to supplement observed data with subjective probabilities, is normally used. As real-world problems typically involve multiple uncertain variables, Bayesian analysis is extended using a technique called Bayesian networks (BNs). But, despite many great benefits, BNs have been under-exploited, especially in areas where they offer the greatest potential for improvements (law, medicine and systems engineering). This is mainly because of widespread resistance to relying on subjective knowledge. To address this problem much current research assumes sufficient data are available to make the expert’s input minimal or even redundant; with such data it may be possible to ‘learn’ the underlying BN model. But this approach offers nothing when there is limited or no data. Even when ‘big’ data are available the resulting models may be superficially objective but fundamentally flawed as they fail to capture the underlying causal structure that only expert knowledge can provide.
Our solution is to develop a method to systemize the way expert driven causal BN models can be built and used effectively either in the absence of data or as a means of determining what future data is really required. The method involves a new way of framing problems and extensions to BN theory, notation and tools. Working with relevant domain experts, along with cognitive psychologists, our methods will be developed and tested experimentally on real-world critical decision-problems in medicine, law, forensics, and transport. As the work complements current data-driven approaches, it will lead to improved BN modelling both when there is extensive data as well as none.
Summary
This project aims to improve evidence-based decision-making. What makes it radical is that it plans to do this in situations (common for critical risk assessment problems) where there is little or even no data, and hence where traditional statistics cannot be used. To address this problem Bayesian analysis, which enables domain experts to supplement observed data with subjective probabilities, is normally used. As real-world problems typically involve multiple uncertain variables, Bayesian analysis is extended using a technique called Bayesian networks (BNs). But, despite many great benefits, BNs have been under-exploited, especially in areas where they offer the greatest potential for improvements (law, medicine and systems engineering). This is mainly because of widespread resistance to relying on subjective knowledge. To address this problem much current research assumes sufficient data are available to make the expert’s input minimal or even redundant; with such data it may be possible to ‘learn’ the underlying BN model. But this approach offers nothing when there is limited or no data. Even when ‘big’ data are available the resulting models may be superficially objective but fundamentally flawed as they fail to capture the underlying causal structure that only expert knowledge can provide.
Our solution is to develop a method to systemize the way expert driven causal BN models can be built and used effectively either in the absence of data or as a means of determining what future data is really required. The method involves a new way of framing problems and extensions to BN theory, notation and tools. Working with relevant domain experts, along with cognitive psychologists, our methods will be developed and tested experimentally on real-world critical decision-problems in medicine, law, forensics, and transport. As the work complements current data-driven approaches, it will lead to improved BN modelling both when there is extensive data as well as none.
Max ERC Funding
1 572 562 €
Duration
Start date: 2014-04-01, End date: 2018-03-31
Project acronym BeadsOnString
Project Beads on String Genomics: Experimental Toolbox for Unmasking Genetic / Epigenetic Variation in Genomic DNA and Chromatin
Researcher (PI) Yuval Ebenstein
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material and is lacking in its ability to resolve variations between genomes. The high degree of genome variation exhibited both on the population level as well as between genetically “identical” cells (even in the same organ) makes genetic and epigenetic analysis on the single cell and single genome level a necessity.
Chromosomes may be conceptually represented as a linear one-dimensional barcode. However, in contrast to a traditional binary barcode approach that considers only two possible bits of information (1 & 0), I will use colour and molecular structure to expand the variety of information represented in the barcode. Like colourful beads threaded on a string, where each bead represents a distinct type of observable, I will label each type of genomic information with a different chemical moiety thus expanding the repertoire of information that can be simultaneously measured. A major effort in this proposal is invested in the development of unique chemistries to enable this labelling.
I specifically address three types of genomic variation: Variations in genomic layout (including DNA repeats, structural and copy number variations), variations in the patterns of chemical DNA modifications (such as methylation of cytosine bases) and variations in the chromatin composition (including nucleosome and transcription factor distributions). I will use physical extension of long DNA molecules on surfaces and in nanofluidic channels to reveal this information visually in the form of a linear, fluorescent “barcode” that is read-out by advanced imaging techniques. Similarly, DNA molecules will be threaded through a nanopore where the sequential position of “bulky” molecular groups attached to the DNA may be inferred from temporal modulation of an ionic current measured across the pore.
Summary
Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material and is lacking in its ability to resolve variations between genomes. The high degree of genome variation exhibited both on the population level as well as between genetically “identical” cells (even in the same organ) makes genetic and epigenetic analysis on the single cell and single genome level a necessity.
Chromosomes may be conceptually represented as a linear one-dimensional barcode. However, in contrast to a traditional binary barcode approach that considers only two possible bits of information (1 & 0), I will use colour and molecular structure to expand the variety of information represented in the barcode. Like colourful beads threaded on a string, where each bead represents a distinct type of observable, I will label each type of genomic information with a different chemical moiety thus expanding the repertoire of information that can be simultaneously measured. A major effort in this proposal is invested in the development of unique chemistries to enable this labelling.
I specifically address three types of genomic variation: Variations in genomic layout (including DNA repeats, structural and copy number variations), variations in the patterns of chemical DNA modifications (such as methylation of cytosine bases) and variations in the chromatin composition (including nucleosome and transcription factor distributions). I will use physical extension of long DNA molecules on surfaces and in nanofluidic channels to reveal this information visually in the form of a linear, fluorescent “barcode” that is read-out by advanced imaging techniques. Similarly, DNA molecules will be threaded through a nanopore where the sequential position of “bulky” molecular groups attached to the DNA may be inferred from temporal modulation of an ionic current measured across the pore.
Max ERC Funding
1 627 600 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym BEEHIVE
Project Bridging the Evolution and Epidemiology of HIV in Europe
Researcher (PI) Christopher Fraser
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS2, ERC-2013-ADG
Summary The aim of the BEEHIVE project is to generate novel insight into HIV biology, evolution and epidemiology, leveraging next-generation high-throughput sequencing and bioinformatics to produce and analyse whole-genomes of viruses from approximately 3,000 European HIV-1 infected patients. These patients have known dates of infection spread over the last 25 years, good clinical follow up, and a wide range of clinical prognostic indicators and outcomes. The primary objective is to discover the viral genetic determinants of severity of infection and set-point viral load. This primary objective is high-risk & blue-skies: there is ample indirect evidence of polymorphisms that alter virulence, but they have never been identified, and it is not known how easy they are to discover. However, the project is also high-reward: it could lead to a substantial shift in the understanding of HIV disease.
Technologically, the BEEHIVE project will deliver new approaches for undertaking whole genome association studies on RNA viruses, including delivering an innovative high-throughput bioinformatics pipeline for handling genetically diverse viral quasi-species data (with viral diversity both within and between infected patients).
The project also includes secondary and tertiary objectives that address critical open questions in HIV epidemiology and evolution. The secondary objective is to use viral genetic sequences allied to mathematical epidemic models to better understand the resurgent European epidemic amongst high-risk groups, especially men who have sex with men. The aim will not just be to establish who is at risk of infection, which is known from conventional epidemiological approaches, but also to characterise the risk factors for onwards transmission of the virus. Tertiary objectives involve understanding the relationship between the genetic diversity within viral samples, indicative of on-going evolution or dual infections, to clinical outcomes.
Summary
The aim of the BEEHIVE project is to generate novel insight into HIV biology, evolution and epidemiology, leveraging next-generation high-throughput sequencing and bioinformatics to produce and analyse whole-genomes of viruses from approximately 3,000 European HIV-1 infected patients. These patients have known dates of infection spread over the last 25 years, good clinical follow up, and a wide range of clinical prognostic indicators and outcomes. The primary objective is to discover the viral genetic determinants of severity of infection and set-point viral load. This primary objective is high-risk & blue-skies: there is ample indirect evidence of polymorphisms that alter virulence, but they have never been identified, and it is not known how easy they are to discover. However, the project is also high-reward: it could lead to a substantial shift in the understanding of HIV disease.
Technologically, the BEEHIVE project will deliver new approaches for undertaking whole genome association studies on RNA viruses, including delivering an innovative high-throughput bioinformatics pipeline for handling genetically diverse viral quasi-species data (with viral diversity both within and between infected patients).
The project also includes secondary and tertiary objectives that address critical open questions in HIV epidemiology and evolution. The secondary objective is to use viral genetic sequences allied to mathematical epidemic models to better understand the resurgent European epidemic amongst high-risk groups, especially men who have sex with men. The aim will not just be to establish who is at risk of infection, which is known from conventional epidemiological approaches, but also to characterise the risk factors for onwards transmission of the virus. Tertiary objectives involve understanding the relationship between the genetic diversity within viral samples, indicative of on-going evolution or dual infections, to clinical outcomes.
Max ERC Funding
2 499 739 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BENELEX
Project Benefit-sharing for an equitable transition to the green economy - the role of law
Researcher (PI) Elisa Morgera
Host Institution (HI) UNIVERSITY OF STRATHCLYDE
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary Can benefit-sharing address the equity deficit within the green economy? This project aims to investigate benefit-sharing as an under-theorised and little-implemented regulatory approach to the equity concerns (disregard for the special circumstances of developing countries and of indigenous peoples and local communities) in transitioning to the green economy.
Although benefit-sharing is increasingly deployed in a variety of international environmental agreements and also in human rights and corporate accountability instruments, no comprehensive account exists of its conceptual and practical relevance to equitably address global environmental challenges. This project will be the first systematic evaluation of the conceptualisations and operationalisations of benefit-sharing as a tool for equitable change through the allocation among different stakeholders of economic and also socio-cultural and environmental advantages arising from natural resource use.
The project will combine a comparative study of international law with empirical legal research, and include an inter-disciplinary study integrating political sociology in a legal enquiry on the role of “biocultural community protocols” that articulate and implement benefit-sharing at the intersection of international, transnational, national and indigenous communities’ customary law (global environmental law).
The project aims to: 1. develop a comprehensive understanding of benefit-sharing in international law; 2. clarify whether and how benefit-sharing supports equity and the protection of human rights across key sectors of international environmental regulation (biodiversity, climate change, oceans, food and agriculture) that are seen as inter-related in the transition to the green economy; 3. understand the development of benefit-sharing in the context of global environmental law; and
4. clarify the role of transnational legal advisors (NGOs and bilateral cooperation partners) in the green economy.
Summary
Can benefit-sharing address the equity deficit within the green economy? This project aims to investigate benefit-sharing as an under-theorised and little-implemented regulatory approach to the equity concerns (disregard for the special circumstances of developing countries and of indigenous peoples and local communities) in transitioning to the green economy.
Although benefit-sharing is increasingly deployed in a variety of international environmental agreements and also in human rights and corporate accountability instruments, no comprehensive account exists of its conceptual and practical relevance to equitably address global environmental challenges. This project will be the first systematic evaluation of the conceptualisations and operationalisations of benefit-sharing as a tool for equitable change through the allocation among different stakeholders of economic and also socio-cultural and environmental advantages arising from natural resource use.
The project will combine a comparative study of international law with empirical legal research, and include an inter-disciplinary study integrating political sociology in a legal enquiry on the role of “biocultural community protocols” that articulate and implement benefit-sharing at the intersection of international, transnational, national and indigenous communities’ customary law (global environmental law).
The project aims to: 1. develop a comprehensive understanding of benefit-sharing in international law; 2. clarify whether and how benefit-sharing supports equity and the protection of human rights across key sectors of international environmental regulation (biodiversity, climate change, oceans, food and agriculture) that are seen as inter-related in the transition to the green economy; 3. understand the development of benefit-sharing in the context of global environmental law; and
4. clarify the role of transnational legal advisors (NGOs and bilateral cooperation partners) in the green economy.
Max ERC Funding
1 481 708 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym BESTDECISION
Project "Behavioural Economics and Strategic Decision Making: Theory, Empirics, and Experiments"
Researcher (PI) Vincent Paul Crawford
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH1, ERC-2013-ADG
Summary "I will study questions of central microeconomic importance via interwoven theoretical, empirical, and experimental analyses, from a behavioural perspective combining standard methods with assumptions that better reflect evidence on behaviour and psychological insights. The contributions of behavioural economics have been widely recognized, but the benefits of its insights are far from fully realized. I propose four lines of inquiry that focus on how institutions interact with cognition and behaviour, chosen for their potential to reshape our understanding of important questions and their synergies across lines.
The first line will study nonparametric identification and estimation of reference-dependent versions of the standard microeconomic model of consumer demand or labour supply, the subject of hundreds of empirical studies and perhaps the single most important model in microeconomics. It will allow such studies to consider relevant behavioural factors without imposing structural assumptions as in previous work.
The second line will analyze history-dependent learning in financial crises theoretically and experimentally, with the goal of quantifying how market structure influences the likelihood of a crisis.
The third line will study strategic thinking experimentally, using a powerful new design that links subjects’ searches for hidden payoff information (“eye-movements”) much more directly to thinking.
The fourth line will significantly advance Myerson and Satterthwaite’s analyses of optimal design of bargaining rules and auctions, which first went beyond the analysis of given institutions to study what is possible by designing new institutions, replacing their equilibrium assumption with a nonequilibrium model that is well supported by experiments.
The synergies among these four lines’ theoretical analyses, empirical methods, and data analyses will accelerate progress on each line well beyond what would be possible in a piecemeal approach."
Summary
"I will study questions of central microeconomic importance via interwoven theoretical, empirical, and experimental analyses, from a behavioural perspective combining standard methods with assumptions that better reflect evidence on behaviour and psychological insights. The contributions of behavioural economics have been widely recognized, but the benefits of its insights are far from fully realized. I propose four lines of inquiry that focus on how institutions interact with cognition and behaviour, chosen for their potential to reshape our understanding of important questions and their synergies across lines.
The first line will study nonparametric identification and estimation of reference-dependent versions of the standard microeconomic model of consumer demand or labour supply, the subject of hundreds of empirical studies and perhaps the single most important model in microeconomics. It will allow such studies to consider relevant behavioural factors without imposing structural assumptions as in previous work.
The second line will analyze history-dependent learning in financial crises theoretically and experimentally, with the goal of quantifying how market structure influences the likelihood of a crisis.
The third line will study strategic thinking experimentally, using a powerful new design that links subjects’ searches for hidden payoff information (“eye-movements”) much more directly to thinking.
The fourth line will significantly advance Myerson and Satterthwaite’s analyses of optimal design of bargaining rules and auctions, which first went beyond the analysis of given institutions to study what is possible by designing new institutions, replacing their equilibrium assumption with a nonequilibrium model that is well supported by experiments.
The synergies among these four lines’ theoretical analyses, empirical methods, and data analyses will accelerate progress on each line well beyond what would be possible in a piecemeal approach."
Max ERC Funding
1 985 373 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BETAIMAGE
Project An in vivo imaging approach to understand pancreatic beta-cell signal-transduction
Researcher (PI) Per-Olof Berggren
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS4, ERC-2013-ADG
Summary The challenge in cell physiology/pathology today is to translate in vitro findings to the living organism. We have developed a unique approach where signal-transduction can be investigated in vivo non-invasively, longitudinally at single cell resolution, using the anterior chamber of the eye as a natural body window for imaging. We will use this approach to understand how the universally important and highly complex signal Ca2+ is regulated in the pancreatic beta-cell, while localized in the vascularized and innervated islet of Langerhans, and how that affects the insulin secretory machinery in vivo. Engrafted islets in the eye take on identical innervation- and vascularization patterns as those in the pancreas and are proficient in regulating glucose homeostasis in the animal. Since the pancreatic islet constitutes a micro-organ, this imaging approach offers a seminal model system to understand Ca2+ signaling in individual cells at the organ level in real life. We will test the hypothesis that the Ca2+-signal has a key role in pancreatic beta-cell function and survival in vivo and that perturbation in the Ca2+-signal serves as a common denominator for beta-cell pathology associated with impaired glucose homeostasis and diabetes. Of special interest is how innervation impacts on Ca2+-dynamics and the integration of autocrine, paracrine and endocrine signals in fine-tuning the Ca2+-signal with regard to beta-cell function and survival. We aim to define key defects in the machinery regulating Ca2+-dynamics in association with the autoimmune reaction, inflammation and obesity eventually resulting in diabetes. Our imaging platform will be applied to clarify in vivo regulation of Ca2+-dynamics in both healthy and diabetic human beta-cells. To define novel drugable targets for treatment of diabetes, it is crucial to identify similarities and differences in the molecular machinery regulating the in vivo Ca2+-signal in the human and in the rodent beta-cell.
Summary
The challenge in cell physiology/pathology today is to translate in vitro findings to the living organism. We have developed a unique approach where signal-transduction can be investigated in vivo non-invasively, longitudinally at single cell resolution, using the anterior chamber of the eye as a natural body window for imaging. We will use this approach to understand how the universally important and highly complex signal Ca2+ is regulated in the pancreatic beta-cell, while localized in the vascularized and innervated islet of Langerhans, and how that affects the insulin secretory machinery in vivo. Engrafted islets in the eye take on identical innervation- and vascularization patterns as those in the pancreas and are proficient in regulating glucose homeostasis in the animal. Since the pancreatic islet constitutes a micro-organ, this imaging approach offers a seminal model system to understand Ca2+ signaling in individual cells at the organ level in real life. We will test the hypothesis that the Ca2+-signal has a key role in pancreatic beta-cell function and survival in vivo and that perturbation in the Ca2+-signal serves as a common denominator for beta-cell pathology associated with impaired glucose homeostasis and diabetes. Of special interest is how innervation impacts on Ca2+-dynamics and the integration of autocrine, paracrine and endocrine signals in fine-tuning the Ca2+-signal with regard to beta-cell function and survival. We aim to define key defects in the machinery regulating Ca2+-dynamics in association with the autoimmune reaction, inflammation and obesity eventually resulting in diabetes. Our imaging platform will be applied to clarify in vivo regulation of Ca2+-dynamics in both healthy and diabetic human beta-cells. To define novel drugable targets for treatment of diabetes, it is crucial to identify similarities and differences in the molecular machinery regulating the in vivo Ca2+-signal in the human and in the rodent beta-cell.
Max ERC Funding
2 499 590 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym BETTERSENSE
Project Nanodevice Engineering for a Better Chemical Gas Sensing Technology
Researcher (PI) Juan Daniel Prades Garcia
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Summary
BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Max ERC Funding
1 498 452 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BEYOND
Project METABOLIC BASIS OF NEURODEGENERATIVE DISEASE
Researcher (PI) Thomas Franz Erich Willnow
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Advanced Grant (AdG), LS4, ERC-2013-ADG
Summary Alzheimer disease (AD) is the most common form of age-related dementia affecting millions of patients worldwide. Disturbingly, disorders of lipid and glucose metabolism emerge as major risk factors for onset and progression of neurodegeneration in the human population. Thus, an increasing life expectance combined with an observable rise in metabolic disturbances is expected to turn AD into one of the most serious health problems for future generations. Still, the molecular mechanisms whereby dysregulation of glucose and lipid homeostasis elicits noxious insults to the brain remain poorly understood. We characterized a novel class of intracellular sorting receptors, termed VPS10P domain receptors with dual roles in regulation of neuronal viability and function, but also in modulation of glucose and lipid homeostasis. Our proposal aims at elucidating an important yet poorly understood link between metabolism and neurodegeneration that converges on these receptors. Our approach is unique and novel in several ways. Thematically, our studies focus on a novel class of receptors previously not considered. Based on the receptors’ ability to act as sorting proteins, we propose faulty protein trafficking as a major unifying concept underlying neurodegenerative and metabolic disorders. Conceptually, our approach relies on the interdisciplinary effort of neuroscientists and metabolism researchers working jointly on pathophysiological pathways converging on these receptors. Through this effort, we are confident to gain important insights into the crosstalk between brain and peripheral tissues, and to elucidate pathways common to metabolic disturbances and dementia, two prevailing degenerative disorders inflicting our societies.
Summary
Alzheimer disease (AD) is the most common form of age-related dementia affecting millions of patients worldwide. Disturbingly, disorders of lipid and glucose metabolism emerge as major risk factors for onset and progression of neurodegeneration in the human population. Thus, an increasing life expectance combined with an observable rise in metabolic disturbances is expected to turn AD into one of the most serious health problems for future generations. Still, the molecular mechanisms whereby dysregulation of glucose and lipid homeostasis elicits noxious insults to the brain remain poorly understood. We characterized a novel class of intracellular sorting receptors, termed VPS10P domain receptors with dual roles in regulation of neuronal viability and function, but also in modulation of glucose and lipid homeostasis. Our proposal aims at elucidating an important yet poorly understood link between metabolism and neurodegeneration that converges on these receptors. Our approach is unique and novel in several ways. Thematically, our studies focus on a novel class of receptors previously not considered. Based on the receptors’ ability to act as sorting proteins, we propose faulty protein trafficking as a major unifying concept underlying neurodegenerative and metabolic disorders. Conceptually, our approach relies on the interdisciplinary effort of neuroscientists and metabolism researchers working jointly on pathophysiological pathways converging on these receptors. Through this effort, we are confident to gain important insights into the crosstalk between brain and peripheral tissues, and to elucidate pathways common to metabolic disturbances and dementia, two prevailing degenerative disorders inflicting our societies.
Max ERC Funding
2 415 229 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BEYONDENEMYLINES
Project Beyond Enemy Lines: Literature and Film in the British and American Zones of Occupied Germany, 1945-1949
Researcher (PI) Lara Feigel
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), SH5, ERC-2013-StG
Summary This project investigates the cross-fertilisation of Anglo/American and German literature and film during the Allied Occupation of Germany. It will be the first study to survey the cultural landscape of the British and American zones of Occupied Germany in any detail. By doing so it will offer a new interpretative framework for postwar culture, in particular in three areas: the history of the Allied Occupation of Germany; the history of postwar Anglophone and Germanophone literature (arguing the two were more intertwined than has previously been suggested); and the history of the relationship between postwar and Cold War. Combining Anglo-American and German literature and film history with critical analysis, cultural history and life-writing, this is a necessarily ambitious, multidisciplinary study which will open up a major new field of research.
Summary
This project investigates the cross-fertilisation of Anglo/American and German literature and film during the Allied Occupation of Germany. It will be the first study to survey the cultural landscape of the British and American zones of Occupied Germany in any detail. By doing so it will offer a new interpretative framework for postwar culture, in particular in three areas: the history of the Allied Occupation of Germany; the history of postwar Anglophone and Germanophone literature (arguing the two were more intertwined than has previously been suggested); and the history of the relationship between postwar and Cold War. Combining Anglo-American and German literature and film history with critical analysis, cultural history and life-writing, this is a necessarily ambitious, multidisciplinary study which will open up a major new field of research.
Max ERC Funding
1 414 601 €
Duration
Start date: 2013-09-01, End date: 2019-02-28
Project acronym BIC
Project Cavitation across scales: following Bubbles from Inception to Collapse
Researcher (PI) Carlo Massimo Casciola
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary Cavitation is the formation of vapor cavities inside a liquid due to low pressure. Cavitation is an ubiquitous and destructive phenomenon common to most engineering applications that deal with flowing water. At the same time, the extreme conditions realized in cavitation are increasingly exploited in medicine, chemistry, and biology. What makes cavitation unpredictable is its multiscale nature: nucleation of vapor bubbles heavily depends on micro- and nanoscale details; mesoscale phenomena, as bubble collapse, determine relevant macroscopic effects, e.g., cavitation damage. In addition, macroscopic flow conditions, such as turbulence, have a major impact on it.
The objective of the BIC project is to develop the lacking multiscale description of cavitation, by proposing new integrated numerical methods capable to perform quantitative predictions. The detailed and physically sound understanding of the multifaceted phenomena involved in cavitation (nucleation, bubble growth, transport, and collapse in turbulent flows) fostered by BIC project will result in new methods for designing fluid machinery, but also therapies in ultrasound medicine and chemical reactors. The BIC project builds upon the exceptionally broad experience of the PI and of his research group in numerical simulations of flows at different scales that include advanced atomistic simulations of nanoscale wetting phenomena, mesoscale models for multiphase flows, and particle-laden turbulent flows. The envisaged numerical methodologies (free-energy atomistic simulations, phase-field models, and Direct Numerical Simulation of bubble-laden flows) will be supported by targeted experimental activities, designed to validate models and characterize realistic conditions.
Summary
Cavitation is the formation of vapor cavities inside a liquid due to low pressure. Cavitation is an ubiquitous and destructive phenomenon common to most engineering applications that deal with flowing water. At the same time, the extreme conditions realized in cavitation are increasingly exploited in medicine, chemistry, and biology. What makes cavitation unpredictable is its multiscale nature: nucleation of vapor bubbles heavily depends on micro- and nanoscale details; mesoscale phenomena, as bubble collapse, determine relevant macroscopic effects, e.g., cavitation damage. In addition, macroscopic flow conditions, such as turbulence, have a major impact on it.
The objective of the BIC project is to develop the lacking multiscale description of cavitation, by proposing new integrated numerical methods capable to perform quantitative predictions. The detailed and physically sound understanding of the multifaceted phenomena involved in cavitation (nucleation, bubble growth, transport, and collapse in turbulent flows) fostered by BIC project will result in new methods for designing fluid machinery, but also therapies in ultrasound medicine and chemical reactors. The BIC project builds upon the exceptionally broad experience of the PI and of his research group in numerical simulations of flows at different scales that include advanced atomistic simulations of nanoscale wetting phenomena, mesoscale models for multiphase flows, and particle-laden turbulent flows. The envisaged numerical methodologies (free-energy atomistic simulations, phase-field models, and Direct Numerical Simulation of bubble-laden flows) will be supported by targeted experimental activities, designed to validate models and characterize realistic conditions.
Max ERC Funding
2 491 200 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIGBAYES
Project Rich, Structured and Efficient Learning of Big Bayesian Models
Researcher (PI) Yee Whye Teh
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), PE6, ERC-2013-CoG
Summary As datasets grow ever larger in scale, complexity and variety, there is an increasing need for powerful machine learning and statistical techniques that are capable of learning from such data. Bayesian nonparametrics is a promising approach to data analysis that is increasingly popular in machine learning and statistics. Bayesian nonparametric models are highly flexible models with infinite-dimensional parameter spaces that can be used to directly parameterise and learn about functions, densities, conditional distributions etc, and have been successfully applied to regression, survival analysis, language modelling, time series analysis, and visual scene analysis among others. However, to successfully use Bayesian nonparametric models to analyse the high-dimensional and structured datasets now commonly encountered in the age of Big Data, we will have to overcome a number of challenges. Namely, we need to develop Bayesian nonparametric models that can learn rich representations from structured data, and we need computational methodologies that can scale effectively to the large and complex models of the future. We will ground our developments in relevant applications, particularly to natural language processing (learning distributed representations for language modelling and compositional semantics) and genetics (modelling genetic variations arising from population, genealogical and spatial structures).
Summary
As datasets grow ever larger in scale, complexity and variety, there is an increasing need for powerful machine learning and statistical techniques that are capable of learning from such data. Bayesian nonparametrics is a promising approach to data analysis that is increasingly popular in machine learning and statistics. Bayesian nonparametric models are highly flexible models with infinite-dimensional parameter spaces that can be used to directly parameterise and learn about functions, densities, conditional distributions etc, and have been successfully applied to regression, survival analysis, language modelling, time series analysis, and visual scene analysis among others. However, to successfully use Bayesian nonparametric models to analyse the high-dimensional and structured datasets now commonly encountered in the age of Big Data, we will have to overcome a number of challenges. Namely, we need to develop Bayesian nonparametric models that can learn rich representations from structured data, and we need computational methodologies that can scale effectively to the large and complex models of the future. We will ground our developments in relevant applications, particularly to natural language processing (learning distributed representations for language modelling and compositional semantics) and genetics (modelling genetic variations arising from population, genealogical and spatial structures).
Max ERC Funding
1 918 092 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym BIO-IRT
Project Biologically individualized, model-based radiotherapy on the basis of multi-parametric molecular tumour profiling
Researcher (PI) Daniela Thorwarth
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary High precision radiotherapy (RT) allows extremely flexible tumour treatments achieving highly conformal radiation doses while sparing surrounding organs at risk. Nevertheless, failure rates of up to 50% are reported for head and neck cancer (HNC) due to radiation resistance induced by pathophysiologic factors such as hypoxia and other clinical factors as HPV-status, stage and tumour volume.
This project aims at developing a multi-parametric model for individualized RT (iRT) dose prescriptions in HNC based on biological markers and functional PET/MR imaging. This project goes far beyond current research standards and clinical practice as it aims for establishing hypoxia PET and f-MRI as well as biological markers in HNC as a role model for a novel concept from anatomy-based to biologically iRT.
During this project, a multi-parametric model will be developed on a preclinical basis that combines biological markers such as different oncogenes and hypoxia gene classifier with functional PET/MR imaging, such as FMISO PET in combination with different f-MRI techniques, like DW-, DCE- and BOLD-MRI in addition to MR spectroscopy. The ultimate goal of this project is a multi-parametric model to predict therapy outcome and guide iRT.
In a second part, a clinical study will be carried out to validate the preclinical model in patients. Based on the most informative radiobiological and imaging parameters as identified during the pre-clinical phase, biological markers and advanced PET/MR imaging will be evaluated in terms of their potential for iRT dose prescription.
Successful development of a model for biologically iRT prescription on the basis of multi-parametric molecular profiling would provide a unique basis for personalized cancer treatment. A validated multi-parametric model for RT outcome would represent a paradigm shift from anatomy-based to biologically iRT concepts with the ultimate goal of improving cancer cure rates.
Summary
High precision radiotherapy (RT) allows extremely flexible tumour treatments achieving highly conformal radiation doses while sparing surrounding organs at risk. Nevertheless, failure rates of up to 50% are reported for head and neck cancer (HNC) due to radiation resistance induced by pathophysiologic factors such as hypoxia and other clinical factors as HPV-status, stage and tumour volume.
This project aims at developing a multi-parametric model for individualized RT (iRT) dose prescriptions in HNC based on biological markers and functional PET/MR imaging. This project goes far beyond current research standards and clinical practice as it aims for establishing hypoxia PET and f-MRI as well as biological markers in HNC as a role model for a novel concept from anatomy-based to biologically iRT.
During this project, a multi-parametric model will be developed on a preclinical basis that combines biological markers such as different oncogenes and hypoxia gene classifier with functional PET/MR imaging, such as FMISO PET in combination with different f-MRI techniques, like DW-, DCE- and BOLD-MRI in addition to MR spectroscopy. The ultimate goal of this project is a multi-parametric model to predict therapy outcome and guide iRT.
In a second part, a clinical study will be carried out to validate the preclinical model in patients. Based on the most informative radiobiological and imaging parameters as identified during the pre-clinical phase, biological markers and advanced PET/MR imaging will be evaluated in terms of their potential for iRT dose prescription.
Successful development of a model for biologically iRT prescription on the basis of multi-parametric molecular profiling would provide a unique basis for personalized cancer treatment. A validated multi-parametric model for RT outcome would represent a paradigm shift from anatomy-based to biologically iRT concepts with the ultimate goal of improving cancer cure rates.
Max ERC Funding
1 370 799 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym Bio-Phononics
Project Advanced Microfluidics & Diagnostics using Acoustic Holograms – Bio-Phononics
Researcher (PI) Jonathan Cooper
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary This proposal seeks to develop a novel technique for fluid and particle manipulations, based upon exploiting the mechanical interactions between acoustic waves and phononic. The new platform involves generating surface acoustic waves (SAWs) on piezoelectric chips, but, unlike previous work, the ultrasonic waves are first coupled into a phononic lattice, which is placed in the path of the ultrasonic wave. The phononic lattice comprises a miniaturised array of mechanical elements which modulates the sound in a manner analogous to how light is “patterned” using a hologram. However, whilst in an optical hologram, the pattern is created by exploiting the differences in refractive indices of the elements of the structure, here the ultrasonic field is modulated both by the elastic contrast between the elements in the array, as well as by the dimensions of the array and its surrounding matrix (including the size and pitch of the features within the array). The result of passing the acoustic wave through a phononic crystal is the formation of new and complex ultrasonic landscapes.
As part of the proposed work we aim to understand the physics of this technology and to exploit its development in a range of medical devices. We will show that by using phononic crystals it is possible to create highly controllable patterns of acoustic field intensities, which propagate into the fluid, creating pressure differences that result in unique flow patterns to enable a new platform for including biological sample processing, medical diagnostics, drug delivery and blood clotting devices – all on low cost disposable devices. Different frequencies of ultrasound will interact with different phononic structures to give different functions, providing a toolbox of different functions. Just as in electronics, where discrete components are combined to create circuits, so we propose to combine different phononic lattices to create fluidic microcircuits with important new applications.
Summary
This proposal seeks to develop a novel technique for fluid and particle manipulations, based upon exploiting the mechanical interactions between acoustic waves and phononic. The new platform involves generating surface acoustic waves (SAWs) on piezoelectric chips, but, unlike previous work, the ultrasonic waves are first coupled into a phononic lattice, which is placed in the path of the ultrasonic wave. The phononic lattice comprises a miniaturised array of mechanical elements which modulates the sound in a manner analogous to how light is “patterned” using a hologram. However, whilst in an optical hologram, the pattern is created by exploiting the differences in refractive indices of the elements of the structure, here the ultrasonic field is modulated both by the elastic contrast between the elements in the array, as well as by the dimensions of the array and its surrounding matrix (including the size and pitch of the features within the array). The result of passing the acoustic wave through a phononic crystal is the formation of new and complex ultrasonic landscapes.
As part of the proposed work we aim to understand the physics of this technology and to exploit its development in a range of medical devices. We will show that by using phononic crystals it is possible to create highly controllable patterns of acoustic field intensities, which propagate into the fluid, creating pressure differences that result in unique flow patterns to enable a new platform for including biological sample processing, medical diagnostics, drug delivery and blood clotting devices – all on low cost disposable devices. Different frequencies of ultrasound will interact with different phononic structures to give different functions, providing a toolbox of different functions. Just as in electronics, where discrete components are combined to create circuits, so we propose to combine different phononic lattices to create fluidic microcircuits with important new applications.
Max ERC Funding
2 208 594 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BioBlood
Project Development of a Bio-Inspired Blood Factory for Personalised Healthcare
Researcher (PI) Athanasios Mantalaris
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary Personalized medicine is a medical model that proposes the customization of healthcare, with decisions and practices being tailored to the individual patient by use of patient-specific information and/or application of patient-specific cell-based therapies. BioBlood aims to deliver personalised healthcare through a “step change” in the clinical field of haemato-oncology. BioBlood represents an engineered bio-inspired integrated experimental/modelling platform for normal and abnormal haematopoiesis that receives disease & patient input (patient primary cells & patient/disease-specific data) and will produce cellular (red blood cell product) and drug (optimal drug treatment) therapies as its output. Blood supply to meet demand is the primary challenge for Blood Banks and requires significant resources to avoid shortages and ensure safety. An alternative, practical and cost-effective solution to conventional donated blood is essential to reduce patient morbidity and mortality, stabilise and guarantee the donor supply, limit multiple donor exposures, reduce risk of infection of known or as yet unidentified pathogens, and ensure a robust and safe turn-around for blood supply management. BioBlood aims to meet this challenge by developing a novel in vitro platform for the mass production of RBCs for clinical use. More than £32b/year is spent to develop and bring new drugs to market, which takes 14 years. Most patients diagnosed with leukaemias are unable to tolerate treatment and would benefit from novel agents. There is a need to optimise current treatment schedules for cancers such as AML to limit toxicities and improve clinical trial pathways for new drugs to enable personalised healthcare. BioBlood’s in vitro & in silico platform would be a powerful tool to tailor treatments in a patient- and leukaemia-specific chemotherapy schedule by considering the level of toxicity to the specific individual and treatment efficiency for the specific leukaemia a priori.
Summary
Personalized medicine is a medical model that proposes the customization of healthcare, with decisions and practices being tailored to the individual patient by use of patient-specific information and/or application of patient-specific cell-based therapies. BioBlood aims to deliver personalised healthcare through a “step change” in the clinical field of haemato-oncology. BioBlood represents an engineered bio-inspired integrated experimental/modelling platform for normal and abnormal haematopoiesis that receives disease & patient input (patient primary cells & patient/disease-specific data) and will produce cellular (red blood cell product) and drug (optimal drug treatment) therapies as its output. Blood supply to meet demand is the primary challenge for Blood Banks and requires significant resources to avoid shortages and ensure safety. An alternative, practical and cost-effective solution to conventional donated blood is essential to reduce patient morbidity and mortality, stabilise and guarantee the donor supply, limit multiple donor exposures, reduce risk of infection of known or as yet unidentified pathogens, and ensure a robust and safe turn-around for blood supply management. BioBlood aims to meet this challenge by developing a novel in vitro platform for the mass production of RBCs for clinical use. More than £32b/year is spent to develop and bring new drugs to market, which takes 14 years. Most patients diagnosed with leukaemias are unable to tolerate treatment and would benefit from novel agents. There is a need to optimise current treatment schedules for cancers such as AML to limit toxicities and improve clinical trial pathways for new drugs to enable personalised healthcare. BioBlood’s in vitro & in silico platform would be a powerful tool to tailor treatments in a patient- and leukaemia-specific chemotherapy schedule by considering the level of toxicity to the specific individual and treatment efficiency for the specific leukaemia a priori.
Max ERC Funding
2 498 903 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym BIOGRAPHENE
Project Sequencing biological molecules with graphene
Researcher (PI) Gregory Schneider
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Graphene – a one atom thin material – has the potential to act as a sensor, primarily the surface and the edges of graphene. This proposal aims at exploring new biosensing routes by exploiting the unique surface and edge chemistry of graphene.
Summary
Graphene – a one atom thin material – has the potential to act as a sensor, primarily the surface and the edges of graphene. This proposal aims at exploring new biosensing routes by exploiting the unique surface and edge chemistry of graphene.
Max ERC Funding
1 499 996 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym BIONICS
Project Bio-Inspired Routes for Controlling the Structure and Properties of Materials: Reusing proven tricks on new materials
Researcher (PI) Boaz Pokroy
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary "In the course of biomineralization, organisms produce a large variety of functional biogenic crystals that exhibit fascinating mechanical, optical, magnetic and other characteristics. More specifically, when living organisms grow crystals they can effectively control polymorph selection as well as the crystal morphology, shape, and even atomic structure. Materials existing in nature have extraordinary and specific functions, yet the materials employed in nature are quite different from those engineers would select.
I propose to emulate specific strategies used by organisms in forming structural biogenic crystals, and to apply these strategies biomimetically so as to form new structural materials with new properties and characteristics. This bio-inspired approach will involve the adoption of three specific biological strategies. We believe that this procedure will open up new ways to control the structure and properties of smart materials.
The three bio-inspired strategies that we will utilize are:
(i) to control the short-range order of amorphous materials, making it possible to predetermine the polymorph obtained when they transform from the amorphous to the succeeding crystalline phase;
(ii) to control the morphology of single crystals of various functional materials so that they can have intricate and curved surfaces and yet maintain their single-crystal nature;
(iii) to entrap organic molecules into single crystals of functional materials so as to tailor and manipulate their electronic structure.
The proposed research has significant potential for opening up new routes for the formation of novel functional materials. Specifically, it will make it possible for us
(1) to produce single, intricately shaped crystals without the need to etch, drill or polish;
(2) to control the short-range order of amorphous materials and hence the polymorph of the successive crystalline phase;
(3) to tune the band gap of semiconductors via incorporation of tailored bio-molecules."
Summary
"In the course of biomineralization, organisms produce a large variety of functional biogenic crystals that exhibit fascinating mechanical, optical, magnetic and other characteristics. More specifically, when living organisms grow crystals they can effectively control polymorph selection as well as the crystal morphology, shape, and even atomic structure. Materials existing in nature have extraordinary and specific functions, yet the materials employed in nature are quite different from those engineers would select.
I propose to emulate specific strategies used by organisms in forming structural biogenic crystals, and to apply these strategies biomimetically so as to form new structural materials with new properties and characteristics. This bio-inspired approach will involve the adoption of three specific biological strategies. We believe that this procedure will open up new ways to control the structure and properties of smart materials.
The three bio-inspired strategies that we will utilize are:
(i) to control the short-range order of amorphous materials, making it possible to predetermine the polymorph obtained when they transform from the amorphous to the succeeding crystalline phase;
(ii) to control the morphology of single crystals of various functional materials so that they can have intricate and curved surfaces and yet maintain their single-crystal nature;
(iii) to entrap organic molecules into single crystals of functional materials so as to tailor and manipulate their electronic structure.
The proposed research has significant potential for opening up new routes for the formation of novel functional materials. Specifically, it will make it possible for us
(1) to produce single, intricately shaped crystals without the need to etch, drill or polish;
(2) to control the short-range order of amorphous materials and hence the polymorph of the successive crystalline phase;
(3) to tune the band gap of semiconductors via incorporation of tailored bio-molecules."
Max ERC Funding
1 500 000 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym BIOTENSORS
Project Biomedical Data Fusion using Tensor based Blind Source Separation
Researcher (PI) Sabine Jeanne A Van Huffel
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), PE6, ERC-2013-ADG
Summary "Summary: the quest for a general functional tensor framework for blind source separation
Our overall objective is the development of a general functional framework for solving tensor based blind source separation (BSS) problems in biomedical data fusion, using tensor decompositions (TDs) as basic core. We claim that TDs will allow the extraction of fairly complicated sources of biomedical activity from fairly complicated sets of uni- and multimodal data. The power of the new techniques will be demonstrated for three well-chosen representative biomedical applications for which extensive expertise and fully validated datasets are available in the PI’s team, namely:
• Metabolite quantification and brain tumour tissue typing using Magnetic Resonance Spectroscopic Imaging,
• Functional monitoring including seizure detection and polysomnography,
• Cognitive brain functioning and seizure zone localization using simultaneous Electroencephalography-functional MR Imaging integration.
Solving these challenging problems requires that algorithmic progress is made in several directions:
• Algorithms need to be based on multilinear extensions of numerical linear algebra.
• New grounds for separation, such as representability in a given function class, need to be explored.
• Prior knowledge needs to be exploited via appropriate health relevant constraints.
• Biomedical data fusion requires the combination of TDs, coupled via relevant constraints.
• Algorithms for TD updating are important for continuous long-term patient monitoring.
The algorithms are eventually integrated in an easy-to-use open source software platform that is general enough for use in other BSS applications.
Having been involved in biomedical signal processing over a period of 20 years, the PI has a good overview of the field and the opportunities. By working directly at the forefront in close collaboration with the clinical scientists who actually use our software, we can have a huge impact."
Summary
"Summary: the quest for a general functional tensor framework for blind source separation
Our overall objective is the development of a general functional framework for solving tensor based blind source separation (BSS) problems in biomedical data fusion, using tensor decompositions (TDs) as basic core. We claim that TDs will allow the extraction of fairly complicated sources of biomedical activity from fairly complicated sets of uni- and multimodal data. The power of the new techniques will be demonstrated for three well-chosen representative biomedical applications for which extensive expertise and fully validated datasets are available in the PI’s team, namely:
• Metabolite quantification and brain tumour tissue typing using Magnetic Resonance Spectroscopic Imaging,
• Functional monitoring including seizure detection and polysomnography,
• Cognitive brain functioning and seizure zone localization using simultaneous Electroencephalography-functional MR Imaging integration.
Solving these challenging problems requires that algorithmic progress is made in several directions:
• Algorithms need to be based on multilinear extensions of numerical linear algebra.
• New grounds for separation, such as representability in a given function class, need to be explored.
• Prior knowledge needs to be exploited via appropriate health relevant constraints.
• Biomedical data fusion requires the combination of TDs, coupled via relevant constraints.
• Algorithms for TD updating are important for continuous long-term patient monitoring.
The algorithms are eventually integrated in an easy-to-use open source software platform that is general enough for use in other BSS applications.
Having been involved in biomedical signal processing over a period of 20 years, the PI has a good overview of the field and the opportunities. By working directly at the forefront in close collaboration with the clinical scientists who actually use our software, we can have a huge impact."
Max ERC Funding
2 500 000 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BioWater
Project Development of new chemical imaging techniques to understand the function of water in biocompatibility, biodegradation and biofouling
Researcher (PI) Aoife Ann Gowen
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary Water is the first molecule to come into contact with biomaterials in biological systems and thus essential to the processes of biodegradation, biocompatibility and biofouling. Despite this fact, little is currently known about how biomaterials interact with water. This knowledge is crucial for the development and optimisation of novel functional biomaterials for human health (e.g. biosensing devices, erodible biomaterials, drug release carriers, wound dressings). BioWater will develop near and mid infrared chemical imaging (NIR-MIR-CI) techniques to investigate the fundamental interaction between biomaterials and water in order to understand the key processes of biodegradation, biocompatibility and biofouling. This ambitious yet achievable project will focus on two major categories of biomaterials relevant to human health: extracellular collagens and synthetic biopolymers. Initially, interactions between these biomaterials and water will be investigated; subsequently interactions with more complicated matrices (e.g. protein solutions and cellular systems) will be studied. CI data will be correlated with standard surface characterization, biocompatibility and biodegradation measurements. Molecular dynamic simulations will complement this work to identify the most probable molecular structures of water at different biomaterial interfaces.
Advanced understanding of the role of water in biocompatibility, biofouling and biodegradation processes will facilitate the optimization of biomaterials tailored to specific cellular environments with a broad range of therapeutic applications (e.g. drug eluting stents, tissue engineering, wound healing). The new NIR-MIR-CI/chemometric methodologies developed in BioWater will allow for the rapid characterization and monitoring of novel biomaterials at pre-clinical stages, improving process control by overcoming the laborious and time consuming large-scale sampling methods currently required in biomaterials development.
Summary
Water is the first molecule to come into contact with biomaterials in biological systems and thus essential to the processes of biodegradation, biocompatibility and biofouling. Despite this fact, little is currently known about how biomaterials interact with water. This knowledge is crucial for the development and optimisation of novel functional biomaterials for human health (e.g. biosensing devices, erodible biomaterials, drug release carriers, wound dressings). BioWater will develop near and mid infrared chemical imaging (NIR-MIR-CI) techniques to investigate the fundamental interaction between biomaterials and water in order to understand the key processes of biodegradation, biocompatibility and biofouling. This ambitious yet achievable project will focus on two major categories of biomaterials relevant to human health: extracellular collagens and synthetic biopolymers. Initially, interactions between these biomaterials and water will be investigated; subsequently interactions with more complicated matrices (e.g. protein solutions and cellular systems) will be studied. CI data will be correlated with standard surface characterization, biocompatibility and biodegradation measurements. Molecular dynamic simulations will complement this work to identify the most probable molecular structures of water at different biomaterial interfaces.
Advanced understanding of the role of water in biocompatibility, biofouling and biodegradation processes will facilitate the optimization of biomaterials tailored to specific cellular environments with a broad range of therapeutic applications (e.g. drug eluting stents, tissue engineering, wound healing). The new NIR-MIR-CI/chemometric methodologies developed in BioWater will allow for the rapid characterization and monitoring of novel biomaterials at pre-clinical stages, improving process control by overcoming the laborious and time consuming large-scale sampling methods currently required in biomaterials development.
Max ERC Funding
1 487 682 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIOXCAT
Project Bioinspired Catalysts for Commercial Applications
Researcher (PI) Miguel COSTAS SALGUEIRO
Host Institution (HI) UNIVERSITAT DE GIRONA
Call Details Proof of Concept (PoC), PC1, ERC-2013-PoC
Summary Research developed in the ERC-funded project BIDECASEOX ERC-239910 has led to the discovery of particularly active catalysts with potential broad applicability in various commercial fields. These catalysts mediate challenging oxidation transformations under sustainable conditions, and constitute necessary alternatives to toxic, expensive and large waste-producing traditional stoichiometric oxidants widely employed nowadays. These catalysts are expected to rise a broad interest in organic synthesis both in fine and bulk chemistry, as well as in technological applications involving oxidative degradation of organic molecules. The latter include oxidation of cellulosic and other colour polysaccharide molecules, with applications in wood pulp treatment, paper bleaching and development of detergents for textiles. The PoC project aims to make these catalysts available to industry and investors to ensure a successful commercialization of the compounds. With the aim of accelerating the market access of these catalysts, the present Proof of Concept (PoC) project, named BIOXCAT, will target to study the feasibility of bringing these compounds into a pre-commercial stage. This will be achieved by scaling-up current mg-scale production methods to establish economically optimized kilogram scale procedures, and by validation of their use in model reactions of technological applications. None of this activies is included in the ERC grant. PoC activity will also include an analysis of intellectual property protection needs within the field of application, as well as initiating any patent filling procedure required to provide an adequate protection of the different applications for the catalysts. A market study will also be conducted to identify specific potential uses of these compounds, and a review of potential commercialization partners to enable exploitation of the catalysts into the market.
Summary
Research developed in the ERC-funded project BIDECASEOX ERC-239910 has led to the discovery of particularly active catalysts with potential broad applicability in various commercial fields. These catalysts mediate challenging oxidation transformations under sustainable conditions, and constitute necessary alternatives to toxic, expensive and large waste-producing traditional stoichiometric oxidants widely employed nowadays. These catalysts are expected to rise a broad interest in organic synthesis both in fine and bulk chemistry, as well as in technological applications involving oxidative degradation of organic molecules. The latter include oxidation of cellulosic and other colour polysaccharide molecules, with applications in wood pulp treatment, paper bleaching and development of detergents for textiles. The PoC project aims to make these catalysts available to industry and investors to ensure a successful commercialization of the compounds. With the aim of accelerating the market access of these catalysts, the present Proof of Concept (PoC) project, named BIOXCAT, will target to study the feasibility of bringing these compounds into a pre-commercial stage. This will be achieved by scaling-up current mg-scale production methods to establish economically optimized kilogram scale procedures, and by validation of their use in model reactions of technological applications. None of this activies is included in the ERC grant. PoC activity will also include an analysis of intellectual property protection needs within the field of application, as well as initiating any patent filling procedure required to provide an adequate protection of the different applications for the catalysts. A market study will also be conducted to identify specific potential uses of these compounds, and a review of potential commercialization partners to enable exploitation of the catalysts into the market.
Max ERC Funding
149 750 €
Duration
Start date: 2014-05-01, End date: 2015-07-31
Project acronym BIRTOACTION
Project From birth to action: regulation of gene expression through transcription complex biogenesis
Researcher (PI) Laszlo Tora
Host Institution (HI) CENTRE EUROPEEN DE RECHERCHE EN BIOLOGIE ET MEDECINE
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary "Transcriptional regulation of protein coding genes in eukaryotic cells requires a complex interplay of sequence-specific DNA-binding factors, co-activators, general transcription factors (GTFs), RNA polymerase II and the epigenetic status of target sequences. Nuclear transcription complexes function as large multiprotein assemblies and are often composed of functional modules. The regulated decision-making that exists in cells governing the assembly and the allocation of factors to different transcription complexes to regulate distinct gene expression pathways is not yet understood. To tackle this fundamental question, we will systematically analyse the regulated biogenesis of transcription complexes from their sites of translation in the cytoplasm, through their assembly intermediates and nuclear import, to their site of action in the nucleus. The project will have four main Aims to decipher the biogenesis of transcription complexes:
I) Investigate their co-translation-driven assembly
II) Determine their cytoplasmic intermediates and factors required for their assembly pathways
III) Uncover their nuclear import
IV) Understand at the single molecule level their nuclear assembly, dynamics and action at target genes
To carry out these aims we propose a combination of multidisciplinary and cutting edge approaches, out of which some of them will be high-risk taking, while others will utilize methods routinely run by the group. The project builds on several complementary expertise and knowledge either already existing in the group or that will be implemented during the project. At the end of the proposed project we will obtain novel results extensively describing the different steps of the regulatory mechanisms that control the assembly and the consequent gene regulatory function of transcription complexes. Thus, we anticipate that the results of our research will have a major impact on the field and will lead to a new paradigm for contemporary metazoan transcription."
Summary
"Transcriptional regulation of protein coding genes in eukaryotic cells requires a complex interplay of sequence-specific DNA-binding factors, co-activators, general transcription factors (GTFs), RNA polymerase II and the epigenetic status of target sequences. Nuclear transcription complexes function as large multiprotein assemblies and are often composed of functional modules. The regulated decision-making that exists in cells governing the assembly and the allocation of factors to different transcription complexes to regulate distinct gene expression pathways is not yet understood. To tackle this fundamental question, we will systematically analyse the regulated biogenesis of transcription complexes from their sites of translation in the cytoplasm, through their assembly intermediates and nuclear import, to their site of action in the nucleus. The project will have four main Aims to decipher the biogenesis of transcription complexes:
I) Investigate their co-translation-driven assembly
II) Determine their cytoplasmic intermediates and factors required for their assembly pathways
III) Uncover their nuclear import
IV) Understand at the single molecule level their nuclear assembly, dynamics and action at target genes
To carry out these aims we propose a combination of multidisciplinary and cutting edge approaches, out of which some of them will be high-risk taking, while others will utilize methods routinely run by the group. The project builds on several complementary expertise and knowledge either already existing in the group or that will be implemented during the project. At the end of the proposed project we will obtain novel results extensively describing the different steps of the regulatory mechanisms that control the assembly and the consequent gene regulatory function of transcription complexes. Thus, we anticipate that the results of our research will have a major impact on the field and will lead to a new paradigm for contemporary metazoan transcription."
Max ERC Funding
2 500 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym BisProt
Project Developing Multispecific Biological Agents that Target Tumor Neovasculature for Cancer Imaging and Therapy
Researcher (PI) Niv Papo
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary The dysregulation of signaling pathways that mediate cell proliferation, survival and migration is an underlying cause of many cancers. In particular, dysregulation and over-expression of avb3 integrin, membrane-type-1 matrix metalloproteinase (MT1-MMP; also known as matrix metalloproteinase-14, MMP14) and vascular endothelial growth factor receptor-2 (VEGFR2) correlate with poor prognosis in many human tumors, making these proteins attractive targets for therapeutic intervention. Numerous papers have demonstrated the cross-talk between biological processes mediated by αvβ3 integrins, MT1-MMP, VEGFR2, and their ligands, particularly pathways responsible for angiogenesis. Dual-specific proteins that can target and inhibit the activity of the above multiple receptors therefore have superior potential to single-targeted agents due to differential expression of these disease markers in different patients and the ability of this expression to change over time. Most currently available bispecific protein therapeutics comprise antibodies (Abs) or antibody fragments. The new approach proposed here entails rational and combinatorial methods for engineering multispecificity into small peptides and natural protein ligands to function as non-immunoglobulin alternatives to antibodies. In this innovative approach to creating dual-specific proteins, an additional functionality is introduced into a small peptide or into a natural protein ligand to complement its existing biological properties. We predict that this approach will form a major part of a highly effective strategy for creating ligand-based multispecific receptor inhibitors and molecular tools for protein recognition. We envision that protein variants generated from these efforts will promote the next generation of therapeutics including, but not limited to, molecular imaging agents, targeted drug delivery agents, and selective tissue targeting probes.
Summary
The dysregulation of signaling pathways that mediate cell proliferation, survival and migration is an underlying cause of many cancers. In particular, dysregulation and over-expression of avb3 integrin, membrane-type-1 matrix metalloproteinase (MT1-MMP; also known as matrix metalloproteinase-14, MMP14) and vascular endothelial growth factor receptor-2 (VEGFR2) correlate with poor prognosis in many human tumors, making these proteins attractive targets for therapeutic intervention. Numerous papers have demonstrated the cross-talk between biological processes mediated by αvβ3 integrins, MT1-MMP, VEGFR2, and their ligands, particularly pathways responsible for angiogenesis. Dual-specific proteins that can target and inhibit the activity of the above multiple receptors therefore have superior potential to single-targeted agents due to differential expression of these disease markers in different patients and the ability of this expression to change over time. Most currently available bispecific protein therapeutics comprise antibodies (Abs) or antibody fragments. The new approach proposed here entails rational and combinatorial methods for engineering multispecificity into small peptides and natural protein ligands to function as non-immunoglobulin alternatives to antibodies. In this innovative approach to creating dual-specific proteins, an additional functionality is introduced into a small peptide or into a natural protein ligand to complement its existing biological properties. We predict that this approach will form a major part of a highly effective strategy for creating ligand-based multispecific receptor inhibitors and molecular tools for protein recognition. We envision that protein variants generated from these efforts will promote the next generation of therapeutics including, but not limited to, molecular imaging agents, targeted drug delivery agents, and selective tissue targeting probes.
Max ERC Funding
1 625 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym BLACARAT
Project "Black Carbon in the Atmosphere: Emissions, Aging and Cloud Interactions"
Researcher (PI) Martin Gysel Beer
Host Institution (HI) PAUL SCHERRER INSTITUT
Call Details Consolidator Grant (CoG), PE10, ERC-2013-CoG
Summary "Atmospheric aerosol particles have been shown to impact the earth's climate because they scatter and absorb solar radiation (direct effect) and because they can modify the microphysical properties of clouds by acting as cloud condensation nuclei or ice nuclei (indirect effects). Radiative forcing by anthropogenic aerosols remains poorly quantified, thus leading to considerable uncertainty in our understanding of the earth’s climate response to the radiative forcing by greenhouse gases. Black carbon (BC), mostly emitted by anthropogenic combustion processes and biomass burning, is an important component of atmospheric aerosols. Estimates show that BC may be the second strongest contributor (after CO2) to global warming. Adverse health effects due to particulate air pollution have also been associated with traffic-related BC particles. These climate and health effects brought BC emission reductions into the political focus of possible mitigation strategies with immediate and multiple benefits for human well-being.
Laboratory experiments aim at the physical and chemical characterisation of BC emissions from diesel engines and biomass burning under controlled conditions. A mobile laboratory equipped with state-of-the-art aerosol sensors will be used to determine the contribution of different BC sources to atmospheric BC loadings, and to investigate the evolution of the relevant BC properties with atmospheric aging during transport from sources to remote areas. The interactions of BC particles with clouds as a function of BC properties will be investigated with in-situ measurements by operating quantitative single particle instruments behind a novel sampling inlet, which makes selective sampling of interstitial, cloud droplet residual or ice crystal residual particles possible. Above experimental studies aim at improving our understanding of BC’s atmospheric life cycle and will be used in model simulations for quantitatively assessing the atmospheric impacts of BC."
Summary
"Atmospheric aerosol particles have been shown to impact the earth's climate because they scatter and absorb solar radiation (direct effect) and because they can modify the microphysical properties of clouds by acting as cloud condensation nuclei or ice nuclei (indirect effects). Radiative forcing by anthropogenic aerosols remains poorly quantified, thus leading to considerable uncertainty in our understanding of the earth’s climate response to the radiative forcing by greenhouse gases. Black carbon (BC), mostly emitted by anthropogenic combustion processes and biomass burning, is an important component of atmospheric aerosols. Estimates show that BC may be the second strongest contributor (after CO2) to global warming. Adverse health effects due to particulate air pollution have also been associated with traffic-related BC particles. These climate and health effects brought BC emission reductions into the political focus of possible mitigation strategies with immediate and multiple benefits for human well-being.
Laboratory experiments aim at the physical and chemical characterisation of BC emissions from diesel engines and biomass burning under controlled conditions. A mobile laboratory equipped with state-of-the-art aerosol sensors will be used to determine the contribution of different BC sources to atmospheric BC loadings, and to investigate the evolution of the relevant BC properties with atmospheric aging during transport from sources to remote areas. The interactions of BC particles with clouds as a function of BC properties will be investigated with in-situ measurements by operating quantitative single particle instruments behind a novel sampling inlet, which makes selective sampling of interstitial, cloud droplet residual or ice crystal residual particles possible. Above experimental studies aim at improving our understanding of BC’s atmospheric life cycle and will be used in model simulations for quantitatively assessing the atmospheric impacts of BC."
Max ERC Funding
1 992 015 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym BLACK
Project The formation and evolution of massive black holes
Researcher (PI) Marta Volonteri
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE9, ERC-2013-CoG
Summary "Massive black holes (MBHs) weighing million solar masses and above inhabit the centers of today's galaxies, weighing about a thousandth of the host bulge mass. MBHs also powered quasars known to exist just a few hundred million years after the Big Bang. Owing to observational breakthroughs and remarkable advancements in theoretical models, we do now that MBHs are out there and evolved with their hosts, but we do not know how they got there nor how, and when, the connection between MBHs and hosts was established.
To have a full view of MBH formation and growth we have to look at the global process where galaxies form, as determined by the large-scale structure, on Mpc scales. On the other hand, the region where MBHs dominate the dynamics of gas and stars, and accretion occurs, is merely pc-scale. To study the formation of MBHs and their fuelling we must bridge from Mpc to pc scale in order to follow how galaxies influence MBHs and how in turn MBHs influence galaxies.
BLACK aims to connect the cosmic context to the nuclear region where MBHs reside, and to study MBH formation, feeding and feedback on their hosts through a multi-scale approach following the thread of MBHs from cosmological, to galactic, to nuclear scales. Analytical work guides and tests numerical simulations, allowing us to probe a wide dynamical range.
Our theoretical work will be crucial for planning and interpreting current and future observations. Today and in the near future facilities at wavelengths spanning from radio to X-ray will widen and deepen our view of the Universe, making this an ideal time for this line of research."
Summary
"Massive black holes (MBHs) weighing million solar masses and above inhabit the centers of today's galaxies, weighing about a thousandth of the host bulge mass. MBHs also powered quasars known to exist just a few hundred million years after the Big Bang. Owing to observational breakthroughs and remarkable advancements in theoretical models, we do now that MBHs are out there and evolved with their hosts, but we do not know how they got there nor how, and when, the connection between MBHs and hosts was established.
To have a full view of MBH formation and growth we have to look at the global process where galaxies form, as determined by the large-scale structure, on Mpc scales. On the other hand, the region where MBHs dominate the dynamics of gas and stars, and accretion occurs, is merely pc-scale. To study the formation of MBHs and their fuelling we must bridge from Mpc to pc scale in order to follow how galaxies influence MBHs and how in turn MBHs influence galaxies.
BLACK aims to connect the cosmic context to the nuclear region where MBHs reside, and to study MBH formation, feeding and feedback on their hosts through a multi-scale approach following the thread of MBHs from cosmological, to galactic, to nuclear scales. Analytical work guides and tests numerical simulations, allowing us to probe a wide dynamical range.
Our theoretical work will be crucial for planning and interpreting current and future observations. Today and in the near future facilities at wavelengths spanning from radio to X-ray will widen and deepen our view of the Universe, making this an ideal time for this line of research."
Max ERC Funding
1 668 385 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym BlackBox
Project A collaborative platform to document performance composition: from conceptual structures in the backstage to customizable visualizations in the front-end
Researcher (PI) Carla Maria De Jesus Fernandes
Host Institution (HI) FACULDADE DE CIENCIAS SOCIAIS E HUMANAS DA UNIVERSIDADE NOVA DE LISBOA
Call Details Starting Grant (StG), SH5, ERC-2013-StG
Summary The global performing arts community is requiring innovative systems to: a) document, transmit and preserve the knowledge contained in choreographic-dramaturgic practices; b) assist artists with tools to facilitate their compositional processes, preferably on a collaborative basis. The existing digital archives of performing arts mostly function as conventional e-libraries, not allowing higher degrees of interactivity or active user intervention. They rarely contemplate accessible video annotation tools or provide relational querying functionalities based on artist-driven conceptual principles or idiosyncratic ontologies.
This proposal endeavours to fill that gap and create a new paradigm for the documentation of performance composition. It aims at the analysis of artists’ unique conceptual structures, by combining the empirical insights of contemporary creators with research theories from Multimodal Communication and Digital Media studies. The challenge is to design a model for a web-based collaborative platform enabling both a robust representation of performance composition methods and novel visualization technologies to support it. This can be done by analysing recurring body movement patterns and by fostering online contributions of users (a.o. performers and researchers) to the multimodal annotations stored in the platform. To accomplish this goal, two subjacent components must be developed: 1. the production of a video annotation-tool to allow artists in rehearsal periods to take notes over video in real-time and share them via the collaborative platform; 2. the linguistic analysis of a corpus of invited artists’ multimodal materials as source for the extraction of indicative conceptual structures, which will guide the architectural logics and interface design of the collaborative platform software.The outputs of these two components will generate critical case-studies to help understanding the human mind when engaged in cultural production processes.
Summary
The global performing arts community is requiring innovative systems to: a) document, transmit and preserve the knowledge contained in choreographic-dramaturgic practices; b) assist artists with tools to facilitate their compositional processes, preferably on a collaborative basis. The existing digital archives of performing arts mostly function as conventional e-libraries, not allowing higher degrees of interactivity or active user intervention. They rarely contemplate accessible video annotation tools or provide relational querying functionalities based on artist-driven conceptual principles or idiosyncratic ontologies.
This proposal endeavours to fill that gap and create a new paradigm for the documentation of performance composition. It aims at the analysis of artists’ unique conceptual structures, by combining the empirical insights of contemporary creators with research theories from Multimodal Communication and Digital Media studies. The challenge is to design a model for a web-based collaborative platform enabling both a robust representation of performance composition methods and novel visualization technologies to support it. This can be done by analysing recurring body movement patterns and by fostering online contributions of users (a.o. performers and researchers) to the multimodal annotations stored in the platform. To accomplish this goal, two subjacent components must be developed: 1. the production of a video annotation-tool to allow artists in rehearsal periods to take notes over video in real-time and share them via the collaborative platform; 2. the linguistic analysis of a corpus of invited artists’ multimodal materials as source for the extraction of indicative conceptual structures, which will guide the architectural logics and interface design of the collaborative platform software.The outputs of these two components will generate critical case-studies to help understanding the human mind when engaged in cultural production processes.
Max ERC Funding
1 378 200 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym BLACKHOLECAM
Project Imaging the Event Horizon of Black Holes
Researcher (PI) Michael Kramer
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Synergy Grants (SyG), SYG6, ERC-2013-SyG
Summary Gravity is successfully described by Einstein’s theory of general relativity (GR), governing the structure of our entire universe. Yet it remains the least understood of all forces in nature, resisting unification with quantum physics. One of the most fundamental predictions of GR are black holes (BHs). Their defining feature is the event horizon, the surface that light cannot escape and where time and space exchange their nature. However, while there are many convincing BH candidates in the universe, there is no experimental proof for the existence of an event horizon yet. So, does GR really hold in its most extreme limit? Do BHs exist or are alternatives needed? Here we propose to build a Black Hole Camera that for the first time will take an actual picture of a BH and image the shadow of its event horizon. We will do this by providing the equipment and software needed to turn a network of existing mm-wave radio telescopes into a global interferometer. This virtual telescope, when supplemented with the new Atacama Large Millimetre Array (ALMA), has the power to finally resolve the supermassive BH in the centre of our Milky Way – the best-measured BH candidate we know of. In order to compare the image with the theoretical predictions we will need to perform numerical modelling and ray tracing in GR and alternative theories. In addition, we will need to determine accurately the two basic parameters of the BH: its mass and spin. This will become possible by precisely measuring orbits of stars with optical interferometry on ESO’s VLTI. Moreover, our equipment at ALMA will allow for the first detection of pulsars around the BH. Already a single pulsar will independently determine the BH’s mass to one part in a million and its spin to a few per cent. This unique combination will not only produce the first-ever image of a BH, but also turn our Galactic Centre into a fundamental-physics laboratory to measure the fabric of space and time with unprecedented precision.
Summary
Gravity is successfully described by Einstein’s theory of general relativity (GR), governing the structure of our entire universe. Yet it remains the least understood of all forces in nature, resisting unification with quantum physics. One of the most fundamental predictions of GR are black holes (BHs). Their defining feature is the event horizon, the surface that light cannot escape and where time and space exchange their nature. However, while there are many convincing BH candidates in the universe, there is no experimental proof for the existence of an event horizon yet. So, does GR really hold in its most extreme limit? Do BHs exist or are alternatives needed? Here we propose to build a Black Hole Camera that for the first time will take an actual picture of a BH and image the shadow of its event horizon. We will do this by providing the equipment and software needed to turn a network of existing mm-wave radio telescopes into a global interferometer. This virtual telescope, when supplemented with the new Atacama Large Millimetre Array (ALMA), has the power to finally resolve the supermassive BH in the centre of our Milky Way – the best-measured BH candidate we know of. In order to compare the image with the theoretical predictions we will need to perform numerical modelling and ray tracing in GR and alternative theories. In addition, we will need to determine accurately the two basic parameters of the BH: its mass and spin. This will become possible by precisely measuring orbits of stars with optical interferometry on ESO’s VLTI. Moreover, our equipment at ALMA will allow for the first detection of pulsars around the BH. Already a single pulsar will independently determine the BH’s mass to one part in a million and its spin to a few per cent. This unique combination will not only produce the first-ever image of a BH, but also turn our Galactic Centre into a fundamental-physics laboratory to measure the fabric of space and time with unprecedented precision.
Max ERC Funding
13 975 744 €
Duration
Start date: 2014-10-01, End date: 2020-09-30
Project acronym BMP4EAC
Project Targeting BMP4 and BMPR1a for imaging of esophageal adenocarcinoma
Researcher (PI) Kausilia Krishnawatie KRISHNADATH
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Proof of Concept (PoC), PC1, ERC-2013-PoC
Summary Within BMP4EAC we aim to investigate the commercial feasibility of our newly discovered and highly specific antibodies against BMP4 and one of its receptors, BMPR1a, for imaging applications in oncology. BMP4 and BMPR1a are highly expressed in esophageal adenocarcinoma (EAC) and other tumors as well as their metastases. The specificity, strong binding capacity, rapid clearance, high tissue penetration level, and flexibility of our antibodies is unprecedented and makes them highly suitable for in vivo imaging applications.
The opportunity: The current methods for evaluation of disease stage consist of diverse modalities, including, CT and PET-CT scans, and ultrasonography. These techniques have major limitations to accurately detect metastasis and are inadequate for monitoring disease response. In the clinical setting we foresee applications of our proprietary technology in the non-invasive diagnosis of tumors and metastases with high expression of BMP4 and/or BMPR1a (e.g. EAC), identification of patients with high chance to respond to BMP4 inhibitors, follow tumor progression during treatment, and facilitated localization of small metastases during surgical treatment. Furthermore, the labeled antibodies can be used to investigate the efficacy of novel therapeutic agents by following tumor progression in animal models in a research setting.
The project and expected outcomes: Within the ERC PoC we will explore the commercial feasibility by in vivo validation experiments as well as by performing essential research for the formulation of a business proposition, strengthening our IP position, and developing a sound business plan. These activities will result in a proposition package that will be used to present the commercial potential to investors and other strategic partners to attract funding after completion of the ERC PoC and potentially even initiate licensing and partnership deals.
Summary
Within BMP4EAC we aim to investigate the commercial feasibility of our newly discovered and highly specific antibodies against BMP4 and one of its receptors, BMPR1a, for imaging applications in oncology. BMP4 and BMPR1a are highly expressed in esophageal adenocarcinoma (EAC) and other tumors as well as their metastases. The specificity, strong binding capacity, rapid clearance, high tissue penetration level, and flexibility of our antibodies is unprecedented and makes them highly suitable for in vivo imaging applications.
The opportunity: The current methods for evaluation of disease stage consist of diverse modalities, including, CT and PET-CT scans, and ultrasonography. These techniques have major limitations to accurately detect metastasis and are inadequate for monitoring disease response. In the clinical setting we foresee applications of our proprietary technology in the non-invasive diagnosis of tumors and metastases with high expression of BMP4 and/or BMPR1a (e.g. EAC), identification of patients with high chance to respond to BMP4 inhibitors, follow tumor progression during treatment, and facilitated localization of small metastases during surgical treatment. Furthermore, the labeled antibodies can be used to investigate the efficacy of novel therapeutic agents by following tumor progression in animal models in a research setting.
The project and expected outcomes: Within the ERC PoC we will explore the commercial feasibility by in vivo validation experiments as well as by performing essential research for the formulation of a business proposition, strengthening our IP position, and developing a sound business plan. These activities will result in a proposition package that will be used to present the commercial potential to investors and other strategic partners to attract funding after completion of the ERC PoC and potentially even initiate licensing and partnership deals.
Max ERC Funding
149 840 €
Duration
Start date: 2014-09-01, End date: 2016-02-29
Project acronym BODYBUILDING
Project Building body representations: An investigation of the formation and maintenance of body representations
Researcher (PI) Matthew Ryan Longo
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary "The body is ubiquitous in perceptual experience and is central to our sense of self and personal identity. Disordered body representations are central to several serious psychiatric and neurological disorders. Thus, identifying factors which contribute to the formation and maintenance of body representations is crucial for understanding how body representation goes awry in disease, and how it might be corrected by potential novel therapeutic interventions. Several types of sensory signals provide information about the body, making the body the multisensory object, par excellence. Little is known, however, about how information from somatosensation and from vision is integrated to construct the rich body representations we all experience. This project fills this gap in current understanding by determining how the brain builds body representations (BODYBUILDING). A hierarchical model of body representation is proposed, providing a novel theoretical framework for understanding the diversity of body representations and how they interact. The key motivating hypothesis is that body representation is determined by the dialectic between two major cognitive processes. First, from the bottom-up, somatosensation represents the body surface as a mosaic of discrete receptive fields, which become progressively agglomerated into larger and larger units of organisation, a process I call fusion. Second, from the top-down, vision starts out depicting the body as an undifferentiated whole, which is progressively broken into smaller parts, a process I call segmentation. Thus, body representation operates from the bottom-up as a process of fusion of primitive elements into larger complexes, as well as from the top-down as a process of segmentation of an initially undifferentiated whole into more basic parts. This project uses a combination of psychophysical, electrophysiological, and neuroimaging methods to provide fundamental insight into how we come to represent our body."
Summary
"The body is ubiquitous in perceptual experience and is central to our sense of self and personal identity. Disordered body representations are central to several serious psychiatric and neurological disorders. Thus, identifying factors which contribute to the formation and maintenance of body representations is crucial for understanding how body representation goes awry in disease, and how it might be corrected by potential novel therapeutic interventions. Several types of sensory signals provide information about the body, making the body the multisensory object, par excellence. Little is known, however, about how information from somatosensation and from vision is integrated to construct the rich body representations we all experience. This project fills this gap in current understanding by determining how the brain builds body representations (BODYBUILDING). A hierarchical model of body representation is proposed, providing a novel theoretical framework for understanding the diversity of body representations and how they interact. The key motivating hypothesis is that body representation is determined by the dialectic between two major cognitive processes. First, from the bottom-up, somatosensation represents the body surface as a mosaic of discrete receptive fields, which become progressively agglomerated into larger and larger units of organisation, a process I call fusion. Second, from the top-down, vision starts out depicting the body as an undifferentiated whole, which is progressively broken into smaller parts, a process I call segmentation. Thus, body representation operates from the bottom-up as a process of fusion of primitive elements into larger complexes, as well as from the top-down as a process of segmentation of an initially undifferentiated whole into more basic parts. This project uses a combination of psychophysical, electrophysiological, and neuroimaging methods to provide fundamental insight into how we come to represent our body."
Max ERC Funding
1 497 715 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BRAINandMINDFULNESS
Project Impact of Mental Training of Attention and Emotion Regulation on Brain and Behavior: Implications for Neuroplasticity, Well-Being and Mindfulness Psychotherapy Research
Researcher (PI) Antoine Lutz
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Consolidator Grant (CoG), SH4, ERC-2013-CoG
Summary Mindfulness-based therapy has become an increasingly popular treatment to reduce stress, increase well-being and prevent relapse in depression. A key component of these therapies includes mindfulness practice that intends to train attention to detect and regulate afflictive cognitive and emotional patterns. Beyond its therapeutic application, the empirical study of mindfulness practice also represents a promising tool to understand practices that intentionally cultivate present-centeredness and openness to experience. Despite its clinical efficacy, little remains known about its means of action. Antithetic to this mode of experiential self-focus are states akin to depression, that are conducive of biased attention toward negativity, biased thoughts and rumination, and dysfunctional self schemas. The proposed research aims at implementing an innovative framework to scientifically investigate the experiential, cognitive, and neural processes underlining mindfulness practice building on the current neurocognitive understanding of the functional and anatomical architecture of cognitive control, and depression. To identify these mechanisms, this project aims to use paradigms from cognitive, and affective neuroscience (MEG, intracortical EEG, fMRI) to measure the training and plasticity of emotion regulation and cognitive control, and their effect on automatic, self-related affective processes. Using a cross-sectional design, this project aims to compare participants with trait differences in experiential self-focus mode. Using a longitudinal design, this project aims to explore mindfulness-practice training’s effect using a standard mindfulness-based intervention and an active control intervention. The PI has pioneered the neuroscientific investigation of mindfulness in the US and aspires to assemble a research team in France and a network of collaborators in Europe to pursue this research, which could lead to important outcomes for neuroscience, and mental health.
Summary
Mindfulness-based therapy has become an increasingly popular treatment to reduce stress, increase well-being and prevent relapse in depression. A key component of these therapies includes mindfulness practice that intends to train attention to detect and regulate afflictive cognitive and emotional patterns. Beyond its therapeutic application, the empirical study of mindfulness practice also represents a promising tool to understand practices that intentionally cultivate present-centeredness and openness to experience. Despite its clinical efficacy, little remains known about its means of action. Antithetic to this mode of experiential self-focus are states akin to depression, that are conducive of biased attention toward negativity, biased thoughts and rumination, and dysfunctional self schemas. The proposed research aims at implementing an innovative framework to scientifically investigate the experiential, cognitive, and neural processes underlining mindfulness practice building on the current neurocognitive understanding of the functional and anatomical architecture of cognitive control, and depression. To identify these mechanisms, this project aims to use paradigms from cognitive, and affective neuroscience (MEG, intracortical EEG, fMRI) to measure the training and plasticity of emotion regulation and cognitive control, and their effect on automatic, self-related affective processes. Using a cross-sectional design, this project aims to compare participants with trait differences in experiential self-focus mode. Using a longitudinal design, this project aims to explore mindfulness-practice training’s effect using a standard mindfulness-based intervention and an active control intervention. The PI has pioneered the neuroscientific investigation of mindfulness in the US and aspires to assemble a research team in France and a network of collaborators in Europe to pursue this research, which could lead to important outcomes for neuroscience, and mental health.
Max ERC Funding
1 868 520 €
Duration
Start date: 2014-11-01, End date: 2019-10-31