Project acronym ActiveWindFarms
Project Active Wind Farms: Optimization and Control of Atmospheric Energy Extraction in Gigawatt Wind Farms
Researcher (PI) Johan Meyers
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary With the recognition that wind energy will become an important contributor to the world’s energy portfolio, several wind farms with a capacity of over 1 gigawatt are in planning phase. In the past, engineering of wind farms focused on a bottom-up approach, in which atmospheric wind availability was considered to be fixed by climate and weather. However, farms of gigawatt size slow down the Atmospheric Boundary Layer (ABL) as a whole, reducing the availability of wind at turbine hub height. In Denmark’s large off-shore farms, this leads to underperformance of turbines which can reach levels of 40%–50% compared to the same turbine in a lone-standing case. For large wind farms, the vertical structure and turbulence physics of the flow in the ABL become crucial ingredients in their design and operation. This introduces a new set of scientific challenges related to the design and control of large wind farms. The major ambition of the present research proposal is to employ optimal control techniques to control the interaction between large wind farms and the ABL, and optimize overall farm-power extraction. Individual turbines are used as flow actuators by dynamically pitching their blades using time scales ranging between 10 to 500 seconds. The application of such control efforts on the atmospheric boundary layer has never been attempted before, and introduces flow control on a physical scale which is currently unprecedented. The PI possesses a unique combination of expertise and tools enabling these developments: efficient parallel large-eddy simulations of wind farms, multi-scale turbine modeling, and gradient-based optimization in large optimization-parameter spaces using adjoint formulations. To ensure a maximum impact on the wind-engineering field, the project aims at optimal control, experimental wind-tunnel validation, and at including multi-disciplinary aspects, related to structural mechanics, power quality, and controller design.
Summary
With the recognition that wind energy will become an important contributor to the world’s energy portfolio, several wind farms with a capacity of over 1 gigawatt are in planning phase. In the past, engineering of wind farms focused on a bottom-up approach, in which atmospheric wind availability was considered to be fixed by climate and weather. However, farms of gigawatt size slow down the Atmospheric Boundary Layer (ABL) as a whole, reducing the availability of wind at turbine hub height. In Denmark’s large off-shore farms, this leads to underperformance of turbines which can reach levels of 40%–50% compared to the same turbine in a lone-standing case. For large wind farms, the vertical structure and turbulence physics of the flow in the ABL become crucial ingredients in their design and operation. This introduces a new set of scientific challenges related to the design and control of large wind farms. The major ambition of the present research proposal is to employ optimal control techniques to control the interaction between large wind farms and the ABL, and optimize overall farm-power extraction. Individual turbines are used as flow actuators by dynamically pitching their blades using time scales ranging between 10 to 500 seconds. The application of such control efforts on the atmospheric boundary layer has never been attempted before, and introduces flow control on a physical scale which is currently unprecedented. The PI possesses a unique combination of expertise and tools enabling these developments: efficient parallel large-eddy simulations of wind farms, multi-scale turbine modeling, and gradient-based optimization in large optimization-parameter spaces using adjoint formulations. To ensure a maximum impact on the wind-engineering field, the project aims at optimal control, experimental wind-tunnel validation, and at including multi-disciplinary aspects, related to structural mechanics, power quality, and controller design.
Max ERC Funding
1 499 241 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym AEROSPACEPHYS
Project Multiphysics models and simulations for reacting and plasma flows applied to the space exploration program
Researcher (PI) Thierry Edouard Bertrand Magin
Host Institution (HI) INSTITUT VON KARMAN DE DYNAMIQUE DES FLUIDES
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary Space exploration is one of boldest and most exciting endeavors that humanity has undertaken, and it holds enormous promise for the future. Our next challenges for the spatial conquest include bringing back samples to Earth by means of robotic missions and continuing the manned exploration program, which aims at sending human beings to Mars and bring them home safely. Inaccurate prediction of the heat-flux to the surface of the spacecraft heat shield can be fatal for the crew or the success of a robotic mission. This quantity is estimated during the design phase. An accurate prediction is a particularly complex task, regarding modelling of the following phenomena that are potential “mission killers:” 1) Radiation of the plasma in the shock layer, 2) Complex surface chemistry on the thermal protection material, 3) Flow transition from laminar to turbulent. Our poor understanding of the coupled mechanisms of radiation, ablation, and transition leads to the difficulties in flux prediction. To avoid failure and ensure safety of the astronauts and payload, engineers resort to “safety factors” to determine the thickness of the heat shield, at the expense of the mass of embarked payload. Thinking out of the box and basic research are thus necessary for advancements of the models that will better define the environment and requirements for the design and safe operation of tomorrow’s space vehicles and planetary probes for the manned space exploration. The three basic ingredients for predictive science are: 1) Physico-chemical models, 2) Computational methods, 3) Experimental data. We propose to follow a complementary approach for prediction. The proposed research aims at: “Integrating new advanced physico-chemical models and computational methods, based on a multidisciplinary approach developed together with physicists, chemists, and applied mathematicians, to create a top-notch multiphysics and multiscale numerical platform for simulations of planetary atmosphere entries, crucial to the new challenges of the manned space exploration program. Experimental data will also be used for validation, following state-of-the-art uncertainty quantification methods.”
Summary
Space exploration is one of boldest and most exciting endeavors that humanity has undertaken, and it holds enormous promise for the future. Our next challenges for the spatial conquest include bringing back samples to Earth by means of robotic missions and continuing the manned exploration program, which aims at sending human beings to Mars and bring them home safely. Inaccurate prediction of the heat-flux to the surface of the spacecraft heat shield can be fatal for the crew or the success of a robotic mission. This quantity is estimated during the design phase. An accurate prediction is a particularly complex task, regarding modelling of the following phenomena that are potential “mission killers:” 1) Radiation of the plasma in the shock layer, 2) Complex surface chemistry on the thermal protection material, 3) Flow transition from laminar to turbulent. Our poor understanding of the coupled mechanisms of radiation, ablation, and transition leads to the difficulties in flux prediction. To avoid failure and ensure safety of the astronauts and payload, engineers resort to “safety factors” to determine the thickness of the heat shield, at the expense of the mass of embarked payload. Thinking out of the box and basic research are thus necessary for advancements of the models that will better define the environment and requirements for the design and safe operation of tomorrow’s space vehicles and planetary probes for the manned space exploration. The three basic ingredients for predictive science are: 1) Physico-chemical models, 2) Computational methods, 3) Experimental data. We propose to follow a complementary approach for prediction. The proposed research aims at: “Integrating new advanced physico-chemical models and computational methods, based on a multidisciplinary approach developed together with physicists, chemists, and applied mathematicians, to create a top-notch multiphysics and multiscale numerical platform for simulations of planetary atmosphere entries, crucial to the new challenges of the manned space exploration program. Experimental data will also be used for validation, following state-of-the-art uncertainty quantification methods.”
Max ERC Funding
1 494 892 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym AFRODITE
Project Advanced Fluid Research On Drag reduction In Turbulence Experiments
Researcher (PI) Jens Henrik Mikael Fransson
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
In previous wind tunnel measurements we have shown that roughness elements can be used to sensibly delay transition to turbulence. The result is revolutionary, since the common belief has been that surface roughness causes earlier transition and in turn increases the drag, and is a proof of concept of the passive control method per se. The beauty with a passive control technique is that no external energy has to be added to the flow system in order to perform the control, instead one uses the existing energy in the flow.
In this project proposal, AFRODITE, we will take this passive control method to the next level by making it twofold, more persistent and more robust. Transition prevention is the goal rather than transition delay and the method will be extended to simultaneously control separation, which is another unwanted flow phenomenon especially during airplane take offs. AFRODITE will be a catalyst for innovative research, which will lead to a cleaner sky.
Summary
A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
In previous wind tunnel measurements we have shown that roughness elements can be used to sensibly delay transition to turbulence. The result is revolutionary, since the common belief has been that surface roughness causes earlier transition and in turn increases the drag, and is a proof of concept of the passive control method per se. The beauty with a passive control technique is that no external energy has to be added to the flow system in order to perform the control, instead one uses the existing energy in the flow.
In this project proposal, AFRODITE, we will take this passive control method to the next level by making it twofold, more persistent and more robust. Transition prevention is the goal rather than transition delay and the method will be extended to simultaneously control separation, which is another unwanted flow phenomenon especially during airplane take offs. AFRODITE will be a catalyst for innovative research, which will lead to a cleaner sky.
Max ERC Funding
1 418 399 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym ALUFIX
Project Friction stir processing based local damage mitigation and healing in aluminium alloys
Researcher (PI) Aude SIMAR
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Summary
ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Max ERC Funding
1 497 447 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym BRIDGE
Project Biomimetic process design for tissue regeneration:
from bench to bedside via in silico modelling
Researcher (PI) Liesbet Geris
Host Institution (HI) UNIVERSITE DE LIEGE
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary "Tissue engineering (TE), the interdisciplinary field combining biomedical and engineering sciences in the search for functional man-made organ replacements, has key issues with the quantity and quality of the generated products. Protocols followed in the lab are mainly trial and error based, requiring a huge amount of manual interventions and lacking clear early time-point quality criteria to guide the process. As a result, these processes are very hard to scale up to industrial production levels. BRIDGE aims to fortify the engineering aspects of the TE field by adding a higher level of understanding and control to the manufacturing process (MP) through the use of in silico models. BRIDGE will focus on the bone TE field to provide proof of concept for its in silico approach.
The combination of the applicant's well-received published and ongoing work on a wide range of modelling tools in the bone field combined with the state-of-the-art experimental techniques present in the TE lab of the additional participant allows envisaging following innovation and impact:
1. proof-of-concept of the use of an in silico blue-print for the design and control of a robust modular TE MP;
2. model-derived optimised culture conditions for patient derived cell populations increasing modular robustness of in vitro chondrogenesis/endochondral ossification;
3. in silico identification of a limited set of in vitro biomarkers that is predictive of the in vivo outcome;
4. model-derived optimised culture conditions increasing quantity and quality of the in vivo outcome of the TE MP;
5. incorporation of congenital defects in the in silico MP design, constituting a further validation of BRIDGE’s in silico approach and a necessary step towards personalised medical care.
We believe that the systematic – and unprecedented – integration of (bone) TE and mathematical modelling, as proposed in BRIDGE, is required to come to a rationalized, engineering approach to design and control bone TE MPs."
Summary
"Tissue engineering (TE), the interdisciplinary field combining biomedical and engineering sciences in the search for functional man-made organ replacements, has key issues with the quantity and quality of the generated products. Protocols followed in the lab are mainly trial and error based, requiring a huge amount of manual interventions and lacking clear early time-point quality criteria to guide the process. As a result, these processes are very hard to scale up to industrial production levels. BRIDGE aims to fortify the engineering aspects of the TE field by adding a higher level of understanding and control to the manufacturing process (MP) through the use of in silico models. BRIDGE will focus on the bone TE field to provide proof of concept for its in silico approach.
The combination of the applicant's well-received published and ongoing work on a wide range of modelling tools in the bone field combined with the state-of-the-art experimental techniques present in the TE lab of the additional participant allows envisaging following innovation and impact:
1. proof-of-concept of the use of an in silico blue-print for the design and control of a robust modular TE MP;
2. model-derived optimised culture conditions for patient derived cell populations increasing modular robustness of in vitro chondrogenesis/endochondral ossification;
3. in silico identification of a limited set of in vitro biomarkers that is predictive of the in vivo outcome;
4. model-derived optimised culture conditions increasing quantity and quality of the in vivo outcome of the TE MP;
5. incorporation of congenital defects in the in silico MP design, constituting a further validation of BRIDGE’s in silico approach and a necessary step towards personalised medical care.
We believe that the systematic – and unprecedented – integration of (bone) TE and mathematical modelling, as proposed in BRIDGE, is required to come to a rationalized, engineering approach to design and control bone TE MPs."
Max ERC Funding
1 191 440 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym CABUM
Project An investigation of the mechanisms at the interaction between cavitation bubbles and contaminants
Researcher (PI) Matevz DULAR
Host Institution (HI) UNIVERZA V LJUBLJANI
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary A sudden decrease in pressure triggers the formation of vapour and gas bubbles inside a liquid medium (also called cavitation). This leads to many (key) engineering problems: material loss, noise and vibration of hydraulic machinery. On the other hand, cavitation is a potentially a useful phenomenon: the extreme conditions are increasingly used for a wide variety of applications such as surface cleaning, enhanced chemistry, and waste water treatment (bacteria eradication and virus inactivation).
Despite this significant progress a large gap persists between the understanding of the mechanisms that contribute to the effects of cavitation and its application. Although engineers are already commercializing devices that employ cavitation, we are still not able to answer the fundamental question: What precisely are the mechanisms how bubbles can clean, disinfect, kill bacteria and enhance chemical activity? The overall objective of the project is to understand and determine the fundamental physics of the interaction of cavitation bubbles with different contaminants. To address this issue, the CABUM project will investigate the physical background of cavitation from physical, biological and engineering perspective on three complexity scales: i) on single bubble level, ii) on organised and iii) on random bubble clusters, producing a progressive multidisciplinary synergetic effect.
The proposed synergetic approach builds on the PI's preliminary research and employs novel experimental and numerical methodologies, some of which have been developed by the PI and his research group, to explore the physics of cavitation behaviour in interaction with bacteria and viruses.
Understanding the fundamental physical background of cavitation in interaction with contaminants will have a ground-breaking implications in various scientific fields (engineering, chemistry and biology) and will, in the future, enable the exploitation of cavitation in water and soil treatment processes.
Summary
A sudden decrease in pressure triggers the formation of vapour and gas bubbles inside a liquid medium (also called cavitation). This leads to many (key) engineering problems: material loss, noise and vibration of hydraulic machinery. On the other hand, cavitation is a potentially a useful phenomenon: the extreme conditions are increasingly used for a wide variety of applications such as surface cleaning, enhanced chemistry, and waste water treatment (bacteria eradication and virus inactivation).
Despite this significant progress a large gap persists between the understanding of the mechanisms that contribute to the effects of cavitation and its application. Although engineers are already commercializing devices that employ cavitation, we are still not able to answer the fundamental question: What precisely are the mechanisms how bubbles can clean, disinfect, kill bacteria and enhance chemical activity? The overall objective of the project is to understand and determine the fundamental physics of the interaction of cavitation bubbles with different contaminants. To address this issue, the CABUM project will investigate the physical background of cavitation from physical, biological and engineering perspective on three complexity scales: i) on single bubble level, ii) on organised and iii) on random bubble clusters, producing a progressive multidisciplinary synergetic effect.
The proposed synergetic approach builds on the PI's preliminary research and employs novel experimental and numerical methodologies, some of which have been developed by the PI and his research group, to explore the physics of cavitation behaviour in interaction with bacteria and viruses.
Understanding the fundamental physical background of cavitation in interaction with contaminants will have a ground-breaking implications in various scientific fields (engineering, chemistry and biology) and will, in the future, enable the exploitation of cavitation in water and soil treatment processes.
Max ERC Funding
1 904 565 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym CAPS
Project Capillary suspensions: a novel route for versatile, cost efficient and environmentally friendly material design
Researcher (PI) Erin Crystal Koos
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary A wide variety of materials including coatings and adhesives, emerging materials for nanotechnology products, as well as everyday food products are processed or delivered as suspensions. The flow properties of such suspensions must be finely adjusted according to the demands of the respective processing techniques, even for the feel of cosmetics and the perception of food products is highly influenced by their rheological properties. The recently developed capillary suspensions concept has the potential to revolutionize product formulations and material design. When a small amount (less than 1%) of a second immiscible liquid is added to the continuous phase of a suspension, the rheological properties of the mixture are dramatically altered from a fluid-like to a gel-like state or from a weak to a strong gel and the strength can be tuned in a wide range covering orders of magnitude. Capillary suspensions can be used to create smart, tunable fluids, stabilize mixtures that would otherwise phase separate, significantly reduce the amount organic or polymeric additives, and the strong particle network can be used as a precursor for the manufacturing of cost-efficient porous ceramics and foams with unprecedented properties.
This project will investigate the influence of factors determining capillary suspension formation, the strength of these admixtures as a function of these aspects, and how capillary suspensions depend on external forces. Only such a fundamental understanding of the network formation in capillary suspensions on both the micro- and macroscopic scale will allow for the design of sophisticated new materials. The main objectives of this proposal are to quantify and predict the strength of these admixtures and then use this information to design a variety of new materials in very different application areas including, e.g., porous materials, water-based coatings, ultra low fat foods, and conductive films.
Summary
A wide variety of materials including coatings and adhesives, emerging materials for nanotechnology products, as well as everyday food products are processed or delivered as suspensions. The flow properties of such suspensions must be finely adjusted according to the demands of the respective processing techniques, even for the feel of cosmetics and the perception of food products is highly influenced by their rheological properties. The recently developed capillary suspensions concept has the potential to revolutionize product formulations and material design. When a small amount (less than 1%) of a second immiscible liquid is added to the continuous phase of a suspension, the rheological properties of the mixture are dramatically altered from a fluid-like to a gel-like state or from a weak to a strong gel and the strength can be tuned in a wide range covering orders of magnitude. Capillary suspensions can be used to create smart, tunable fluids, stabilize mixtures that would otherwise phase separate, significantly reduce the amount organic or polymeric additives, and the strong particle network can be used as a precursor for the manufacturing of cost-efficient porous ceramics and foams with unprecedented properties.
This project will investigate the influence of factors determining capillary suspension formation, the strength of these admixtures as a function of these aspects, and how capillary suspensions depend on external forces. Only such a fundamental understanding of the network formation in capillary suspensions on both the micro- and macroscopic scale will allow for the design of sophisticated new materials. The main objectives of this proposal are to quantify and predict the strength of these admixtures and then use this information to design a variety of new materials in very different application areas including, e.g., porous materials, water-based coatings, ultra low fat foods, and conductive films.
Max ERC Funding
1 489 618 €
Duration
Start date: 2013-08-01, End date: 2018-07-31
Project acronym CO2LIFE
Project BIOMIMETIC FIXATION OF CO2 AS SOURCE OF SALTS AND GLUCOSE
Researcher (PI) Patricia LUIS ALCONERO
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary The continued increase in the atmospheric concentration of CO2 due to anthropogenic emissions is leading to significant changes in climate, with the industry accounting for one-third of all the energy used globally and for almost 40% of worldwide CO2 emissions. Fast actions are required to decrease the concentration of this greenhouse gas in the atmosphere, value that has currently reaching 400 ppm. Among the technological possibilities that are on the table to reduce CO2 emissions, carbon capture and storage into geological deposits is one of the main strategies that is being applied. However, the final objective of this strategy is to remove CO2 without considering the enormous potential of this molecule as a source of carbon for the production of valuable compounds. Nature has developed an effective and equilibrated mechanism to concentrate CO2 and fixate the inorganic carbon into organic material (e.g., glucose) by means of enzymatic action. Mimicking Nature and take advantage of millions of years of evolution should be considered as a basic starting point in the development of smart and highly effective processes. In addition, the use of amino-acid salts for CO2 capture is envisaged as a potential approach to recover CO2 in the form of (bi)carbonates.
The project CO2LIFE presents the overall objective of developing a chemical process that converts carbon dioxide into valuable molecules using membrane technology. The strategy followed in this project is two-fold: i) CO2 membrane-based absorption-crystallization process on basis of using amino-acid salts, and ii) CO2 conversion into glucose or salts by using enzymes as catalysts supported on or retained by membranes. The final product, i.e. (bi)carbonates or glucose, has a large interest in the (bio)chemical industry, thus, new CO2 emissions are avoided and the carbon cycle is closed. This project will provide a technological solution at industrial scale for the removal and reutilization of CO2.
Summary
The continued increase in the atmospheric concentration of CO2 due to anthropogenic emissions is leading to significant changes in climate, with the industry accounting for one-third of all the energy used globally and for almost 40% of worldwide CO2 emissions. Fast actions are required to decrease the concentration of this greenhouse gas in the atmosphere, value that has currently reaching 400 ppm. Among the technological possibilities that are on the table to reduce CO2 emissions, carbon capture and storage into geological deposits is one of the main strategies that is being applied. However, the final objective of this strategy is to remove CO2 without considering the enormous potential of this molecule as a source of carbon for the production of valuable compounds. Nature has developed an effective and equilibrated mechanism to concentrate CO2 and fixate the inorganic carbon into organic material (e.g., glucose) by means of enzymatic action. Mimicking Nature and take advantage of millions of years of evolution should be considered as a basic starting point in the development of smart and highly effective processes. In addition, the use of amino-acid salts for CO2 capture is envisaged as a potential approach to recover CO2 in the form of (bi)carbonates.
The project CO2LIFE presents the overall objective of developing a chemical process that converts carbon dioxide into valuable molecules using membrane technology. The strategy followed in this project is two-fold: i) CO2 membrane-based absorption-crystallization process on basis of using amino-acid salts, and ii) CO2 conversion into glucose or salts by using enzymes as catalysts supported on or retained by membranes. The final product, i.e. (bi)carbonates or glucose, has a large interest in the (bio)chemical industry, thus, new CO2 emissions are avoided and the carbon cycle is closed. This project will provide a technological solution at industrial scale for the removal and reutilization of CO2.
Max ERC Funding
1 302 710 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym COCOON
Project Conformal coating of nanoporous materials
Researcher (PI) Christophe Detavernier
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), PE8, ERC-2009-StG
Summary CONTEXT - Nanoporous structures are used for application in catalysis, molecular separation, fuel cells, dye sensitized solar cells etc. Given the near molecular size of the porous network, it is extremely challenging to modify the interior surface of the pores after the nanoporous material has been synthesized.
THIS PROPOSAL - Atomic Layer Deposition (ALD) is envisioned as a novel technique for creating catalytically active sites and for controlling the pore size distribution in nanoporous materials. ALD is a self-limited growth method that is characterized by alternating exposure of the growing film to precursor vapours, resulting in the sequential deposition of (sub)monolayers. It provides atomic level control of thickness and composition, and is currently used in micro-electronics to grow films into structures with aspect ratios of up to 100 / 1. We aim to make the fundamental breakthroughs necessary to enable atomic layer deposition to engineer the composition, size and shape of the interior surface of nanoporous materials with aspect ratios in excess of 10,000 / 1.
POTENTIAL IMPACT Achieving these objectives will enable atomic level engineering of the interior surface of any porous material. We plan to focus on three specific applications where our results will have both medium and long term impacts:
- Engineering the composition of pore walls using ALD, e.g. to create catalytic sites (e.g. Al for acid sites, Ti for redox sites, or Pt, Pd or Ni)
- chemical functionalization of the pore walls with atomic level control can result in breakthrough applications in the fields of catalysis and sensors.
- Atomic level control of the size of nanopores through ALD controlling the pore size distribution of molecular sieves can potentially lead to breakthrough applications in molecular separation and filtration.
- Nanocasting replication of a mesoporous template by means of ALD can result in the mass-scale production of nanotubes.
Summary
CONTEXT - Nanoporous structures are used for application in catalysis, molecular separation, fuel cells, dye sensitized solar cells etc. Given the near molecular size of the porous network, it is extremely challenging to modify the interior surface of the pores after the nanoporous material has been synthesized.
THIS PROPOSAL - Atomic Layer Deposition (ALD) is envisioned as a novel technique for creating catalytically active sites and for controlling the pore size distribution in nanoporous materials. ALD is a self-limited growth method that is characterized by alternating exposure of the growing film to precursor vapours, resulting in the sequential deposition of (sub)monolayers. It provides atomic level control of thickness and composition, and is currently used in micro-electronics to grow films into structures with aspect ratios of up to 100 / 1. We aim to make the fundamental breakthroughs necessary to enable atomic layer deposition to engineer the composition, size and shape of the interior surface of nanoporous materials with aspect ratios in excess of 10,000 / 1.
POTENTIAL IMPACT Achieving these objectives will enable atomic level engineering of the interior surface of any porous material. We plan to focus on three specific applications where our results will have both medium and long term impacts:
- Engineering the composition of pore walls using ALD, e.g. to create catalytic sites (e.g. Al for acid sites, Ti for redox sites, or Pt, Pd or Ni)
- chemical functionalization of the pore walls with atomic level control can result in breakthrough applications in the fields of catalysis and sensors.
- Atomic level control of the size of nanopores through ALD controlling the pore size distribution of molecular sieves can potentially lead to breakthrough applications in molecular separation and filtration.
- Nanocasting replication of a mesoporous template by means of ALD can result in the mass-scale production of nanotubes.
Max ERC Funding
1 432 800 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym DALDECS
Project Development and Application of Laser Diagnostic Techniques for Combustion Studies
Researcher (PI) Lars Eric Marcus Aldén
Host Institution (HI) LUNDS UNIVERSITET
Call Details Advanced Grant (AdG), PE8, ERC-2009-AdG
Summary This project is directed towards development of new laser diagnostic techniques and a deepened physical understanding of more established techniques, aiming at new insights in phenomena related to combustion processes. These non-intrusive techniques with high resolution in space and time, will be used for measurements of key parameters, species concentrations and temperatures. The techniques to be used are; Non-linear optical techniques, mainly Polarization spectroscopy, PS. PS will mainly be developed for sensitive detection with high spatial resolution of "new" species in the IR region, e.g. individual hydrocarbons, toxic species as well as alkali metal compounds. Multiplex measurements of these species and temperature will be developed as well as 2D visualization. Quantitative measurements with high precision and accuracy; Laser induced fluorescence and Rayleigh/Raman scattering will be developed for quantitative measurements of species concentration and 2D temperatures. Also a new technique will be developed for single ended experiments based on picosecond LIDAR. Advanced imaging techniques; New high speed (10-100 kHz) visualization techniques as well as 3D and even 4D visualization will be developed. In order to properly visualize dense sprays we will develop Ballistic Imaging as well as a new technique based on structured illumination of the area of interest for suppression of multiple scattering which normally cause blurring effects. All techniques developed above will be used for key studies of phenomena related to various combustion phenomena; turbulent combustion, multiphase conversion processes, e.g. spray combustion and gasification/pyrolysis of solid bio fuels. The techniques will also be applied for development and physical understanding of how combustion could be influenced by plasma/electrical assistance. Finally, the techniques will be prepared for applications in industrial combustion apparatus, e.g. furnaces, gasturbines and IC engines
Summary
This project is directed towards development of new laser diagnostic techniques and a deepened physical understanding of more established techniques, aiming at new insights in phenomena related to combustion processes. These non-intrusive techniques with high resolution in space and time, will be used for measurements of key parameters, species concentrations and temperatures. The techniques to be used are; Non-linear optical techniques, mainly Polarization spectroscopy, PS. PS will mainly be developed for sensitive detection with high spatial resolution of "new" species in the IR region, e.g. individual hydrocarbons, toxic species as well as alkali metal compounds. Multiplex measurements of these species and temperature will be developed as well as 2D visualization. Quantitative measurements with high precision and accuracy; Laser induced fluorescence and Rayleigh/Raman scattering will be developed for quantitative measurements of species concentration and 2D temperatures. Also a new technique will be developed for single ended experiments based on picosecond LIDAR. Advanced imaging techniques; New high speed (10-100 kHz) visualization techniques as well as 3D and even 4D visualization will be developed. In order to properly visualize dense sprays we will develop Ballistic Imaging as well as a new technique based on structured illumination of the area of interest for suppression of multiple scattering which normally cause blurring effects. All techniques developed above will be used for key studies of phenomena related to various combustion phenomena; turbulent combustion, multiphase conversion processes, e.g. spray combustion and gasification/pyrolysis of solid bio fuels. The techniques will also be applied for development and physical understanding of how combustion could be influenced by plasma/electrical assistance. Finally, the techniques will be prepared for applications in industrial combustion apparatus, e.g. furnaces, gasturbines and IC engines
Max ERC Funding
2 466 000 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym HEXTREME
Project Hexahedral mesh generation in real time
Researcher (PI) Jean-François REMACLE
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Advanced Grant (AdG), PE8, ERC-2015-AdG
Summary Over one million finite element analyses are preformed in engineering offices every day and finite elements come with the price of mesh generation. This proposal aims at creating two breakthroughs in the art of mesh generation that will be directly beneficial to the finite element community at large. The first challenge of HEXTREME is to take advantage of the massively multi-threaded nature of modern computers and to parallelize all the aspects of the mesh generation process at a fine grain level. Reducing the meshing time by more than one order of magnitude is an ambitious objective: if minutes can become seconds, then success in this research would definitively radically change the way in which engineers deal with mesh generation. This project then proposes an innovative approach to overcoming the major difficulty associated with mesh generation: it aims at providing a fast and reliable solution to the problem of conforming hexahedral mesh generation. Quadrilateral meshes in 2D and hexahedral meshes in 3D are usually considered to be superior to triangular/tetrahedral meshes. Even though direct tetrahedral meshing techniques have reached a level of robustness that allow us to treat general 3D domains, there may never exist a direct algorithm for building unstructured hex-meshes in general 3D domains. In HEXTREME, an indirect approach is envisaged that relies on recent developments in various domains of applied mathematics and computer science such as graph theory, combinatorial optimization or computational geometry. The methodology that is proposed for hex meshing is finally extended to the difficult problem of boundary layer meshing. Mesh generation is one important step of the engineering analysis process. Yet, a mesh is a tool and not an aim. A specific task of the project is dedicated to the interaction with research partners that are committed to beta-test the results of HEXTREME. All the results of HEXTREME will be provided as an open source in Gmsh.
Summary
Over one million finite element analyses are preformed in engineering offices every day and finite elements come with the price of mesh generation. This proposal aims at creating two breakthroughs in the art of mesh generation that will be directly beneficial to the finite element community at large. The first challenge of HEXTREME is to take advantage of the massively multi-threaded nature of modern computers and to parallelize all the aspects of the mesh generation process at a fine grain level. Reducing the meshing time by more than one order of magnitude is an ambitious objective: if minutes can become seconds, then success in this research would definitively radically change the way in which engineers deal with mesh generation. This project then proposes an innovative approach to overcoming the major difficulty associated with mesh generation: it aims at providing a fast and reliable solution to the problem of conforming hexahedral mesh generation. Quadrilateral meshes in 2D and hexahedral meshes in 3D are usually considered to be superior to triangular/tetrahedral meshes. Even though direct tetrahedral meshing techniques have reached a level of robustness that allow us to treat general 3D domains, there may never exist a direct algorithm for building unstructured hex-meshes in general 3D domains. In HEXTREME, an indirect approach is envisaged that relies on recent developments in various domains of applied mathematics and computer science such as graph theory, combinatorial optimization or computational geometry. The methodology that is proposed for hex meshing is finally extended to the difficult problem of boundary layer meshing. Mesh generation is one important step of the engineering analysis process. Yet, a mesh is a tool and not an aim. A specific task of the project is dedicated to the interaction with research partners that are committed to beta-test the results of HEXTREME. All the results of HEXTREME will be provided as an open source in Gmsh.
Max ERC Funding
2 244 238 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym i-CaD
Project Innovative Catalyst Design for Large-Scale, Sustainable Processes
Researcher (PI) Joris Wilfried Maria Cornelius Thybaut
Host Institution (HI) UNIVERSITEIT GENT
Call Details Consolidator Grant (CoG), PE8, ERC-2013-CoG
Summary A systematic and novel, multi-scale model based catalyst design methodology will be developed. The fundamental nature of the models used is unprecedented and will represent a breakthrough compared to the more commonly applied statistical, correlative relationships. The methodology will focus on the intrinsic kinetics of (potentially) large-scale processes for the conversion of renewable feeds into fuels and chemicals. Non-ideal behaviour, caused by mass and heat transfer limitations or particular reactor hydrodynamics, will be explicitly accounted for when simulating or optimizing industrial-scale applications. The selected model reactions are situated in the area of biomass upgrading to fuels and chemicals: fast pyrolysis oil stabilization, glycerol hydrogenolysis and selective oxidation of (bio)ethanol to acetaldehyde.
For the first time, a systematic microkinetic modelling methodology will be developed for oxygenates conversion. In particular, stereochemistry in catalysis will be assessed. Two types of descriptors will be quantified: kinetic descriptors that are catalyst independent and catalyst descriptors that specifically account for the effect of the catalyst properties on the reaction kinetics. The latter will be optimized in terms of reactant conversion, product yield or selectivity. Fundamental relationships will be established between the catalyst descriptors as determined by microkinetic modelling and independently measured catalyst properties or synthesis parameters. These innovative relationships allow providing the desired, rational feedback in from optimal descriptor values towards synthesis parameters for a new catalyst generation. Their fundamental character will guarantee adequate extrapolative properties that can be exploited for the identification of a groundbreaking next catalyst generation.
Summary
A systematic and novel, multi-scale model based catalyst design methodology will be developed. The fundamental nature of the models used is unprecedented and will represent a breakthrough compared to the more commonly applied statistical, correlative relationships. The methodology will focus on the intrinsic kinetics of (potentially) large-scale processes for the conversion of renewable feeds into fuels and chemicals. Non-ideal behaviour, caused by mass and heat transfer limitations or particular reactor hydrodynamics, will be explicitly accounted for when simulating or optimizing industrial-scale applications. The selected model reactions are situated in the area of biomass upgrading to fuels and chemicals: fast pyrolysis oil stabilization, glycerol hydrogenolysis and selective oxidation of (bio)ethanol to acetaldehyde.
For the first time, a systematic microkinetic modelling methodology will be developed for oxygenates conversion. In particular, stereochemistry in catalysis will be assessed. Two types of descriptors will be quantified: kinetic descriptors that are catalyst independent and catalyst descriptors that specifically account for the effect of the catalyst properties on the reaction kinetics. The latter will be optimized in terms of reactant conversion, product yield or selectivity. Fundamental relationships will be established between the catalyst descriptors as determined by microkinetic modelling and independently measured catalyst properties or synthesis parameters. These innovative relationships allow providing the desired, rational feedback in from optimal descriptor values towards synthesis parameters for a new catalyst generation. Their fundamental character will guarantee adequate extrapolative properties that can be exploited for the identification of a groundbreaking next catalyst generation.
Max ERC Funding
1 999 877 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym IMMOCAP
Project 'If immortality unveil…'– development of the novel types of energy storage systems with excellent long-term performance
Researcher (PI) Krzysztof FIC
Host Institution (HI) POLITECHNIKA POZNANSKA
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary The major goal of the project is to develop a novel type of an electrochemical capacitor with high specific power (up to 5 kW/kg) and energy (up to 20 Wh/kg) preserved along at least 50 000 cycles. Thus, completion of the project will result in remarkable enhancement of specific energy, power and life time of modern electrochemical capacitors. Advanced electrochemical testing (galvanostatic cycling with constant power loads, electrochemical impedance spectroscopy, accelerated aging and kinetic tests) will be accompanied by materials design and detailed characterization. Moreover, the project aims at the implementation of novel concepts of the electrolytes and designing of new operando technique for capacitor characterization. All these efforts aim at the development of sustainable and efficient energy conversion and storage system.
Summary
The major goal of the project is to develop a novel type of an electrochemical capacitor with high specific power (up to 5 kW/kg) and energy (up to 20 Wh/kg) preserved along at least 50 000 cycles. Thus, completion of the project will result in remarkable enhancement of specific energy, power and life time of modern electrochemical capacitors. Advanced electrochemical testing (galvanostatic cycling with constant power loads, electrochemical impedance spectroscopy, accelerated aging and kinetic tests) will be accompanied by materials design and detailed characterization. Moreover, the project aims at the implementation of novel concepts of the electrolytes and designing of new operando technique for capacitor characterization. All these efforts aim at the development of sustainable and efficient energy conversion and storage system.
Max ERC Funding
1 385 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym INSITE
Project Development and use of an integrated in silico-in vitro mesofluidics system for tissue engineering
Researcher (PI) Liesbet Laura J GERIS
Host Institution (HI) UNIVERSITE DE LIEGE
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary Tissue Engineering (TE) refers to the branch of medicine that aims to replace or regenerate functional tissue or organs using man-made living implants. As the field is moving towards more complex TE constructs with sophisticated functionalities, there is a lack of dedicated in vitro devices that allow testing the response of the complex construct as a whole, prior to implantation. Additionally, the knowledge accumulated from mechanistic and empirical in vitro and in vivo studies is often underused in the development of novel constructs due to a lack of integration of all the data in a single, in silico, platform.
The INSITE project aims to address both challenges by developing a new mesofluidics set-up for in vitro testing of TE constructs and by developing dedicated multiscale and multiphysics models that aggregate the available data and use these to design complex constructs and proper mesofluidics settings for in vitro testing. The combination of these in silico and in vitro approaches will lead to an integrated knowledge-rich mesofluidics system that provides an in vivo-like time-varying in vitro environment. The system will emulate the in vivo environment present at the (early) stages of bone regeneration including the vascularization process and the innate immune response. A proof of concept will be delivered for complex TE constructs for large bone defects and infected fractures.
To realize this project, the applicant can draw on her well-published track record and extensive network in the fields of in silico medicine and skeletal TE. If successful, INSITE will generate a shift from in vivo to in vitro work and hence a transformation of the classical R&D pipeline. Using this system will allow for a maximum of relevant in vitro research prior to the in vivo phase, which is highly needed in academia and industry with the increasing ethical (3R), financial and regulatory constraints.
Summary
Tissue Engineering (TE) refers to the branch of medicine that aims to replace or regenerate functional tissue or organs using man-made living implants. As the field is moving towards more complex TE constructs with sophisticated functionalities, there is a lack of dedicated in vitro devices that allow testing the response of the complex construct as a whole, prior to implantation. Additionally, the knowledge accumulated from mechanistic and empirical in vitro and in vivo studies is often underused in the development of novel constructs due to a lack of integration of all the data in a single, in silico, platform.
The INSITE project aims to address both challenges by developing a new mesofluidics set-up for in vitro testing of TE constructs and by developing dedicated multiscale and multiphysics models that aggregate the available data and use these to design complex constructs and proper mesofluidics settings for in vitro testing. The combination of these in silico and in vitro approaches will lead to an integrated knowledge-rich mesofluidics system that provides an in vivo-like time-varying in vitro environment. The system will emulate the in vivo environment present at the (early) stages of bone regeneration including the vascularization process and the innate immune response. A proof of concept will be delivered for complex TE constructs for large bone defects and infected fractures.
To realize this project, the applicant can draw on her well-published track record and extensive network in the fields of in silico medicine and skeletal TE. If successful, INSITE will generate a shift from in vivo to in vitro work and hence a transformation of the classical R&D pipeline. Using this system will allow for a maximum of relevant in vitro research prior to the in vivo phase, which is highly needed in academia and industry with the increasing ethical (3R), financial and regulatory constraints.
Max ERC Funding
2 161 750 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym INSYSBIO
Project Industrial Systems Biology of Yeast and A. oryzae
Researcher (PI) Jens Nielsen
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Call Details Advanced Grant (AdG), PE8, ERC-2009-AdG
Summary Metabolic engineering is the development of new cell factories or improving existing ones, and it is the enabling science that allows for sustainable production of fuels and chemicals through biotechnology. With the development in genomics and functional genomics, it has become interesting to evaluate how advanced high-throughput experimental techniques (transcriptome, proteome, metabolome and fluxome) can be applied for improving the process of metabolic engineering. These techniques have mainly found applications in life sciences and studies of human health, and it is necessary to develop novel bioinformatics techniques and modelling concepts before they can provide physiological information that can be used to guide metabolic engineering strategies. In particular it is challenging how these techniques can be used to advance the use of mathematical modelling for description of the operation of complex metabolic networks. The availability of robust mathematical models will allow a wider use of mathematical models to drive metabolic engineering, in analogy with other fields of engineering where mathematical modelling is central in the design phase. In this project the advancement of novel concepts, models and technologies for enhancing metabolic engineering will be done in connection with the development of novel cell factories for high-level production of different classes of products. The chemicals considered will involve both commodity type chemicals like 3-hydroxypropionic acid and malic acid, that can be used for sustainable production of polymers, an industrial enzyme and pharmaceutical proteins like human insulin.
Summary
Metabolic engineering is the development of new cell factories or improving existing ones, and it is the enabling science that allows for sustainable production of fuels and chemicals through biotechnology. With the development in genomics and functional genomics, it has become interesting to evaluate how advanced high-throughput experimental techniques (transcriptome, proteome, metabolome and fluxome) can be applied for improving the process of metabolic engineering. These techniques have mainly found applications in life sciences and studies of human health, and it is necessary to develop novel bioinformatics techniques and modelling concepts before they can provide physiological information that can be used to guide metabolic engineering strategies. In particular it is challenging how these techniques can be used to advance the use of mathematical modelling for description of the operation of complex metabolic networks. The availability of robust mathematical models will allow a wider use of mathematical models to drive metabolic engineering, in analogy with other fields of engineering where mathematical modelling is central in the design phase. In this project the advancement of novel concepts, models and technologies for enhancing metabolic engineering will be done in connection with the development of novel cell factories for high-level production of different classes of products. The chemicals considered will involve both commodity type chemicals like 3-hydroxypropionic acid and malic acid, that can be used for sustainable production of polymers, an industrial enzyme and pharmaceutical proteins like human insulin.
Max ERC Funding
2 499 590 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym INTERDIFFUSION
Project Unraveling Interdiffusion Effects at Material Interfaces -- Learning from Tensors of Microstructure Evolution Simulations
Researcher (PI) Nele Marie Moelans
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Multi-materials, combining various materials with different functionalities, are increasingly desired in engineering applications. Reliable material assembly is a great challenge in the development of innovative technologies. The interdiffusion microstructures formed at material interfaces are critical for the performance of the product. However, as more and more elements are involved, their complexity increases and their variety becomes immense. Furthermore, interdiffusion microstructures evolve during processing and in use of the device. Experimental testing of the long-term evolution in assembled devices is extremely time-consuming. The current level of materials models and simulation techniques does not allow in silico (or computer aided) design of multi-component material assemblies, since the parameter space is much too large.
With this project, I aim a break-through in computational materials science, using tensor decomposition techniques emerging in data-analysis to guide efficiently high-throughput interdiffusion microstructure simulation studies. The measurable outcomes aimed at, are
1) a high-performance computing software that allows to compute the effect of a huge number of material and process parameters, sufficiently large for reliable in-silico design of multi-materials, on the interdiffusion microstructure evolution, based on a tractable number of simulations, and
2) decomposed tensor descriptions for important multi-material systems enabling reliable computation of interdiffusion microstructure characteristics using a single computer.
If successful, the outcomes of this project will allow to significantly accelerate the design of innovative multi-materials. My expertise in microstructure simulations and multi-component materials, and access to collaborations with the top experts in tensor decomposition techniques and materials characterization are crucial to reach this ambitious aim.
Summary
Multi-materials, combining various materials with different functionalities, are increasingly desired in engineering applications. Reliable material assembly is a great challenge in the development of innovative technologies. The interdiffusion microstructures formed at material interfaces are critical for the performance of the product. However, as more and more elements are involved, their complexity increases and their variety becomes immense. Furthermore, interdiffusion microstructures evolve during processing and in use of the device. Experimental testing of the long-term evolution in assembled devices is extremely time-consuming. The current level of materials models and simulation techniques does not allow in silico (or computer aided) design of multi-component material assemblies, since the parameter space is much too large.
With this project, I aim a break-through in computational materials science, using tensor decomposition techniques emerging in data-analysis to guide efficiently high-throughput interdiffusion microstructure simulation studies. The measurable outcomes aimed at, are
1) a high-performance computing software that allows to compute the effect of a huge number of material and process parameters, sufficiently large for reliable in-silico design of multi-materials, on the interdiffusion microstructure evolution, based on a tractable number of simulations, and
2) decomposed tensor descriptions for important multi-material systems enabling reliable computation of interdiffusion microstructure characteristics using a single computer.
If successful, the outcomes of this project will allow to significantly accelerate the design of innovative multi-materials. My expertise in microstructure simulations and multi-component materials, and access to collaborations with the top experts in tensor decomposition techniques and materials characterization are crucial to reach this ambitious aim.
Max ERC Funding
1 496 875 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym MADPII
Project Multiscale Analysis and Design for Process Intensification and Innovation
Researcher (PI) Guy B.M.M. Marin
Host Institution (HI) UNIVERSITEIT GENT
Call Details Advanced Grant (AdG), PE8, ERC-2011-ADG_20110209
Summary The current pressures on the major industrial players have necessitated a more urgent push for increased productivity, process efficiency, and waste reduction; i.e. process intensification. Future sizable improvements in these entrenched industrial processes will require either completely novel production technologies, fundamental analysis/modeling methods, or a combination of both. This proposal aims to approach this challenge by using multiscale modeling and experimentation on three fronts: (1) detailed analysis of industrial processes to generate new fundamental chemical understanding, (2) multiscale modeling and evaluation of high-volume chemical processes using a multiscale approach and fundamental chemical understanding, and (3) show the practical applicability of the multiscale approach and use it to critically examine novel technologies in the context of industrial processes. The novel technology portion of this proposal will be focused around a class known as rotating bed reactors in a static geometry (RBR-SG). We will investigate three processes that could benefit from RBR-SG technology: (1) fast pyrolysis of biomass, (2) gasification of biomass, and (3) short contact time catalytic partial oxidation of light hydrocarbons. Experimental reactor and kinetic work and validated computational fluid dynamics (CFD) modeling of the process mentioned above will be used. We will construct two RBR-SG units; heat transfer, adsorption, and pyrolysis gas/solid experiments will be performed in one, while non-reacting flow tests will be performed in the other with other phase combinations. Detailed kinetic models will provide novel insights into the reaction dynamics and impact other research and technologies. The combination of kinetic and CFD models will clearly demonstrate the benefits of a multiscale approach, will definitively identify the process(es) benefitting most from RBR-SG technology, and will enable a first design of the RBR-SG based on our results.
Summary
The current pressures on the major industrial players have necessitated a more urgent push for increased productivity, process efficiency, and waste reduction; i.e. process intensification. Future sizable improvements in these entrenched industrial processes will require either completely novel production technologies, fundamental analysis/modeling methods, or a combination of both. This proposal aims to approach this challenge by using multiscale modeling and experimentation on three fronts: (1) detailed analysis of industrial processes to generate new fundamental chemical understanding, (2) multiscale modeling and evaluation of high-volume chemical processes using a multiscale approach and fundamental chemical understanding, and (3) show the practical applicability of the multiscale approach and use it to critically examine novel technologies in the context of industrial processes. The novel technology portion of this proposal will be focused around a class known as rotating bed reactors in a static geometry (RBR-SG). We will investigate three processes that could benefit from RBR-SG technology: (1) fast pyrolysis of biomass, (2) gasification of biomass, and (3) short contact time catalytic partial oxidation of light hydrocarbons. Experimental reactor and kinetic work and validated computational fluid dynamics (CFD) modeling of the process mentioned above will be used. We will construct two RBR-SG units; heat transfer, adsorption, and pyrolysis gas/solid experiments will be performed in one, while non-reacting flow tests will be performed in the other with other phase combinations. Detailed kinetic models will provide novel insights into the reaction dynamics and impact other research and technologies. The combination of kinetic and CFD models will clearly demonstrate the benefits of a multiscale approach, will definitively identify the process(es) benefitting most from RBR-SG technology, and will enable a first design of the RBR-SG based on our results.
Max ERC Funding
2 494 700 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym MAtrix
Project In silico and in vitro Models of Angiogenesis: unravelling the role of the extracellular matrix
Researcher (PI) Hans Pol S Van Oosterwyck
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary Angiogenesis, the formation of new blood vessels from the existing vasculature, is a process that is fundamental to normal tissue growth, wound repair and disease. The control of angiogenesis is of utmost importance for tissue regenerative therapies as well as cancer treatment, however this remains a challenge. The extracellular matrix (ECM) is a one of the key controlling factors of angiogenesis. The mechanisms through which the ECM exerts its influence are poorly understood. MAtrix will create unprecedented opportunities for unraveling the role of the ECM in angiogenesis. It will do so by creating a highly innovative, multiscale in silico model that provides quantitative, subcellular resolution on cell-matrix interaction, which is key to the understanding of cell migration. In this way, MAtrix goes substantially beyond the state of the art in terms of computational models of angiogenesis. It will integrate mechanisms of ECM-mediated cell migration and relate them to intracellular regulatory mechanisms of angiogenesis.
Apart from its innovation in terms of computational modelling, MAtrix’ impact is related to its interdisciplinarity, involving computer simulations and in vitro experiments. This will enable to investigate research hypotheses on the role of the ECM in angiogenesis that are generated by the in silico model. State of the art technologies (fluorescence microscopy, cell and ECM mechanics, biomaterials design) will be applied –in conjunction with the in silico model- to quantity cell-ECM mechanical interaction at a subcellular level and the dynamics of cell migration. In vitro experiments will be performed for a broad range of biomaterials and their characteristics. In this way, MAtrix will deliver a proof-of-concept that an in silico model can help in identifying and prioritising biomaterials characteristics, relevant for angiogenesis. MAtrix’ findings can have a major impact on the development of therapies that want to control the angiogenic response.
Summary
Angiogenesis, the formation of new blood vessels from the existing vasculature, is a process that is fundamental to normal tissue growth, wound repair and disease. The control of angiogenesis is of utmost importance for tissue regenerative therapies as well as cancer treatment, however this remains a challenge. The extracellular matrix (ECM) is a one of the key controlling factors of angiogenesis. The mechanisms through which the ECM exerts its influence are poorly understood. MAtrix will create unprecedented opportunities for unraveling the role of the ECM in angiogenesis. It will do so by creating a highly innovative, multiscale in silico model that provides quantitative, subcellular resolution on cell-matrix interaction, which is key to the understanding of cell migration. In this way, MAtrix goes substantially beyond the state of the art in terms of computational models of angiogenesis. It will integrate mechanisms of ECM-mediated cell migration and relate them to intracellular regulatory mechanisms of angiogenesis.
Apart from its innovation in terms of computational modelling, MAtrix’ impact is related to its interdisciplinarity, involving computer simulations and in vitro experiments. This will enable to investigate research hypotheses on the role of the ECM in angiogenesis that are generated by the in silico model. State of the art technologies (fluorescence microscopy, cell and ECM mechanics, biomaterials design) will be applied –in conjunction with the in silico model- to quantity cell-ECM mechanical interaction at a subcellular level and the dynamics of cell migration. In vitro experiments will be performed for a broad range of biomaterials and their characteristics. In this way, MAtrix will deliver a proof-of-concept that an in silico model can help in identifying and prioritising biomaterials characteristics, relevant for angiogenesis. MAtrix’ findings can have a major impact on the development of therapies that want to control the angiogenic response.
Max ERC Funding
1 497 400 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym MicroParticleControl
Project Controlled synthesis of particulate matter in microfluidics
Researcher (PI) Simon Kuhn
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2015-STG
Summary Despite the many advantages of microchemical systems and their successful applications in chemical
engineering research, one major drawback greatly limiting their use is their susceptibility to channel clogging
for flows containing particulate matter. Hence, the aim of the proposed research is to overcome the challenge
of clogging in microfluidic devices and to design microfluidic systems that can tolerate particulate matter
and synthesize solid materials according to their specifications (e.g. size, purity, morphology). To reach this
goal, we apply a combined experimental and theoretical approach, in which the experimental results will lead
to model development reflecting the particle formation and interaction kinetics and their coupling to the
hydrodynamics. The novel concept of the proposal is to devise engineering strategies to handle the
particulate matter inside the reactor depending on if the solid material is i) an unwanted and insoluble by-product
of a reaction, or ii) the target compound (e.g. nanoparticle synthesis or crystallization of organic
molecules). Depending on the case we will design different ultrasound application strategies and introduce
nucleation sites to control the location of particle formation within the microchannel. This project will
provide fundamental insight into the physico-chemical phenomena that result in particle formation, growth
and agglomeration processes in continuous flow microdevices, and will provide a theoretical tool for the
prediction of the dynamics of particle-particle, particle-wall and particle-fluid interactions, leading to
innovative microreactor designs.
Summary
Despite the many advantages of microchemical systems and their successful applications in chemical
engineering research, one major drawback greatly limiting their use is their susceptibility to channel clogging
for flows containing particulate matter. Hence, the aim of the proposed research is to overcome the challenge
of clogging in microfluidic devices and to design microfluidic systems that can tolerate particulate matter
and synthesize solid materials according to their specifications (e.g. size, purity, morphology). To reach this
goal, we apply a combined experimental and theoretical approach, in which the experimental results will lead
to model development reflecting the particle formation and interaction kinetics and their coupling to the
hydrodynamics. The novel concept of the proposal is to devise engineering strategies to handle the
particulate matter inside the reactor depending on if the solid material is i) an unwanted and insoluble by-product
of a reaction, or ii) the target compound (e.g. nanoparticle synthesis or crystallization of organic
molecules). Depending on the case we will design different ultrasound application strategies and introduce
nucleation sites to control the location of particle formation within the microchannel. This project will
provide fundamental insight into the physico-chemical phenomena that result in particle formation, growth
and agglomeration processes in continuous flow microdevices, and will provide a theoretical tool for the
prediction of the dynamics of particle-particle, particle-wall and particle-fluid interactions, leading to
innovative microreactor designs.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym MMFCS
Project Multiscale Models for Catalytic-Reaction-Coupled Transport Phenomena in Fuel Cells
Researcher (PI) Bengt Sundén
Host Institution (HI) LUNDS UNIVERSITET
Call Details Advanced Grant (AdG), PE8, ERC-2008-AdG
Summary In proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs) there are various transport processes strongly affected by catalytic chemical/electrochemical reactions in nano- or/and micro-structured and multi-functional porous electrodes. Due to the complexity of fuel cells, fundamental understanding of physical phenomena continues to be required for the coupled chemical and transport processes with two-phase flow/water management in PEMFCs, and internal reforming reactions/thermal management in SOFCs. The project deals with the coupling of micro scale reactions (such as the electrochemical reactions and catalytic reactions) with various transport phenomena to provide a comprehensive understanding of fuel cell dynamics. The methodology for the project is a combination of model development and integration, simulation/analysis and validation. For microscopically complex porous layers and active sites, submodels will be developed by considering the detailed elementary kinetic rates based on the intermediate chemical species and their reactions occurring on the surface of the involved materials. As the inputs, the obtained data from the microscopic submodels will be implemented by the macroscopic CFD codes, previously developed for various applications, to examine local parameters in the porous electrodes and components. Both macro- and microscopic models will be validated by the experimental and/or literature data during the course of the project. The project will make progress beyond the state-of-the-art in modelling and analysis of advanced fuel cells, such as ultra low Pt loading (<0.1mgPt/cm2) and high temperature (120-200oC) PEMFCs, and intermediate temperature (600-800oC) planar SOFCs.
Summary
In proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs) there are various transport processes strongly affected by catalytic chemical/electrochemical reactions in nano- or/and micro-structured and multi-functional porous electrodes. Due to the complexity of fuel cells, fundamental understanding of physical phenomena continues to be required for the coupled chemical and transport processes with two-phase flow/water management in PEMFCs, and internal reforming reactions/thermal management in SOFCs. The project deals with the coupling of micro scale reactions (such as the electrochemical reactions and catalytic reactions) with various transport phenomena to provide a comprehensive understanding of fuel cell dynamics. The methodology for the project is a combination of model development and integration, simulation/analysis and validation. For microscopically complex porous layers and active sites, submodels will be developed by considering the detailed elementary kinetic rates based on the intermediate chemical species and their reactions occurring on the surface of the involved materials. As the inputs, the obtained data from the microscopic submodels will be implemented by the macroscopic CFD codes, previously developed for various applications, to examine local parameters in the porous electrodes and components. Both macro- and microscopic models will be validated by the experimental and/or literature data during the course of the project. The project will make progress beyond the state-of-the-art in modelling and analysis of advanced fuel cells, such as ultra low Pt loading (<0.1mgPt/cm2) and high temperature (120-200oC) PEMFCs, and intermediate temperature (600-800oC) planar SOFCs.
Max ERC Funding
1 320 000 €
Duration
Start date: 2009-06-01, End date: 2014-05-31
Project acronym MOOiRE
Project Mix-in Organic-InOrganic Redox Events for High Energy Batteries
Researcher (PI) Alexandru VLAD
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary The ever-increasing demand for improved electrochemical energy storage technologies has fostered intense, worldwide and interdisciplinary research over the past decade. The field of positive electrode materials remains largely dominated by transition metal compounds in which only the redox of metal cations contributes to the energy storage. The development of new materials and technologies, wherein both anions and cations display reversible, multi-electron redox, is bound to strongly impact this field.
MOOiRÉ will challenge this goal through innovative approaches on Metal Organic Compounds and Frameworks (MOC/Fs) with mix-in many-electron reversible redox of both, transition metal cations and organic ligand anions. Building on our preliminary results MOOiRÉ will adopt an integrated approach. We will combine performance oriented MOC/F molecular design supported by in-operando analytical inspection tools with novel electrode engineering approaches to overcome the limitations and enable efficient electrochemical charge storage. Through this highly interdisciplinary research, MOOiRÉ intends to advance the science and technology of mix-in redox MOC/Fs for next generation batteries, supercapacitors and their hybrids.
MOOiRÉ will also be a major systematic study of the fundamentals of MOC/F-based energy storage systems in view of a practical implementation. The overall impact will extend beyond the energy science community: the developed knowledge, tools and procedures will influence research and development related to porous composite materials, sorption, ion exchange and electrocatalysis. In the context of energy storage, this will be a disruptive development, enabling the use of MOC/Fs electrodes, with superior levels of performance as compared to current technology, at affordable costs and based on novel protocols.
Summary
The ever-increasing demand for improved electrochemical energy storage technologies has fostered intense, worldwide and interdisciplinary research over the past decade. The field of positive electrode materials remains largely dominated by transition metal compounds in which only the redox of metal cations contributes to the energy storage. The development of new materials and technologies, wherein both anions and cations display reversible, multi-electron redox, is bound to strongly impact this field.
MOOiRÉ will challenge this goal through innovative approaches on Metal Organic Compounds and Frameworks (MOC/Fs) with mix-in many-electron reversible redox of both, transition metal cations and organic ligand anions. Building on our preliminary results MOOiRÉ will adopt an integrated approach. We will combine performance oriented MOC/F molecular design supported by in-operando analytical inspection tools with novel electrode engineering approaches to overcome the limitations and enable efficient electrochemical charge storage. Through this highly interdisciplinary research, MOOiRÉ intends to advance the science and technology of mix-in redox MOC/Fs for next generation batteries, supercapacitors and their hybrids.
MOOiRÉ will also be a major systematic study of the fundamentals of MOC/F-based energy storage systems in view of a practical implementation. The overall impact will extend beyond the energy science community: the developed knowledge, tools and procedures will influence research and development related to porous composite materials, sorption, ion exchange and electrocatalysis. In the context of energy storage, this will be a disruptive development, enabling the use of MOC/Fs electrodes, with superior levels of performance as compared to current technology, at affordable costs and based on novel protocols.
Max ERC Funding
1 997 541 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym MULTIMATE
Project A Research Platform Addressing Outstanding Research Challenges for Nanoscale Design and Engineering of Multifunctional Material
Researcher (PI) Johanna Rosen
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary "Nanoscale engineering is a fascinating research field spawning extraordinary materials which revolutionize microelectronics, medicine,energy production, etc. Still, there is a need for new materials and synthesis methods to offer unprecedented properties for use in future applications.
In this research project, I will conduct fundamental science investigations focused towards the development of novel materials with tailor-made properties, achieved by precise control of the materials structure and compostition. The objectives are to: 1) Perform novel synthesis of graphene. 2) Explore nanoscale engineering of ""graphene-based"" materials, based on more than one atomic element. 3) Tailor uniquely combined metallic/ceramic/magnetic materials properties in so called MAX phases. 4) Provide proof of concept for thin film architectures in advanced applications that require specific mechanical, tribological, electronic, and magnetic properties.
This initative involves advanced materials design by a new and unique synthesis method based on cathodic arc. Research breakthroughs are envisioned: Functionalized graphene-based and fullerene-like compounds are expected to have a major impact on tribology and electronic applications. The MAX phases are expected to be a new candidate for applications within low friction contacts, electronics, as well as spintronics. In particular, single crystal devices are predicted through tuning of tunnel magnetoresistance (TMR) and anisotropic conductivity (from insulating to n-and p-type).
I can lead this innovative and interdisciplinary project, with a unique background combining relevant research areas: arc process development, plasma processing, materials synthesis and engineering, characterization, along with theory and modelling."
Summary
"Nanoscale engineering is a fascinating research field spawning extraordinary materials which revolutionize microelectronics, medicine,energy production, etc. Still, there is a need for new materials and synthesis methods to offer unprecedented properties for use in future applications.
In this research project, I will conduct fundamental science investigations focused towards the development of novel materials with tailor-made properties, achieved by precise control of the materials structure and compostition. The objectives are to: 1) Perform novel synthesis of graphene. 2) Explore nanoscale engineering of ""graphene-based"" materials, based on more than one atomic element. 3) Tailor uniquely combined metallic/ceramic/magnetic materials properties in so called MAX phases. 4) Provide proof of concept for thin film architectures in advanced applications that require specific mechanical, tribological, electronic, and magnetic properties.
This initative involves advanced materials design by a new and unique synthesis method based on cathodic arc. Research breakthroughs are envisioned: Functionalized graphene-based and fullerene-like compounds are expected to have a major impact on tribology and electronic applications. The MAX phases are expected to be a new candidate for applications within low friction contacts, electronics, as well as spintronics. In particular, single crystal devices are predicted through tuning of tunnel magnetoresistance (TMR) and anisotropic conductivity (from insulating to n-and p-type).
I can lead this innovative and interdisciplinary project, with a unique background combining relevant research areas: arc process development, plasma processing, materials synthesis and engineering, characterization, along with theory and modelling."
Max ERC Funding
1 484 700 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym NOCO2
Project Novel combustion principle with inherent capture of CO2
using combined manganese oxides that release oxygen
Researcher (PI) Jan Anders Lyngfelt
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Call Details Advanced Grant (AdG), PE8, ERC-2011-ADG_20110209
Summary Conventional CO2 capture processes have significant cost and energy penalties associated with gas separation. Chemical-looping combustion (CLC), an entirely new combustion principle avoids this difficulty by inherent CO2 capture, using metal oxides for oxygen transfer from air to fuel. The process has been demonstrated in small scale with gaseous fuels. However, with solid fuels it would be difficult to reach high fuel conversion, with the oxygen-carrier materials used so far. But a new type of combined oxides based on manganese has the ability not only to react with gaseous fuel, but also to release gaseous oxygen, which would fundamentally change the concept.
The programme would provide 1) new oxygen-carrier materials with unique properties that would make this low-cost/high-efficiency option of CO2 capture possible, 2) cold-flow model investigation of suitable reactor system configurations and components, 3) a demonstration of this new combustion technology at the pilot plant level, 4) a model of the process comprising a full understanding, including kinetics, equilibria, hydrodynamics of fluidized reactors, mass and heat balances.
The basis of this programme is the discovery of a number of oxygen-releasing combined manganese oxides, having properties that can make a CLC with solid fuels a break-through process for CO2 capture. The purpose of the programme is to perform a comprehensive study of these materials, to demonstrate that they work in real systems, to achieve a full understanding of how they work in interaction with solid fuels in fluidized beds and to assess how this process would work in the full scale.
Climate negotiations and agreements could be significantly facilitated by this low cost option for CO2 capture which, in principle, should be applicable to 25% of the global CO2 emissions, i.e. coal fired power plants. It would also provide a future means of removing CO2 from the atmosphere at low cost by burning biofuel and capture CO2.
.
Summary
Conventional CO2 capture processes have significant cost and energy penalties associated with gas separation. Chemical-looping combustion (CLC), an entirely new combustion principle avoids this difficulty by inherent CO2 capture, using metal oxides for oxygen transfer from air to fuel. The process has been demonstrated in small scale with gaseous fuels. However, with solid fuels it would be difficult to reach high fuel conversion, with the oxygen-carrier materials used so far. But a new type of combined oxides based on manganese has the ability not only to react with gaseous fuel, but also to release gaseous oxygen, which would fundamentally change the concept.
The programme would provide 1) new oxygen-carrier materials with unique properties that would make this low-cost/high-efficiency option of CO2 capture possible, 2) cold-flow model investigation of suitable reactor system configurations and components, 3) a demonstration of this new combustion technology at the pilot plant level, 4) a model of the process comprising a full understanding, including kinetics, equilibria, hydrodynamics of fluidized reactors, mass and heat balances.
The basis of this programme is the discovery of a number of oxygen-releasing combined manganese oxides, having properties that can make a CLC with solid fuels a break-through process for CO2 capture. The purpose of the programme is to perform a comprehensive study of these materials, to demonstrate that they work in real systems, to achieve a full understanding of how they work in interaction with solid fuels in fluidized beds and to assess how this process would work in the full scale.
Climate negotiations and agreements could be significantly facilitated by this low cost option for CO2 capture which, in principle, should be applicable to 25% of the global CO2 emissions, i.e. coal fired power plants. It would also provide a future means of removing CO2 from the atmosphere at low cost by burning biofuel and capture CO2.
.
Max ERC Funding
2 500 000 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym NOVIB
Project The Nonlinear Tuned Vibration Absorber
Researcher (PI) Gaetan Kerschen
Host Institution (HI) UNIVERSITE DE LIEGE
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary "Even after more than one century of flight, both civil and military aircraft are still plagued by major vibration problems. A well-known example is the external-store induced flutter of the F-16 fighter aircraft. Such dynamical phenomena, commonly known as aeroelastic instabilities, result from the transfer of energy from the free stream to the structure and can lead to limit cycle oscillations, a phenomenon with no linear counterpart. Since nonlinear dynamical systems theory is not yet mature, the inherently nonlinear nature of these oscillations renders their mitigation a particularly difficult problem. The only practical solution to date is to limit aircraft flight envelope to regions where these instabilities are not expected to occur, as verified by intensive and expensive flight campaigns. This limitation results in a severe decrease in both aircraft efficiency and performance.
At the heart of this project is a fundamental change in paradigm: although nonlinearity is usually seen as an enemy, I propose to control - and even suppress - aeroelastic instability through the intentional use of nonlinearity. This approach has the potential to bring about a major change in aircraft design and will be achieved thanks to the development of the nonlinear tuned vibration absorber, a new, rigorous nonlinear counterpart of the linear tuned vibration absorber. This work represents a number of significant challenges, because the novel functionalities brought by the intentional use of nonlinearity can be accompanied by adverse nonlinear dynamical effects. The successful mitigation of these unwanted nonlinear effects will be a major objective of our proposed research; it will require achieving both theoretical and technical advances to make it possible. A specific effort will be made to demonstrate experimentally the theoretical findings of this research with extensive wind tunnel testing and practical implementation of the nonlinear tuned vibration absorber.
Finally, nonlinear instabilities such as limit cycle oscillations can be found in a number of non-aircraft applications including in bridges, automotive disc brakes and machine tools. The nonlinear tuned vibration absorber could also find uses in resolving problems in these applications, thus ensuring the generic character of the project."
Summary
"Even after more than one century of flight, both civil and military aircraft are still plagued by major vibration problems. A well-known example is the external-store induced flutter of the F-16 fighter aircraft. Such dynamical phenomena, commonly known as aeroelastic instabilities, result from the transfer of energy from the free stream to the structure and can lead to limit cycle oscillations, a phenomenon with no linear counterpart. Since nonlinear dynamical systems theory is not yet mature, the inherently nonlinear nature of these oscillations renders their mitigation a particularly difficult problem. The only practical solution to date is to limit aircraft flight envelope to regions where these instabilities are not expected to occur, as verified by intensive and expensive flight campaigns. This limitation results in a severe decrease in both aircraft efficiency and performance.
At the heart of this project is a fundamental change in paradigm: although nonlinearity is usually seen as an enemy, I propose to control - and even suppress - aeroelastic instability through the intentional use of nonlinearity. This approach has the potential to bring about a major change in aircraft design and will be achieved thanks to the development of the nonlinear tuned vibration absorber, a new, rigorous nonlinear counterpart of the linear tuned vibration absorber. This work represents a number of significant challenges, because the novel functionalities brought by the intentional use of nonlinearity can be accompanied by adverse nonlinear dynamical effects. The successful mitigation of these unwanted nonlinear effects will be a major objective of our proposed research; it will require achieving both theoretical and technical advances to make it possible. A specific effort will be made to demonstrate experimentally the theoretical findings of this research with extensive wind tunnel testing and practical implementation of the nonlinear tuned vibration absorber.
Finally, nonlinear instabilities such as limit cycle oscillations can be found in a number of non-aircraft applications including in bridges, automotive disc brakes and machine tools. The nonlinear tuned vibration absorber could also find uses in resolving problems in these applications, thus ensuring the generic character of the project."
Max ERC Funding
1 316 440 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym OPTIMA
Project PrOcess intensification and innovation in olefin ProducTIon by Multiscale Analysis and design
Researcher (PI) Kevin Jean-Marie VAN GEEM
Host Institution (HI) UNIVERSITEIT GENT
Call Details Consolidator Grant (CoG), PE8, ERC-2018-COG
Summary New manufacturing techniques such as 3D printing have the potential to drastically transform the chemical industry. Novel, complex, integrated reactor designs can now be created, that will allow to unlock alternative chemical routes, such as for methane activation. Driven by process intensification and the power of high performance computing, this project will enhance heat and mass transfer in advanced chemical reactors by multiscale modelling and experimentation. OPTIMA aims to:
(1) develop in silico novel 3D reactor technologies and concepts with significantly improved selectivity and heat transfer by the use of additive manufacturing;
(2) generate new fundamental understanding of kinetics, heat transfer and mass transfer by using advanced measuring techniques for processes of both current and future importance;
(3) demonstrate the practical applicability of an open-source multiscale large eddy simulation (LES) platform in combination with finite rate chemistry for turbulent reacting flows;
(4) transform the chemical industry by valorising methane and converting it to a platform molecule through oxidative coupling of methane.
OPTIMA will focus on two olefin production processes of industrial and social importance in Europe, the exothermal oxidative coupling of methane and the endothermic steam cracking, demonstrating the universality of the proposed new paradigm. Starting from fundamental experiments and kinetic modelling (WP1), detailed chemistry will be implemented in an open-source LES multiscale modelling framework (WP2) generating in silico novel 3D reactor technologies with significantly improved selectivity (WP3). The power of the approach will be ultimately demonstrated in a novel, 3D integrated reactor, in which the studied exothermic and endothermic processes are cleverly combined (WP4).
OPTIMA will pave the way for designing the 3D reactors of tomorrow and promote the new techniques and tools that will be driving innovation in the next decades.
Summary
New manufacturing techniques such as 3D printing have the potential to drastically transform the chemical industry. Novel, complex, integrated reactor designs can now be created, that will allow to unlock alternative chemical routes, such as for methane activation. Driven by process intensification and the power of high performance computing, this project will enhance heat and mass transfer in advanced chemical reactors by multiscale modelling and experimentation. OPTIMA aims to:
(1) develop in silico novel 3D reactor technologies and concepts with significantly improved selectivity and heat transfer by the use of additive manufacturing;
(2) generate new fundamental understanding of kinetics, heat transfer and mass transfer by using advanced measuring techniques for processes of both current and future importance;
(3) demonstrate the practical applicability of an open-source multiscale large eddy simulation (LES) platform in combination with finite rate chemistry for turbulent reacting flows;
(4) transform the chemical industry by valorising methane and converting it to a platform molecule through oxidative coupling of methane.
OPTIMA will focus on two olefin production processes of industrial and social importance in Europe, the exothermal oxidative coupling of methane and the endothermic steam cracking, demonstrating the universality of the proposed new paradigm. Starting from fundamental experiments and kinetic modelling (WP1), detailed chemistry will be implemented in an open-source LES multiscale modelling framework (WP2) generating in silico novel 3D reactor technologies with significantly improved selectivity (WP3). The power of the approach will be ultimately demonstrated in a novel, 3D integrated reactor, in which the studied exothermic and endothermic processes are cleverly combined (WP4).
OPTIMA will pave the way for designing the 3D reactors of tomorrow and promote the new techniques and tools that will be driving innovation in the next decades.
Max ERC Funding
1 995 000 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym PARADIGM
Project New Paradigm in the Design of Degradable Polymeric Materials - Macroscopic Performance Translated to all Levels of Order
Researcher (PI) Ann-Christine Albertsson
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Advanced Grant (AdG), PE8, ERC-2009-AdG
Summary A new generation of polymeric materials is needed promptly that does not behave like traditional commodity plastics in terms of environmental interaction, degradation pattern, fragmentation tendency, and biological persistency. I herein propose a new paradigm in the design of polymeric materials; the design of polymeric materials through a retro-structural approach where the macroscopic performance is translated to every scale level of structural order so that appropriate molecular recognitions are identified and subsequently synthetically generated in a bottom-up procedure. Inspiration on how to design such materials is best drawn from Nature which is unsurpassed in its ability to combine molecular building blocks into perfectly designed versatile super- and supramolecular structures with well-defined properties, disassembly patterns, and biological functions. A closer look into the structural build-up of biological materials gives important clues on how to design synthetic functional materials with desirable environmental interaction. In addition to advanced synthesis, surface modification and processing, the materials and their degradation behavior will be thoroughly characterized by using traditional characterization techniques in combination with latest spectroscopic and imaging techniques. I have chosen to focus on two areas that stand out as highly prioritized in maintaining or even raising our quality of life; sustainable materials for commodity applications and tissue engineering systems in biomaterials science. This is a bold high risk proposal which if successful will have a ground-breaking influence on how we design polymeric materials.
Summary
A new generation of polymeric materials is needed promptly that does not behave like traditional commodity plastics in terms of environmental interaction, degradation pattern, fragmentation tendency, and biological persistency. I herein propose a new paradigm in the design of polymeric materials; the design of polymeric materials through a retro-structural approach where the macroscopic performance is translated to every scale level of structural order so that appropriate molecular recognitions are identified and subsequently synthetically generated in a bottom-up procedure. Inspiration on how to design such materials is best drawn from Nature which is unsurpassed in its ability to combine molecular building blocks into perfectly designed versatile super- and supramolecular structures with well-defined properties, disassembly patterns, and biological functions. A closer look into the structural build-up of biological materials gives important clues on how to design synthetic functional materials with desirable environmental interaction. In addition to advanced synthesis, surface modification and processing, the materials and their degradation behavior will be thoroughly characterized by using traditional characterization techniques in combination with latest spectroscopic and imaging techniques. I have chosen to focus on two areas that stand out as highly prioritized in maintaining or even raising our quality of life; sustainable materials for commodity applications and tissue engineering systems in biomaterials science. This is a bold high risk proposal which if successful will have a ground-breaking influence on how we design polymeric materials.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-03-01, End date: 2016-02-29
Project acronym PLASMAPOR
Project "Plasma penetration into porous materials for biomedical, textile and filtration applications."
Researcher (PI) Rino Achiel Morent
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary "My group will explore the undeveloped field of penetration of non-thermal plasma into porous structures. Porous materials are an exciting class of materials with a wide range of applications. However, given the narrow dimensions of the porous network, modifying in a homogeneous way an entire porous material is a challenging task.
This project is based on the use of non-thermal atmospheric pressure plasmas for an effective internal surface modification of 3D porous structures. To make plasma technology reach this desired level of controlled penetration into porous structures, a far better understanding of the penetration of chemical active species into porous structures is required. Therefore, my project envisages a thorough study of the interactions between a non-thermal plasma and a second phase, the second phase being a porous substrate. Through diagnostics of the process-relevant plasma parameters and a quantitative analysis of the plasma-induced effects, the knowledge on the physics and chemistry of such hybrid plasma systems will be enhanced and, in most cases, newly founded.
My group will start exploring this exciting field by focussing on three cornerstone research lines. Firstly, I will develop new plasma reactor concepts enabling effective plasma penetration. Secondly, these newly developed plasma reactors will be employed for the internal surface modification of porous biodegradable polyester scaffolds used in tissue engineering. Thirdly, besides the development of biomedical implants, the possibilities for the design of functional porous textiles and advanced filter materials will also be explored. Realisation of these three cornerstones would result in a major breakthrough in their specific field which makes this proposal inherently a relatively high risk/very high gain proposal.
I therefore strongly believe that my research program will open a whole new window of opportunities for porous materials with a large impact on science and society."
Summary
"My group will explore the undeveloped field of penetration of non-thermal plasma into porous structures. Porous materials are an exciting class of materials with a wide range of applications. However, given the narrow dimensions of the porous network, modifying in a homogeneous way an entire porous material is a challenging task.
This project is based on the use of non-thermal atmospheric pressure plasmas for an effective internal surface modification of 3D porous structures. To make plasma technology reach this desired level of controlled penetration into porous structures, a far better understanding of the penetration of chemical active species into porous structures is required. Therefore, my project envisages a thorough study of the interactions between a non-thermal plasma and a second phase, the second phase being a porous substrate. Through diagnostics of the process-relevant plasma parameters and a quantitative analysis of the plasma-induced effects, the knowledge on the physics and chemistry of such hybrid plasma systems will be enhanced and, in most cases, newly founded.
My group will start exploring this exciting field by focussing on three cornerstone research lines. Firstly, I will develop new plasma reactor concepts enabling effective plasma penetration. Secondly, these newly developed plasma reactors will be employed for the internal surface modification of porous biodegradable polyester scaffolds used in tissue engineering. Thirdly, besides the development of biomedical implants, the possibilities for the design of functional porous textiles and advanced filter materials will also be explored. Realisation of these three cornerstones would result in a major breakthrough in their specific field which makes this proposal inherently a relatively high risk/very high gain proposal.
I therefore strongly believe that my research program will open a whole new window of opportunities for porous materials with a large impact on science and society."
Max ERC Funding
1 518 800 €
Duration
Start date: 2012-06-01, End date: 2017-05-31
Project acronym PLASMATS
Project Plasma-assisted development and functionalization of electrospun mats for tissue engineering purposes
Researcher (PI) Nathalie Marie-Thérèse De Geyter
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary "In this project, I will explore the unique combination of two fascinating research themes: electrospinning and plasma technology. Electrospun nanofibrous matrices (so-called mats) are an exciting class of materials with a wide range of possible applications. Nevertheless, the development and functionalization of these electrospun materials remain very challenging tasks.
Atmospheric pressure plasma technology will be utilized by my research group to create advanced biodegradable electrospun mats with unprecedented functionality and performance. To realise such a major breakthrough, plasma technology will be implemented in different steps of the manufacturing process: pre-electrospinning and post-electrospinning.
My group will focus on four cornerstone research lines, which have been carefully chosen so that all critical issues one could encounter in creating advanced biodegradable electrospun mats are tackled. Research cornerstone A aims to develop biodegradable electrospun mats with appropriate bulk properties, while in research cornerstone B pre-electrospinning polymer solutions will be exposed to non-thermal atmospheric plasmas. This will be realized by probing unexplored concepts such as discharges created inside polymer solutions. In a third cornerstone C, an in-depth study of the interactions between an atmospheric pressure plasma and an electrospun mat will be carried out. Finally, the last cornerstone D will focus on plasma-assisted surface modification of biodegradable electrospun mats for tissue engineering purposes.
Realization of these four cornerstones would result in a major breakthrough in their specific field which makes this proposal inherently a relatively high risk/very high gain proposal. I therefore strongly believe that this research program will open a whole new window of opportunities for electrospun materials with a large impact on science and society."
Summary
"In this project, I will explore the unique combination of two fascinating research themes: electrospinning and plasma technology. Electrospun nanofibrous matrices (so-called mats) are an exciting class of materials with a wide range of possible applications. Nevertheless, the development and functionalization of these electrospun materials remain very challenging tasks.
Atmospheric pressure plasma technology will be utilized by my research group to create advanced biodegradable electrospun mats with unprecedented functionality and performance. To realise such a major breakthrough, plasma technology will be implemented in different steps of the manufacturing process: pre-electrospinning and post-electrospinning.
My group will focus on four cornerstone research lines, which have been carefully chosen so that all critical issues one could encounter in creating advanced biodegradable electrospun mats are tackled. Research cornerstone A aims to develop biodegradable electrospun mats with appropriate bulk properties, while in research cornerstone B pre-electrospinning polymer solutions will be exposed to non-thermal atmospheric plasmas. This will be realized by probing unexplored concepts such as discharges created inside polymer solutions. In a third cornerstone C, an in-depth study of the interactions between an atmospheric pressure plasma and an electrospun mat will be carried out. Finally, the last cornerstone D will focus on plasma-assisted surface modification of biodegradable electrospun mats for tissue engineering purposes.
Realization of these four cornerstones would result in a major breakthrough in their specific field which makes this proposal inherently a relatively high risk/very high gain proposal. I therefore strongly believe that this research program will open a whole new window of opportunities for electrospun materials with a large impact on science and society."
Max ERC Funding
1 391 100 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym PrintPack
Project Arranging the Particles: Step Changing Chemical Measurement Technology
Researcher (PI) Gert DESMET
Host Institution (HI) VRIJE UNIVERSITEIT BRUSSEL
Call Details Advanced Grant (AdG), PE8, ERC-2015-AdG
Summary The progress in liquid chromatography (LC), basically following Moore’s law over the last decade, will soon come to a halt. LC is the current state-of-the-art chemical separation method to measure the composition of complex mixtures. Driven by the ever growing complexity of the samples in e.g., environmental and biomedical research, LC is constantly pushed to higher efficiencies. Using highly optimized and monodisperse spherical particles, randomly packed in high pressure columns, the progress in LC has up till now been realized by reducing the particle size and concomitantly increasing the pressure. With pressure already up at 1500 bar, groundbreaking progress is still badly needed, e.g., to fully unravel the complex reaction networks in human cells.
For this purpose, it is proposed to leave the randomly packed bed paradigm and move to structures wherein the 1 to 5 micrometer particles currently used in LC are arranged in perfectly ordered and open-structured geometries. This is now possible, as the latest advances in nano-manufacturing and positioning allow proposing and developing an inventive high-throughput particle assembly and deposition strategy. The PI's ability to develop new parts of chromatography will be used to rationally optimize the many possible geometries accessible through this disruptive new technology, and identify those structures coping best with any remaining degree of disorder. Using the PI's experimental know-how on microfluidic chromatography systems, these structures will be used to pursue the disruptive gain margin (order of factor 100 in separation speed) that is expected based on general chromatography theory.
Testing this groundbreaking new generation of LC columns together with world-leading bio-analytical scientists will illustrate their potential in making new discoveries in biology and life sciences. The new nano-assembly strategies might also be pushed to other applications, such as photonic crystals.
Summary
The progress in liquid chromatography (LC), basically following Moore’s law over the last decade, will soon come to a halt. LC is the current state-of-the-art chemical separation method to measure the composition of complex mixtures. Driven by the ever growing complexity of the samples in e.g., environmental and biomedical research, LC is constantly pushed to higher efficiencies. Using highly optimized and monodisperse spherical particles, randomly packed in high pressure columns, the progress in LC has up till now been realized by reducing the particle size and concomitantly increasing the pressure. With pressure already up at 1500 bar, groundbreaking progress is still badly needed, e.g., to fully unravel the complex reaction networks in human cells.
For this purpose, it is proposed to leave the randomly packed bed paradigm and move to structures wherein the 1 to 5 micrometer particles currently used in LC are arranged in perfectly ordered and open-structured geometries. This is now possible, as the latest advances in nano-manufacturing and positioning allow proposing and developing an inventive high-throughput particle assembly and deposition strategy. The PI's ability to develop new parts of chromatography will be used to rationally optimize the many possible geometries accessible through this disruptive new technology, and identify those structures coping best with any remaining degree of disorder. Using the PI's experimental know-how on microfluidic chromatography systems, these structures will be used to pursue the disruptive gain margin (order of factor 100 in separation speed) that is expected based on general chromatography theory.
Testing this groundbreaking new generation of LC columns together with world-leading bio-analytical scientists will illustrate their potential in making new discoveries in biology and life sciences. The new nano-assembly strategies might also be pushed to other applications, such as photonic crystals.
Max ERC Funding
2 488 813 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym PROMETHEUS
Project Flame nanoengineering for antibacterial medical devices
Researcher (PI) Georgios SOTIRIOU
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Engineers in nanotechnology research labs have been quite innovative the last decade in designing nanoscale materials for medicine. However, very few of these exciting discoveries are translated to commercial medical products today. The main reasons for this are two inherent limitations of most nanomanufacture processes: scalability and reproducibility. There is too little knowledge on how well the unique properties associated with nanoparticles are maintained during their large-scale production while often poor reproducibility hinders their successful use. A key goal here is to utilize a nanomanufacture process famous for its scalability and reproducibility, flame aerosol reactors that produce at tons/hr commodity powders, and advance the knowledge for synthesis of complex nanoparticles and their direct integration in medical devices. Our aim is to develop the next generation of antibacterial medical devices to fight antimicrobial resistance, a highly understudied field. Antimicrobial resistance constitutes the most serious public health threat today with estimations to become the leading cause of human deaths in 30 years.
We focus on flame direct nanoparticle deposition on substrates combining nanoparticle production and functional layer deposition in a single-step with close attention to product nanoparticle properties and device assembly, extending beyond the simple commodity powders of the past. Specific targets here are two devices; a) hybrid drug microneedle patch with photothermal nanoparticles to fight life-threatening skin infections from drug-resistant bacteria and b) smart nanocoatings on implants providing both osteogenic and self-triggered antibacterial properties. The engineering approach for the development of antibacterial devices will provide insight into the basic physicochemical principles to assist in commercialization while the outcome of this research will help the fight against antibiotic resistance improving the public health worldwide.
Summary
Engineers in nanotechnology research labs have been quite innovative the last decade in designing nanoscale materials for medicine. However, very few of these exciting discoveries are translated to commercial medical products today. The main reasons for this are two inherent limitations of most nanomanufacture processes: scalability and reproducibility. There is too little knowledge on how well the unique properties associated with nanoparticles are maintained during their large-scale production while often poor reproducibility hinders their successful use. A key goal here is to utilize a nanomanufacture process famous for its scalability and reproducibility, flame aerosol reactors that produce at tons/hr commodity powders, and advance the knowledge for synthesis of complex nanoparticles and their direct integration in medical devices. Our aim is to develop the next generation of antibacterial medical devices to fight antimicrobial resistance, a highly understudied field. Antimicrobial resistance constitutes the most serious public health threat today with estimations to become the leading cause of human deaths in 30 years.
We focus on flame direct nanoparticle deposition on substrates combining nanoparticle production and functional layer deposition in a single-step with close attention to product nanoparticle properties and device assembly, extending beyond the simple commodity powders of the past. Specific targets here are two devices; a) hybrid drug microneedle patch with photothermal nanoparticles to fight life-threatening skin infections from drug-resistant bacteria and b) smart nanocoatings on implants providing both osteogenic and self-triggered antibacterial properties. The engineering approach for the development of antibacterial devices will provide insight into the basic physicochemical principles to assist in commercialization while the outcome of this research will help the fight against antibiotic resistance improving the public health worldwide.
Max ERC Funding
1 812 500 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym PROSPER
Project Design of polymer optical fibre gratings for endoscopic biosensing purposes
Researcher (PI) Christophe Caucheteur
Host Institution (HI) UNIVERSITE DE MONS
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary "PROSPER is a multidisciplinary project covering the emerging fields of photonics, bio-chemistry and endoscopy, targeting to contribute to the development of a new class of biochemical optical sensors that would significantly improve the healthcare of the future.
PROSPER will address this objective through the demonstration of biosensors based on a functionalized polymer optical fibre (POF) in which specially-designed refractive-index gratings have been written. Immobilised biomolecular receptors on the grafted fibre surface will allow label-free recognition through the monitoring of wavelength shifts in the grating spectral response. Such biosensors are predicted to exhibit a surrounding refractive index detection limit of 10-6 in real time, which is classical for biodetection. Although generic and able to work in various areas such as environmental monitoring, food analysis, agriculture or security, the proposed biosensors will be targeted for medical diagnostics where they present the most ground-breaking nature. Indeed, unlike bulk structures, they require reduced reaction volumes for ex-vivo measurements and present the advantageous possibility of assaying several parameters simultaneously (e.g. several cancer-associated antigens in one sample). As a result, statistical analysis of these parameters can potentially increase the reliability and reduce the measurement uncertainty of a diagnostic over single-parameter assays. More importantly, the proposed biosensors have the unique potential to be used in-vivo in an endoscope (for this reason POFs are privileged over silica), which would considerably improve the diagnostic. The ultimate target of PROSPER is thus to demonstrate the feasibility of diagnostics outside of laboratory settings. A final prototype consisting of a packaged polymer biosensor will be validated."
Summary
"PROSPER is a multidisciplinary project covering the emerging fields of photonics, bio-chemistry and endoscopy, targeting to contribute to the development of a new class of biochemical optical sensors that would significantly improve the healthcare of the future.
PROSPER will address this objective through the demonstration of biosensors based on a functionalized polymer optical fibre (POF) in which specially-designed refractive-index gratings have been written. Immobilised biomolecular receptors on the grafted fibre surface will allow label-free recognition through the monitoring of wavelength shifts in the grating spectral response. Such biosensors are predicted to exhibit a surrounding refractive index detection limit of 10-6 in real time, which is classical for biodetection. Although generic and able to work in various areas such as environmental monitoring, food analysis, agriculture or security, the proposed biosensors will be targeted for medical diagnostics where they present the most ground-breaking nature. Indeed, unlike bulk structures, they require reduced reaction volumes for ex-vivo measurements and present the advantageous possibility of assaying several parameters simultaneously (e.g. several cancer-associated antigens in one sample). As a result, statistical analysis of these parameters can potentially increase the reliability and reduce the measurement uncertainty of a diagnostic over single-parameter assays. More importantly, the proposed biosensors have the unique potential to be used in-vivo in an endoscope (for this reason POFs are privileged over silica), which would considerably improve the diagnostic. The ultimate target of PROSPER is thus to demonstrate the feasibility of diagnostics outside of laboratory settings. A final prototype consisting of a packaged polymer biosensor will be validated."
Max ERC Funding
1 438 368 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym SmartCast
Project Smart casting of concrete structures by active control of rheology
Researcher (PI) Geert De schutter
Host Institution (HI) UNIVERSITEIT GENT
Call Details Advanced Grant (AdG), PE8, ERC-2015-AdG
Summary Concrete production processes do not take full advantage of the rheological potential of fresh cementitious materials, and are still largely labour-driven and sensitive to the human factor. SmartCast proposes a new concrete casting concept to transform the concrete industry into a highly automated technological industry. Currently, the rheological properties of the concrete are defined by mix design and mixing procedure without any further active adjustment during casting. The goal of this proposal is the active control of concrete rheology during casting, and the active triggering of early stiffening of the concrete as soon as it is put in place. The ground-breaking idea to achieve this goal, is to develop concrete with actively controllable rheology by adding admixtures responsive to externally activated electromagnetic frequencies. Inter-disciplinary insights are important to achieve these goals, including inputs from concrete technology, polymer science, electrochemistry, rheology and computational fluid dynamics.
We will develop 4 new experimental test set-ups allowing to study active rheology control during different phases of the casting process: 1)concrete pumping (control of slip layer), 2)while flowing in the formwork (bulk control of rheology), 3)while flowing through formwork joints (control of formwork tightness), and 4)once the concrete is in its final position (trigger stiffening). Well-designed polymers with the desired response to the applied activation will be added to the concrete during mixing. The experiments will be analysed by advanced computational flow modelling based on fundamental rheological laws. Special attention will be paid to the compatibility of all responsive polymers selected for the different control phases. SmartCast will mean a paradigm shift for formwork-based concrete casting. The developed active rheology control will provide a fundamental basis for the development of future-proof 3D printing techniques in concrete industry
Summary
Concrete production processes do not take full advantage of the rheological potential of fresh cementitious materials, and are still largely labour-driven and sensitive to the human factor. SmartCast proposes a new concrete casting concept to transform the concrete industry into a highly automated technological industry. Currently, the rheological properties of the concrete are defined by mix design and mixing procedure without any further active adjustment during casting. The goal of this proposal is the active control of concrete rheology during casting, and the active triggering of early stiffening of the concrete as soon as it is put in place. The ground-breaking idea to achieve this goal, is to develop concrete with actively controllable rheology by adding admixtures responsive to externally activated electromagnetic frequencies. Inter-disciplinary insights are important to achieve these goals, including inputs from concrete technology, polymer science, electrochemistry, rheology and computational fluid dynamics.
We will develop 4 new experimental test set-ups allowing to study active rheology control during different phases of the casting process: 1)concrete pumping (control of slip layer), 2)while flowing in the formwork (bulk control of rheology), 3)while flowing through formwork joints (control of formwork tightness), and 4)once the concrete is in its final position (trigger stiffening). Well-designed polymers with the desired response to the applied activation will be added to the concrete during mixing. The experiments will be analysed by advanced computational flow modelling based on fundamental rheological laws. Special attention will be paid to the compatibility of all responsive polymers selected for the different control phases. SmartCast will mean a paradigm shift for formwork-based concrete casting. The developed active rheology control will provide a fundamental basis for the development of future-proof 3D printing techniques in concrete industry
Max ERC Funding
2 498 750 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym SOLCRIMET
Project Solvometallurgy for critical metals
Researcher (PI) Koen Binnemans
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), PE8, ERC-2015-AdG
Summary The recent “rare-earth crisis” has brought about the widespread realisation that the long-term availability and cost stability of many materials – not just the rare earths – can no longer be guaranteed. Increasing the levels of critical metal recycling from pre-consumer, manufacturing waste and complex, multicomponent end-of-life consumer products is considered as arguably the most important and realistic mitigation strategy. However, extracting a critical metal from complex waste is a very different challenge to that faced when attempting to produce a pure metal from a primary ore deposit. SOLCRIMET therefore develops a ground-breaking, novel approach called “solvometallurgy”, a new branch within metallurgy, next to conventional hydro- and pyrometallurgy. SOLCRIMET’s aim is to successfully apply this approach to the extraction of specific critical metals, i.e. rare earths, tantalum, niobium, cobalt, indium, gallium, germanium and antimony. As these critical metals are essential components for clean-tech and high-tech applications, they are key enablers of the required transition to a low-carbon, circular economy. The approach involves the discovery of non-aqueous solvent pairs that are immiscible and allow the extraction of metal complexes at moderate temperatures, leading to high-purity recycled metals. The idea is certainly high risk, but the preliminary results already obtained are highly encouraging. The main outcomes of the project will be lab-scale demonstrators that show the enhanced efficiency, utility and applicability of the new solvometallurgical process, with respect to conventional hydro- and pyrometallurgy. SOLCRIMET’s impact on chemistry, chemical technology, metallurgy and materials engineering science will be game-changing. The possibility to recycle critical metals with energy-efficient, low-cost processes could have a significant impact on the global recycling rates of these metals.
Summary
The recent “rare-earth crisis” has brought about the widespread realisation that the long-term availability and cost stability of many materials – not just the rare earths – can no longer be guaranteed. Increasing the levels of critical metal recycling from pre-consumer, manufacturing waste and complex, multicomponent end-of-life consumer products is considered as arguably the most important and realistic mitigation strategy. However, extracting a critical metal from complex waste is a very different challenge to that faced when attempting to produce a pure metal from a primary ore deposit. SOLCRIMET therefore develops a ground-breaking, novel approach called “solvometallurgy”, a new branch within metallurgy, next to conventional hydro- and pyrometallurgy. SOLCRIMET’s aim is to successfully apply this approach to the extraction of specific critical metals, i.e. rare earths, tantalum, niobium, cobalt, indium, gallium, germanium and antimony. As these critical metals are essential components for clean-tech and high-tech applications, they are key enablers of the required transition to a low-carbon, circular economy. The approach involves the discovery of non-aqueous solvent pairs that are immiscible and allow the extraction of metal complexes at moderate temperatures, leading to high-purity recycled metals. The idea is certainly high risk, but the preliminary results already obtained are highly encouraging. The main outcomes of the project will be lab-scale demonstrators that show the enhanced efficiency, utility and applicability of the new solvometallurgical process, with respect to conventional hydro- and pyrometallurgy. SOLCRIMET’s impact on chemistry, chemical technology, metallurgy and materials engineering science will be game-changing. The possibility to recycle critical metals with energy-efficient, low-cost processes could have a significant impact on the global recycling rates of these metals.
Max ERC Funding
2 496 250 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym Spray-Imaging
Project Detailed Characterization of Spray Systems using Novel Laser Imaging Techniques
Researcher (PI) Edouard Jean Jacques Berrocal
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary The multiple scattering of light is a complex phenomenon, commonly encountered but rarely desired. In imaging it induces strong blurring on the recorded photographs, limiting the range of applicability and accuracy of modern optical instruments. A typical example concerns the laser diagnostics of spray systems. The PI has revealed in 2008 a technique based on structured illumination with the important capability to remove the contributions from multiple light scattering, allowing the unique possibility of visualising through dense sprays. Based on this acquired knowledge, the aim of this proposal is to develop and apply three novel imaging techniques for the complete characterizations of spray systems:
The first technique will focus on visualizing with both high contrast and high resolution various spray phenomena that have not been observed in the past; such as complex spray breakup mechanisms in the near-nozzle region.
The second technique is related to the characterization of the formed droplets field. This concerns the accurate measurement of both droplets size and concentration using a three-dimensional imaging approach.
Finally, a third important task is the mapping of the spray temperature over the whole spray system. This information would lead to the determination of heat transfer and evaporation rate, which are key factors in the performance of combustion devices.
By extracting these important quantities - dynamics, droplets size/concentration and thermometry - fundamental insights which are still missing to fully understand the process of atomization will be provided. This will also serve at validating modern CFD models, leading to reliable predictions of spray behaviours. Even though this work can directly benefit to a large number of medical and industrial spray applications, it will mostly focus on fuel spray injections used in combustion devices.
Summary
The multiple scattering of light is a complex phenomenon, commonly encountered but rarely desired. In imaging it induces strong blurring on the recorded photographs, limiting the range of applicability and accuracy of modern optical instruments. A typical example concerns the laser diagnostics of spray systems. The PI has revealed in 2008 a technique based on structured illumination with the important capability to remove the contributions from multiple light scattering, allowing the unique possibility of visualising through dense sprays. Based on this acquired knowledge, the aim of this proposal is to develop and apply three novel imaging techniques for the complete characterizations of spray systems:
The first technique will focus on visualizing with both high contrast and high resolution various spray phenomena that have not been observed in the past; such as complex spray breakup mechanisms in the near-nozzle region.
The second technique is related to the characterization of the formed droplets field. This concerns the accurate measurement of both droplets size and concentration using a three-dimensional imaging approach.
Finally, a third important task is the mapping of the spray temperature over the whole spray system. This information would lead to the determination of heat transfer and evaporation rate, which are key factors in the performance of combustion devices.
By extracting these important quantities - dynamics, droplets size/concentration and thermometry - fundamental insights which are still missing to fully understand the process of atomization will be provided. This will also serve at validating modern CFD models, leading to reliable predictions of spray behaviours. Even though this work can directly benefit to a large number of medical and industrial spray applications, it will mostly focus on fuel spray injections used in combustion devices.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym SUPERCOOL
Project Superelastic Porous Structures for Efficient Elastocaloric Cooling
Researcher (PI) Jaka TUŠEK
Host Institution (HI) UNIVERZA V LJUBLJANI
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary Cooling, refrigeration and air-conditioning are crucial for our modern society. In the last decade, the global demands for cooling are growing exponentially. The standard refrigeration technology, based on vapour compression, is old, inefficient and environmentally harmful. In the SUPERCOOL project we will exploit the potential of elastocaloric cooling, probably the most promising solid-state refrigeration technology, which utilizes the latent heat associated with the martensitic transformation in superelastic shape-memory alloys. We have already demonstrated a novel concept of utilizing the elastocaloric effect (eCE) by introducing a superelastic porous structure in an elastocaloric regenerative thermodynamic cycle. Our preliminary results, recently published in Nature Energy, show the tremendous potential of such a system. However, two fundamental challenges remain. First, we need to create a geometry of the superelastic porous structure (elastocaloric regenerator) to ensure sufficient fatigue life, a large eCE and rapid heat transfer. Second, we must have a driver mechanism that can effectively utilize the work released during the unloading of the elastocaloric regenerator. To succeed I am proposing a unique approach to design advanced elastocaloric regenerators with complex structures together with a driver mechanism with the force-recovery principle. We will employ a systematic characterization and bottom-up linking of all three crucial aspects of the elastocaloric regenerator, i.e., the thermo-hydraulic properties, the stability and the structural fatigue, together with a new solution for force recovery in effective drivers. Based on these theoretical, numerical and experimental results we will combine both key elements of our novel elastocaloric concept into a prototype device, which could be the first major breakthrough in cooling technologies for 100 years, providing greater efficiency and reduced levels of pollution, by applying a solid-state refrigerant.
Summary
Cooling, refrigeration and air-conditioning are crucial for our modern society. In the last decade, the global demands for cooling are growing exponentially. The standard refrigeration technology, based on vapour compression, is old, inefficient and environmentally harmful. In the SUPERCOOL project we will exploit the potential of elastocaloric cooling, probably the most promising solid-state refrigeration technology, which utilizes the latent heat associated with the martensitic transformation in superelastic shape-memory alloys. We have already demonstrated a novel concept of utilizing the elastocaloric effect (eCE) by introducing a superelastic porous structure in an elastocaloric regenerative thermodynamic cycle. Our preliminary results, recently published in Nature Energy, show the tremendous potential of such a system. However, two fundamental challenges remain. First, we need to create a geometry of the superelastic porous structure (elastocaloric regenerator) to ensure sufficient fatigue life, a large eCE and rapid heat transfer. Second, we must have a driver mechanism that can effectively utilize the work released during the unloading of the elastocaloric regenerator. To succeed I am proposing a unique approach to design advanced elastocaloric regenerators with complex structures together with a driver mechanism with the force-recovery principle. We will employ a systematic characterization and bottom-up linking of all three crucial aspects of the elastocaloric regenerator, i.e., the thermo-hydraulic properties, the stability and the structural fatigue, together with a new solution for force recovery in effective drivers. Based on these theoretical, numerical and experimental results we will combine both key elements of our novel elastocaloric concept into a prototype device, which could be the first major breakthrough in cooling technologies for 100 years, providing greater efficiency and reduced levels of pollution, by applying a solid-state refrigerant.
Max ERC Funding
1 359 375 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym TRANSEP
Project Flow physics and interaction of laminar-turbulent transition and flow separation studied by direct numerical simulations
Researcher (PI) Dan Henningson
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Advanced Grant (AdG), PE8, ERC-2015-AdG
Summary The vision spelled out in this proposal is to overcome the failure of Computational Fluid Dynamics to tackle one of the central unsolved fluid physics problems, namely predicting the sensitive flow physics associated with laminar-turbulent transition and flow separation. A recent, highly influential report by NASA (Slotnick et al., 2014) clearly states that the major shortcoming of CFD is its “… inability to accurately and reliably predict turbulent flows with significant regions of separation”, most often associated with laminar-turbulent transition.
The research proposed here will address this shortcoming and develop and utilize computational methods that are able to predict, understand and control the sensitive interplay between laminar-turbulent transition and flow separation in boundary layers on wings and other aerodynamic bodies.
We will be able to understand enigmas such as the recent results from the experiments of Saric et al. at the Texas A&M Univeristy where the laminar area of a wing grows after a smooth surface have been painted (increased roughness), or the drastic changes of laminar-turbulent transition and separation locations on unsteady wings, or the notoriously difficult interaction of multiple separation and transition regions on high-lift wing configurations. For such flows there have been little understanding of flow physics and few computational prediction capabilities. Here we will perform simulations that give completely new possibilities to visualize, understand and control the flow around such wings and aerodynamic bodies, including the possibility to compute and harness the flow sensitivities.
We will tackle these outstanding flow and turbulence problem using the new possibilities enabled by multi-peta scale computing.
Summary
The vision spelled out in this proposal is to overcome the failure of Computational Fluid Dynamics to tackle one of the central unsolved fluid physics problems, namely predicting the sensitive flow physics associated with laminar-turbulent transition and flow separation. A recent, highly influential report by NASA (Slotnick et al., 2014) clearly states that the major shortcoming of CFD is its “… inability to accurately and reliably predict turbulent flows with significant regions of separation”, most often associated with laminar-turbulent transition.
The research proposed here will address this shortcoming and develop and utilize computational methods that are able to predict, understand and control the sensitive interplay between laminar-turbulent transition and flow separation in boundary layers on wings and other aerodynamic bodies.
We will be able to understand enigmas such as the recent results from the experiments of Saric et al. at the Texas A&M Univeristy where the laminar area of a wing grows after a smooth surface have been painted (increased roughness), or the drastic changes of laminar-turbulent transition and separation locations on unsteady wings, or the notoriously difficult interaction of multiple separation and transition regions on high-lift wing configurations. For such flows there have been little understanding of flow physics and few computational prediction capabilities. Here we will perform simulations that give completely new possibilities to visualize, understand and control the flow around such wings and aerodynamic bodies, including the possibility to compute and harness the flow sensitivities.
We will tackle these outstanding flow and turbulence problem using the new possibilities enabled by multi-peta scale computing.
Max ERC Funding
2 097 520 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym TRITOS
Project TRansItions and Turbulence Of complex Suspensions
Researcher (PI) Luca Brandt
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Consolidator Grant (CoG), PE8, ERC-2013-CoG
Summary The aim of this project is to forge a physical understanding of the transitions and of the turbulent flow of semi-dilute/dense non-colloidal suspensions, for different particle features and suspending fluids.
It is estimated that 10% of the world energy consumption is due to the transport and handling of granular materials of which particle suspensions are an important part. A deep understanding of the mechanisms underlying the flow of particle suspensions, the transition to turbulence and the turbulence characteristics is crucial for many important practical applications involving engineered complex fluids, such as pastes and paper pulp. A better prediction and control of the flow of suspensions will therefore have a huge impact.
Complex fluids are multiscale by nature where the physics at the microscale affects the macroscopic behaviour of the flow and vice versa giving rise to surprising and spectacular phenomena as well as making this one of the most important practical problem still to solve. Investigating the mechanisms by which the system microstructure determines the macroscopic flow properties and vice versa will not only give valuable insights into the nature of flowing suspensions but also will also lead to new ways to model and control it. Future generations of engineering CFD tools will have to contain models for complex suspensions. The fundamental approach proposed here, combined with challenging scientific and engineering examples backed up by experimental evidence, will make this possible and demonstrate it to a wider engineering community. The proposed project is based on highly accurate simulations of multiphase flow systems and state-of-the-art experiments. Such a holistic approach will enable us to understand the underlying mechanisms of instabilities and suspension turbulence and to develop accurate criteria for their prediction far in advance of what we could achieve with either approach separately.
Summary
The aim of this project is to forge a physical understanding of the transitions and of the turbulent flow of semi-dilute/dense non-colloidal suspensions, for different particle features and suspending fluids.
It is estimated that 10% of the world energy consumption is due to the transport and handling of granular materials of which particle suspensions are an important part. A deep understanding of the mechanisms underlying the flow of particle suspensions, the transition to turbulence and the turbulence characteristics is crucial for many important practical applications involving engineered complex fluids, such as pastes and paper pulp. A better prediction and control of the flow of suspensions will therefore have a huge impact.
Complex fluids are multiscale by nature where the physics at the microscale affects the macroscopic behaviour of the flow and vice versa giving rise to surprising and spectacular phenomena as well as making this one of the most important practical problem still to solve. Investigating the mechanisms by which the system microstructure determines the macroscopic flow properties and vice versa will not only give valuable insights into the nature of flowing suspensions but also will also lead to new ways to model and control it. Future generations of engineering CFD tools will have to contain models for complex suspensions. The fundamental approach proposed here, combined with challenging scientific and engineering examples backed up by experimental evidence, will make this possible and demonstrate it to a wider engineering community. The proposed project is based on highly accurate simulations of multiphase flow systems and state-of-the-art experiments. Such a holistic approach will enable us to understand the underlying mechanisms of instabilities and suspension turbulence and to develop accurate criteria for their prediction far in advance of what we could achieve with either approach separately.
Max ERC Funding
1 998 350 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym TUCLA
Project Towards a deepened understanding of combustion processes using advanced laser diagnostics
Researcher (PI) Lars Eric Marcus Aldén
Host Institution (HI) LUNDS UNIVERSITET
Call Details Advanced Grant (AdG), PE8, ERC-2014-ADG
Summary The field of combustion is of utmost societal/industrial importance while at the same time posing outstanding scientific challenges. In order to handle these, it is extremely important to develop and apply non-intrusive laser-diagnostic techniques with high spatial and temporal resolution for measurements of key parameters such as species concentrations and temperatures. Such techniques have been developed and applied by the PI for more than thirty-five years and the home institute has one of the most advanced instrumentations in academia world-wide.
The proposal activities will be divided into two areas including five main Work packages:
1. Development of new diagnostic techniques. We will concentrate on concepts based on structured illumination which will add a new dimension to present diagnostics based on temporal, intensity and spectral properties. It will allow for multiscalar measurements and efficient suppression of background light. Furthermore, we will work with femto/picosecond lasers for investigating the diagnostic applicability of filamentation, new aspects of non-linear techniques, and diagnostic aspects of photodissociation phenomena.
2. Phenomenological combustion studies using advanced laser diagnostics. A very important aspect of the project is to use the developed and available diagnostic techniques to assure experimental data in extremely challenging environments and together with modeling experts enhance the understanding of combustion phenomena. Studies will be carried out on three
different topics:
- Flame structures in laminar flames at high pressure as well as turbulent flames at atmospheric/high pressure.
- Biomass gasification, where complex fuels require new techniques to measure nitrogen, alkali, chlorine and sulfur compounds, as well as for measurements inside fuel particles.
- Combustion improvement by electric activation which can be introduced to handle flame oscillations and instabilities.
Summary
The field of combustion is of utmost societal/industrial importance while at the same time posing outstanding scientific challenges. In order to handle these, it is extremely important to develop and apply non-intrusive laser-diagnostic techniques with high spatial and temporal resolution for measurements of key parameters such as species concentrations and temperatures. Such techniques have been developed and applied by the PI for more than thirty-five years and the home institute has one of the most advanced instrumentations in academia world-wide.
The proposal activities will be divided into two areas including five main Work packages:
1. Development of new diagnostic techniques. We will concentrate on concepts based on structured illumination which will add a new dimension to present diagnostics based on temporal, intensity and spectral properties. It will allow for multiscalar measurements and efficient suppression of background light. Furthermore, we will work with femto/picosecond lasers for investigating the diagnostic applicability of filamentation, new aspects of non-linear techniques, and diagnostic aspects of photodissociation phenomena.
2. Phenomenological combustion studies using advanced laser diagnostics. A very important aspect of the project is to use the developed and available diagnostic techniques to assure experimental data in extremely challenging environments and together with modeling experts enhance the understanding of combustion phenomena. Studies will be carried out on three
different topics:
- Flame structures in laminar flames at high pressure as well as turbulent flames at atmospheric/high pressure.
- Biomass gasification, where complex fuels require new techniques to measure nitrogen, alkali, chlorine and sulfur compounds, as well as for measurements inside fuel particles.
- Combustion improvement by electric activation which can be introduced to handle flame oscillations and instabilities.
Max ERC Funding
2 442 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym Uniting PV
Project Applying silicon solar cell technology to revolutionize the design of thin-film solar cells and enhance their efficiency, cost and stability
Researcher (PI) Bart Vermang
Host Institution (HI) INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Thin film (TF) photovoltaics (PV) hold high potential for Building Integrated PV, an important market as European buildings require to be nearly zero-energy by 2020. Currently, Cu(In,Ga)(S,Se)2 (= CIGS(e)) TF solar cells have high efficiency, but also a simple one-dimensional cell design with stability and reliability concerns. Furthermore, its present research has been mainly focused on improving the absorber and buffer layers.
Scientifically, Uniting PV aims to study the practical boundaries of CIGS(e) TF solar cell efficiency. For that reason, its goal is to revolutionize the design of CIGS(e) solar cells through implementation of advanced three-dimensional silicon (Si) solar cell concepts. This novel design consists of (i) surface passivation layers and (ii) light management methods integrated into ultra-thin (UT) CIGS(e) solar cells: (i) Passivation layers will be studied to reduce charge carrier recombination at CIGS(e) surfaces. The aim is to create new understanding and thus scientific models. (ii) Light management methods will be studied to optimize optical confinement in UT CIGS(e) layers. The aim is to examine the interaction between light management and charge carrier recombination in UT CIGS(e), and to create scientific models. The main reasons to introduce these developments is to reduce charge carrier recombination at the CIGS(e) surfaces and in the CIGS(e) bulk, while maintaining optical confinement.
Technologically, the project targets to establish a solar cell with: (1) Increased cell efficiency, at least 23.0 % and up to 26.0 %; (2) improved stability and reliability, due to reduced CIGS(e) thickness and passivation layers hindering alkali metal movement; and (3) reduced cost, due to the use of less Ga and In, and industrially viable materials, methods and equipment. Hence, its outcome will be upscalable, valuable for other TF PV materials, and start a new wave of innovation in and collaboration between TF and Si PV research fields.
Summary
Thin film (TF) photovoltaics (PV) hold high potential for Building Integrated PV, an important market as European buildings require to be nearly zero-energy by 2020. Currently, Cu(In,Ga)(S,Se)2 (= CIGS(e)) TF solar cells have high efficiency, but also a simple one-dimensional cell design with stability and reliability concerns. Furthermore, its present research has been mainly focused on improving the absorber and buffer layers.
Scientifically, Uniting PV aims to study the practical boundaries of CIGS(e) TF solar cell efficiency. For that reason, its goal is to revolutionize the design of CIGS(e) solar cells through implementation of advanced three-dimensional silicon (Si) solar cell concepts. This novel design consists of (i) surface passivation layers and (ii) light management methods integrated into ultra-thin (UT) CIGS(e) solar cells: (i) Passivation layers will be studied to reduce charge carrier recombination at CIGS(e) surfaces. The aim is to create new understanding and thus scientific models. (ii) Light management methods will be studied to optimize optical confinement in UT CIGS(e) layers. The aim is to examine the interaction between light management and charge carrier recombination in UT CIGS(e), and to create scientific models. The main reasons to introduce these developments is to reduce charge carrier recombination at the CIGS(e) surfaces and in the CIGS(e) bulk, while maintaining optical confinement.
Technologically, the project targets to establish a solar cell with: (1) Increased cell efficiency, at least 23.0 % and up to 26.0 %; (2) improved stability and reliability, due to reduced CIGS(e) thickness and passivation layers hindering alkali metal movement; and (3) reduced cost, due to the use of less Ga and In, and industrially viable materials, methods and equipment. Hence, its outcome will be upscalable, valuable for other TF PV materials, and start a new wave of innovation in and collaboration between TF and Si PV research fields.
Max ERC Funding
1 986 125 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym VADEMECOM
Project VAlidation driven DEvelopment of Modern and Efficient COMbustion technologies
Researcher (PI) Alessandro PARENTE
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Combustion science will play a major role in the future quest for sustainable, secure and environmentally friendly energy sources. Two thirds of the world energy supply rely on combustion of fossil and alternative fuels, and all scenarios forecast an increasing absolute energy supply through combustion, with an increasing share of renewables. Thus, combustion will remain the major actor in transportation and power generation as well as in manufacturing processes, like steel and glass.
Nevertheless, combustion science will need profound innovation to meet future energy challenges, such as energy efficiency and fuel flexibility, and ensure future generations with affordable and sustainable energy and healthy environment. In this context, MILD combustion represents a very attractive solution for its fuel flexibility and capability to deliver very high combustion efficiency with virtually zero pollutant emissions. Such a combustion regime is the result of a very strong interaction between turbulent mixing and chemical kinetics. The fundamental mechanism of this interaction is not fully understood, thus justifying the need for experimental and numerical investigations.
The overall objective of the present research proposal is to drive the development of modern and efficient combustion technologies, by means of experimental, theoretical, and numerical simulation approaches. New-generation simulation tools for MILD combustion will be developed, to reduce the dependence on sub-grid models and increase the fidelity of numerical simulations. High-fidelity experimental data will be collected on quasi-industrial systems, to disclose the nature of the interactions between fluid dynamics, chemistry and pollutant formation processes in MILD combustion. Experiment and numerical simulations will be tied together by Validation and Uncertainty Quantification techniques, to allow the ground-breaking application of the developed approaches and promote innovation in the energy sector.
Summary
Combustion science will play a major role in the future quest for sustainable, secure and environmentally friendly energy sources. Two thirds of the world energy supply rely on combustion of fossil and alternative fuels, and all scenarios forecast an increasing absolute energy supply through combustion, with an increasing share of renewables. Thus, combustion will remain the major actor in transportation and power generation as well as in manufacturing processes, like steel and glass.
Nevertheless, combustion science will need profound innovation to meet future energy challenges, such as energy efficiency and fuel flexibility, and ensure future generations with affordable and sustainable energy and healthy environment. In this context, MILD combustion represents a very attractive solution for its fuel flexibility and capability to deliver very high combustion efficiency with virtually zero pollutant emissions. Such a combustion regime is the result of a very strong interaction between turbulent mixing and chemical kinetics. The fundamental mechanism of this interaction is not fully understood, thus justifying the need for experimental and numerical investigations.
The overall objective of the present research proposal is to drive the development of modern and efficient combustion technologies, by means of experimental, theoretical, and numerical simulation approaches. New-generation simulation tools for MILD combustion will be developed, to reduce the dependence on sub-grid models and increase the fidelity of numerical simulations. High-fidelity experimental data will be collected on quasi-industrial systems, to disclose the nature of the interactions between fluid dynamics, chemistry and pollutant formation processes in MILD combustion. Experiment and numerical simulations will be tied together by Validation and Uncertainty Quantification techniques, to allow the ground-breaking application of the developed approaches and promote innovation in the energy sector.
Max ERC Funding
1 499 110 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym VirBAcous
Project Virtual building acoustics: a robust and efficient analysis and optimization framework for noise transmission reduction
Researcher (PI) Edwin REYNDERS
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Achieving a sufficient sound insulation of buildings is a complex problem since multiple transmission paths are important, uncertainties can have a large effect, and acoustic performance requirements often conflict with structural and thermal requirements. Furthermore, accurate vibro-acoustic modelling across the entire building acoustics frequency range presently requires a huge computational effort. As a result, the acoustic development of building systems is usually based on general design rules, insufficiently accurate prediction models and many experimental prototype tests. Such development is costly and time consuming, and leads to suboptimal designs. This project therefore aims to develop an efficient yet sufficiently accurate prediction framework for the acoustic design of building systems which takes all uncertainties into account and which opens the way for design optimization. Four fundamental breakthroughs are required. First, a new approach to high-frequency subsystem modelling will overcome the limitations of the current statistical energy analysis paradigm and handle a high degree of geometric and material complexity. Second, a modelling framework for built-up systems will be developed, which incorporates different component model types and which switches between them as the frequency increases. The third development consists of quantifying the combined effect of all uncertain parameters on the overall sound insulation performance in a logically consistent and computationally efficient way. Finally, a robust optimization approach that spans the entire building acoustics frequency range and that accounts for all relevant non-acoustic performance criteria as well will be developed. Each development will be complemented by showcase applications in building acoustics, yet the fundamental nature of the developments make that they will have a profound impact in all disciplines where the study and/or control of mechanical wave propagation are important.
Summary
Achieving a sufficient sound insulation of buildings is a complex problem since multiple transmission paths are important, uncertainties can have a large effect, and acoustic performance requirements often conflict with structural and thermal requirements. Furthermore, accurate vibro-acoustic modelling across the entire building acoustics frequency range presently requires a huge computational effort. As a result, the acoustic development of building systems is usually based on general design rules, insufficiently accurate prediction models and many experimental prototype tests. Such development is costly and time consuming, and leads to suboptimal designs. This project therefore aims to develop an efficient yet sufficiently accurate prediction framework for the acoustic design of building systems which takes all uncertainties into account and which opens the way for design optimization. Four fundamental breakthroughs are required. First, a new approach to high-frequency subsystem modelling will overcome the limitations of the current statistical energy analysis paradigm and handle a high degree of geometric and material complexity. Second, a modelling framework for built-up systems will be developed, which incorporates different component model types and which switches between them as the frequency increases. The third development consists of quantifying the combined effect of all uncertain parameters on the overall sound insulation performance in a logically consistent and computationally efficient way. Finally, a robust optimization approach that spans the entire building acoustics frequency range and that accounts for all relevant non-acoustic performance criteria as well will be developed. Each development will be complemented by showcase applications in building acoustics, yet the fundamental nature of the developments make that they will have a profound impact in all disciplines where the study and/or control of mechanical wave propagation are important.
Max ERC Funding
1 386 875 €
Duration
Start date: 2017-08-01, End date: 2022-07-31
Project acronym WakeOpColl
Project Learning and collective intelligence for optimized operations in wake flows
Researcher (PI) Philippe Christian CHATELAIN
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Consolidator Grant (CoG), PE8, ERC-2016-COG
Summary Physics dictate that a flow device has to leave a wake or the signature of it producing sustentation forces, extracting energy, or simply moving through the medium; these flow structures can then impact negatively or favorably another device downstream. Wake turbulence between aircraft in air traffic and wake losses within wind farms are prime examples of this phenomenon, and incidentally constitute pivotal challenges to their respective fields of transportation and wind energy. These are highly complex and unsteady flows, and distributed control based on affordable wake models has failed to produce robust schemes that can alleviate turbulence effects and achieve efficiency at the scale of the system of devices.
This project proposes an Artificial Intelligence and bio-inspired paradigm for the control of flow devices subjected to wake effects. To each flow device, we associate an intelligent agent that pursues given goals of efficiency or turbulence alleviation. Every one of these flow agents now relies on machine-learning tools to learn how to make the right decision when confronted with wake or turbulent flow structures. At a system level, we employ Multi-Agent System and Distributed Learning paradigms. Based on Game Theory, we build a system of interactions that incite the emergence of collaborative behaviors between the agents and achieve global optimized operation among the devices. We claim that the design of a system that learns how to control the flow, is simpler than the design of the control scheme and will yield a more robust scheme.
The learning of formation flying among aircraft and of wake alleviation between wind turbines will constitute our study cases. The investigation will essentially be carried by means of large-scale numerical simulations; such simulations will produce the first ever realizations of self-organized systems in a turbulent flow. We will then apply our learning frameworks to a small-scale wind farm.
Summary
Physics dictate that a flow device has to leave a wake or the signature of it producing sustentation forces, extracting energy, or simply moving through the medium; these flow structures can then impact negatively or favorably another device downstream. Wake turbulence between aircraft in air traffic and wake losses within wind farms are prime examples of this phenomenon, and incidentally constitute pivotal challenges to their respective fields of transportation and wind energy. These are highly complex and unsteady flows, and distributed control based on affordable wake models has failed to produce robust schemes that can alleviate turbulence effects and achieve efficiency at the scale of the system of devices.
This project proposes an Artificial Intelligence and bio-inspired paradigm for the control of flow devices subjected to wake effects. To each flow device, we associate an intelligent agent that pursues given goals of efficiency or turbulence alleviation. Every one of these flow agents now relies on machine-learning tools to learn how to make the right decision when confronted with wake or turbulent flow structures. At a system level, we employ Multi-Agent System and Distributed Learning paradigms. Based on Game Theory, we build a system of interactions that incite the emergence of collaborative behaviors between the agents and achieve global optimized operation among the devices. We claim that the design of a system that learns how to control the flow, is simpler than the design of the control scheme and will yield a more robust scheme.
The learning of formation flying among aircraft and of wake alleviation between wind turbines will constitute our study cases. The investigation will essentially be carried by means of large-scale numerical simulations; such simulations will produce the first ever realizations of self-organized systems in a turbulent flow. We will then apply our learning frameworks to a small-scale wind farm.
Max ERC Funding
1 999 591 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym WoodNanoTech
Project Wood Nanotechnology for Multifunctional Structures
Researcher (PI) Lars BERGLUND
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Advanced Grant (AdG), PE8, ERC-2016-ADG
Summary "Materials tend to be either structural or functional. Here focus is on biobased composites combining both aspects, using nanostructured wood templates. Wood is the most widely used biobased material for load-bearing structures, but the range of achievable properties and functions can still be increased. The objective is to develop scalable nanotechnology for wood structures, utilizing its nanocellulosic skeleton. Processing and materials design concepts are developed in the form of a wood nanotechnology toolbox. Focus is on transparent wood for engineering applications, a concept pioneered in my laboratory. Transparent wood can combine load-bearing properties with photonics functions and light weight.
The cellulose nanofibril skeleton in wood is a sophisticated reinforcement structure. For transparent wood, processing to nanoporous but mechanically robust templates without chromophores, is needed. Templates are then further functionalized using in-situ polymerization and/or inorganic nanoparticle precipitation. Molecular dynamics simulations are used to design polymers and methods for cellulose surface modification. Optical property research on material effects on scattering, polarization properties will then generate new ideas in ""wood photonics"". Device functions can be integrated in large structures, using anisotropy and the hierarchical structure in wood. Optically functional additives can be used to generate unique effects for applications such as lighting systems, LED panels, wood lasers, electrochromic windows or load-bearing and transparent panels with tailored combinations of transmittance and haze. Optical and mechanical properties are studied using experiments and modeling. The project team combines polymeric biocomposites competence with photonics expertise in a multidisciplinary effort.
"
Summary
"Materials tend to be either structural or functional. Here focus is on biobased composites combining both aspects, using nanostructured wood templates. Wood is the most widely used biobased material for load-bearing structures, but the range of achievable properties and functions can still be increased. The objective is to develop scalable nanotechnology for wood structures, utilizing its nanocellulosic skeleton. Processing and materials design concepts are developed in the form of a wood nanotechnology toolbox. Focus is on transparent wood for engineering applications, a concept pioneered in my laboratory. Transparent wood can combine load-bearing properties with photonics functions and light weight.
The cellulose nanofibril skeleton in wood is a sophisticated reinforcement structure. For transparent wood, processing to nanoporous but mechanically robust templates without chromophores, is needed. Templates are then further functionalized using in-situ polymerization and/or inorganic nanoparticle precipitation. Molecular dynamics simulations are used to design polymers and methods for cellulose surface modification. Optical property research on material effects on scattering, polarization properties will then generate new ideas in ""wood photonics"". Device functions can be integrated in large structures, using anisotropy and the hierarchical structure in wood. Optically functional additives can be used to generate unique effects for applications such as lighting systems, LED panels, wood lasers, electrochromic windows or load-bearing and transparent panels with tailored combinations of transmittance and haze. Optical and mechanical properties are studied using experiments and modeling. The project team combines polymeric biocomposites competence with photonics expertise in a multidisciplinary effort.
"
Max ERC Funding
2 461 947 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym XMEMS
Project Towards Cost-Efficient Flexible Heterogeneous Integration for Micro- and Nanosystem Fabrication
Researcher (PI) Nils Göran Stemme
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Advanced Grant (AdG), PE8, ERC-2010-AdG_20100224
Summary "This proposal targets the development of flexible heterogeneous integration schemes for combining best-of-class materials, components and manufacturing methods into economically viable micro- and nanosystem (MEMS) solutions.
Today, the IC industry drives the development of most micro- and nanofabrication technologies, which are characterized by standardized processes, very large production volumes of >10.000 wafers/month and enormous capital investments. In contrast, the vast majority of MEMS demand production volumes of <100 wafers/month and different manufacturing and integration processes for each type of device. The a-priori acceptance of IC manufacturing technologies for MEMS therefore leads to missed market opportunities for many moderate volume MEMS-based products and to sub-optimal material choices.
Instead, we aim for a new MEMS-specific integration and manufacturing paradigm, in which the technologies and tools are adapted to the production volumes and design variations of MEMS devices. Specifically, we will develop novel and enabling micro/nano fabrication and integration techniques with a focus on flexibility and cost-efficiency in the following areas:
"" Heterogeneous Material Integration, where we incorporate high-performance materials into MEMS using unconventional and innovative technologies and tools, including serial integration, wafer-level integration and free-form fabrication of MEMS;
"" Heterogeneous System Integration, where we develop new wafer level schemes to combine, process and interconnect components fabricated with different technologies such as MEMS, NEMS, ICs or photonics;
"" Lab-on-Chip Integration, in which transducers, mass transport solutions, surface biochemistry and liquids are combined at the wafer level into high-performance systems."
Summary
"This proposal targets the development of flexible heterogeneous integration schemes for combining best-of-class materials, components and manufacturing methods into economically viable micro- and nanosystem (MEMS) solutions.
Today, the IC industry drives the development of most micro- and nanofabrication technologies, which are characterized by standardized processes, very large production volumes of >10.000 wafers/month and enormous capital investments. In contrast, the vast majority of MEMS demand production volumes of <100 wafers/month and different manufacturing and integration processes for each type of device. The a-priori acceptance of IC manufacturing technologies for MEMS therefore leads to missed market opportunities for many moderate volume MEMS-based products and to sub-optimal material choices.
Instead, we aim for a new MEMS-specific integration and manufacturing paradigm, in which the technologies and tools are adapted to the production volumes and design variations of MEMS devices. Specifically, we will develop novel and enabling micro/nano fabrication and integration techniques with a focus on flexibility and cost-efficiency in the following areas:
"" Heterogeneous Material Integration, where we incorporate high-performance materials into MEMS using unconventional and innovative technologies and tools, including serial integration, wafer-level integration and free-form fabrication of MEMS;
"" Heterogeneous System Integration, where we develop new wafer level schemes to combine, process and interconnect components fabricated with different technologies such as MEMS, NEMS, ICs or photonics;
"" Lab-on-Chip Integration, in which transducers, mass transport solutions, surface biochemistry and liquids are combined at the wafer level into high-performance systems."
Max ERC Funding
2 279 800 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym µTHALYS
Project Micro-Technologies and Heterogeneous Advanced Platforms for Implantable Medical Systems
Researcher (PI) Robert M.O. Puers
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary The μTHALYS project aims to create a technology platform that enables a next revolution by bringing microsystem technology to the next level in terms of integration, miniaturization and multifunctionality and applying this development to address pending needs in health care.
Several breakthrough materials, basic concepts and fabrication techniques will be developed based on silicon or going far beyond silicon: At the wafer scale integration level, integration of advanced polymers (optics, conductive polymers, ionic polymer-metal composites) will be studied. These will be applied in several novel subminiature actuator and sensor devices with broad application potential, amongst which microfluidic systems, pressure sensing arrays,
In order to come to complex 3D systems combining modalities as optics, microfluidics, actuators and electronics, advanced device level fabrication and hybrid assembly technologies will be studied as well. Furthermore, the methods for packaging implants (flex/stretch interconnect technology, advanced interposers,…) will be pushed far beyond the current state of the art. The adoption of soft, and even
bioresorbable materials for packaging and interconnects will spectacularly improve the human-implant interface.
Another important research line pursued is the study of ultra-low power electronics for medical implants: sensor interfacing, A/D conversion, signal processing, data communication and power transfer.
These fundamental research activities will lead to many applied projects and valorization activities during and long afterwards the end of this grant. In the project itself, two main medical applications are targeted directly: a urinary pacemaker to prevent incontinence, and a new generation of implantable electrodes for neurology.
Summary
The μTHALYS project aims to create a technology platform that enables a next revolution by bringing microsystem technology to the next level in terms of integration, miniaturization and multifunctionality and applying this development to address pending needs in health care.
Several breakthrough materials, basic concepts and fabrication techniques will be developed based on silicon or going far beyond silicon: At the wafer scale integration level, integration of advanced polymers (optics, conductive polymers, ionic polymer-metal composites) will be studied. These will be applied in several novel subminiature actuator and sensor devices with broad application potential, amongst which microfluidic systems, pressure sensing arrays,
In order to come to complex 3D systems combining modalities as optics, microfluidics, actuators and electronics, advanced device level fabrication and hybrid assembly technologies will be studied as well. Furthermore, the methods for packaging implants (flex/stretch interconnect technology, advanced interposers,…) will be pushed far beyond the current state of the art. The adoption of soft, and even
bioresorbable materials for packaging and interconnects will spectacularly improve the human-implant interface.
Another important research line pursued is the study of ultra-low power electronics for medical implants: sensor interfacing, A/D conversion, signal processing, data communication and power transfer.
These fundamental research activities will lead to many applied projects and valorization activities during and long afterwards the end of this grant. In the project itself, two main medical applications are targeted directly: a urinary pacemaker to prevent incontinence, and a new generation of implantable electrodes for neurology.
Max ERC Funding
2 452 885 €
Duration
Start date: 2014-03-01, End date: 2019-02-28