Project acronym ADDICTIONCIRCUITS
Project Drug addiction: molecular changes in reward and aversion circuits
Researcher (PI) Nils David Engblom
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Our affective and motivational state is important for our decisions, actions and quality of life. Many pathological conditions affect this state. For example, addictive drugs are hyperactivating the reward system and trigger a strong motivation for continued drug intake, whereas many somatic and psychiatric diseases lead to an aversive state, characterized by loss of motivation. I will study specific neural circuits and mechanisms underlying reward and aversion, and how pathological signaling in these systems can trigger relapse in drug addiction.
Given the important role of the dopaminergic neurons in the midbrain for many aspects of reward signaling, I will study how synaptic plasticity in these cells, and in their target neurons in the striatum, contribute to relapse in drug seeking. I will also study the circuits underlying aversion. Little is known about these circuits, but my hypothesis is that an important component of aversion is signaled by a specific neuronal population in the brainstem parabrachial nucleus, projecting to the central amygdala. We will test this hypothesis and also determine how this aversion circuit contributes to the persistence of addiction and to relapse.
To dissect this complicated system, I am developing new genetic methods for manipulating and visualizing specific functional circuits in the mouse brain. My unique combination of state-of-the-art competence in transgenics and cutting edge knowledge in the anatomy and functional organization of the circuits behind reward and aversion should allow me to decode these systems, linking discrete circuits to behavior.
Collectively, the results will indicate how signals encoding aversion and reward are integrated to control addictive behavior and they may identify novel avenues for treatment of drug addiction as well as aversion-related symptoms affecting patients with chronic inflammatory conditions and cancer.
Summary
Our affective and motivational state is important for our decisions, actions and quality of life. Many pathological conditions affect this state. For example, addictive drugs are hyperactivating the reward system and trigger a strong motivation for continued drug intake, whereas many somatic and psychiatric diseases lead to an aversive state, characterized by loss of motivation. I will study specific neural circuits and mechanisms underlying reward and aversion, and how pathological signaling in these systems can trigger relapse in drug addiction.
Given the important role of the dopaminergic neurons in the midbrain for many aspects of reward signaling, I will study how synaptic plasticity in these cells, and in their target neurons in the striatum, contribute to relapse in drug seeking. I will also study the circuits underlying aversion. Little is known about these circuits, but my hypothesis is that an important component of aversion is signaled by a specific neuronal population in the brainstem parabrachial nucleus, projecting to the central amygdala. We will test this hypothesis and also determine how this aversion circuit contributes to the persistence of addiction and to relapse.
To dissect this complicated system, I am developing new genetic methods for manipulating and visualizing specific functional circuits in the mouse brain. My unique combination of state-of-the-art competence in transgenics and cutting edge knowledge in the anatomy and functional organization of the circuits behind reward and aversion should allow me to decode these systems, linking discrete circuits to behavior.
Collectively, the results will indicate how signals encoding aversion and reward are integrated to control addictive behavior and they may identify novel avenues for treatment of drug addiction as well as aversion-related symptoms affecting patients with chronic inflammatory conditions and cancer.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym AEROSPACEPHYS
Project Multiphysics models and simulations for reacting and plasma flows applied to the space exploration program
Researcher (PI) Thierry Edouard Bertrand Magin
Host Institution (HI) INSTITUT VON KARMAN DE DYNAMIQUE DES FLUIDES
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary Space exploration is one of boldest and most exciting endeavors that humanity has undertaken, and it holds enormous promise for the future. Our next challenges for the spatial conquest include bringing back samples to Earth by means of robotic missions and continuing the manned exploration program, which aims at sending human beings to Mars and bring them home safely. Inaccurate prediction of the heat-flux to the surface of the spacecraft heat shield can be fatal for the crew or the success of a robotic mission. This quantity is estimated during the design phase. An accurate prediction is a particularly complex task, regarding modelling of the following phenomena that are potential “mission killers:” 1) Radiation of the plasma in the shock layer, 2) Complex surface chemistry on the thermal protection material, 3) Flow transition from laminar to turbulent. Our poor understanding of the coupled mechanisms of radiation, ablation, and transition leads to the difficulties in flux prediction. To avoid failure and ensure safety of the astronauts and payload, engineers resort to “safety factors” to determine the thickness of the heat shield, at the expense of the mass of embarked payload. Thinking out of the box and basic research are thus necessary for advancements of the models that will better define the environment and requirements for the design and safe operation of tomorrow’s space vehicles and planetary probes for the manned space exploration. The three basic ingredients for predictive science are: 1) Physico-chemical models, 2) Computational methods, 3) Experimental data. We propose to follow a complementary approach for prediction. The proposed research aims at: “Integrating new advanced physico-chemical models and computational methods, based on a multidisciplinary approach developed together with physicists, chemists, and applied mathematicians, to create a top-notch multiphysics and multiscale numerical platform for simulations of planetary atmosphere entries, crucial to the new challenges of the manned space exploration program. Experimental data will also be used for validation, following state-of-the-art uncertainty quantification methods.”
Summary
Space exploration is one of boldest and most exciting endeavors that humanity has undertaken, and it holds enormous promise for the future. Our next challenges for the spatial conquest include bringing back samples to Earth by means of robotic missions and continuing the manned exploration program, which aims at sending human beings to Mars and bring them home safely. Inaccurate prediction of the heat-flux to the surface of the spacecraft heat shield can be fatal for the crew or the success of a robotic mission. This quantity is estimated during the design phase. An accurate prediction is a particularly complex task, regarding modelling of the following phenomena that are potential “mission killers:” 1) Radiation of the plasma in the shock layer, 2) Complex surface chemistry on the thermal protection material, 3) Flow transition from laminar to turbulent. Our poor understanding of the coupled mechanisms of radiation, ablation, and transition leads to the difficulties in flux prediction. To avoid failure and ensure safety of the astronauts and payload, engineers resort to “safety factors” to determine the thickness of the heat shield, at the expense of the mass of embarked payload. Thinking out of the box and basic research are thus necessary for advancements of the models that will better define the environment and requirements for the design and safe operation of tomorrow’s space vehicles and planetary probes for the manned space exploration. The three basic ingredients for predictive science are: 1) Physico-chemical models, 2) Computational methods, 3) Experimental data. We propose to follow a complementary approach for prediction. The proposed research aims at: “Integrating new advanced physico-chemical models and computational methods, based on a multidisciplinary approach developed together with physicists, chemists, and applied mathematicians, to create a top-notch multiphysics and multiscale numerical platform for simulations of planetary atmosphere entries, crucial to the new challenges of the manned space exploration program. Experimental data will also be used for validation, following state-of-the-art uncertainty quantification methods.”
Max ERC Funding
1 494 892 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym AFRODITE
Project Advanced Fluid Research On Drag reduction In Turbulence Experiments
Researcher (PI) Jens Henrik Mikael Fransson
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
In previous wind tunnel measurements we have shown that roughness elements can be used to sensibly delay transition to turbulence. The result is revolutionary, since the common belief has been that surface roughness causes earlier transition and in turn increases the drag, and is a proof of concept of the passive control method per se. The beauty with a passive control technique is that no external energy has to be added to the flow system in order to perform the control, instead one uses the existing energy in the flow.
In this project proposal, AFRODITE, we will take this passive control method to the next level by making it twofold, more persistent and more robust. Transition prevention is the goal rather than transition delay and the method will be extended to simultaneously control separation, which is another unwanted flow phenomenon especially during airplane take offs. AFRODITE will be a catalyst for innovative research, which will lead to a cleaner sky.
Summary
A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
In previous wind tunnel measurements we have shown that roughness elements can be used to sensibly delay transition to turbulence. The result is revolutionary, since the common belief has been that surface roughness causes earlier transition and in turn increases the drag, and is a proof of concept of the passive control method per se. The beauty with a passive control technique is that no external energy has to be added to the flow system in order to perform the control, instead one uses the existing energy in the flow.
In this project proposal, AFRODITE, we will take this passive control method to the next level by making it twofold, more persistent and more robust. Transition prevention is the goal rather than transition delay and the method will be extended to simultaneously control separation, which is another unwanted flow phenomenon especially during airplane take offs. AFRODITE will be a catalyst for innovative research, which will lead to a cleaner sky.
Max ERC Funding
1 418 399 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym AGINGSEXDIFF
Project Aging Differently: Understanding Sex Differences in Reproductive, Demographic and Functional Senescence
Researcher (PI) Alexei Maklakov
Host Institution (HI) Uppsala University
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Sex differences in life span and aging are ubiquitous across the animal kingdom and represent a
long-standing challenge in evolutionary biology. In most species, including humans, sexes differ not
only in how long they live and when they start to senesce, but also in how they react to
environmental interventions aimed at prolonging their life span or decelerating the onset of aging.
Therefore, sex differences in life span and aging have important implications beyond the questions
posed by fundamental science. Both evolutionary reasons and medical implications of sex
differences in demographic, reproductive and physiological senescence are and will be crucial
targets of present and future research in the biology of aging. Here I propose a two-step approach
that can provide a significant breakthrough in our understanding of the biological basis of sex
differences in aging. First, I propose to resolve the age-old conundrum regarding the role of sexspecific
mortality rate in sex differences in aging by developing a series of targeted experimental
evolution studies in a novel model organism – the nematode, Caenorhabditis remanei. Second, I
address the role of intra-locus sexual conflict in the evolution of aging by combining novel
methodology from nutritional ecology – the Geometric Framework – with artificial selection
approach using the cricket Teleogryllus commodus and the fruitfly Drosophila melanogaster. I will
directly test the hypothesis that intra-locus sexual conflict mediates aging by restricting the
adaptive evolution of diet choice. By combining techniques from evolutionary biology and
nutritional ecology, this proposal will raise EU’s profile in integrative research, and contribute to
the training of young scientists in this rapidly developing field.
Summary
Sex differences in life span and aging are ubiquitous across the animal kingdom and represent a
long-standing challenge in evolutionary biology. In most species, including humans, sexes differ not
only in how long they live and when they start to senesce, but also in how they react to
environmental interventions aimed at prolonging their life span or decelerating the onset of aging.
Therefore, sex differences in life span and aging have important implications beyond the questions
posed by fundamental science. Both evolutionary reasons and medical implications of sex
differences in demographic, reproductive and physiological senescence are and will be crucial
targets of present and future research in the biology of aging. Here I propose a two-step approach
that can provide a significant breakthrough in our understanding of the biological basis of sex
differences in aging. First, I propose to resolve the age-old conundrum regarding the role of sexspecific
mortality rate in sex differences in aging by developing a series of targeted experimental
evolution studies in a novel model organism – the nematode, Caenorhabditis remanei. Second, I
address the role of intra-locus sexual conflict in the evolution of aging by combining novel
methodology from nutritional ecology – the Geometric Framework – with artificial selection
approach using the cricket Teleogryllus commodus and the fruitfly Drosophila melanogaster. I will
directly test the hypothesis that intra-locus sexual conflict mediates aging by restricting the
adaptive evolution of diet choice. By combining techniques from evolutionary biology and
nutritional ecology, this proposal will raise EU’s profile in integrative research, and contribute to
the training of young scientists in this rapidly developing field.
Max ERC Funding
1 391 904 €
Duration
Start date: 2010-12-01, End date: 2016-05-31
Project acronym BLAST
Project Eclipsing binary stars as cutting edge laboratories for astrophysics of stellar
structure, stellar evolution and planet formation
Researcher (PI) Maciej Konacki
Host Institution (HI) CENTRUM ASTRONOMICZNE IM. MIKOLAJAKOPERNIKA POLSKIEJ AKADEMII NAUK
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary Spectroscopic binary stars (SB2s) and in particular spectroscopic eclipsing binaries are one of the most useful objects in astrophysics. Their photometric and spectroscopic observations allow one to determine basic parameters of stars and carry out a wide range of tests of stellar structure, evolution and dynamics. Perhaps somewhat surprisingly, they can also contribute to our understanding of the formation and evolution of (extrasolar) planets. We will study eclipsing binary stars by combining the classic - stellar astronomy - and the modern - extrasolar planets - subjects into a cutting edge project.
We propose to search for and subsequently characterize circumbinary planets around ~350 eclipsing SB2s using our own novel cutting edge radial velocity technique for binary stars and a modern version of the photometry based eclipse timing of eclipsing binary stars employing 0.5-m robotic telescopes. We will also derive basic parameters of up to ~700 stars (~350 binaries) with an unprecedented precision. In particular for about 50% of our sample we expect to deliver masses of the components with an accuracy ~10-100 times better than the current state of the art.
Our project will provide unique constraints for the theories of planet formation and evolution and an unprecedented in quality set of the basic parameters of stars to test the theories of the stellar structure and evolution.
Summary
Spectroscopic binary stars (SB2s) and in particular spectroscopic eclipsing binaries are one of the most useful objects in astrophysics. Their photometric and spectroscopic observations allow one to determine basic parameters of stars and carry out a wide range of tests of stellar structure, evolution and dynamics. Perhaps somewhat surprisingly, they can also contribute to our understanding of the formation and evolution of (extrasolar) planets. We will study eclipsing binary stars by combining the classic - stellar astronomy - and the modern - extrasolar planets - subjects into a cutting edge project.
We propose to search for and subsequently characterize circumbinary planets around ~350 eclipsing SB2s using our own novel cutting edge radial velocity technique for binary stars and a modern version of the photometry based eclipse timing of eclipsing binary stars employing 0.5-m robotic telescopes. We will also derive basic parameters of up to ~700 stars (~350 binaries) with an unprecedented precision. In particular for about 50% of our sample we expect to deliver masses of the components with an accuracy ~10-100 times better than the current state of the art.
Our project will provide unique constraints for the theories of planet formation and evolution and an unprecedented in quality set of the basic parameters of stars to test the theories of the stellar structure and evolution.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-12-01, End date: 2016-11-30
Project acronym BRAINCELL
Project Charting the landscape of brain development by large-scale single-cell transcriptomics and phylogenetic lineage reconstruction
Researcher (PI) Sten Linnarsson
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Embryogenesis is the temporal unfolding of cellular processes: proliferation, migration, differentiation, morphogenesis, apoptosis and functional specialization. These processes are well understood in specific tissues, and for specific cell types. Nevertheless, our systematic knowledge of the types of cells present in the developing and adult animal, and about their functional and lineage relationships, is limited. For example, there is no consensus on the number of cell types, and many important stem cells and progenitors remain to be discovered. Similarly, the lineage relationships between specific cell types are often poorly characterized. This is particularly true for the mammalian nervous system. We have developed (1) a reliable high-throghput method for sequencing all transcripts in 96 single cells at a time; and (2) a system for high-throughput phylogenetic lineage reconstruction. We now propose to characterize embryogenesis using a shotgun approach borrowed from genomics. Tissues will be dissected from multiple stages and dissociated to single cells. A total of 10,000 cells will be analyzed by RNA sequencing, revealing their functional cell type, their lineage relationships, and their current state (e.g. cell cycle phase). The novel approach proposed here will bring the powerful strategies pioneered in genomics into the field of developmental biology, including automation, digitization, and the random shotgun method. The data thus obtained will bring clarity to the concept of ‘cell type’; will provide a first catalog of mouse brain cell types with deep functional annotation; will provide markers for every cell type, including stem cells; and will serve as a basis for future comparative work, especially with human embryos.
Summary
Embryogenesis is the temporal unfolding of cellular processes: proliferation, migration, differentiation, morphogenesis, apoptosis and functional specialization. These processes are well understood in specific tissues, and for specific cell types. Nevertheless, our systematic knowledge of the types of cells present in the developing and adult animal, and about their functional and lineage relationships, is limited. For example, there is no consensus on the number of cell types, and many important stem cells and progenitors remain to be discovered. Similarly, the lineage relationships between specific cell types are often poorly characterized. This is particularly true for the mammalian nervous system. We have developed (1) a reliable high-throghput method for sequencing all transcripts in 96 single cells at a time; and (2) a system for high-throughput phylogenetic lineage reconstruction. We now propose to characterize embryogenesis using a shotgun approach borrowed from genomics. Tissues will be dissected from multiple stages and dissociated to single cells. A total of 10,000 cells will be analyzed by RNA sequencing, revealing their functional cell type, their lineage relationships, and their current state (e.g. cell cycle phase). The novel approach proposed here will bring the powerful strategies pioneered in genomics into the field of developmental biology, including automation, digitization, and the random shotgun method. The data thus obtained will bring clarity to the concept of ‘cell type’; will provide a first catalog of mouse brain cell types with deep functional annotation; will provide markers for every cell type, including stem cells; and will serve as a basis for future comparative work, especially with human embryos.
Max ERC Funding
1 496 032 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym BRAINSHAPE
Project Objects in sight: the neural basis of visuomotor transformations for actions towards objects
Researcher (PI) Peter Anna J Janssen
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Humans and other primates possess an exquisite capacity to grasp and manipulate objects. The seemingly effortless interaction with objects in everyday life is subserved by a number of cortical areas of the visual and the motor system. Recent research has highlighted that dorsal stream areas in the posterior parietal cortex are involved in object processing. Because parietal lesions do not impair object recognition, the encoding of object shape in posterior parietal cortex is considered to be important for the planning of actions towards objects. In order to succesfully grasp an object, the complex pattern of visual information impinging on the retina has to be transformed into a motor plan that can control the muscle contractions. The neural basis of visuomotor transformations necessary for directing actions towards objects, however, has remained largely unknown. This proposal aims to unravel the pathways and mechanisms involved in programming actions towards objects - an essential capacity for our very survival. We envision an integrated approach to study the transformation of visual information into motor commands in the macaque brain, combining functional imaging, single-cell recording, microstimulation and reversible inactivation. Our research efforts will be focussed on parietal area AIP and premotor area F5, two key brain areas for visually-guided grasping. Above all, this proposal will move beyond purely descriptive measurements of neural activity by implementing manipulations of brain activity to reveal behavioral effects and interdependencies of cortical areas. Finally the data obtained in this project will pave the way to use the neural activity recorded in visuomotor areas to act upon the environment by grasping objects by means of a robot hand.
Summary
Humans and other primates possess an exquisite capacity to grasp and manipulate objects. The seemingly effortless interaction with objects in everyday life is subserved by a number of cortical areas of the visual and the motor system. Recent research has highlighted that dorsal stream areas in the posterior parietal cortex are involved in object processing. Because parietal lesions do not impair object recognition, the encoding of object shape in posterior parietal cortex is considered to be important for the planning of actions towards objects. In order to succesfully grasp an object, the complex pattern of visual information impinging on the retina has to be transformed into a motor plan that can control the muscle contractions. The neural basis of visuomotor transformations necessary for directing actions towards objects, however, has remained largely unknown. This proposal aims to unravel the pathways and mechanisms involved in programming actions towards objects - an essential capacity for our very survival. We envision an integrated approach to study the transformation of visual information into motor commands in the macaque brain, combining functional imaging, single-cell recording, microstimulation and reversible inactivation. Our research efforts will be focussed on parietal area AIP and premotor area F5, two key brain areas for visually-guided grasping. Above all, this proposal will move beyond purely descriptive measurements of neural activity by implementing manipulations of brain activity to reveal behavioral effects and interdependencies of cortical areas. Finally the data obtained in this project will pave the way to use the neural activity recorded in visuomotor areas to act upon the environment by grasping objects by means of a robot hand.
Max ERC Funding
1 499 200 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym CEV
Project Coordination by Evaluations and Valuations:
Market Logic Inside and Outside the Economy
Researcher (PI) Jonas Patrik Aspers
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary This project studies evaluation and valuation as ways of coordinating actors and resources. Valuation is the ascribing of value to people, organizations, things and events given that there is no standard of value. Evaluation is judging according to an already existing value-standard. Valuation and evaluation are ways of ranking and thus ordering of objects . Markets are examples of economic social formations in which valuations and evaluations are the foundation for the choices made. Valuation and evaluation are important means of coordination also outside of the economy, in competitions (e.g., sports), reviews (e.g., books), and auditing (e.g., of ethical conduct).
This project is motivated by evaluation and valuation as increasingly influential ways of coordinating social life. Choices based on evaluation have gradually replaced networks and hierarchies as the preferred coordination form, but processes of valuation or evaluation are not well-understood. The overarching research question of this project is: how do processes of coordination based on valuations function? By understanding these processes can we analyze the consequences of coordinated by the means of evaluation in different spheres of life. It is also the foundation for policy suggestions.
The proposed project uses theoretical insights about market elements in economics and sociology and on the relational sociological literature on social formations. Empirical sub-projects are designed to facilitate comparison, to establish validated conclusions and to promote theory development. This project opens up a new avenue of research of coordination based on valuation and evaluation. It will lead to the establishment a high quality research group located at the frontiers of social science.
Summary
This project studies evaluation and valuation as ways of coordinating actors and resources. Valuation is the ascribing of value to people, organizations, things and events given that there is no standard of value. Evaluation is judging according to an already existing value-standard. Valuation and evaluation are ways of ranking and thus ordering of objects . Markets are examples of economic social formations in which valuations and evaluations are the foundation for the choices made. Valuation and evaluation are important means of coordination also outside of the economy, in competitions (e.g., sports), reviews (e.g., books), and auditing (e.g., of ethical conduct).
This project is motivated by evaluation and valuation as increasingly influential ways of coordinating social life. Choices based on evaluation have gradually replaced networks and hierarchies as the preferred coordination form, but processes of valuation or evaluation are not well-understood. The overarching research question of this project is: how do processes of coordination based on valuations function? By understanding these processes can we analyze the consequences of coordinated by the means of evaluation in different spheres of life. It is also the foundation for policy suggestions.
The proposed project uses theoretical insights about market elements in economics and sociology and on the relational sociological literature on social formations. Empirical sub-projects are designed to facilitate comparison, to establish validated conclusions and to promote theory development. This project opens up a new avenue of research of coordination based on valuation and evaluation. It will lead to the establishment a high quality research group located at the frontiers of social science.
Max ERC Funding
1 476 251 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym COOPNET
Project Cooperative Situational Awareness for Wireless Networks
Researcher (PI) Henk Wymeersch
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Call Details Starting Grant (StG), PE7, ERC-2010-StG_20091028
Summary Devices in wireless networks are no longer used only for communicating binary information, but also for navigation and to sense their surroundings. We are currently approaching fundamental limitations in terms of communication throughput, position information availability and accuracy, and decision making based on sensory data. The goal of this proposal is to understand how the cooperative nature of future wireless networks can be leveraged to perform timekeeping, positioning, communication, and decision making, so as to obtain orders of magnitude performance improvements compared to current architectures.
Our research will have implications in many fields and will comprise fundamental theoretical contributions as well as a cooperative wireless testbed. The fundamental contributions will lead to a deep understanding of cooperative wireless networks and will enable new pervasive applications which currently cannot be supported. The testbed will be used to validate the research, and will serve as a kernel for other researchers worldwide to advance knowledge on cooperative networks. Our work will build on and consolidate knowledge currently dispersed in different scientific disciplines and communities (such as communication theory, sensor networks, distributed estimation and detection, environmental monitoring, control theory, positioning and timekeeping, distributed optimization). It will give a new thrust to research within those communities and forge relations between them.
Summary
Devices in wireless networks are no longer used only for communicating binary information, but also for navigation and to sense their surroundings. We are currently approaching fundamental limitations in terms of communication throughput, position information availability and accuracy, and decision making based on sensory data. The goal of this proposal is to understand how the cooperative nature of future wireless networks can be leveraged to perform timekeeping, positioning, communication, and decision making, so as to obtain orders of magnitude performance improvements compared to current architectures.
Our research will have implications in many fields and will comprise fundamental theoretical contributions as well as a cooperative wireless testbed. The fundamental contributions will lead to a deep understanding of cooperative wireless networks and will enable new pervasive applications which currently cannot be supported. The testbed will be used to validate the research, and will serve as a kernel for other researchers worldwide to advance knowledge on cooperative networks. Our work will build on and consolidate knowledge currently dispersed in different scientific disciplines and communities (such as communication theory, sensor networks, distributed estimation and detection, environmental monitoring, control theory, positioning and timekeeping, distributed optimization). It will give a new thrust to research within those communities and forge relations between them.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym DPMP
Project Dependable Performance on Many-Thread Processors
Researcher (PI) Lieven Eeckhout
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary Contemporary microprocessors seek at improving performance through thread-level parallelism by co-executing multiple threads on a single microprocessor chip. Projections suggest that future processors will feature multiple tens to hundreds of threads, hence called many-thread processors. Many-thread processors, however, lead to non-dependable performance: co-executing threads affect each other s performance in unpredictable ways because of resource sharing across threads. Failure to deliver dependable performance leads to missed deadlines, priority inversion, unbalanced parallel execution, etc., which will severely impact the usage model and the performance growth path for many important future and emerging application domains (e.g., media, medical, datacenter).
DPMP envisions that performance introspection using a cycle accounting architecture that tracks per-thread performance, will be the breakthrough to delivering dependable performance in future many-thread processors. To this end, DPMP will develop a hardware cycle accounting architecture that estimates single-thread progress during many-thread execution. The ability to track per-thread progress enables system software to deliver dependable performance by assigning hardware resources to threads depending on their relative progress. Through this cooperative hardware-software approach, this project addresses a fundamental problem in multi-threaded ad multi/many-core processing.
Summary
Contemporary microprocessors seek at improving performance through thread-level parallelism by co-executing multiple threads on a single microprocessor chip. Projections suggest that future processors will feature multiple tens to hundreds of threads, hence called many-thread processors. Many-thread processors, however, lead to non-dependable performance: co-executing threads affect each other s performance in unpredictable ways because of resource sharing across threads. Failure to deliver dependable performance leads to missed deadlines, priority inversion, unbalanced parallel execution, etc., which will severely impact the usage model and the performance growth path for many important future and emerging application domains (e.g., media, medical, datacenter).
DPMP envisions that performance introspection using a cycle accounting architecture that tracks per-thread performance, will be the breakthrough to delivering dependable performance in future many-thread processors. To this end, DPMP will develop a hardware cycle accounting architecture that estimates single-thread progress during many-thread execution. The ability to track per-thread progress enables system software to deliver dependable performance by assigning hardware resources to threads depending on their relative progress. Through this cooperative hardware-software approach, this project addresses a fundamental problem in multi-threaded ad multi/many-core processing.
Max ERC Funding
1 389 000 €
Duration
Start date: 2010-10-01, End date: 2016-09-30
Project acronym ECMETABOLISM
Project Targeting endothelial metabolism: a novel anti-angiogenic therapy
Researcher (PI) Peter Frans Martha Carmeliet
Host Institution (HI) VIB
Call Details Advanced Grant (AdG), LS2, ERC-2010-AdG_20100317
Summary Current anti-angiogenesis based anti-tumor therapy relies on starving tumors by blocking their vascular supply via inhibition of growth factors. However, limitations such as resistance and toxicity, mandate conceptually distinct approaches. We will explore an entirely novel and long-overlooked strategy to discover additional anti-angiogenic candidates, based on the following innovative concept: ¿rather than STARVING TUMORS BY BLOCKING THEIR VASCULAR SUPPLY, we intend TO STARVE BLOOD VESSELS BY BLOCKING THEIR METABOLIC ENERGY SUPPLY¿, so that new vessels cannot form and nourish the growing tumor. This project is a completely new research avenue in our group, but we expect that it will offer refreshing long-term research and translational opportunities for the field.
Because so little is known on endothelial cell (EC) metabolism, we will (i) via a multi-disciplinary systems-biology approach of transcriptomics, proteomics, computational network modeling, metabolomics and flux-omics, draw an endothelio-metabolic map in angiogenesis. This will allow us to identify metabolic regulators of angiogenesis, which will be further validated and characterized in (ii) loss and gain-of-function studies in various angiogenesis models in vitro and (iii) in vivo in zebrafish (knockdown; zinc finger nuclease mediated knockout), providing prescreen data to select the most promising candidates. (iv) EC-specific down-regulation (miR RNAi) or knockout studies of selected candidates in mice will confirm their relevance for angiogenic phenotypes in a preclinical model; and ultimately (v) a translational study evaluating EC metabolism-targeted anti-angiogenic strategies (pharmacological inhibitors, antibodies, small molecular compounds) will be performed in tumor models in the mouse.
Summary
Current anti-angiogenesis based anti-tumor therapy relies on starving tumors by blocking their vascular supply via inhibition of growth factors. However, limitations such as resistance and toxicity, mandate conceptually distinct approaches. We will explore an entirely novel and long-overlooked strategy to discover additional anti-angiogenic candidates, based on the following innovative concept: ¿rather than STARVING TUMORS BY BLOCKING THEIR VASCULAR SUPPLY, we intend TO STARVE BLOOD VESSELS BY BLOCKING THEIR METABOLIC ENERGY SUPPLY¿, so that new vessels cannot form and nourish the growing tumor. This project is a completely new research avenue in our group, but we expect that it will offer refreshing long-term research and translational opportunities for the field.
Because so little is known on endothelial cell (EC) metabolism, we will (i) via a multi-disciplinary systems-biology approach of transcriptomics, proteomics, computational network modeling, metabolomics and flux-omics, draw an endothelio-metabolic map in angiogenesis. This will allow us to identify metabolic regulators of angiogenesis, which will be further validated and characterized in (ii) loss and gain-of-function studies in various angiogenesis models in vitro and (iii) in vivo in zebrafish (knockdown; zinc finger nuclease mediated knockout), providing prescreen data to select the most promising candidates. (iv) EC-specific down-regulation (miR RNAi) or knockout studies of selected candidates in mice will confirm their relevance for angiogenic phenotypes in a preclinical model; and ultimately (v) a translational study evaluating EC metabolism-targeted anti-angiogenic strategies (pharmacological inhibitors, antibodies, small molecular compounds) will be performed in tumor models in the mouse.
Max ERC Funding
2 365 224 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym ELECTRONOPERA
Project Electron dynamics to the Attosecond time scale and Angstrom length scale on low dimensional structures in Operation
Researcher (PI) Anders Mikkelsen
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary We will develop and use imaging techniques for direct probing of electron dynamics in low dimensional structures with orders of
magnitude improvements in time and spatial resolution. We will perform our measurements not only on static structures, but on
complex structures under operating conditions. Finally as our equipment can also probe structural properties from microns to
single atom defects we can directly correlate our observations of electron dynamics with knowledge of geometrical structure. We
hope to directly answer central questions in nanophysics on how complex geometric structure on several length-scales induces
new and surprising electron dynamics and thus properties in nanoscale objects.
The low dimensional semiconductors and metal (nano) structures studied will be chosen to have unique novel properties that will
have potential applications in IT, life-science and renewable energy.
To radically increase our diagnostics capabilities we will combine PhotoEmission Electron Microscopy and attosecond XUV/IR
laser technology to directly image surface electron dynamics with attosecond time resolution and nanometer lateral resolution.
Exploring a completely new realm in terms of timescale with nm resolution we will start with rather simple structure such as Au
nanoparticles and arrays nanoholes in ultrathin metal films, and gradually increase complexity.
As the first group in the world we have shown that atomic resolved structural and electrical measurements by Scanning Tunneling
Microscopy is possible on complex 1D semiconductors heterostructures. Importantly, our new method allows for direct studies of
nanowires in devices.
We can now measure atomic scale surface chemistry and surface electronic/geometric structure directly on operational/operating
nanoscale devices. This is important both from a technology point of view, and is an excellent playground for understanding the
fundamental interplay between electronic and structural properties.
Summary
We will develop and use imaging techniques for direct probing of electron dynamics in low dimensional structures with orders of
magnitude improvements in time and spatial resolution. We will perform our measurements not only on static structures, but on
complex structures under operating conditions. Finally as our equipment can also probe structural properties from microns to
single atom defects we can directly correlate our observations of electron dynamics with knowledge of geometrical structure. We
hope to directly answer central questions in nanophysics on how complex geometric structure on several length-scales induces
new and surprising electron dynamics and thus properties in nanoscale objects.
The low dimensional semiconductors and metal (nano) structures studied will be chosen to have unique novel properties that will
have potential applications in IT, life-science and renewable energy.
To radically increase our diagnostics capabilities we will combine PhotoEmission Electron Microscopy and attosecond XUV/IR
laser technology to directly image surface electron dynamics with attosecond time resolution and nanometer lateral resolution.
Exploring a completely new realm in terms of timescale with nm resolution we will start with rather simple structure such as Au
nanoparticles and arrays nanoholes in ultrathin metal films, and gradually increase complexity.
As the first group in the world we have shown that atomic resolved structural and electrical measurements by Scanning Tunneling
Microscopy is possible on complex 1D semiconductors heterostructures. Importantly, our new method allows for direct studies of
nanowires in devices.
We can now measure atomic scale surface chemistry and surface electronic/geometric structure directly on operational/operating
nanoscale devices. This is important both from a technology point of view, and is an excellent playground for understanding the
fundamental interplay between electronic and structural properties.
Max ERC Funding
1 419 120 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym ENDOSWITCH
Project Network Principles of Neuroendocrine Control:
Tuberoinfundibular Dopamine (TIDA) Oscillations and the Regulation of Lactation
Researcher (PI) Carl Christian Broberger
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary The hypothalamus is essential for our survival and orchestrates every vital function of the body, from defence against predators and energy metabolism to reproduction. Yet, the network mechanisms underlying these actions remain largely hidden in a black box . Here, we will focus on the hypothalamic neuroendocrine system, where we have identified a novel robust network oscillation in the tuberoinfundibular dopamine (TIDA) neurons that control prolactin release. This oscillation is synchronized between neurons via gap junctions, and phasic firing is transformed into tonic discharge by compounds that functionally oppose neuroendocrine dopamine actions. Using this novel preparation, we will investigate the 1) the cellular (conductance) and network (connectivity) mechanisms underlying TIDA rhythmicity; 2) how TIDA activity is affected by hormones and transmitters that affect lactation; 3) the functional significance of phasic vs. tonic discharge in the regulation of dopamine release and lactation; and 4) the generality of TIDA cellular and network properties to other parvocellular neuron populations. These questions will be addressed through several in vitro and in vivo electrophysiological techniques, including slice whole-cell recording, extracellular in vivo recording, voltammetry and optical recording. These experiments will provide novel insight into the link between network interactions and behaviour, and have important clinical implications for e.g. endocrine and reproductive disorders.
Summary
The hypothalamus is essential for our survival and orchestrates every vital function of the body, from defence against predators and energy metabolism to reproduction. Yet, the network mechanisms underlying these actions remain largely hidden in a black box . Here, we will focus on the hypothalamic neuroendocrine system, where we have identified a novel robust network oscillation in the tuberoinfundibular dopamine (TIDA) neurons that control prolactin release. This oscillation is synchronized between neurons via gap junctions, and phasic firing is transformed into tonic discharge by compounds that functionally oppose neuroendocrine dopamine actions. Using this novel preparation, we will investigate the 1) the cellular (conductance) and network (connectivity) mechanisms underlying TIDA rhythmicity; 2) how TIDA activity is affected by hormones and transmitters that affect lactation; 3) the functional significance of phasic vs. tonic discharge in the regulation of dopamine release and lactation; and 4) the generality of TIDA cellular and network properties to other parvocellular neuron populations. These questions will be addressed through several in vitro and in vivo electrophysiological techniques, including slice whole-cell recording, extracellular in vivo recording, voltammetry and optical recording. These experiments will provide novel insight into the link between network interactions and behaviour, and have important clinical implications for e.g. endocrine and reproductive disorders.
Max ERC Funding
1 493 958 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ERSTRESS
Project Role of Endoplasmic Reticulum Stress in dendritic cells and immune-mediated lung diseases
Researcher (PI) Bart Lambrecht
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), LS6, ERC-2010-StG_20091118
Summary My overall aim is to understand the physiologic and medical importance of lung dendritic cells (DC) and to define the suitability of inhibitors of their function for the treatment of inflammatory lung diseases like asthma and COPD.
Lung dendritic cells (DC) play crucial roles in the regulation of lung immunity. We still do not fully understand how they get activated in response to different types of environmental triggers like allergens, cigarette smoke and pathogens. Although recognition of conserved motifs by pattern recognition receptors on DCs could be a key event, these stimuli are also accompanied by accumulation of unfolded proteins in the endoplasmic reticulum (ER). Cells respond by mounting the unfolded protein response (UPR) that acts to ameliorate protein folding, but intersects with metabolism, induction of alarm signals and cellular suicide mechanisms. I hypothesize that the presence of unfolded proteins and ER stress in DCs is a crucial endogenous danger signal that is vital to understanding their biology and their involvement in inflammatory lung diseases.
My specific aims are to :
1.define the fine tuning of ER stress pathways in various lung DC subsets in health and disease
2. define the specific role of ER stress proteins XBP1, JIK and ORMDL3 in DCs
3. test if interfering with ER stress pathways alters the course of inflammatory lung disease
To approach these aims, I have developed mouse models of lung disease that are centered around lung DCs and where ER stress pathways can be genetically deleted. Using a combination of cell biological and immunological techniques I hope to achieve definitive answers as to how ER stress pathways regulate the function of DCs. Manipulation of ER stress pathways by drugs will have a major impact on very common diseases like diabetes, cardiovascular and neurodegenerative disease. Through the current proposal, I hope to extend this exciting field to lung biology.
Summary
My overall aim is to understand the physiologic and medical importance of lung dendritic cells (DC) and to define the suitability of inhibitors of their function for the treatment of inflammatory lung diseases like asthma and COPD.
Lung dendritic cells (DC) play crucial roles in the regulation of lung immunity. We still do not fully understand how they get activated in response to different types of environmental triggers like allergens, cigarette smoke and pathogens. Although recognition of conserved motifs by pattern recognition receptors on DCs could be a key event, these stimuli are also accompanied by accumulation of unfolded proteins in the endoplasmic reticulum (ER). Cells respond by mounting the unfolded protein response (UPR) that acts to ameliorate protein folding, but intersects with metabolism, induction of alarm signals and cellular suicide mechanisms. I hypothesize that the presence of unfolded proteins and ER stress in DCs is a crucial endogenous danger signal that is vital to understanding their biology and their involvement in inflammatory lung diseases.
My specific aims are to :
1.define the fine tuning of ER stress pathways in various lung DC subsets in health and disease
2. define the specific role of ER stress proteins XBP1, JIK and ORMDL3 in DCs
3. test if interfering with ER stress pathways alters the course of inflammatory lung disease
To approach these aims, I have developed mouse models of lung disease that are centered around lung DCs and where ER stress pathways can be genetically deleted. Using a combination of cell biological and immunological techniques I hope to achieve definitive answers as to how ER stress pathways regulate the function of DCs. Manipulation of ER stress pathways by drugs will have a major impact on very common diseases like diabetes, cardiovascular and neurodegenerative disease. Through the current proposal, I hope to extend this exciting field to lung biology.
Max ERC Funding
1 499 580 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym GAMETE RECOGNITION
Project Molecular Basis of Mammalian Egg-Sperm Interaction
Researcher (PI) Luca Vincenzo Luigi Jovine
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS1, ERC-2010-StG_20091118
Summary At the dawn of the 21st century, our knowledge of the molecular mechanism of mammalian
fertilization remains very limited. Different lines of evidence indicate that initial gamete recognition
depends on interaction between a few distinct proteins on sperm and ZP3, a major component of the
extracellular coat of oocytes, the zona pellucida (ZP). On the other hand, recent findings suggest an
alternative mechanism in which cleavage of another ZP subunit, ZP2, regulates binding of gametes
by altering the global structure of the ZP. Progress in the field has been hindered by the paucity and
heterogeneity of native egg-sperm recognition proteins, so that novel approaches are needed to
reconcile all available data into a single consistent model of fertilization. Following our recent
determination of the structure of the most conserved domain of sperm receptor ZP3 by X-ray
crystallography, we will conclusively establish the basis of mammalian gamete recognition by
performing structural studies of homogeneous, biologically active recombinant proteins. First, we
will combine crystallographic studies of isolated ZP subunits with electron microscopy analysis of
their filaments to build a structural model of the ZP. Second, structures of key egg-sperm
recognition protein complexes will be determined. Third, we will investigate how proteolysis of
ZP2 triggers overall conformational changes of the ZP upon gamete fusion. Together with
functional analysis of mutant proteins, these studies will provide atomic resolution snapshots of the
most crucial step in the beginning of a new life, directly visualizing molecular determinants
responsible for species-restricted gamete interaction at fertilization. The progressive decrease of
births in the Western world and inadequacy of current contraceptive methods in developing
countries underscore an urgent need for a modern approach to reproductive welfare. This research
will not only shed light on a truly fundamental biological problem, but also constitute a solid
foundation for the reproductive medicine of the future.
Summary
At the dawn of the 21st century, our knowledge of the molecular mechanism of mammalian
fertilization remains very limited. Different lines of evidence indicate that initial gamete recognition
depends on interaction between a few distinct proteins on sperm and ZP3, a major component of the
extracellular coat of oocytes, the zona pellucida (ZP). On the other hand, recent findings suggest an
alternative mechanism in which cleavage of another ZP subunit, ZP2, regulates binding of gametes
by altering the global structure of the ZP. Progress in the field has been hindered by the paucity and
heterogeneity of native egg-sperm recognition proteins, so that novel approaches are needed to
reconcile all available data into a single consistent model of fertilization. Following our recent
determination of the structure of the most conserved domain of sperm receptor ZP3 by X-ray
crystallography, we will conclusively establish the basis of mammalian gamete recognition by
performing structural studies of homogeneous, biologically active recombinant proteins. First, we
will combine crystallographic studies of isolated ZP subunits with electron microscopy analysis of
their filaments to build a structural model of the ZP. Second, structures of key egg-sperm
recognition protein complexes will be determined. Third, we will investigate how proteolysis of
ZP2 triggers overall conformational changes of the ZP upon gamete fusion. Together with
functional analysis of mutant proteins, these studies will provide atomic resolution snapshots of the
most crucial step in the beginning of a new life, directly visualizing molecular determinants
responsible for species-restricted gamete interaction at fertilization. The progressive decrease of
births in the Western world and inadequacy of current contraceptive methods in developing
countries underscore an urgent need for a modern approach to reproductive welfare. This research
will not only shed light on a truly fundamental biological problem, but also constitute a solid
foundation for the reproductive medicine of the future.
Max ERC Funding
1 499 282 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym GENE TARGET T2D
Project General and targeted approaches to unravel the molecular causes of type 2 diabetes
Researcher (PI) Leif Christer Groop
Host Institution (HI) LUNDS UNIVERSITET
Call Details Advanced Grant (AdG), LS4, ERC-2010-AdG_20100317
Summary Type 2 diabetes (T2D) affects worldwide at present about 250 million patients and an estimated 380 million in 2025. This epidemic has been ascribed to a collision between genes and an affluent society. Genetics of T2D has during recent years identified > 30 variants increasing susceptibility to T2D. Yet, these variants explain only 15% of the heritability of T2D. One reason could be that whole genome association studies can only detect common variants whereas identification of rare variants with stronger effects would require sequencing. A large part of this application is devoted to sequencing of affected family members from unique large pedigrees traced back to common ancestors around 1600. The advantage of using families is that identified variants can be tested for segregation with the trait. Genetic variants can influence expression of a gene in an allele specific manner. This will be explored by combining exome sequencing with sequencing of RNA from human islets.
Impaired effects of the incretin hormones GLP-1 and GIP on the pancreatic islets represent central defects in T2D. Variants in the TCF7L2 and GIPR genes contribute to these defects. I will here explore the molecular mechanisms by which TCF7L2, the strongest T2D gene, causes T2D. GIP has unprecedented effects not only on islet function but also on body composition, blood flow and vascular complications in T2D. This application explores these effects and will test whether manipulation of GIP can mimic the normalization of glucose tolerance seen after gastric bypass surgery.
Taken together, these general and targeted approaches are expected not only to provide new insights into the causes of T2D but also contribute with vital information for development of new treatments for T2D.
Summary
Type 2 diabetes (T2D) affects worldwide at present about 250 million patients and an estimated 380 million in 2025. This epidemic has been ascribed to a collision between genes and an affluent society. Genetics of T2D has during recent years identified > 30 variants increasing susceptibility to T2D. Yet, these variants explain only 15% of the heritability of T2D. One reason could be that whole genome association studies can only detect common variants whereas identification of rare variants with stronger effects would require sequencing. A large part of this application is devoted to sequencing of affected family members from unique large pedigrees traced back to common ancestors around 1600. The advantage of using families is that identified variants can be tested for segregation with the trait. Genetic variants can influence expression of a gene in an allele specific manner. This will be explored by combining exome sequencing with sequencing of RNA from human islets.
Impaired effects of the incretin hormones GLP-1 and GIP on the pancreatic islets represent central defects in T2D. Variants in the TCF7L2 and GIPR genes contribute to these defects. I will here explore the molecular mechanisms by which TCF7L2, the strongest T2D gene, causes T2D. GIP has unprecedented effects not only on islet function but also on body composition, blood flow and vascular complications in T2D. This application explores these effects and will test whether manipulation of GIP can mimic the normalization of glucose tolerance seen after gastric bypass surgery.
Taken together, these general and targeted approaches are expected not only to provide new insights into the causes of T2D but also contribute with vital information for development of new treatments for T2D.
Max ERC Funding
2 499 480 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym GENECADD
Project GEnetic NEtworks as a tool for anti-CAncer Drug Development
Researcher (PI) Ulf Thomas Edvard Helleday
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2010-AdG_20100317
Summary Although several therapies target cellular pathways, current small molecules drug discovery is based on identification of inhibitors to single proteins, without knowledge of whether they are the most advantageous target. The objective of this proposal is to develop a novel method for drug discovery, combining phenotypic cell based screens with functional genetic networks to determine the molecular mechanisms of numerous small molecule inhibitors. This method will enable identification of numerous distinct inhibitors of a particular pathway, as well as providing their molecular mechanism.
Cancer cells harbour gene mutations that make them more reliant on other cellular pathways for survival. Such cellular pathways can be targeted to selectively kill the cancer cells using the concept of synthetic lethality. In this project we want to identify inhibitors of homologous recombination to target cancer using synthetic lethality.
To establish a functional genetic network for homologous recombination, we will first identify all recombination proteins using multiple genome-wide RNAi screens. Then the synthetic sick or lethal interaction map between all recombination proteins is determined by co-depletion of these. Such synthetic sick or lethal network will identify numerous putative targets for anti-cancer treatment. Importantly, using this network for chemical-genetic functional interactions will assist in determinating of the molecular mechanisms of inhibitors. Chemical-genetic networks based on synthetic sickness or lethality can potentially change future drug discovery methods as well as providing new mechanistic insights into the field of toxicology.
Summary
Although several therapies target cellular pathways, current small molecules drug discovery is based on identification of inhibitors to single proteins, without knowledge of whether they are the most advantageous target. The objective of this proposal is to develop a novel method for drug discovery, combining phenotypic cell based screens with functional genetic networks to determine the molecular mechanisms of numerous small molecule inhibitors. This method will enable identification of numerous distinct inhibitors of a particular pathway, as well as providing their molecular mechanism.
Cancer cells harbour gene mutations that make them more reliant on other cellular pathways for survival. Such cellular pathways can be targeted to selectively kill the cancer cells using the concept of synthetic lethality. In this project we want to identify inhibitors of homologous recombination to target cancer using synthetic lethality.
To establish a functional genetic network for homologous recombination, we will first identify all recombination proteins using multiple genome-wide RNAi screens. Then the synthetic sick or lethal interaction map between all recombination proteins is determined by co-depletion of these. Such synthetic sick or lethal network will identify numerous putative targets for anti-cancer treatment. Importantly, using this network for chemical-genetic functional interactions will assist in determinating of the molecular mechanisms of inhibitors. Chemical-genetic networks based on synthetic sickness or lethality can potentially change future drug discovery methods as well as providing new mechanistic insights into the field of toxicology.
Max ERC Funding
2 500 000 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym GRINDOOR
Project Green Nanotechnology for the Indoor Environment
Researcher (PI) Claes-Göran Sture Granqvist
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Advanced Grant (AdG), PE5, ERC-2010-AdG_20100224
Summary The GRINDOOR project aims at developing and implementing new materials that enable huge energy savings in buildings and improve the quality of the indoor environment. About 40% of the primary energy, and 70% of the electricity, is used in buildings, and therefore the outcome of this project can have an impact on the long-term energy demand in the EU and the World. It is a highly focused study on new nanomaterials based on some transition metal oxides, which are used for four interrelated applications related to indoor lighting and indoor air: (i) electrochromic coatings are integrated in devices and used in “smart windows” to regulate the inflow of visible light and solar energy in order to minimize air condition and create indoor comfort, (ii) thermochromic nanoparticulate coatings are used on windows to provide large temperature-dependent control of the inflow of infrared solar radiation (in stand-alone cases as well as in conjunction with electrochromics), (iii) oxide-based gas sensors are used to measure indoor air quality especially with regard to formaldehyde, and (iv) photocatalytic coatings are used for indoor air cleaning. The investigated materials have many things in common and a joint and focused study, such as the one proposed here, will generate important new knowledge that can be transferred between the various sub-projects. The new oxide materials are prepared by advanced reactive gas deposition—using unique equipment—and high-pressure reactive dc magnetron sputtering. The materials are characterized and investigated by a wide range of state-of-the-art techniques.
Summary
The GRINDOOR project aims at developing and implementing new materials that enable huge energy savings in buildings and improve the quality of the indoor environment. About 40% of the primary energy, and 70% of the electricity, is used in buildings, and therefore the outcome of this project can have an impact on the long-term energy demand in the EU and the World. It is a highly focused study on new nanomaterials based on some transition metal oxides, which are used for four interrelated applications related to indoor lighting and indoor air: (i) electrochromic coatings are integrated in devices and used in “smart windows” to regulate the inflow of visible light and solar energy in order to minimize air condition and create indoor comfort, (ii) thermochromic nanoparticulate coatings are used on windows to provide large temperature-dependent control of the inflow of infrared solar radiation (in stand-alone cases as well as in conjunction with electrochromics), (iii) oxide-based gas sensors are used to measure indoor air quality especially with regard to formaldehyde, and (iv) photocatalytic coatings are used for indoor air cleaning. The investigated materials have many things in common and a joint and focused study, such as the one proposed here, will generate important new knowledge that can be transferred between the various sub-projects. The new oxide materials are prepared by advanced reactive gas deposition—using unique equipment—and high-pressure reactive dc magnetron sputtering. The materials are characterized and investigated by a wide range of state-of-the-art techniques.
Max ERC Funding
2 328 726 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym HALOGEN
Project Understanding Halogen Bonding in Solution: Investigation of Yet Unexplored Interactions with Applications in Medicinal Chemistry
Researcher (PI) Mate Erdelyi
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Halogen bonding is an electron density donation-based weak interaction that has so far almost exclusively been investigated in computational and crystallographic studies. It shows high similarities to hydrogen bonding; however, its applicability for molecular recognition processes long remained unappreciated and has not been thoroughly explored.
The main goals of this project are (1) to take the major leap from solid state/computational to /solution/ investigations of halogen bonding by developing novel NMR methods, using these (2) perform the first ever systematic physicochemical study of halogen bonding in solutions, and (3) to apply the gained knowledge in structural biology through elucidation of the anaesthetic binding site of native proteins. This in turn is of direct clinical relevance by providing a long-sought understanding of the disease malignant hyperthermia.
Model compounds will be prepared using solution-phase and solid-supported organic synthesis; NMR methods will be developed for physicochemical studies of molecular recognition processes and applied in structural biology through the study of the interaction of anaesthetics with proteins involved in cellular calcium regulation.
Using a peptidomimetic model system and an outstandingly sensitive NMR technique I will systematically study the impact of halogen bond donor and acceptor sites, and of electronic and solvent effects on the strength of the interaction. The proposed method will quantify relative stability of a strategically-designed, cooperatively folding model system.
A second NMR technique will utilize paramagnetic effects and permit simultaneous characterization of bond strength and geometry of weak intermolecular complexes in solution. The technique will first be validated on small, organic model compounds and subsequently be transferred to weak, protein-ligand interactions. It will be exploited to gain an atomic level understanding of anaesthesia.
Summary
Halogen bonding is an electron density donation-based weak interaction that has so far almost exclusively been investigated in computational and crystallographic studies. It shows high similarities to hydrogen bonding; however, its applicability for molecular recognition processes long remained unappreciated and has not been thoroughly explored.
The main goals of this project are (1) to take the major leap from solid state/computational to /solution/ investigations of halogen bonding by developing novel NMR methods, using these (2) perform the first ever systematic physicochemical study of halogen bonding in solutions, and (3) to apply the gained knowledge in structural biology through elucidation of the anaesthetic binding site of native proteins. This in turn is of direct clinical relevance by providing a long-sought understanding of the disease malignant hyperthermia.
Model compounds will be prepared using solution-phase and solid-supported organic synthesis; NMR methods will be developed for physicochemical studies of molecular recognition processes and applied in structural biology through the study of the interaction of anaesthetics with proteins involved in cellular calcium regulation.
Using a peptidomimetic model system and an outstandingly sensitive NMR technique I will systematically study the impact of halogen bond donor and acceptor sites, and of electronic and solvent effects on the strength of the interaction. The proposed method will quantify relative stability of a strategically-designed, cooperatively folding model system.
A second NMR technique will utilize paramagnetic effects and permit simultaneous characterization of bond strength and geometry of weak intermolecular complexes in solution. The technique will first be validated on small, organic model compounds and subsequently be transferred to weak, protein-ligand interactions. It will be exploited to gain an atomic level understanding of anaesthesia.
Max ERC Funding
1 495 630 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym HHNCDMIR
Project Hochschild cohomology, non-commutative deformations and mirror symmetry
Researcher (PI) Wendy Lowen
Host Institution (HI) UNIVERSITEIT ANTWERPEN
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary "Our research programme addresses several interesting current issues in non-commutative algebraic geometry, and important links with symplectic geometry and algebraic topology. Non-commutative algebraic geometry is concerned with the study of algebraic objects in geometric ways. One of the basic philosophies is that, in analogy with (derived) categories of (quasi-)coherent sheaves over schemes and (derived) module categories, non-commutative spaces can be represented by suitable abelian or triangulated categories. This point of view has proven extremely useful in non-commutative algebra, algebraic geometry and more recently in string theory thanks to the Homological Mirror Symmetry conjecture. One of our main aims is to set up a deformation framework for non-commutative spaces represented by ""enhanced"" triangulated categories, encompassing both the non-commutative schemes represented by derived abelian categories and the derived-affine spaces, represented by dg algebras. This framework should clarify and resolve some of the important problems known to exist in the deformation theory of derived-affine spaces. It should moreover be applicable to Fukaya-type categories, and yield a new way of proving and interpreting instances of ""deformed mirror symmetry"". This theory will be developed in interaction with concrete applications of the abelian deformation theory developed in our earlier work, and with the development of new decomposition and comparison techniques for Hochschild cohomology. By understanding the links between the different theories and fields of application, we aim to achieve an interdisciplinary understanding of non-commutative spaces using abelian and triangulated structures."
Summary
"Our research programme addresses several interesting current issues in non-commutative algebraic geometry, and important links with symplectic geometry and algebraic topology. Non-commutative algebraic geometry is concerned with the study of algebraic objects in geometric ways. One of the basic philosophies is that, in analogy with (derived) categories of (quasi-)coherent sheaves over schemes and (derived) module categories, non-commutative spaces can be represented by suitable abelian or triangulated categories. This point of view has proven extremely useful in non-commutative algebra, algebraic geometry and more recently in string theory thanks to the Homological Mirror Symmetry conjecture. One of our main aims is to set up a deformation framework for non-commutative spaces represented by ""enhanced"" triangulated categories, encompassing both the non-commutative schemes represented by derived abelian categories and the derived-affine spaces, represented by dg algebras. This framework should clarify and resolve some of the important problems known to exist in the deformation theory of derived-affine spaces. It should moreover be applicable to Fukaya-type categories, and yield a new way of proving and interpreting instances of ""deformed mirror symmetry"". This theory will be developed in interaction with concrete applications of the abelian deformation theory developed in our earlier work, and with the development of new decomposition and comparison techniques for Hochschild cohomology. By understanding the links between the different theories and fields of application, we aim to achieve an interdisciplinary understanding of non-commutative spaces using abelian and triangulated structures."
Max ERC Funding
703 080 €
Duration
Start date: 2010-10-01, End date: 2016-09-30
Project acronym HUFATREG
Project Adipose tissue mass regulation in lean and obese individuals
Researcher (PI) Kirsty Lee Spalding
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history. In humans the generation of fat cells (adipocytes) is a major factor behind the growth of adipose tissue during childhood. The factors determining the fat mass in adults, however, are not fully understood. Increased fat storage in fully differentiated adipocytes, resulting in enlarged fat cells, is well documented and thought to be the most important mechanism whereby fat depots increase in adults. Very little is known about the maintenance of fat cells (adipocytes) in humans, how different fat depots are maintained and how (or if) this is altered in obesity. Recently I developed a method that is based on the incorporation of 14C from nuclear bomb tests into genomic DNA, which allows for the analysis of cell and tissue turnover in humans. Using this novel methodology we now have a strategy for studying cell turnover in humans. One tissue of great interest and significant clinical relevance is adipose tissue. Excess adipose tissue, resulting in obesity, is currently one of the most serious threats to human health on a global level. The current proposal aims to determine the dynamics of human adipose tissue maintenance and investigate any differences in regulation of the fat mass in lean and obese individuals. Understanding the dynamics of adipocyte turnover may shed new light on potential treatments for obesity.
Summary
Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history. In humans the generation of fat cells (adipocytes) is a major factor behind the growth of adipose tissue during childhood. The factors determining the fat mass in adults, however, are not fully understood. Increased fat storage in fully differentiated adipocytes, resulting in enlarged fat cells, is well documented and thought to be the most important mechanism whereby fat depots increase in adults. Very little is known about the maintenance of fat cells (adipocytes) in humans, how different fat depots are maintained and how (or if) this is altered in obesity. Recently I developed a method that is based on the incorporation of 14C from nuclear bomb tests into genomic DNA, which allows for the analysis of cell and tissue turnover in humans. Using this novel methodology we now have a strategy for studying cell turnover in humans. One tissue of great interest and significant clinical relevance is adipose tissue. Excess adipose tissue, resulting in obesity, is currently one of the most serious threats to human health on a global level. The current proposal aims to determine the dynamics of human adipose tissue maintenance and investigate any differences in regulation of the fat mass in lean and obese individuals. Understanding the dynamics of adipocyte turnover may shed new light on potential treatments for obesity.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym IMMUNO
Project Immunogenomics: Mouse to Human Translational Research
Researcher (PI) Adrian Liston
Host Institution (HI) VIB
Call Details Starting Grant (StG), LS6, ERC-2010-StG_20091118
Summary Control over the activation of the immune system is central to the key issues of human health. Autoimmunity, atopy, persistent infections and tumours all share a common root cause in a sub-optimal balance between immune activity and tolerance. At the heart of this balance are T cells, with the capacity for both activation and suppression. Research in mouse models has allowed enormous progress to be made on understanding fundamental mechanics, and yet the next step translating this understanding into therapeutics has proven far more difficult than originally anticipated. The basis of this problem may be a reliance on the mouse model without parallel human research. In this project we propose to create a dynamic interplay between the technological advantages of working in mouse models and the physiological relevance of studying the human immune system in three key research areas.
The first research track is a gene discovery program, using an immunology-orientated approach to allow the discovery of important human disease genes that remain invisible to clinically-orientated approaches. The second research track is a functional genomics program, seeking to address the mechanistic questions that arise from traditional disease-gene association studies. This information is of critical importance in translating genetic data into therapeutic interventions and provides the basis for personalised medicine. The third research track is a direct hypothesis-driven project testing the role that genetic variation in the target organ alters susceptibility to autoimmune disease. Each of these research tracks utilises cutting edge technology in genetics and immunology, combining knowledge from mouse models with innovative study design in human populations.
Summary
Control over the activation of the immune system is central to the key issues of human health. Autoimmunity, atopy, persistent infections and tumours all share a common root cause in a sub-optimal balance between immune activity and tolerance. At the heart of this balance are T cells, with the capacity for both activation and suppression. Research in mouse models has allowed enormous progress to be made on understanding fundamental mechanics, and yet the next step translating this understanding into therapeutics has proven far more difficult than originally anticipated. The basis of this problem may be a reliance on the mouse model without parallel human research. In this project we propose to create a dynamic interplay between the technological advantages of working in mouse models and the physiological relevance of studying the human immune system in three key research areas.
The first research track is a gene discovery program, using an immunology-orientated approach to allow the discovery of important human disease genes that remain invisible to clinically-orientated approaches. The second research track is a functional genomics program, seeking to address the mechanistic questions that arise from traditional disease-gene association studies. This information is of critical importance in translating genetic data into therapeutic interventions and provides the basis for personalised medicine. The third research track is a direct hypothesis-driven project testing the role that genetic variation in the target organ alters susceptibility to autoimmune disease. Each of these research tracks utilises cutting edge technology in genetics and immunology, combining knowledge from mouse models with innovative study design in human populations.
Max ERC Funding
1 496 688 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym INSPECTRA
Project Silicon-photonics-based laser spectroscopy platform: towards a paradigm shift in environmental monitoring and health care
Researcher (PI) Roeland Baets
Host Institution (HI) UNIVERSITEIT GENT
Call Details Advanced Grant (AdG), PE7, ERC-2010-AdG_20100224
Summary The Principal Investigator and his team will open up new horizons in the field of laser spectroscopy through basic research on silicon-photonics-based Spectroscopic Systems-On-Chip (SpecSOC’s). The key question being addressed is: how can the powerful concepts of high-index-contrast nanophotonics be combined with the extreme accuracy of silicon technology and with the performance of hybrid silicon/III-V integration in order to create system-on-chip functionalities for advanced (bio-)spectroscopy.
We will first focus research on integrated lasers or Laser Systems-on-Chip (LaSOC’s) capable of providing very wide wavelength tuning in the infrared, mid-infrared or visible. These lasers will have an unprecedented combination of properties. They will differ from existing semiconductor lasers in the sense that they combine the best of III-V semiconductor technology and silicon technology in unique cavity structures exploiting high index contrast in three dimensions.
In the second phase of the project we will shift the focus from laser-oriented novelty to spectroscopy-oriented novelty and investigate SpecSOC’s with an unprecedented system performance that matches the requirements of mainstream real-life spectroscopy. We will explore coherent optical detection techniques for sensitivity enhancement, microporous coatings for on-chip gas sensing and implant-oriented tissue spectroscopy.
Our research will lead to a paradigm shift in laser spectroscopy, in the sense that it will turn an advanced spectroscopy system into a small form-factor commodity system. This will have an enormous impact on applications such as point-of-care medical diagnosis and medical implants, monitoring of air, water and food quality. Furthermore the on-chip spectroscopy systems will be highly valuable for fundamental research.
Summary
The Principal Investigator and his team will open up new horizons in the field of laser spectroscopy through basic research on silicon-photonics-based Spectroscopic Systems-On-Chip (SpecSOC’s). The key question being addressed is: how can the powerful concepts of high-index-contrast nanophotonics be combined with the extreme accuracy of silicon technology and with the performance of hybrid silicon/III-V integration in order to create system-on-chip functionalities for advanced (bio-)spectroscopy.
We will first focus research on integrated lasers or Laser Systems-on-Chip (LaSOC’s) capable of providing very wide wavelength tuning in the infrared, mid-infrared or visible. These lasers will have an unprecedented combination of properties. They will differ from existing semiconductor lasers in the sense that they combine the best of III-V semiconductor technology and silicon technology in unique cavity structures exploiting high index contrast in three dimensions.
In the second phase of the project we will shift the focus from laser-oriented novelty to spectroscopy-oriented novelty and investigate SpecSOC’s with an unprecedented system performance that matches the requirements of mainstream real-life spectroscopy. We will explore coherent optical detection techniques for sensitivity enhancement, microporous coatings for on-chip gas sensing and implant-oriented tissue spectroscopy.
Our research will lead to a paradigm shift in laser spectroscopy, in the sense that it will turn an advanced spectroscopy system into a small form-factor commodity system. This will have an enormous impact on applications such as point-of-care medical diagnosis and medical implants, monitoring of air, water and food quality. Furthermore the on-chip spectroscopy systems will be highly valuable for fundamental research.
Max ERC Funding
2 183 000 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym LACOLA
Project Language, cognition and landscape: understanding cross-cultural and individual variation in geographical ontology
Researcher (PI) Niclas Burenhult
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), SH4, ERC-2010-StG_20091209
Summary This project will break new ground in the language sciences by pursuing a linguistic inquiry into landscape. From the linguist s point of view, the geophysical environment is virtually unexplored. Yet it has vast potential for influence on the discipline. The project will play a pioneering role in situating landscape within linguistics as a fundamental domain of representational systems, opening up important links to other disciplines concerned with landscape that usually have little to do with language. It will achieve this by (1) exploring landscape categorization in a number of languages, (2) comparing such categorization, (3) developing a model for understanding categorization across languages and speakers, and (4) documenting vanishing landscape systems. The research team will study landscape categorization in six diverse language settings. Each setting is a case study carried out by a team member with expert knowledge and prior field experience of the setting. Each setting offers opportunities of studying closely related languages as well as individuals speaking the same language, making comparison possible not only among maximally diverse languages but also at finer levels of linguistic granularity. An exploratory psycholinguistic subproject will probe the relationship between language and cognition in the landscape domain. The project will blaze a trail in applying GIS to linguistic data, in testing advanced experimental techniques in the field, and in documenting domain-specific data from a global language sample. Cross-cultural variation in landscape ontology is a matter of great practical importance understanding the meaning and reference of landscape terms and place names is crucial to major fields of human cooperation, from navigation to international law.
Summary
This project will break new ground in the language sciences by pursuing a linguistic inquiry into landscape. From the linguist s point of view, the geophysical environment is virtually unexplored. Yet it has vast potential for influence on the discipline. The project will play a pioneering role in situating landscape within linguistics as a fundamental domain of representational systems, opening up important links to other disciplines concerned with landscape that usually have little to do with language. It will achieve this by (1) exploring landscape categorization in a number of languages, (2) comparing such categorization, (3) developing a model for understanding categorization across languages and speakers, and (4) documenting vanishing landscape systems. The research team will study landscape categorization in six diverse language settings. Each setting is a case study carried out by a team member with expert knowledge and prior field experience of the setting. Each setting offers opportunities of studying closely related languages as well as individuals speaking the same language, making comparison possible not only among maximally diverse languages but also at finer levels of linguistic granularity. An exploratory psycholinguistic subproject will probe the relationship between language and cognition in the landscape domain. The project will blaze a trail in applying GIS to linguistic data, in testing advanced experimental techniques in the field, and in documenting domain-specific data from a global language sample. Cross-cultural variation in landscape ontology is a matter of great practical importance understanding the meaning and reference of landscape terms and place names is crucial to major fields of human cooperation, from navigation to international law.
Max ERC Funding
1 499 931 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym LEARN
Project Limitations, Estimation, Adaptivity, Reinforcement and Networks in System Identification
Researcher (PI) Lennart Ljung
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Advanced Grant (AdG), PE7, ERC-2010-AdG_20100224
Summary The objective with this proposal is to provide design tools and algorithms for model management in robust, adaptive and autonomous engineering systems. The increasing demands on reliable models for systems of ever greater complexity have pointed to several insufficiencies in today's techniques for model construction. The proposal addresses key areas where new ideas are required. Modeling a central issue in many scientific fields. System Identification is the term used in the Automatic Control Community for the area of building mathematical models of dynamical systems from observed input and output signals, but several other research communities work with the same problem under different names, such as (data-driven) learning.
We have identified five specific themes where progress is both acutely needed and feasible:
1. Encounters with Convex Programming Techniques: How to capitalize on the remarkable recent progress in convex and semidefinite programming to obtain efficient, robust and reliable algorithmic solutions.
2. Fundamental Limitations: To develop and elucidate what are the limits of model accuracy, regardless of the modeling method. This can be seen as a theory rooted in the Cramer-Rao inequality in the spirit of invariance results and lower bounds characterizing, e.g., Information Theory.
3. Experiment Design and Reinforcement Techniques: Study how well tailored and ``cheap'' experiments can extract essential information about isolated model properties. Also study how such methods may relate to general reinforcement techniques.
4. Potentials of Non-parametric Models: How to incorporate and adjust techniques from adjacent research communities, e.g. concerning manifold learning and Gaussian Processes in machine learning.
5. Managing Structural Constraints: To develop structure preserving identification methods for networked and decentralized systems.
We have ideas how to approach each of these themes, and initial attempts are promising.
Summary
The objective with this proposal is to provide design tools and algorithms for model management in robust, adaptive and autonomous engineering systems. The increasing demands on reliable models for systems of ever greater complexity have pointed to several insufficiencies in today's techniques for model construction. The proposal addresses key areas where new ideas are required. Modeling a central issue in many scientific fields. System Identification is the term used in the Automatic Control Community for the area of building mathematical models of dynamical systems from observed input and output signals, but several other research communities work with the same problem under different names, such as (data-driven) learning.
We have identified five specific themes where progress is both acutely needed and feasible:
1. Encounters with Convex Programming Techniques: How to capitalize on the remarkable recent progress in convex and semidefinite programming to obtain efficient, robust and reliable algorithmic solutions.
2. Fundamental Limitations: To develop and elucidate what are the limits of model accuracy, regardless of the modeling method. This can be seen as a theory rooted in the Cramer-Rao inequality in the spirit of invariance results and lower bounds characterizing, e.g., Information Theory.
3. Experiment Design and Reinforcement Techniques: Study how well tailored and ``cheap'' experiments can extract essential information about isolated model properties. Also study how such methods may relate to general reinforcement techniques.
4. Potentials of Non-parametric Models: How to incorporate and adjust techniques from adjacent research communities, e.g. concerning manifold learning and Gaussian Processes in machine learning.
5. Managing Structural Constraints: To develop structure preserving identification methods for networked and decentralized systems.
We have ideas how to approach each of these themes, and initial attempts are promising.
Max ERC Funding
2 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym LIFEINCON
Project Individual Life Chances in Social Context: A Longitudinal Multi-Methods Perspective on Social Constraints and Opportunities
Researcher (PI) Jens Christian Rydgren
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary This project focuses contextual factors explaining differences in young adults life chances in a longitudinal perspective. By life chances we mean the structural contexts influencing choices and behavior with consequences for education, labor market situation, health, and criminality. Such life chances are strongly and systematically influenced by social class, gender, and ethnicity. The dominant ways to study these differences are to focus socialization effects in the family and differences in human capital more generally. These approaches have been highly successful, but there is still a considerable part of it left unexplained by these models. Part of the reason for this is that they have taken contextual factors insufficiently into account. We propose a synthetic approach to the study of life chances that integrates the traditional models with a fuller focus on contextual factors neigborhoods and social networks in particular. The aims are to arrive at better specified models that will more accurately predict differences in outcomes, and to reach beyond prediction and to identify generative mechanisms causing the observed associations between explanans and explandum. The goal is to reach what Max Weber calls interpretative explanations, and in doing so we need to specify the sociologically relevant settings in which people find themselves. This social mechanism based approach to life chances necessitates methodological pluralism, in which quantitative and qualitative methodological techniques are combined. The project will analyze both large-scale random samples in order to generalize findings and do qualitative analyses of strategically selected small-n case studies in order to identify social mechanisms and understand the ways in which they operate in practice.
Summary
This project focuses contextual factors explaining differences in young adults life chances in a longitudinal perspective. By life chances we mean the structural contexts influencing choices and behavior with consequences for education, labor market situation, health, and criminality. Such life chances are strongly and systematically influenced by social class, gender, and ethnicity. The dominant ways to study these differences are to focus socialization effects in the family and differences in human capital more generally. These approaches have been highly successful, but there is still a considerable part of it left unexplained by these models. Part of the reason for this is that they have taken contextual factors insufficiently into account. We propose a synthetic approach to the study of life chances that integrates the traditional models with a fuller focus on contextual factors neigborhoods and social networks in particular. The aims are to arrive at better specified models that will more accurately predict differences in outcomes, and to reach beyond prediction and to identify generative mechanisms causing the observed associations between explanans and explandum. The goal is to reach what Max Weber calls interpretative explanations, and in doing so we need to specify the sociologically relevant settings in which people find themselves. This social mechanism based approach to life chances necessitates methodological pluralism, in which quantitative and qualitative methodological techniques are combined. The project will analyze both large-scale random samples in order to generalize findings and do qualitative analyses of strategically selected small-n case studies in order to identify social mechanisms and understand the ways in which they operate in practice.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-07-01, End date: 2016-06-30
Project acronym MEGASIM
Project Million-core Molecular Simulation
Researcher (PI) Berk Hess
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Molecular simulation has become a standard tool for studying the function of biomolecules, such as proteins, nucleic acids and lipids. Due to increasing computer power and decreasing length scales in engineering, molecular simulation is also increasingly used in microfluidics and the study of, for instance, small water droplets. All these applications would benefit strongly from simulations that are several orders of magnitude longer than the current state of art. Although currently Moore's law still holds, the performance of processor cores no longer doubles every 18 months, but rather the number of cores increases. Therefore to improve the performance and to scale to a million cores, each core should do less work. With the classical single-program multiple-data parallelism the communication time will quickly become a bottleneck. To advance the molecular simulation field and efficiently use upcoming million core computers, a switch to multiple-program multiple-data parallelism (MPMD) is required. Domain decomposition should be applied over the nodes, whereas within a node MPMD parallelism should be used. This requires workloads being divided and dispatched efficiently to different threads. To hide the communication times, calculation should be overlapped with communication. Because simulation time steps will soon take in the order of 100 microseconds, global communication will become a bottleneck. However,global communication is required for, among other things, full electrostatics algorithms. Thus new algorithms need to be derived to ensure parallel scaling. Only with such efforts we will be able to fully utilize the potential of upcoming hardware to solve current and future scientific problems.
Summary
Molecular simulation has become a standard tool for studying the function of biomolecules, such as proteins, nucleic acids and lipids. Due to increasing computer power and decreasing length scales in engineering, molecular simulation is also increasingly used in microfluidics and the study of, for instance, small water droplets. All these applications would benefit strongly from simulations that are several orders of magnitude longer than the current state of art. Although currently Moore's law still holds, the performance of processor cores no longer doubles every 18 months, but rather the number of cores increases. Therefore to improve the performance and to scale to a million cores, each core should do less work. With the classical single-program multiple-data parallelism the communication time will quickly become a bottleneck. To advance the molecular simulation field and efficiently use upcoming million core computers, a switch to multiple-program multiple-data parallelism (MPMD) is required. Domain decomposition should be applied over the nodes, whereas within a node MPMD parallelism should be used. This requires workloads being divided and dispatched efficiently to different threads. To hide the communication times, calculation should be overlapped with communication. Because simulation time steps will soon take in the order of 100 microseconds, global communication will become a bottleneck. However,global communication is required for, among other things, full electrostatics algorithms. Thus new algorithms need to be derived to ensure parallel scaling. Only with such efforts we will be able to fully utilize the potential of upcoming hardware to solve current and future scientific problems.
Max ERC Funding
899 448 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym MIRACLE
Project Mid-InfraRed Active photonic integrated Circuits for Life
sciences and Environment
Researcher (PI) Gunther Roelkens
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), PE7, ERC-2010-StG_20091028
Summary My group will explore the new field of photonic integrated circuits for the mid infrared (MIR) wavelength band based on high-index contrast waveguide structures. This research is fueled by the need for compact, integrated solutions for spectroscopic sensor systems in the MIR for biomedical applications and environmental monitoring, since most molecules have fingerprint absorption lines in this wavelength range. The project is based on the use of high index contrast group IV waveguide systems. To extend the functionality of the photonic integrated circuit, my group will heterogeneously integrate other materials (III-V semiconductors, LiNbO3, MCT, chalcogenides, polymers) on the high index contrast waveguide system for particular optical functions. My group will start exploring this field by focusing on three cornerstone applications. The research will focus on the realization of a MIR lab-on-a-chip spectroscopic system, a fully integrated MIR Fourier Transform InfraRed spectroscopy system (FTIR) and an integrated optical parametric oscillator to address new wavelength ranges, all integrated on a silicon photonic integrated circuit. Each of these three cornerstones would be world s first mid-infrared systems-on-a-chip and thus a breakthrough. Inherently this makes this a relatively high risk/very high gain proposal. My group will combine the strengths of the two institutes which support this proposal, i.e. the world class silicon photonics and heterogeneous integration technology at Ghent University/IMEC and the world class III-V and plasmonic technology at the Technical University of Eindhoven. I strongly believe that my program will open a whole new window of opportunities in the mid-infrared with a large impact on science and society.
Summary
My group will explore the new field of photonic integrated circuits for the mid infrared (MIR) wavelength band based on high-index contrast waveguide structures. This research is fueled by the need for compact, integrated solutions for spectroscopic sensor systems in the MIR for biomedical applications and environmental monitoring, since most molecules have fingerprint absorption lines in this wavelength range. The project is based on the use of high index contrast group IV waveguide systems. To extend the functionality of the photonic integrated circuit, my group will heterogeneously integrate other materials (III-V semiconductors, LiNbO3, MCT, chalcogenides, polymers) on the high index contrast waveguide system for particular optical functions. My group will start exploring this field by focusing on three cornerstone applications. The research will focus on the realization of a MIR lab-on-a-chip spectroscopic system, a fully integrated MIR Fourier Transform InfraRed spectroscopy system (FTIR) and an integrated optical parametric oscillator to address new wavelength ranges, all integrated on a silicon photonic integrated circuit. Each of these three cornerstones would be world s first mid-infrared systems-on-a-chip and thus a breakthrough. Inherently this makes this a relatively high risk/very high gain proposal. My group will combine the strengths of the two institutes which support this proposal, i.e. the world class silicon photonics and heterogeneous integration technology at Ghent University/IMEC and the world class III-V and plasmonic technology at the Technical University of Eindhoven. I strongly believe that my program will open a whole new window of opportunities in the mid-infrared with a large impact on science and society.
Max ERC Funding
1 451 400 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym MIRNA_AD
Project Role of microRNA dysregulation in Alzheimers Disease
Researcher (PI) Bart Geert Alfons Paul De Strooper
Host Institution (HI) VIB
Call Details Advanced Grant (AdG), LS5, ERC-2010-AdG_20100317
Summary Alzheimer's Disease (AD) is a major health problem in aging societies. Remarkable progress in the study of the rare genetic forms of the disease has lead to the identification of several key players like APP and the secretases, but the molecular basis of sporadic AD remains largely unresolved. The convergence of several factors (multicausality) has to be considered. miRNAs are crucially involved in normal brain functioning and integrity. Evidence obtained from analyzing a limited number of brains indicates that miRNA expression is affected in sporadic AD. We propose the hypothesis that such changes can affect normal functioning of neurons increasing their susceptibility to AD. We will document in 3 brain regions in >100 sporadic AD patients and in >100 controls alterations in miRNA expression and explore whether similar alterations can be detected in cerebrospinal fluid. This part of the study will firmly establish which miRNAs are altered in AD. We will then investigate the functional relevance of those miRNAs by gain and loss of function experiments in brains of zebra fish and mice. We will determine the target genes of the miRNA with genetic and proteomic approaches, and establish the functional networks controlled by those miRNA. We anticipate that this will lead to complete novel insights in the role of miRNAs in AD and in maintenance of brain integrity. Our work is likely to have diagnostic relevance for AD and will identify novel drug targets for the disease.
Summary
Alzheimer's Disease (AD) is a major health problem in aging societies. Remarkable progress in the study of the rare genetic forms of the disease has lead to the identification of several key players like APP and the secretases, but the molecular basis of sporadic AD remains largely unresolved. The convergence of several factors (multicausality) has to be considered. miRNAs are crucially involved in normal brain functioning and integrity. Evidence obtained from analyzing a limited number of brains indicates that miRNA expression is affected in sporadic AD. We propose the hypothesis that such changes can affect normal functioning of neurons increasing their susceptibility to AD. We will document in 3 brain regions in >100 sporadic AD patients and in >100 controls alterations in miRNA expression and explore whether similar alterations can be detected in cerebrospinal fluid. This part of the study will firmly establish which miRNAs are altered in AD. We will then investigate the functional relevance of those miRNAs by gain and loss of function experiments in brains of zebra fish and mice. We will determine the target genes of the miRNA with genetic and proteomic approaches, and establish the functional networks controlled by those miRNA. We anticipate that this will lead to complete novel insights in the role of miRNAs in AD and in maintenance of brain integrity. Our work is likely to have diagnostic relevance for AD and will identify novel drug targets for the disease.
Max ERC Funding
2 500 000 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym MULTIMATE
Project A Research Platform Addressing Outstanding Research Challenges for Nanoscale Design and Engineering of Multifunctional Material
Researcher (PI) Johanna Rosen
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary "Nanoscale engineering is a fascinating research field spawning extraordinary materials which revolutionize microelectronics, medicine,energy production, etc. Still, there is a need for new materials and synthesis methods to offer unprecedented properties for use in future applications.
In this research project, I will conduct fundamental science investigations focused towards the development of novel materials with tailor-made properties, achieved by precise control of the materials structure and compostition. The objectives are to: 1) Perform novel synthesis of graphene. 2) Explore nanoscale engineering of ""graphene-based"" materials, based on more than one atomic element. 3) Tailor uniquely combined metallic/ceramic/magnetic materials properties in so called MAX phases. 4) Provide proof of concept for thin film architectures in advanced applications that require specific mechanical, tribological, electronic, and magnetic properties.
This initative involves advanced materials design by a new and unique synthesis method based on cathodic arc. Research breakthroughs are envisioned: Functionalized graphene-based and fullerene-like compounds are expected to have a major impact on tribology and electronic applications. The MAX phases are expected to be a new candidate for applications within low friction contacts, electronics, as well as spintronics. In particular, single crystal devices are predicted through tuning of tunnel magnetoresistance (TMR) and anisotropic conductivity (from insulating to n-and p-type).
I can lead this innovative and interdisciplinary project, with a unique background combining relevant research areas: arc process development, plasma processing, materials synthesis and engineering, characterization, along with theory and modelling."
Summary
"Nanoscale engineering is a fascinating research field spawning extraordinary materials which revolutionize microelectronics, medicine,energy production, etc. Still, there is a need for new materials and synthesis methods to offer unprecedented properties for use in future applications.
In this research project, I will conduct fundamental science investigations focused towards the development of novel materials with tailor-made properties, achieved by precise control of the materials structure and compostition. The objectives are to: 1) Perform novel synthesis of graphene. 2) Explore nanoscale engineering of ""graphene-based"" materials, based on more than one atomic element. 3) Tailor uniquely combined metallic/ceramic/magnetic materials properties in so called MAX phases. 4) Provide proof of concept for thin film architectures in advanced applications that require specific mechanical, tribological, electronic, and magnetic properties.
This initative involves advanced materials design by a new and unique synthesis method based on cathodic arc. Research breakthroughs are envisioned: Functionalized graphene-based and fullerene-like compounds are expected to have a major impact on tribology and electronic applications. The MAX phases are expected to be a new candidate for applications within low friction contacts, electronics, as well as spintronics. In particular, single crystal devices are predicted through tuning of tunnel magnetoresistance (TMR) and anisotropic conductivity (from insulating to n-and p-type).
I can lead this innovative and interdisciplinary project, with a unique background combining relevant research areas: arc process development, plasma processing, materials synthesis and engineering, characterization, along with theory and modelling."
Max ERC Funding
1 484 700 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym MUMID
Project Multimodal tools for Molecular Imaging, Diagnostics and Therapeutics
Researcher (PI) Peter Nilsson
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Non-invasive imaging techniques allow visualization of the dynamics and biochemical activity of pathological processes in real-time. By having proper molecular tools, a complete picture of pathologic conditions can be acquired at resolutions from the molecular level to the full body scale. Hence, smart multimodal imaging tools can be utilized for a diversity of applications, ranging from fundamental understanding of disease related events to molecular diagnostics of specific diseases. Secondly, molecular scaffolds used for imaging can also be explored as therapeutics for specific diseases, since such scaffolds are directed towards targets involved in the pathological mechanism of the disease. This project aims at developing an alternative concept for molecular imaging, diagnostics and therapy based on the chemical design of luminescent conjugated oligomeric thiophene derivatives (LCOs) which recognize distinct structural motifs instead of specific biomolecules. The LCO can for instance be utilized for specific labelling of protein aggregates, the pathological hallmark of Alzheimer’s, Parkinson’s and prion diseases, and for differentiation of distinct cell types, such as stem cells or cancer cells. By combining the LCO technique with other technology platforms, multimodal molecular imaging tools that can be used to gain novel insights regarding fundamental disease related biological mechanisms from the nanoscopic to the macroscopic level will be achieved. The LCO molecular scaffolds will also be evaluated as therapeutically active agents towards pathologic molecular process underlying protein aggregation diseases, bacterial infection and cancer. The main objectives of the project are;
• To synthesize a diverse library of novel LCOs specific for disease related molecular targets
• To develop novel LCO-hybrid materials for multimodal real time in vivo imaging of biological and pathological processes from the nanoscopic (molecular, cellular) to the macroscopic level (body, organ)
• To utilize the novel real-time imaging probes for studying the pathological or biological processes associated with certain diseases, including protein aggregation diseases, such as Alzheimer’s and Parkinson’s diseases, bacterial infection and cancer.
• To explore LCO and LCO-based pharmacophores as therapeutics towards pathological molecular process involved in protein aggregation diseases, bacterial infection and cancer.
The main focus of the project is to synthesize novel molecular tools but the project has a multidisciplinary research approach and involves research disciplines such as organic chemistry, physics, biochemistry and medicine. The purpose is to provide real-time in vivo imaging agents that can be utilized for studying both the nanoscopic molecular mechanism and the macro-pathology of a diversity of biological events. In addition, the same molecular scaffold will be explored for the development of therapeutic agents. We foresee that the novel multimodal tools will be of relevance to a wide community of researchers and also of great interest to the European health care industry.
Summary
Non-invasive imaging techniques allow visualization of the dynamics and biochemical activity of pathological processes in real-time. By having proper molecular tools, a complete picture of pathologic conditions can be acquired at resolutions from the molecular level to the full body scale. Hence, smart multimodal imaging tools can be utilized for a diversity of applications, ranging from fundamental understanding of disease related events to molecular diagnostics of specific diseases. Secondly, molecular scaffolds used for imaging can also be explored as therapeutics for specific diseases, since such scaffolds are directed towards targets involved in the pathological mechanism of the disease. This project aims at developing an alternative concept for molecular imaging, diagnostics and therapy based on the chemical design of luminescent conjugated oligomeric thiophene derivatives (LCOs) which recognize distinct structural motifs instead of specific biomolecules. The LCO can for instance be utilized for specific labelling of protein aggregates, the pathological hallmark of Alzheimer’s, Parkinson’s and prion diseases, and for differentiation of distinct cell types, such as stem cells or cancer cells. By combining the LCO technique with other technology platforms, multimodal molecular imaging tools that can be used to gain novel insights regarding fundamental disease related biological mechanisms from the nanoscopic to the macroscopic level will be achieved. The LCO molecular scaffolds will also be evaluated as therapeutically active agents towards pathologic molecular process underlying protein aggregation diseases, bacterial infection and cancer. The main objectives of the project are;
• To synthesize a diverse library of novel LCOs specific for disease related molecular targets
• To develop novel LCO-hybrid materials for multimodal real time in vivo imaging of biological and pathological processes from the nanoscopic (molecular, cellular) to the macroscopic level (body, organ)
• To utilize the novel real-time imaging probes for studying the pathological or biological processes associated with certain diseases, including protein aggregation diseases, such as Alzheimer’s and Parkinson’s diseases, bacterial infection and cancer.
• To explore LCO and LCO-based pharmacophores as therapeutics towards pathological molecular process involved in protein aggregation diseases, bacterial infection and cancer.
The main focus of the project is to synthesize novel molecular tools but the project has a multidisciplinary research approach and involves research disciplines such as organic chemistry, physics, biochemistry and medicine. The purpose is to provide real-time in vivo imaging agents that can be utilized for studying both the nanoscopic molecular mechanism and the macro-pathology of a diversity of biological events. In addition, the same molecular scaffold will be explored for the development of therapeutic agents. We foresee that the novel multimodal tools will be of relevance to a wide community of researchers and also of great interest to the European health care industry.
Max ERC Funding
1 498 800 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym MYCASOR
Project Speciation through fungi? - The role of mycorrhizal associations in orchid diversification
Researcher (PI) Hans Jacquemyn
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary The Orchidaceae is the most diverse family of angiosperms with an estimated number of over 24,000 species. It has long been believed that co-evolution with pollinating animals has played an instrumental role in the unparalleled diversification of the Orchidaceae. Many orchid species, however, are generalists with respect to their pollinators. Because the availability of a suitable mycorrhizal fungus is crucial to orchid establishment, it has recently been suggested that diversification might also have been driven by irregular fungal distributions, combined with high mycorrhizal specificities.
Evidence for this hypothesis is still lacking, and at present, very little is known about the nature and specificity of orchid-mycorrhizae associations. Most studies so far have reported high specificity and single-species associations. However, from an ecological point of view high specificity and single-species associations are puzzling and it is unclear whether the reported results might be biased by methodological issues.
The general aim of the proposed study is to reveal the potential role of mycorrhizal associations in orchid diversification. More specifically, I want to elucidate the nature and specificity of orchid-mycorrhizae associations, to investigate the availability of orchid mycorrhizae in natural populations and to study the role of mycorrhizal associations in acting as a post-mating reproductive barrier. To this end, I will apply, for the first time, multiplex assays that can detect several fungi simultaneously.
The study will be conducted across the whole distribution area of 21 species of the genus Orchis. I will test for mycorrhizal specificity and investigate evolutionary trajectories of orchid-mycorrhizae associations. Advanced spatial point pattern analyses combined with seed baiting techniques will be used to detect spatial variation in fungal availability in natural populations.
Summary
The Orchidaceae is the most diverse family of angiosperms with an estimated number of over 24,000 species. It has long been believed that co-evolution with pollinating animals has played an instrumental role in the unparalleled diversification of the Orchidaceae. Many orchid species, however, are generalists with respect to their pollinators. Because the availability of a suitable mycorrhizal fungus is crucial to orchid establishment, it has recently been suggested that diversification might also have been driven by irregular fungal distributions, combined with high mycorrhizal specificities.
Evidence for this hypothesis is still lacking, and at present, very little is known about the nature and specificity of orchid-mycorrhizae associations. Most studies so far have reported high specificity and single-species associations. However, from an ecological point of view high specificity and single-species associations are puzzling and it is unclear whether the reported results might be biased by methodological issues.
The general aim of the proposed study is to reveal the potential role of mycorrhizal associations in orchid diversification. More specifically, I want to elucidate the nature and specificity of orchid-mycorrhizae associations, to investigate the availability of orchid mycorrhizae in natural populations and to study the role of mycorrhizal associations in acting as a post-mating reproductive barrier. To this end, I will apply, for the first time, multiplex assays that can detect several fungi simultaneously.
The study will be conducted across the whole distribution area of 21 species of the genus Orchis. I will test for mycorrhizal specificity and investigate evolutionary trajectories of orchid-mycorrhizae associations. Advanced spatial point pattern analyses combined with seed baiting techniques will be used to detect spatial variation in fungal availability in natural populations.
Max ERC Funding
1 499 800 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym NANOCELLIMAGE
Project Ultrasmall Chemical Imaging of Cells and Vesicular Release
Researcher (PI) Andrew Ewing
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Call Details Advanced Grant (AdG), PE4, ERC-2010-AdG_20100224
Summary The long-term goal of this research is to establish the chain of molecular events associated with (1) neurotransmitter release at the single cell and subcellular level and (2) with cell differentiation and reprogramming. These are incredibly important goals for which there are few analytical chemistry methods that are available and useful. The immediate goal therefore includes development of three chemical methodologies at the cutting edge of analytical chemistry: 1) the development of arrays of nanometer electrodes that can be used to spatially measure the release of easily oxidized substances across the cell surface; 2) to improve the combination of MALDI and cluster SIMS ion sources on an orthogonal QStar instrument to enable protein and glycoprotein analysis at the single whole cell level, lipid domain analysis at the subcellular level, and importantly, depth profiling; and 3) the application of information discovered at single cells and of the methods developed in goals 1 and 2 to an in vitro model of cell-to-cell communication and regeneration. I intend to build on my expertise in both electrochemistry and SIMS imaging to develop these approaches. The work described here constitutes two new directions of research in my group as well as new analytical chemistry, and, if successful, will lead to researchers being able to gather incredibly important new data about cell-to-cell communication and cell differentiation and reprogramming as well as to a better understanding the role of lipids in exocytosis and endocytosis.
Summary
The long-term goal of this research is to establish the chain of molecular events associated with (1) neurotransmitter release at the single cell and subcellular level and (2) with cell differentiation and reprogramming. These are incredibly important goals for which there are few analytical chemistry methods that are available and useful. The immediate goal therefore includes development of three chemical methodologies at the cutting edge of analytical chemistry: 1) the development of arrays of nanometer electrodes that can be used to spatially measure the release of easily oxidized substances across the cell surface; 2) to improve the combination of MALDI and cluster SIMS ion sources on an orthogonal QStar instrument to enable protein and glycoprotein analysis at the single whole cell level, lipid domain analysis at the subcellular level, and importantly, depth profiling; and 3) the application of information discovered at single cells and of the methods developed in goals 1 and 2 to an in vitro model of cell-to-cell communication and regeneration. I intend to build on my expertise in both electrochemistry and SIMS imaging to develop these approaches. The work described here constitutes two new directions of research in my group as well as new analytical chemistry, and, if successful, will lead to researchers being able to gather incredibly important new data about cell-to-cell communication and cell differentiation and reprogramming as well as to a better understanding the role of lipids in exocytosis and endocytosis.
Max ERC Funding
2 491 881 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym NEURAL RENEWAL
Project Neurogenesis in the adult human brain
Researcher (PI) Jonas Kristoffer Frisén
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS5, ERC-2010-AdG_20100317
Summary One of the characteristics of the central nervous system is its plasticity, with for example a remarkable capacity to store new information. It was for long time thought that there was very little plasticity in terms of exchanging cells and that we essentially were limited to the neurons we were born with. It is now well established that new neurons are added to certain regions of the adult brain in most mammals, although it has been very difficult to study in humans.
The proposed project aims to unveil the cell lineage producing new neurons in the adult human brain and to assess the extent of neurogenesis and how it may change in for example aging and neurological and psychiatric diseases. We propose to take advantage of the rapid development of sequencing technology to assess the origin and lineage of new cells in the human brain by phylogenetic fate mapping. This will be combined with the analysis of the turnover of neurons in the adult human brain by a retrospective birth dating methodology which we recently have developed based on the integration of nuclear bomb test derived 14C. This is a cross-disciplinary project that bridges from basic cell and molecular biology, latest generation DNA sequencing technology via clinical medicine and mathematical modeling to nuclear physics.
A possible role for alterations in adult neurogenesis in the etiology of both depression and schizophrenia has recently received much interest. However, the link between neurogenesis and psychiatric diseases is based on a series of indirect indications, mainly in experimental animals. It is pivotal to gain direct information on the relationship between neurogenesis and psychiatric and neurological diseases in humans.
Summary
One of the characteristics of the central nervous system is its plasticity, with for example a remarkable capacity to store new information. It was for long time thought that there was very little plasticity in terms of exchanging cells and that we essentially were limited to the neurons we were born with. It is now well established that new neurons are added to certain regions of the adult brain in most mammals, although it has been very difficult to study in humans.
The proposed project aims to unveil the cell lineage producing new neurons in the adult human brain and to assess the extent of neurogenesis and how it may change in for example aging and neurological and psychiatric diseases. We propose to take advantage of the rapid development of sequencing technology to assess the origin and lineage of new cells in the human brain by phylogenetic fate mapping. This will be combined with the analysis of the turnover of neurons in the adult human brain by a retrospective birth dating methodology which we recently have developed based on the integration of nuclear bomb test derived 14C. This is a cross-disciplinary project that bridges from basic cell and molecular biology, latest generation DNA sequencing technology via clinical medicine and mathematical modeling to nuclear physics.
A possible role for alterations in adult neurogenesis in the etiology of both depression and schizophrenia has recently received much interest. However, the link between neurogenesis and psychiatric diseases is based on a series of indirect indications, mainly in experimental animals. It is pivotal to gain direct information on the relationship between neurogenesis and psychiatric and neurological diseases in humans.
Max ERC Funding
2 491 235 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym NEURONSINMOTION
Project Linking glutamatergic spinal cord and brainstem neuronal circuits to the control of locomotor behavior
Researcher (PI) Ole Kiehn
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS5, ERC-2010-AdG_20100317
Summary Locomotion is an essential motor act that for the most part is controlled by neuronal circuits in the spinal cord itself, called central pattern generators (CPGs), although their activity is turned on from centers in the brainstem. Understanding the operation of CPG circuits in mammals has been a significant challenge to neuroscientists over the last 50 years. The CPG for walking generates rhythm, as well as the precise patterns of muscular activity. The neural assembly that is directly involved in generating the locomotor rhythm is completely unknown. There is strong evidence from pharmacological and lesion studies showing that glutamatergic neurons are responsible for this function. Here, I propose to identify these key glutamatergic neuronal CPG circuits. As a first step we will use state-of-the-art RNA-sequencing to obtain the complete transcriptome of glutamatergic subpopulations in the ventral spinal cord of the mouse to define new postnatally expressed molecular markers. To link glutamatergic neuronal subpopulations to the locomotor behavior we will use transgenic mouse systems to incorporate light-activated switches in a cell specific way. These tools will provide a new basis for functional and network studies needed to understand the CPG operation. We also propose to use mouse models with optogenetic switches to provide a molecular identification of the glutamatergic locomotor command systems and their integration in the CPG. Our analysis will provide a unified characterization of the neuronal organization of the mammalian CPG and its immediate control from the brain. Understanding the locomotor CPG and its control in mammals is of outmost importance for improving rehabilitation of spinal cord injured patients and designing new repair strategies.
Summary
Locomotion is an essential motor act that for the most part is controlled by neuronal circuits in the spinal cord itself, called central pattern generators (CPGs), although their activity is turned on from centers in the brainstem. Understanding the operation of CPG circuits in mammals has been a significant challenge to neuroscientists over the last 50 years. The CPG for walking generates rhythm, as well as the precise patterns of muscular activity. The neural assembly that is directly involved in generating the locomotor rhythm is completely unknown. There is strong evidence from pharmacological and lesion studies showing that glutamatergic neurons are responsible for this function. Here, I propose to identify these key glutamatergic neuronal CPG circuits. As a first step we will use state-of-the-art RNA-sequencing to obtain the complete transcriptome of glutamatergic subpopulations in the ventral spinal cord of the mouse to define new postnatally expressed molecular markers. To link glutamatergic neuronal subpopulations to the locomotor behavior we will use transgenic mouse systems to incorporate light-activated switches in a cell specific way. These tools will provide a new basis for functional and network studies needed to understand the CPG operation. We also propose to use mouse models with optogenetic switches to provide a molecular identification of the glutamatergic locomotor command systems and their integration in the CPG. Our analysis will provide a unified characterization of the neuronal organization of the mammalian CPG and its immediate control from the brain. Understanding the locomotor CPG and its control in mammals is of outmost importance for improving rehabilitation of spinal cord injured patients and designing new repair strategies.
Max ERC Funding
2 500 000 €
Duration
Start date: 2011-08-01, End date: 2016-07-31
Project acronym PAAL
Project Practical Approximation Algorithms
Researcher (PI) Piotr Sankowski
Host Institution (HI) UNIWERSYTET WARSZAWSKI
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary The goal of this proposal is the development and study of practical approximation algorithms. We will base our study on
theoretical models that can describe requirements for algorithms that make them practically efficient. We plan to develop an
efficient and useful programming library of approximation algorithms.
Our research on approximation algorithms will be concentrated on two main topics:
- multi-problem optimization, when the solution has to be composed out of different problems that need to interact,
- interplay between regular and random structure of network that could allow construction of good approximation algorithms.
The above concepts try to capture the notion of effective algorithms. It has to be underlined that they were not studied before.
The practical importance of these problems will be verified by the accompanying work on generic programming concepts
for approximation algorithms. These concepts will form the basis of universal library that will include Web algorithms and
algorithms for physical applications.
Summary
The goal of this proposal is the development and study of practical approximation algorithms. We will base our study on
theoretical models that can describe requirements for algorithms that make them practically efficient. We plan to develop an
efficient and useful programming library of approximation algorithms.
Our research on approximation algorithms will be concentrated on two main topics:
- multi-problem optimization, when the solution has to be composed out of different problems that need to interact,
- interplay between regular and random structure of network that could allow construction of good approximation algorithms.
The above concepts try to capture the notion of effective algorithms. It has to be underlined that they were not studied before.
The practical importance of these problems will be verified by the accompanying work on generic programming concepts
for approximation algorithms. These concepts will form the basis of universal library that will include Web algorithms and
algorithms for physical applications.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym PORESP
Project Poverty, Resource Equality, and Social Policies
Researcher (PI) François Paul P Maniquet
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Advanced Grant (AdG), SH1, ERC-2010-AdG_20100407
Summary This project aims at revisiting the economics of poverty by using recent advances in welfare economics. First, poverty measurement theory will be enriched by taking account of individual preferences over the several dimensions of poverty. New poverty indices will be defined. They will be applied using panel data of material standard of living and subjective satisfaction to study the recent evolution of poverty in developed societies. Second, the ethical value of poverty reduction will be added to theories of social welfare based on equality of opportunities. New evaluation criteria of taxation policies will be derived. These criteria will be applied to the design of fiscal reforms.
Summary
This project aims at revisiting the economics of poverty by using recent advances in welfare economics. First, poverty measurement theory will be enriched by taking account of individual preferences over the several dimensions of poverty. New poverty indices will be defined. They will be applied using panel data of material standard of living and subjective satisfaction to study the recent evolution of poverty in developed societies. Second, the ethical value of poverty reduction will be added to theories of social welfare based on equality of opportunities. New evaluation criteria of taxation policies will be derived. These criteria will be applied to the design of fiscal reforms.
Max ERC Funding
1 350 000 €
Duration
Start date: 2011-06-01, End date: 2017-05-31
Project acronym PPPHS
Project Prescriptive Prescriptions: Pharmaceuticals and Healthy Subjectivities
Researcher (PI) Ericka Sue Johnson
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary This research asks how pharmaceuticals prescribe the healthy subject. It examines the cultural meanings and expectations attached to four prescription drugs, and compares the policies and practices around their use in two countries, Sweden and the UK.
Empirically, it studies prescription medicines on the outer edges of adulthood: the HPV vaccine; hormone treatments for early puberty; alpha-blockers against Benign Prostrate Hyperplasia; and pharmaceutical developments against Alzheimer s disease. This view from the edges of the mature subject will bring into focus the practices and pleasures, responsibilities and rewards the adult subject position contains (or at least promises), the gendered positionalities it entails and culturally specific expectations articulated by medical prescriptions. The project conceptualizes of pharmaceuticals as flexible technologies, as actors which influence our identities but which also work within and are constrained by institutional policies, social values, medical practices and the material world.
The study will open new research horizons on two levels: The groundbreaking methodological approach, with hands-on, collaborative analytical work in PhD courses and analysis workshops between the participants and sites, will ensure an interdisciplinary approach by truly in actual research practice combining approaches from Science Technology and Society, Gender Studies and Posthumanist Studies. In addition, while firmly grounded in concepts of performative subjecthood, identity, the Self and materialities, this project will force a re-reading of the empirical material through ideas from early medical sociology texts, work which viewed health, illness and treatments as embedded in and performed by communities rather than as possessions and responsibilities of the individual patient. This collaborative re-reading will challenge theoretical ideas about the medicalization of the healthy subject and critical pharmaceutical studie
Summary
This research asks how pharmaceuticals prescribe the healthy subject. It examines the cultural meanings and expectations attached to four prescription drugs, and compares the policies and practices around their use in two countries, Sweden and the UK.
Empirically, it studies prescription medicines on the outer edges of adulthood: the HPV vaccine; hormone treatments for early puberty; alpha-blockers against Benign Prostrate Hyperplasia; and pharmaceutical developments against Alzheimer s disease. This view from the edges of the mature subject will bring into focus the practices and pleasures, responsibilities and rewards the adult subject position contains (or at least promises), the gendered positionalities it entails and culturally specific expectations articulated by medical prescriptions. The project conceptualizes of pharmaceuticals as flexible technologies, as actors which influence our identities but which also work within and are constrained by institutional policies, social values, medical practices and the material world.
The study will open new research horizons on two levels: The groundbreaking methodological approach, with hands-on, collaborative analytical work in PhD courses and analysis workshops between the participants and sites, will ensure an interdisciplinary approach by truly in actual research practice combining approaches from Science Technology and Society, Gender Studies and Posthumanist Studies. In addition, while firmly grounded in concepts of performative subjecthood, identity, the Self and materialities, this project will force a re-reading of the empirical material through ideas from early medical sociology texts, work which viewed health, illness and treatments as embedded in and performed by communities rather than as possessions and responsibilities of the individual patient. This collaborative re-reading will challenge theoretical ideas about the medicalization of the healthy subject and critical pharmaceutical studie
Max ERC Funding
1 121 760 €
Duration
Start date: 2011-08-01, End date: 2016-07-31
Project acronym PRISTINE-PD
Project Prion-like transmission of α-synuclein in Parkinson's disease
Researcher (PI) Patrik Brundin
Host Institution (HI) LUNDS UNIVERSITET
Call Details Advanced Grant (AdG), LS5, ERC-2010-AdG_20100317
Summary Protein misfolding is implicated as a pathogenetic mechanism in several neurodegenerative disorders, including Parkinson¿s disease (PD). In prion disease, the misfolded protein spreads between cells and acts as a ¿permissive template¿, causing protein in the recipient cell to misfold. In 2008 we reported that classical neuropathological changes gradually propagate from a PD patient¿s brain to a graft of healthy neurons, over one decade after surgery. These groundbreaking findings suggest that the protein ¿-synuclei may transfer between cells and propagate protein aggregation in a ¿prion-like¿ fashion in PD. This molecular disease mechanism might explain how protein aggregates gradually spread throughout the nervous system and promote progression of disease symptoms. This highly novel concept represents a hitherto poorly explored route of intercellular communication and might have far-reaching implications well beyond PD. Little is known about how various forms of ¿-synuclein are taken up; if they seed aggregation in the recipient cell; how they affect proteostasis in the recipient cells; if they are transported axonally; and, finally, whether they can cause spreading of PD-like pathology in the nervous system.
In a multidisciplinary project will now examine the molecular mechanisms underlying translocation of ¿-synuclein across a lipid membrane, from the outside to the inside of a cell; what the molecular and functional consequences are of importing ¿-synuclein; what the dynamics of ¿-synuclein transfer are in vivo; whether aggregates of misfolded ¿-synuclein can spread from one region of the nervous system to another; what genes influence the likelihood for ¿-synuclein transfer to take place; and, finally if small molecules that inhibit ¿-synuclein can be identified. Our studies will shed light on what appears to be a new principle for pathogenesis of neurodegenerative disorders and can open up avenues for new therapeutic strategies.
Summary
Protein misfolding is implicated as a pathogenetic mechanism in several neurodegenerative disorders, including Parkinson¿s disease (PD). In prion disease, the misfolded protein spreads between cells and acts as a ¿permissive template¿, causing protein in the recipient cell to misfold. In 2008 we reported that classical neuropathological changes gradually propagate from a PD patient¿s brain to a graft of healthy neurons, over one decade after surgery. These groundbreaking findings suggest that the protein ¿-synuclei may transfer between cells and propagate protein aggregation in a ¿prion-like¿ fashion in PD. This molecular disease mechanism might explain how protein aggregates gradually spread throughout the nervous system and promote progression of disease symptoms. This highly novel concept represents a hitherto poorly explored route of intercellular communication and might have far-reaching implications well beyond PD. Little is known about how various forms of ¿-synuclein are taken up; if they seed aggregation in the recipient cell; how they affect proteostasis in the recipient cells; if they are transported axonally; and, finally, whether they can cause spreading of PD-like pathology in the nervous system.
In a multidisciplinary project will now examine the molecular mechanisms underlying translocation of ¿-synuclein across a lipid membrane, from the outside to the inside of a cell; what the molecular and functional consequences are of importing ¿-synuclein; what the dynamics of ¿-synuclein transfer are in vivo; whether aggregates of misfolded ¿-synuclein can spread from one region of the nervous system to another; what genes influence the likelihood for ¿-synuclein transfer to take place; and, finally if small molecules that inhibit ¿-synuclein can be identified. Our studies will shed light on what appears to be a new principle for pathogenesis of neurodegenerative disorders and can open up avenues for new therapeutic strategies.
Max ERC Funding
2 499 998 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym PROPHET
Project Simplifying Development and Deployment of High-Performance, Reliable Distributed Systems
Researcher (PI) Dejan Kostic
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary Distributed systems form the foundation of our society's infrastructure. Unfortunately, they suffer from a number of problems. First, they are time-consuming to develop because it is difficult for the programmer to envision all possible deployment environments and design adaptation mechanisms that will achieve high performance in all scenarios. Second, the code is complex due to the numerous outcomes that have to be accounted for at development time and the need to reimplement state and network models. Third, the distributed systems are unreliable because of the difficulties of programming a system that runs over an asynchronous network and handles all possible failure scenarios. If left unchecked, these problems will keep plaguing existing systems and hinder development of a new generation of distributed services.
We propose a radically new approach to simplifying development and deployment of high-performance, reliable distributed systems. The key insight is in creating a new programming model and architecture that leverages the increases in per-node computational power, bandwidth and storage to achieve this goal. Instead of resolving difficult deployment choices at coding time, the programmer merely specifies the choices and the objectives that should be satisfied. The new runtime then resolves the choices during live execution so as to maximize the objectives. To accomplish this task, the runtime uses a groundbreaking combination of state-space exploration, simulation, behavior prediction, performance modeling, and program steering. In addition, our approach reuses the effort spent in distributed system testing by transmitting a behavior summary to the runtime to further speed up choice resolution.
Summary
Distributed systems form the foundation of our society's infrastructure. Unfortunately, they suffer from a number of problems. First, they are time-consuming to develop because it is difficult for the programmer to envision all possible deployment environments and design adaptation mechanisms that will achieve high performance in all scenarios. Second, the code is complex due to the numerous outcomes that have to be accounted for at development time and the need to reimplement state and network models. Third, the distributed systems are unreliable because of the difficulties of programming a system that runs over an asynchronous network and handles all possible failure scenarios. If left unchecked, these problems will keep plaguing existing systems and hinder development of a new generation of distributed services.
We propose a radically new approach to simplifying development and deployment of high-performance, reliable distributed systems. The key insight is in creating a new programming model and architecture that leverages the increases in per-node computational power, bandwidth and storage to achieve this goal. Instead of resolving difficult deployment choices at coding time, the programmer merely specifies the choices and the objectives that should be satisfied. The new runtime then resolves the choices during live execution so as to maximize the objectives. To accomplish this task, the runtime uses a groundbreaking combination of state-space exploration, simulation, behavior prediction, performance modeling, and program steering. In addition, our approach reuses the effort spent in distributed system testing by transmitting a behavior summary to the runtime to further speed up choice resolution.
Max ERC Funding
1 450 000 €
Duration
Start date: 2011-02-01, End date: 2016-12-31
Project acronym QUALIAGE
Project Spatial protein quality control and its links to aging, proteotoxicity, and polarity
Researcher (PI) Lars Bertil Thomas Nyström
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Advanced Grant (AdG), LS3, ERC-2010-AdG_20100317
Summary Propagation of a species requires periodic cell renewal to avoid clonal senescence. My
laboratory has described a new mechanism for such cell renewal in yeast, in which damaged
protein aggregates are transported out of the daughter buds along actin cables to preserve
youthfulness. Such spatial protein quality control (SQC) is a Sir2p-dependent process and by establishing the global genetic interaction network of SIR2, we identified the
polarisome as the machinery required for mitotic segregation and translocation of protein
aggregates. In addition, we found that the fusion of smaller aggregates into large inclusion
bodies, a process that has been suggested to reduce the toxicity of such aggregates, requires
actin cables and their nucleation at the septin ring. Sir2p controls damage segregation by
affecting deacetylation and the activity of the chaperonin CCT, enhancing actin folding and
polymerization. Considering that CCT has been implicated in mitigating
aggregation/toxicity of polyglutamine proteins, e.g. huntingtin, and that actin cables is
affecting formation, fusion, and resolution of aggregates, we hypothesize that CCT
deacetylation may underlie Sirt1¿s (mammalian orthologues of Sir2p) documented beneficial
effects in several neurodegenerative disorders caused by proteotoxic aggregates. This project
is aimed at approaching this hypothesis and to elucidate, on a genome-wide scale, how the
cell tether, sort, fuse, and detoxify aggregates with the help of CCT, actin cables, and the
polarity machinery. This will be accomplished by combining the power of synthetic genetic
array analysis, high-content imaging, genome wide proximity ligand assays, and microfluidics.
Using such approaches, the project seeks to decipher the machineries of the spatial quality
control network as a means to identify new therapeutic targets that may retard or postpone
the development of age-related maladies, including neurodegenerative disorders.
Summary
Propagation of a species requires periodic cell renewal to avoid clonal senescence. My
laboratory has described a new mechanism for such cell renewal in yeast, in which damaged
protein aggregates are transported out of the daughter buds along actin cables to preserve
youthfulness. Such spatial protein quality control (SQC) is a Sir2p-dependent process and by establishing the global genetic interaction network of SIR2, we identified the
polarisome as the machinery required for mitotic segregation and translocation of protein
aggregates. In addition, we found that the fusion of smaller aggregates into large inclusion
bodies, a process that has been suggested to reduce the toxicity of such aggregates, requires
actin cables and their nucleation at the septin ring. Sir2p controls damage segregation by
affecting deacetylation and the activity of the chaperonin CCT, enhancing actin folding and
polymerization. Considering that CCT has been implicated in mitigating
aggregation/toxicity of polyglutamine proteins, e.g. huntingtin, and that actin cables is
affecting formation, fusion, and resolution of aggregates, we hypothesize that CCT
deacetylation may underlie Sirt1¿s (mammalian orthologues of Sir2p) documented beneficial
effects in several neurodegenerative disorders caused by proteotoxic aggregates. This project
is aimed at approaching this hypothesis and to elucidate, on a genome-wide scale, how the
cell tether, sort, fuse, and detoxify aggregates with the help of CCT, actin cables, and the
polarity machinery. This will be accomplished by combining the power of synthetic genetic
array analysis, high-content imaging, genome wide proximity ligand assays, and microfluidics.
Using such approaches, the project seeks to decipher the machineries of the spatial quality
control network as a means to identify new therapeutic targets that may retard or postpone
the development of age-related maladies, including neurodegenerative disorders.
Max ERC Funding
2 371 262 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym REPMIT
Project THE ENZYMATIC MACHINERY OF HUMAN MITOCHONDRIAL DNA MAINTENANCE
Researcher (PI) Maria Gustafsson Falkenberg
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2010-StG_20091118
Summary SUMMARY
Mitochondria are required to convert food into usable energy forms and every cell contains thousands of them. Unlike most other cellular compartments, mitochondria have their own genomes (mtDNA) that encode for 13 of the about 90 proteins present in the respiratory chain. All proteins necessary for mtDNA replication, as well as transcription and translation of mtDNA-encoded genes, are encoded in the nucleus. Mutations in nuclear-encoded proteins required for mtDNA maintenance is an important cause of neurodegeneration and muscle diseases. The common result of these defects is either mtDNA depletion or accumulation of multiple deletions of mtDNA in postmitotic tissues.
Research in my laboratory will elucidate the molecular mechanisms and regulation of mitochondrial DNA replication in human cells. We will establish how mtDNA is packaged into nucleoprotein complexes, a.k.a. nucleoids and establish how these nucleoids are selected for mtDNA replication. We will elucidate the molecular mechanisms by which specific mutations in the mtDNA replication machinery affect mtDNA maintenance and cause human disease.
Mitochondrial dysfunction is not limited to rare, genetic disorders, but also associated with age-associated common diseases as well as with the normal aging process. I will use my biochemical insights in combination with mouse genetics to address the hypothesis that increased mtDNA mutation load may be an important cause of normal aging.
My specific aims will be:
Aim 1. To define how initiation of mtDNA replication at OriH is regulated.
Aim 2. To identify and characterize regulators of mtDNA replication.
Aim 3. To characterize the structure and function of the mtDNA nucleoid in DNA replication.
Aim 4. To address the mitochondrial theory of ageing
Summary
SUMMARY
Mitochondria are required to convert food into usable energy forms and every cell contains thousands of them. Unlike most other cellular compartments, mitochondria have their own genomes (mtDNA) that encode for 13 of the about 90 proteins present in the respiratory chain. All proteins necessary for mtDNA replication, as well as transcription and translation of mtDNA-encoded genes, are encoded in the nucleus. Mutations in nuclear-encoded proteins required for mtDNA maintenance is an important cause of neurodegeneration and muscle diseases. The common result of these defects is either mtDNA depletion or accumulation of multiple deletions of mtDNA in postmitotic tissues.
Research in my laboratory will elucidate the molecular mechanisms and regulation of mitochondrial DNA replication in human cells. We will establish how mtDNA is packaged into nucleoprotein complexes, a.k.a. nucleoids and establish how these nucleoids are selected for mtDNA replication. We will elucidate the molecular mechanisms by which specific mutations in the mtDNA replication machinery affect mtDNA maintenance and cause human disease.
Mitochondrial dysfunction is not limited to rare, genetic disorders, but also associated with age-associated common diseases as well as with the normal aging process. I will use my biochemical insights in combination with mouse genetics to address the hypothesis that increased mtDNA mutation load may be an important cause of normal aging.
My specific aims will be:
Aim 1. To define how initiation of mtDNA replication at OriH is regulated.
Aim 2. To identify and characterize regulators of mtDNA replication.
Aim 3. To characterize the structure and function of the mtDNA nucleoid in DNA replication.
Aim 4. To address the mitochondrial theory of ageing
Max ERC Funding
1 492 684 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym RESIST
Project Human Rights versus Democracy? Towards a conceptual genealogy of skepticism about human rights in contemporary Political Thought
Researcher (PI) Justine Benedicte Philomène Lacroix
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary The aim of this research project is to outline a conceptual genealogy and a critical typology of the theoretical arguments that have been advanced, in the name of democracy, against the dominant human rights discourse of contemporary societies. In light of the prolific literature on human rights in general, we might expect the counter arguments made since the Declarations of 1776 and 1789 to have been widely explored as an area of interest. This is not, however, the case.
Whereas the reactionary critique of human rights dates far back and is well known, its modern equivalent which often draws in important ways from the liberal tradition is far less familiar terrain to political theorists. However, the central hypothesis running through this project is that challenges to human rights discourse must not be confused with antiliberal or antidemocratic stances. The main types of critique will be outlined, with an emphasis on their complexity and diverse nature, thus resisting the temptation to generalise them as part of a tradition of opposition to legal-political modernity. This typology will then be supplemented with historical contextualisation. Contemporary examples of the democratic critique of the primacy of human rights will be compared with historical examples of thinkers who criticised human rights as such, notably Bentham, Burke, Marx, De Maistre, Comte and Schmitt. The key research question is whether a common critical aim can be articulated from different intellectual starting points that are otherwise far apart; and whether or not the structure of the arguments that run through these approaches significantly changes the type of critique advanced.
Summary
The aim of this research project is to outline a conceptual genealogy and a critical typology of the theoretical arguments that have been advanced, in the name of democracy, against the dominant human rights discourse of contemporary societies. In light of the prolific literature on human rights in general, we might expect the counter arguments made since the Declarations of 1776 and 1789 to have been widely explored as an area of interest. This is not, however, the case.
Whereas the reactionary critique of human rights dates far back and is well known, its modern equivalent which often draws in important ways from the liberal tradition is far less familiar terrain to political theorists. However, the central hypothesis running through this project is that challenges to human rights discourse must not be confused with antiliberal or antidemocratic stances. The main types of critique will be outlined, with an emphasis on their complexity and diverse nature, thus resisting the temptation to generalise them as part of a tradition of opposition to legal-political modernity. This typology will then be supplemented with historical contextualisation. Contemporary examples of the democratic critique of the primacy of human rights will be compared with historical examples of thinkers who criticised human rights as such, notably Bentham, Burke, Marx, De Maistre, Comte and Schmitt. The key research question is whether a common critical aim can be articulated from different intellectual starting points that are otherwise far apart; and whether or not the structure of the arguments that run through these approaches significantly changes the type of critique advanced.
Max ERC Funding
793 999 €
Duration
Start date: 2010-10-01, End date: 2016-03-31
Project acronym RNA+P=123D
Project Breaking the code of RNA sequence-structure-function relationships: New strategies and tools for modelling and engineering of RNA and RNA-protein complexes
Researcher (PI) Janusz Marek Bujnicki
Host Institution (HI) INTERNATIONAL INSTITUTE OF MOLECULAR AND CELL BIOLOGY
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Ribonucleic acid (RNA) is a large class of macromolecules that plays a key role in the communication of biological information between DNA and proteins. RNAs have been also shown to perform enzymatic catalysis. Recently, numerous new RNAs have been identified and shown to perform essential regulatory roles in cells.
As with proteins, the function of RNA depends on its structure, which in turn is encoded in the linear sequence. The secondary structure of RNA is defined by canonical base pairs, while the tertiary (3D) structure is formed mostly by non-canonical base pairs that form three-dimensional motifs. RNA is similar to proteins in that the development of methods for 3D structure prediction is absolutely essential to functionally interpret the information encoded in the primary sequence of genes. For proteins there are many freely available methods for automated protein 3D structure prediction that produce reasonably accurate and useful models. There are also methods for objective assessment of the protein model quality. However, there are no such methods for automated 3D structure modelling of RNA. There are only methods for RNA secondary structure prediction and a few methods for manual 3D modelling, but no automated methods for comparative modelling, fold-recognition of RNA, and evaluation of models. Only recently a few methods for de novo folding of RNA appeared, but they can provide useful models only for very short molecules.
Recently, inspired by methodology for protein modelling, we have developed prototype tools for both comparative (template-based) and de novo (template-free) modelling of RNA, which allow for building models for very large RNA molecules. These tools will be further optimized and tested. The major goal is to developed tools for RNA modelling to the level of existing protein-modelling methods and to combine RNA and protein-centric methods to allow multiscale modelling of protein-nucleic acid complexes, either with or without the aid of experimental data. This proposal also includes the development of methods for the assessment of model quality and benchmarking of methods. The software tools and the theoretical predictions will be extensively tested (also by experimental verification of models), optimized and applied to biologically and medically relevant RNAs and complexes.
In one sentence: The aim of this project is to use bioinformatics and experimental methods to crack the code of sequence-structure relationships in RNA and RNA-protein complexes and to revolutionise the field of RNA & RNP modelling and structure/function analyses.
Summary
Ribonucleic acid (RNA) is a large class of macromolecules that plays a key role in the communication of biological information between DNA and proteins. RNAs have been also shown to perform enzymatic catalysis. Recently, numerous new RNAs have been identified and shown to perform essential regulatory roles in cells.
As with proteins, the function of RNA depends on its structure, which in turn is encoded in the linear sequence. The secondary structure of RNA is defined by canonical base pairs, while the tertiary (3D) structure is formed mostly by non-canonical base pairs that form three-dimensional motifs. RNA is similar to proteins in that the development of methods for 3D structure prediction is absolutely essential to functionally interpret the information encoded in the primary sequence of genes. For proteins there are many freely available methods for automated protein 3D structure prediction that produce reasonably accurate and useful models. There are also methods for objective assessment of the protein model quality. However, there are no such methods for automated 3D structure modelling of RNA. There are only methods for RNA secondary structure prediction and a few methods for manual 3D modelling, but no automated methods for comparative modelling, fold-recognition of RNA, and evaluation of models. Only recently a few methods for de novo folding of RNA appeared, but they can provide useful models only for very short molecules.
Recently, inspired by methodology for protein modelling, we have developed prototype tools for both comparative (template-based) and de novo (template-free) modelling of RNA, which allow for building models for very large RNA molecules. These tools will be further optimized and tested. The major goal is to developed tools for RNA modelling to the level of existing protein-modelling methods and to combine RNA and protein-centric methods to allow multiscale modelling of protein-nucleic acid complexes, either with or without the aid of experimental data. This proposal also includes the development of methods for the assessment of model quality and benchmarking of methods. The software tools and the theoretical predictions will be extensively tested (also by experimental verification of models), optimized and applied to biologically and medically relevant RNAs and complexes.
In one sentence: The aim of this project is to use bioinformatics and experimental methods to crack the code of sequence-structure relationships in RNA and RNA-protein complexes and to revolutionise the field of RNA & RNP modelling and structure/function analyses.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym RNANTIBIOTICS
Project RNA-mediated virulence gene regulation: Identification of novel antibacterial compounds
Researcher (PI) Jan Jörgen Johansson
Host Institution (HI) UMEA UNIVERSITET
Call Details Starting Grant (StG), LS6, ERC-2010-StG_20091118
Summary All kingdoms possess a large fraction of RNA-based regulation. We identified several small non-coding regulatory RNAs (ncRNAs) in the human bacterial pathogen Listeria monocytogenes that controlled virulence by a direct RNA:RNA interaction. My group have also identified several 5´-untranslated RNAs (5´-UTRs) known to control expression of their downstream mRNA by a switch mechanism triggered by certain metabolites, specific compartments of the host or by different temperatures.
In the suggested project, we will analyze the mechanism by how various RNA-species function on a molecular level by biochemical and genetic approaches. By constructing mutations (deletion and base-substitutions), the role of the regulatory RNAs and their targets during pathogenesis will be pin-pointed using different virulence model organisms. For 5´-UTRs binding specific metabolites, we will add non-metabolic analogs to examine if such molecules can block the function of the 5´-UTRs and hence infection. The core structure of one identified ncRNA will be used as a scaffold to develop an RNA interference system in bacteria.
At least one RNA-helicase has been shown to be essential for bacterial motility and growth at 4°C. It is being purified to test its in vitro properties at mRNA targets and at different temperatures. Its in vivo role will be analyzed by genetic techniques.
Bacterial resistance against different antibiotics is an increasing problem worldwide. We have identified one pyridine molecule specifically targeting listerial virulence gene expression and its mechanism of action will be revealed by genetic and biochemical techniques. A diffusible, although yet unknown molecule, with bacteriostatic activity was observed and its nature and mechanism will be revealed mainly by biochemical experiments.
Our work will give important knowledge of how the bacterium uses RNA to sense its surroundings, but will also identifiy new types of antibacterial agents.
Summary
All kingdoms possess a large fraction of RNA-based regulation. We identified several small non-coding regulatory RNAs (ncRNAs) in the human bacterial pathogen Listeria monocytogenes that controlled virulence by a direct RNA:RNA interaction. My group have also identified several 5´-untranslated RNAs (5´-UTRs) known to control expression of their downstream mRNA by a switch mechanism triggered by certain metabolites, specific compartments of the host or by different temperatures.
In the suggested project, we will analyze the mechanism by how various RNA-species function on a molecular level by biochemical and genetic approaches. By constructing mutations (deletion and base-substitutions), the role of the regulatory RNAs and their targets during pathogenesis will be pin-pointed using different virulence model organisms. For 5´-UTRs binding specific metabolites, we will add non-metabolic analogs to examine if such molecules can block the function of the 5´-UTRs and hence infection. The core structure of one identified ncRNA will be used as a scaffold to develop an RNA interference system in bacteria.
At least one RNA-helicase has been shown to be essential for bacterial motility and growth at 4°C. It is being purified to test its in vitro properties at mRNA targets and at different temperatures. Its in vivo role will be analyzed by genetic techniques.
Bacterial resistance against different antibiotics is an increasing problem worldwide. We have identified one pyridine molecule specifically targeting listerial virulence gene expression and its mechanism of action will be revealed by genetic and biochemical techniques. A diffusible, although yet unknown molecule, with bacteriostatic activity was observed and its nature and mechanism will be revealed mainly by biochemical experiments.
Our work will give important knowledge of how the bacterium uses RNA to sense its surroundings, but will also identifiy new types of antibacterial agents.
Max ERC Funding
999 996 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym RPH
Project A revealed preference analysis of household consumption models
Researcher (PI) Bram De Rock
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Starting Grant (StG), SH1, ERC-2010-StG_20091209
Summary There is a huge variety in models for consumption behaviour of multi-person households that take into account the individual preferences of household members and the resulting household decision process. The difference stems from the modelling of the household decision process, which can go from non-cooperative behaviour up to explicit bargaining models. The main objective of this project is to create a toolbox for a robust comparison of the empirical performances of the various models. Typically, the existing methodology uses the differential approach to derive their characterizations. While this approach has many well-known advantages, it is not optimal for my main objective. Therefore I focus on a revealed preference methodology (RP), which avoids all functional specifications. I will derive RP characterizations for all models of household consumption behaviour. A second main objective is to demonstrate the empirical usefulness of my RP toolkit. Therefore I have to (i) develop richer models that integrate inter-temporal issues, separability assumptions,etc. and (ii) deal with empirical issues such as statistical power, measurement error, heterogeneity,etc. Many of these issues have been integrated in the RP characterizations of the unitary model. Extending these insights to the non-unitary context forms a second type of methodological challenges. In my applications on experimental as well as real-life data, I will (i) demonstrate the versatility of my RP toolkit; (ii) address specific questions in a stylized environment, as such I will, inter alia, contribute to the scarce empirical literature on bargaining models; (iii) illustrate that to tackle welfare related questions, the RP methodology can be complementary to the parametric approach by guiding the researcher in selecting the appropriate non-unitary models and/or functional specifications.
Summary
There is a huge variety in models for consumption behaviour of multi-person households that take into account the individual preferences of household members and the resulting household decision process. The difference stems from the modelling of the household decision process, which can go from non-cooperative behaviour up to explicit bargaining models. The main objective of this project is to create a toolbox for a robust comparison of the empirical performances of the various models. Typically, the existing methodology uses the differential approach to derive their characterizations. While this approach has many well-known advantages, it is not optimal for my main objective. Therefore I focus on a revealed preference methodology (RP), which avoids all functional specifications. I will derive RP characterizations for all models of household consumption behaviour. A second main objective is to demonstrate the empirical usefulness of my RP toolkit. Therefore I have to (i) develop richer models that integrate inter-temporal issues, separability assumptions,etc. and (ii) deal with empirical issues such as statistical power, measurement error, heterogeneity,etc. Many of these issues have been integrated in the RP characterizations of the unitary model. Extending these insights to the non-unitary context forms a second type of methodological challenges. In my applications on experimental as well as real-life data, I will (i) demonstrate the versatility of my RP toolkit; (ii) address specific questions in a stylized environment, as such I will, inter alia, contribute to the scarce empirical literature on bargaining models; (iii) illustrate that to tackle welfare related questions, the RP methodology can be complementary to the parametric approach by guiding the researcher in selecting the appropriate non-unitary models and/or functional specifications.
Max ERC Funding
834 720 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym SLRA
Project Structured low-rank approximation: Theory, algorithms, and applications
Researcher (PI) Ivan Valentinov Markovsky
Host Institution (HI) VRIJE UNIVERSITEIT BRUSSEL
Call Details Starting Grant (StG), PE7, ERC-2010-StG_20091028
Summary Today's state-of-the-art methods for data processing are model based. We propose a fundamentally new approach that does not depend on an explicit model representation and can be used for model-free data processing. From a theoretical point of view, the prime advantage of the newly proposed paradigm is conceptual unification of existing methods. From a practical point of view, the proposed paradigm opens new possibilities for development of computational methods for data processing.
The underlying computational tool in the proposed setting is low-rank approximation. Recent work by the applicant, co-workers, and others has demonstrated advantages of computational methods based on low-rank approximation over classical methods, based on solution of linear systems of equations. In this proposal, we will further advance the theory and algorithms for low-rank approximation by developing robust and efficient local optimisation methods and methods based on convex relaxations.
Low-rank approximation has applications in systems and control, signal processing, computer algebra, and machine learning, to name a few. Generic examples in system theory and signal processing are model reduction and system identification. Dimensionality reduction, classification, and information retrieval problems in machine learning can be formulated and solved as low-rank approximation problems, thus benefiting from the theory, algorithms, and numerical software tools developed in this research proposal. Beyond the scope of the proposal, we envisage that the newly proposed paradigm will catalyse cross-disciplinary research, leading to selection of the best theoretical tools and computational methods available as well as development of new ones by a synergy of ideas from different application domains.
Summary
Today's state-of-the-art methods for data processing are model based. We propose a fundamentally new approach that does not depend on an explicit model representation and can be used for model-free data processing. From a theoretical point of view, the prime advantage of the newly proposed paradigm is conceptual unification of existing methods. From a practical point of view, the proposed paradigm opens new possibilities for development of computational methods for data processing.
The underlying computational tool in the proposed setting is low-rank approximation. Recent work by the applicant, co-workers, and others has demonstrated advantages of computational methods based on low-rank approximation over classical methods, based on solution of linear systems of equations. In this proposal, we will further advance the theory and algorithms for low-rank approximation by developing robust and efficient local optimisation methods and methods based on convex relaxations.
Low-rank approximation has applications in systems and control, signal processing, computer algebra, and machine learning, to name a few. Generic examples in system theory and signal processing are model reduction and system identification. Dimensionality reduction, classification, and information retrieval problems in machine learning can be formulated and solved as low-rank approximation problems, thus benefiting from the theory, algorithms, and numerical software tools developed in this research proposal. Beyond the scope of the proposal, we envisage that the newly proposed paradigm will catalyse cross-disciplinary research, leading to selection of the best theoretical tools and computational methods available as well as development of new ones by a synergy of ideas from different application domains.
Max ERC Funding
782 960 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym SYDUGRAM
Project Symmetries and Dualities in Gravity and M-theory
Researcher (PI) Marc André Marie Albert Henneaux
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Advanced Grant (AdG), PE2, ERC-2010-AdG_20100224
Summary Despite its considerable success, Einstein theory of gravity is an unfinished revolution: it has limitations both at the microscopic scales and at the macroscopic scales. The objective of this proposal is to provide a better understanding of the gravitational interaction beyond Einstein. This will be done by analyzing, with the aim of identifying it, the symmetry structure underlying the searched-for fundamental formulation of gravity, relying on and exploring further the intriguing and fascinating infinite-dimensional algebras uncovered recently in the study of supergravities and M-theory. One of the motivations of the project is to make progress in the development of quantum gravity, with the goal of providing new insight into black holes and cosmological singularities.
Summary
Despite its considerable success, Einstein theory of gravity is an unfinished revolution: it has limitations both at the microscopic scales and at the macroscopic scales. The objective of this proposal is to provide a better understanding of the gravitational interaction beyond Einstein. This will be done by analyzing, with the aim of identifying it, the symmetry structure underlying the searched-for fundamental formulation of gravity, relying on and exploring further the intriguing and fascinating infinite-dimensional algebras uncovered recently in the study of supergravities and M-theory. One of the motivations of the project is to make progress in the development of quantum gravity, with the goal of providing new insight into black holes and cosmological singularities.
Max ERC Funding
1 511 556 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym SYNAPSEFUNCTION
Project Molecular studies of synaptic vesicle recycling in health and disease
Researcher (PI) Patrik Verstreken
Host Institution (HI) VIB
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Synaptic transmission is of paramount importance for neuronal circuit integrity; if synapses fail, circuits fail. Transmission of electrical pulses in our brain is critical for normal but also higher brain functions such as learning, memory formation and thought, and understanding the regulatory processes of synaptic transmission may provide insight into neurological and psychiatric disorders, such as Parkinson‟s disease, bipolar disorder and drug addiction that arise from defects in specific neuronal circuits in the brain.
Here, we propose to study novel regulatory mechanisms that operate at the synapse and have the capacity to be major regulators of synaptic plasticity. Our work will include studies of novel synaptic organelles and alternative pathways of synaptic vesicle endocytosis (e.g. clathrin-dependent or kiss-and-run), with a clear link to human disease (e.g. Parkinson‟s Disease). We will use innovative genetic screen approaches in flies and bacteria and study processes that regulate synaptic vesicle trafficking employing imaging, electrophysiology and electron microscopy with the ultimate hope of elucidating mechanisms of normal but also diseased brain function
Summary
Synaptic transmission is of paramount importance for neuronal circuit integrity; if synapses fail, circuits fail. Transmission of electrical pulses in our brain is critical for normal but also higher brain functions such as learning, memory formation and thought, and understanding the regulatory processes of synaptic transmission may provide insight into neurological and psychiatric disorders, such as Parkinson‟s disease, bipolar disorder and drug addiction that arise from defects in specific neuronal circuits in the brain.
Here, we propose to study novel regulatory mechanisms that operate at the synapse and have the capacity to be major regulators of synaptic plasticity. Our work will include studies of novel synaptic organelles and alternative pathways of synaptic vesicle endocytosis (e.g. clathrin-dependent or kiss-and-run), with a clear link to human disease (e.g. Parkinson‟s Disease). We will use innovative genetic screen approaches in flies and bacteria and study processes that regulate synaptic vesicle trafficking employing imaging, electrophysiology and electron microscopy with the ultimate hope of elucidating mechanisms of normal but also diseased brain function
Max ERC Funding
1 498 522 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym THE RISE
Project Travels, transmissions and transformations in the 3rd and 2nd millennium BC in northern Europe: the rise of
Bronze Age societies
Researcher (PI) Kristian Kristiansen
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Advanced Grant (AdG), SH6, ERC-2010-AdG_20100407
Summary Research problem: The 3rd and 2nd millennium was a period that saw major social and cultural transformations in Europe, from migrations and the introduction of metal (the Bronze Age) to new cultural identities and languages. As these two millennia were formative for Europe’s later history, these are hotly debated issues. However, they can now be resolved, at least in part, by the application of new science-based methodologies and the development of new interpretative frameworks.
Aims and methodologies: The project does so by adopting an interdisciplinary methodological approach that combines science and culture. Isotope tracing in combination with recent advances in ancient DNA is employed to test human origins and movements during the two millennia, as well as the origin of wool and textiles. Lead isotope is adopted to trace the origin of copper. Based on this the project will document and explain the forging of new identities and new types of interaction during the 3rd and 2nd millennium BC in temperate northern Europe, but with implications for western Eurasia.
Progress and originality: Accomplishment of front-line research results by combining archaeology with new developments in the natural sciences to produce new knowledge about the mobility of people, animals, things, ideas and technologies. This will allow a critical comparison of different types of evidence on mobility from DNA to strontium isotope analyses, and will lead to improved knowledge about the ways in which European regional cultures and identities were formed in the Bronze Age through interaction. Finally, the project will potentially change our understanding and thinking about human mobility as a key factor in cultural and social change.
Summary
Research problem: The 3rd and 2nd millennium was a period that saw major social and cultural transformations in Europe, from migrations and the introduction of metal (the Bronze Age) to new cultural identities and languages. As these two millennia were formative for Europe’s later history, these are hotly debated issues. However, they can now be resolved, at least in part, by the application of new science-based methodologies and the development of new interpretative frameworks.
Aims and methodologies: The project does so by adopting an interdisciplinary methodological approach that combines science and culture. Isotope tracing in combination with recent advances in ancient DNA is employed to test human origins and movements during the two millennia, as well as the origin of wool and textiles. Lead isotope is adopted to trace the origin of copper. Based on this the project will document and explain the forging of new identities and new types of interaction during the 3rd and 2nd millennium BC in temperate northern Europe, but with implications for western Eurasia.
Progress and originality: Accomplishment of front-line research results by combining archaeology with new developments in the natural sciences to produce new knowledge about the mobility of people, animals, things, ideas and technologies. This will allow a critical comparison of different types of evidence on mobility from DNA to strontium isotope analyses, and will lead to improved knowledge about the ways in which European regional cultures and identities were formed in the Bronze Age through interaction. Finally, the project will potentially change our understanding and thinking about human mobility as a key factor in cultural and social change.
Max ERC Funding
2 488 264 €
Duration
Start date: 2011-06-01, End date: 2016-05-31