Project acronym 321
Project from Cubic To Linear complexity in computational electromagnetics
Researcher (PI) Francesco Paolo ANDRIULLI
Host Institution (HI) POLITECNICO DI TORINO
Call Details Consolidator Grant (CoG), PE7, ERC-2016-COG
Summary Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Summary
Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym 3DSPIN
Project 3-Dimensional Maps of the Spinning Nucleon
Researcher (PI) Alessandro Bacchetta
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PAVIA
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary How does the inside of the proton look like? What generates its spin?
3DSPIN will deliver essential information to answer these questions at the frontier of subnuclear physics.
At present, we have detailed maps of the distribution of quarks and gluons in the nucleon in 1D (as a function of their momentum in a single direction). We also know that quark spins account for only about 1/3 of the spin of the nucleon.
3DSPIN will lead the way into a new stage of nucleon mapping, explore the distribution of quarks in full 3D momentum space and obtain unprecedented information on orbital angular momentum.
Goals
1. extract from experimental data the 3D distribution of quarks (in momentum space), as described by Transverse-Momentum Distributions (TMDs);
2. obtain from TMDs information on quark Orbital Angular Momentum (OAM).
Methodology
3DSPIN will implement state-of-the-art fitting procedures to analyze relevant experimental data and extract quark TMDs, similarly to global fits of standard parton distribution functions. Information about quark angular momentum will be obtained through assumptions based on theoretical considerations. The next five years represent an ideal time window to accomplish our goals, thanks to the wealth of expected data from deep-inelastic scattering experiments (COMPASS, Jefferson Lab), hadronic colliders (Fermilab, BNL, LHC), and electron-positron colliders (BELLE, BABAR). The PI has a strong reputation in this field. The group will operate in partnership with the Italian National Institute of Nuclear Physics and in close interaction with leading experts and experimental collaborations worldwide.
Impact
Mapping the 3D structure of chemical compounds has revolutionized chemistry. Similarly, mapping the 3D structure of the nucleon will have a deep impact on our understanding of the fundamental constituents of matter. We will open new perspectives on the dynamics of quarks and gluons and sharpen our view of high-energy processes involving nucleons.
Summary
How does the inside of the proton look like? What generates its spin?
3DSPIN will deliver essential information to answer these questions at the frontier of subnuclear physics.
At present, we have detailed maps of the distribution of quarks and gluons in the nucleon in 1D (as a function of their momentum in a single direction). We also know that quark spins account for only about 1/3 of the spin of the nucleon.
3DSPIN will lead the way into a new stage of nucleon mapping, explore the distribution of quarks in full 3D momentum space and obtain unprecedented information on orbital angular momentum.
Goals
1. extract from experimental data the 3D distribution of quarks (in momentum space), as described by Transverse-Momentum Distributions (TMDs);
2. obtain from TMDs information on quark Orbital Angular Momentum (OAM).
Methodology
3DSPIN will implement state-of-the-art fitting procedures to analyze relevant experimental data and extract quark TMDs, similarly to global fits of standard parton distribution functions. Information about quark angular momentum will be obtained through assumptions based on theoretical considerations. The next five years represent an ideal time window to accomplish our goals, thanks to the wealth of expected data from deep-inelastic scattering experiments (COMPASS, Jefferson Lab), hadronic colliders (Fermilab, BNL, LHC), and electron-positron colliders (BELLE, BABAR). The PI has a strong reputation in this field. The group will operate in partnership with the Italian National Institute of Nuclear Physics and in close interaction with leading experts and experimental collaborations worldwide.
Impact
Mapping the 3D structure of chemical compounds has revolutionized chemistry. Similarly, mapping the 3D structure of the nucleon will have a deep impact on our understanding of the fundamental constituents of matter. We will open new perspectives on the dynamics of quarks and gluons and sharpen our view of high-energy processes involving nucleons.
Max ERC Funding
1 509 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym 4DPHOTON
Project Beyond Light Imaging: High-Rate Single-Photon Detection in Four Dimensions
Researcher (PI) Massimiliano FIORINI
Host Institution (HI) ISTITUTO NAZIONALE DI FISICA NUCLEARE
Call Details Consolidator Grant (CoG), PE2, ERC-2018-COG
Summary Goal of the 4DPHOTON project is the development and construction of a photon imaging detector with unprecedented performance. The proposed device will be capable of detecting fluxes of single-photons up to one billion photons per second, over areas of several square centimetres, and will measure - for each photon - position and time simultaneously with resolutions better than ten microns and few tens of picoseconds, respectively. These figures of merit will open many important applications allowing significant advances in particle physics, life sciences or other emerging fields where excellent timing and position resolutions are simultaneously required.
Our goal will be achieved thanks to the use of an application-specific integrated circuit in 65 nm complementary metal-oxide-semiconductor (CMOS) technology, that will deliver a timing resolution of few tens of picoseconds at the pixel level, over few hundred thousand individually-active pixel channels, allowing very high rates of photons to be detected, and the corresponding information digitized and transferred to a processing unit.
As a result of the 4DPHOTON project we will remove the constraints that many light imaging applications have due to the lack of precise single-photon information on four dimensions (4D): the three spatial coordinates and time simultaneously. In particular, we will prove the performance of this detector in the field of particle physics, performing the reconstruction of Cherenkov photon rings with a timing resolution of ten picoseconds. With its excellent granularity, timing resolution, rate capability and compactness, this detector will represent a new paradigm for the realisation of future Ring Imaging Cherenkov detectors, capable of achieving high efficiency particle identification in environments with very high particle multiplicities, exploiting time-association of the photon hits.
Summary
Goal of the 4DPHOTON project is the development and construction of a photon imaging detector with unprecedented performance. The proposed device will be capable of detecting fluxes of single-photons up to one billion photons per second, over areas of several square centimetres, and will measure - for each photon - position and time simultaneously with resolutions better than ten microns and few tens of picoseconds, respectively. These figures of merit will open many important applications allowing significant advances in particle physics, life sciences or other emerging fields where excellent timing and position resolutions are simultaneously required.
Our goal will be achieved thanks to the use of an application-specific integrated circuit in 65 nm complementary metal-oxide-semiconductor (CMOS) technology, that will deliver a timing resolution of few tens of picoseconds at the pixel level, over few hundred thousand individually-active pixel channels, allowing very high rates of photons to be detected, and the corresponding information digitized and transferred to a processing unit.
As a result of the 4DPHOTON project we will remove the constraints that many light imaging applications have due to the lack of precise single-photon information on four dimensions (4D): the three spatial coordinates and time simultaneously. In particular, we will prove the performance of this detector in the field of particle physics, performing the reconstruction of Cherenkov photon rings with a timing resolution of ten picoseconds. With its excellent granularity, timing resolution, rate capability and compactness, this detector will represent a new paradigm for the realisation of future Ring Imaging Cherenkov detectors, capable of achieving high efficiency particle identification in environments with very high particle multiplicities, exploiting time-association of the photon hits.
Max ERC Funding
1 975 000 €
Duration
Start date: 2019-12-01, End date: 2024-11-30
Project acronym 9 SALT
Project Reassessing Ninth Century Philosophy. A Synchronic Approach to the Logical Traditions
Researcher (PI) Christophe Florian Erismann
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), SH5, ERC-2014-CoG
Summary This project aims at a better understanding of the philosophical richness of ninth century thought using the unprecedented and highly innovative method of the synchronic approach. The hypothesis directing this synchronic approach is that studying together in parallel the four main philosophical traditions of the century – i.e. Latin, Greek, Syriac and Arabic – will bring results that the traditional enquiry limited to one tradition alone can never reach. This implies pioneering a new methodology to overcome the compartmentalization of research which prevails nowadays. Using this method is only possible because the four conditions of applicability – comparable intellectual environment, common text corpus, similar methodological perspective, commensurable problems – are fulfilled. The ninth century, a time of cultural renewal in the Carolingian, Byzantine and Abbasid empires, possesses the remarkable characteristic – which ensures commensurability – that the same texts, namely the writings of Aristotelian logic (mainly Porphyry’s Isagoge and Aristotle’s Categories) were read and commented upon in Latin, Greek, Syriac and Arabic alike.
Logic is fundamental to philosophical enquiry. The contested question is the human capacity to rationalise, analyse and describe the sensible reality, to understand the ontological structure of the world, and to define the types of entities which exist. The use of this unprecedented synchronic approach will allow us a deeper understanding of the positions, a clear identification of the a priori postulates of the philosophical debates, and a critical evaluation of the arguments used. It provides a unique opportunity to compare the different traditions and highlight the heritage which is common, to stress the specificities of each tradition when tackling philosophical issues and to discover the doctrinal results triggered by their mutual interactions, be they constructive (scholarly exchanges) or polemic (religious controversies).
Summary
This project aims at a better understanding of the philosophical richness of ninth century thought using the unprecedented and highly innovative method of the synchronic approach. The hypothesis directing this synchronic approach is that studying together in parallel the four main philosophical traditions of the century – i.e. Latin, Greek, Syriac and Arabic – will bring results that the traditional enquiry limited to one tradition alone can never reach. This implies pioneering a new methodology to overcome the compartmentalization of research which prevails nowadays. Using this method is only possible because the four conditions of applicability – comparable intellectual environment, common text corpus, similar methodological perspective, commensurable problems – are fulfilled. The ninth century, a time of cultural renewal in the Carolingian, Byzantine and Abbasid empires, possesses the remarkable characteristic – which ensures commensurability – that the same texts, namely the writings of Aristotelian logic (mainly Porphyry’s Isagoge and Aristotle’s Categories) were read and commented upon in Latin, Greek, Syriac and Arabic alike.
Logic is fundamental to philosophical enquiry. The contested question is the human capacity to rationalise, analyse and describe the sensible reality, to understand the ontological structure of the world, and to define the types of entities which exist. The use of this unprecedented synchronic approach will allow us a deeper understanding of the positions, a clear identification of the a priori postulates of the philosophical debates, and a critical evaluation of the arguments used. It provides a unique opportunity to compare the different traditions and highlight the heritage which is common, to stress the specificities of each tradition when tackling philosophical issues and to discover the doctrinal results triggered by their mutual interactions, be they constructive (scholarly exchanges) or polemic (religious controversies).
Max ERC Funding
1 998 566 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ADHESWITCHES
Project Adhesion switches in cancer and development: from in vivo to synthetic biology
Researcher (PI) Mari Johanna Ivaska
Host Institution (HI) TURUN YLIOPISTO
Call Details Consolidator Grant (CoG), LS3, ERC-2013-CoG
Summary Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Summary
Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Max ERC Funding
1 887 910 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym AlchemEast
Project Alchemy in the Making: From ancient Babylonia via Graeco-Roman Egypt into the Byzantine, Syriac and Arabic traditions (1500 BCE - 1000 AD)
Researcher (PI) Matteo MARTELLI
Host Institution (HI) ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Call Details Consolidator Grant (CoG), SH5, ERC-2016-COG
Summary The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a "pseudo-science", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly.
Summary
The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a "pseudo-science", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly.
Max ERC Funding
1 997 000 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym ANTILEAK
Project Development of antagonists of vascular leakage
Researcher (PI) Pipsa SAHARINEN
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Consolidator Grant (CoG), LS4, ERC-2017-COG
Summary Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Summary
Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Max ERC Funding
1 999 770 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym ArcheoDyn
Project Globular clusters as living fossils of the past of galaxies
Researcher (PI) Petrus VAN DE VEN
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary Globular clusters (GCs) are enigmatic objects that hide a wealth of information. They are the living fossils of the history of their native galaxies and the record keepers of the violent events that made them change their domicile. This proposal aims to mine GCs as living fossils of galaxy evolution to address fundamental questions in astrophysics: (1) Do satellite galaxies merge as predicted by the hierarchical build-up of galaxies? (2) Which are the seeds of supermassive black holes in the centres of galaxies? (3) How did star formation originate in the earliest phases of galaxy formation? To answer these questions, novel population-dependent dynamical modelling techniques are required, whose development the PI has led over the past years. This uniquely positions him to take full advantage of the emerging wealth of chemical and kinematical data on GCs.
Following the tidal disruption of satellite galaxies, their dense GCs, and maybe even their nuclei, are left as the most visible remnants in the main galaxy. The hierarchical build-up of their new host galaxy can thus be unearthed by recovering the GCs’ orbits. However, currently it is unclear which of the GCs are accretion survivors. Actually, the existence of a central intermediate mass black hole (IMBH) or of multiple stellar populations in GCs might tell which ones are accreted. At the same time, detection of IMBHs is important as they are predicted seeds for supermassive black holes in galaxies; while the multiple stellar populations in GCs are vital witnesses to the extreme modes of star formation in the early Universe. However, for every putative dynamical IMBH detection so far there is a corresponding non-detection; also the origin of multiple stellar populations in GCs still lacks any uncontrived explanation. The synergy of novel techniques and exquisite data proposed here promises a breakthrough in this emerging field of dynamical archeology with GCs as living fossils of the past of galaxies.
Summary
Globular clusters (GCs) are enigmatic objects that hide a wealth of information. They are the living fossils of the history of their native galaxies and the record keepers of the violent events that made them change their domicile. This proposal aims to mine GCs as living fossils of galaxy evolution to address fundamental questions in astrophysics: (1) Do satellite galaxies merge as predicted by the hierarchical build-up of galaxies? (2) Which are the seeds of supermassive black holes in the centres of galaxies? (3) How did star formation originate in the earliest phases of galaxy formation? To answer these questions, novel population-dependent dynamical modelling techniques are required, whose development the PI has led over the past years. This uniquely positions him to take full advantage of the emerging wealth of chemical and kinematical data on GCs.
Following the tidal disruption of satellite galaxies, their dense GCs, and maybe even their nuclei, are left as the most visible remnants in the main galaxy. The hierarchical build-up of their new host galaxy can thus be unearthed by recovering the GCs’ orbits. However, currently it is unclear which of the GCs are accretion survivors. Actually, the existence of a central intermediate mass black hole (IMBH) or of multiple stellar populations in GCs might tell which ones are accreted. At the same time, detection of IMBHs is important as they are predicted seeds for supermassive black holes in galaxies; while the multiple stellar populations in GCs are vital witnesses to the extreme modes of star formation in the early Universe. However, for every putative dynamical IMBH detection so far there is a corresponding non-detection; also the origin of multiple stellar populations in GCs still lacks any uncontrived explanation. The synergy of novel techniques and exquisite data proposed here promises a breakthrough in this emerging field of dynamical archeology with GCs as living fossils of the past of galaxies.
Max ERC Funding
1 999 250 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AROMA-CFD
Project Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics
Researcher (PI) Gianluigi Rozza
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Summary
The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Max ERC Funding
1 656 579 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym AutoRecon
Project Molecular mechanisms of autophagosome formation during selective autophagy
Researcher (PI) Sascha Martens
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), LS3, ERC-2014-CoG
Summary I propose to study how eukaryotic cells generate autophagosomes, organelles bounded by a double membrane. These are formed during autophagy and mediate the degradation of cytoplasmic substances within the lysosomal compartment. Autophagy thereby protects the organism from pathological conditions such as neurodegeneration, cancer and infections. Many core factors required for autophagosome formation have been identified but the order in which they act and their mode of action is still unclear. We will use a combination of biochemical and cell biological approaches to elucidate the choreography and mechanism of these core factors. In particular, we will focus on selective autophagy and determine how the autophagic machinery generates an autophagosome that selectively contains the cargo.
To this end we will focus on the cytoplasm-to-vacuole-targeting pathway in S. cerevisiae that mediates the constitutive delivery of the prApe1 enzyme into the vacuole. We will use cargo mimetics or prApe1 complexes in combination with purified autophagy proteins and vesicles to reconstitute the process and so determine which factors are both necessary and sufficient for autophagosome formation, as well as elucidating their mechanism of action.
In parallel we will study selective autophagosome formation in human cells. This will reveal common principles and special adaptations. In particular, we will use cell lysates from genome-edited cells in combination with purified autophagy proteins to reconstitute selective autophagosome formation around ubiquitin-positive cargo material. The insights and hypotheses obtained from these reconstituted systems will be validated using cell biological approaches.
Taken together, our experiments will allow us to delineate the major steps of autophagosome formation during selective autophagy. Our results will yield detailed insights into how cells form and shape organelles in a de novo manner, which is major question in cell- and developmental biology.
Summary
I propose to study how eukaryotic cells generate autophagosomes, organelles bounded by a double membrane. These are formed during autophagy and mediate the degradation of cytoplasmic substances within the lysosomal compartment. Autophagy thereby protects the organism from pathological conditions such as neurodegeneration, cancer and infections. Many core factors required for autophagosome formation have been identified but the order in which they act and their mode of action is still unclear. We will use a combination of biochemical and cell biological approaches to elucidate the choreography and mechanism of these core factors. In particular, we will focus on selective autophagy and determine how the autophagic machinery generates an autophagosome that selectively contains the cargo.
To this end we will focus on the cytoplasm-to-vacuole-targeting pathway in S. cerevisiae that mediates the constitutive delivery of the prApe1 enzyme into the vacuole. We will use cargo mimetics or prApe1 complexes in combination with purified autophagy proteins and vesicles to reconstitute the process and so determine which factors are both necessary and sufficient for autophagosome formation, as well as elucidating their mechanism of action.
In parallel we will study selective autophagosome formation in human cells. This will reveal common principles and special adaptations. In particular, we will use cell lysates from genome-edited cells in combination with purified autophagy proteins to reconstitute selective autophagosome formation around ubiquitin-positive cargo material. The insights and hypotheses obtained from these reconstituted systems will be validated using cell biological approaches.
Taken together, our experiments will allow us to delineate the major steps of autophagosome formation during selective autophagy. Our results will yield detailed insights into how cells form and shape organelles in a de novo manner, which is major question in cell- and developmental biology.
Max ERC Funding
1 999 640 €
Duration
Start date: 2016-03-01, End date: 2021-02-28