Project acronym ACCRETE
Project Accretion and Early Differentiation of the Earth and Terrestrial Planets
Researcher (PI) David Crowhurst Rubie
Host Institution (HI) UNIVERSITAET BAYREUTH
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary Formation of the Earth and the other terrestrial planets of our Solar System (Mercury, Venus and Mars) commenced 4.568 billion years ago and occurred on a time scale of about 100 million years. These planets grew by the process of accretion, which involved numerous collisions with smaller (Moon- to Mars-size) bodies. Impacts with such bodies released sufficient energy to cause large-scale melting and the formation of deep “magma oceans”. Such magma oceans enabled liquid metal to separate from liquid silicate, sink and accumulate to form the metallic cores of the planets. Thus core formation in terrestrial planets was a multistage process, intimately related to the major impacts during accretion, that determined the chemistry of planetary mantles. However, until now, accretion, as modelled by astrophysicists, and core formation, as modelled by geochemists, have been treated as completely independent processes. The fundamental and crucial aim of this ambitious interdisciplinary proposal is to integrate astrophysical models of planetary accretion with geochemical models of planetary differentiation together with cosmochemical constraints obtained from meteorites. The research will involve integrating new models of planetary accretion with core formation models based on the partitioning of a large number of elements between liquid metal and liquid silicate that we will determine experimentally at pressures up to about 100 gigapascals (equivalent to 2400 km deep in the Earth). By comparing our results with the known physical and chemical characteristics of the terrestrial planets, we will obtain a comprehensive understanding of how these planets formed, grew and evolved, both physically and chemically, with time. The integration of chemistry and planetary differentiation with accretion models is a new ground-breaking concept that will lead, through synergies and feedback, to major new advances in the Earth and planetary sciences.
Summary
Formation of the Earth and the other terrestrial planets of our Solar System (Mercury, Venus and Mars) commenced 4.568 billion years ago and occurred on a time scale of about 100 million years. These planets grew by the process of accretion, which involved numerous collisions with smaller (Moon- to Mars-size) bodies. Impacts with such bodies released sufficient energy to cause large-scale melting and the formation of deep “magma oceans”. Such magma oceans enabled liquid metal to separate from liquid silicate, sink and accumulate to form the metallic cores of the planets. Thus core formation in terrestrial planets was a multistage process, intimately related to the major impacts during accretion, that determined the chemistry of planetary mantles. However, until now, accretion, as modelled by astrophysicists, and core formation, as modelled by geochemists, have been treated as completely independent processes. The fundamental and crucial aim of this ambitious interdisciplinary proposal is to integrate astrophysical models of planetary accretion with geochemical models of planetary differentiation together with cosmochemical constraints obtained from meteorites. The research will involve integrating new models of planetary accretion with core formation models based on the partitioning of a large number of elements between liquid metal and liquid silicate that we will determine experimentally at pressures up to about 100 gigapascals (equivalent to 2400 km deep in the Earth). By comparing our results with the known physical and chemical characteristics of the terrestrial planets, we will obtain a comprehensive understanding of how these planets formed, grew and evolved, both physically and chemically, with time. The integration of chemistry and planetary differentiation with accretion models is a new ground-breaking concept that will lead, through synergies and feedback, to major new advances in the Earth and planetary sciences.
Max ERC Funding
1 826 200 €
Duration
Start date: 2012-05-01, End date: 2018-04-30
Project acronym ACTMECH
Project Emergent Active Mechanical Behaviour of the Actomyosin Cell Cortex
Researcher (PI) Stephan Wolfgang Grill
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Starting Grant (StG), LS3, ERC-2011-StG_20101109
Summary The cell cortex is a highly dynamic layer of crosslinked actin filaments and myosin molecular motors beneath the cell membrane. It plays a central role in large scale rearrangements that occur inside cells. Many molecular mechanisms contribute to cortex structure and dynamics. However, cell scale physical properties of the cortex are difficult to grasp. This is problematic because for large scale rearrangements inside a cell, such as coherent flow of the cell cortex, it is the cell scale emergent properties that are important for the realization of such events. I will investigate how the actomyosin cytoskeleton behaves at a coarse grained and cellular scale, and will study how this emergent active behaviour is influenced by molecular mechanisms. We will study the cell cortex in the one cell stage C. elegans embryo, which undergoes large scale cortical flow during polarization and cytokinesis. We will combine theory and experiment. We will characterize cortex structure and dynamics with biophysical techniques such as cortical laser ablation and quantitative photobleaching experiments. We will develop and employ novel theoretical approaches to describe the cell scale mechanical behaviour in terms of an active complex fluid. We will utilize genetic approaches to understand how these emergent mechanical properties are influenced by molecular activities. A central goal is to arrive at a coarse grained description of the cortex that can predict future dynamic behaviour from the past structure, which is conceptually similar to how weather forecasting is accomplished. To date, systematic approaches to link molecular scale physical mechanisms to those on cellular scales are missing. This work will open new opportunities for cell biological and cell biophysical research, by providing a methodological approach for bridging scales, for studying emergent and large-scale active mechanical behaviours and linking them to molecular mechanisms.
Summary
The cell cortex is a highly dynamic layer of crosslinked actin filaments and myosin molecular motors beneath the cell membrane. It plays a central role in large scale rearrangements that occur inside cells. Many molecular mechanisms contribute to cortex structure and dynamics. However, cell scale physical properties of the cortex are difficult to grasp. This is problematic because for large scale rearrangements inside a cell, such as coherent flow of the cell cortex, it is the cell scale emergent properties that are important for the realization of such events. I will investigate how the actomyosin cytoskeleton behaves at a coarse grained and cellular scale, and will study how this emergent active behaviour is influenced by molecular mechanisms. We will study the cell cortex in the one cell stage C. elegans embryo, which undergoes large scale cortical flow during polarization and cytokinesis. We will combine theory and experiment. We will characterize cortex structure and dynamics with biophysical techniques such as cortical laser ablation and quantitative photobleaching experiments. We will develop and employ novel theoretical approaches to describe the cell scale mechanical behaviour in terms of an active complex fluid. We will utilize genetic approaches to understand how these emergent mechanical properties are influenced by molecular activities. A central goal is to arrive at a coarse grained description of the cortex that can predict future dynamic behaviour from the past structure, which is conceptually similar to how weather forecasting is accomplished. To date, systematic approaches to link molecular scale physical mechanisms to those on cellular scales are missing. This work will open new opportunities for cell biological and cell biophysical research, by providing a methodological approach for bridging scales, for studying emergent and large-scale active mechanical behaviours and linking them to molecular mechanisms.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-12-01, End date: 2017-08-31
Project acronym Beacon
Project Beacons in the Dark
Researcher (PI) Paulo César Carvalho Freire
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary BEACON aims at performing an ambitious multi-disciplinary (optical, radio astronomy and theoretical physics) study to enable a fundamentally improved understanding of gravitation and space-time. For almost a century Einstein's general relativity has been the last word on gravity. However, superstring theory predicts new gravitational phenomena beyond relativity. In this proposal I will attempt to detect these new phenomena, with a sensitivity 20 times better than state-of-the-art attempts. A successful detection would take physics beyond its current understanding of the Universe.
These new gravitational phenomena are emission of dipolar gravitational waves and the violation of the strong equivalence principle (SEP). I plan to look for them by timing newly discovered binary pulsars. I will improve upon the best current limits on dipolar gravitational wave emission by a factor of 20 within the time of this proposal. I also plan to develop a test of the Strong Equivalence Principle using a new pulsar/main-sequence star binary. The precision of this test is likely to surpass the current best limits within the time frame of this proposal and then keep improving indefinitely with time. This happens because this is the cleanest gravitational experiment ever carried out.
In order to further these goals, I plan to build the ultimate pulsar observing system. By taking advantage of recent technological advances in microwave engineering (particularly sensitive ultra-wide band receivers) digital electronics (fast analogue-to-digital converters and digital spectrometers) and computing, my team and me will be able to greatly improve the sensitivity and precision for pulsar timing experiments and exploit the capabilities of modern radio telescopes to their limits.
Pulsars are the beacons that will guide me in these new, uncharted seas.
Summary
BEACON aims at performing an ambitious multi-disciplinary (optical, radio astronomy and theoretical physics) study to enable a fundamentally improved understanding of gravitation and space-time. For almost a century Einstein's general relativity has been the last word on gravity. However, superstring theory predicts new gravitational phenomena beyond relativity. In this proposal I will attempt to detect these new phenomena, with a sensitivity 20 times better than state-of-the-art attempts. A successful detection would take physics beyond its current understanding of the Universe.
These new gravitational phenomena are emission of dipolar gravitational waves and the violation of the strong equivalence principle (SEP). I plan to look for them by timing newly discovered binary pulsars. I will improve upon the best current limits on dipolar gravitational wave emission by a factor of 20 within the time of this proposal. I also plan to develop a test of the Strong Equivalence Principle using a new pulsar/main-sequence star binary. The precision of this test is likely to surpass the current best limits within the time frame of this proposal and then keep improving indefinitely with time. This happens because this is the cleanest gravitational experiment ever carried out.
In order to further these goals, I plan to build the ultimate pulsar observing system. By taking advantage of recent technological advances in microwave engineering (particularly sensitive ultra-wide band receivers) digital electronics (fast analogue-to-digital converters and digital spectrometers) and computing, my team and me will be able to greatly improve the sensitivity and precision for pulsar timing experiments and exploit the capabilities of modern radio telescopes to their limits.
Pulsars are the beacons that will guide me in these new, uncharted seas.
Max ERC Funding
1 892 376 €
Duration
Start date: 2011-09-01, End date: 2016-08-31
Project acronym BILITERACY
Project Bi-literacy: Learning to read in L1 and in L2
Researcher (PI) Manuel Francisco Carreiras Valiña
Host Institution (HI) BCBL BASQUE CENTER ON COGNITION BRAIN AND LANGUAGE
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary Learning to read is probably one of the most exciting discoveries in our life. Using a longitudinal approach, the research proposed examines how the human brain responds to two major challenges: (a) the instantiation a complex cognitive function for which there is no genetic blueprint (learning to read in a first language, L1), and (b) the accommodation to new statistical regularities when learning to read in a second language (L2). The aim of the present research project is to identify the neural substrates of the reading process and its constituent cognitive components, with specific attention to individual differences and reading disabilities; as well as to investigate the relationship between specific cognitive functions and the changes in neural activity that take place in the course of learning to read in L1 and in L2. The project will employ a longitudinal design. We will recruit children before they learn to read in L1 and in L2 and track reading development with both cognitive and neuroimaging measures over 24 months. The findings from this project will provide a deeper understanding of (a) how general neurocognitive factors and language specific factors underlie individual differences – and reading disabilities– in reading acquisition in L1 and in L2; (b) how the neuro-cognitive circuitry changes and brain mechanisms synchronize while instantiating reading in L1 and in L2; (c) what the limitations and the extent of brain plasticity are in young readers. An interdisciplinary and multi-methodological approach is one of the keys to success of the present project, along with strong theory-driven investigation. By combining both we will generate breakthroughs to advance our understanding of how literacy in L1 and in L2 is acquired and mastered. The research proposed will also lay the foundations for more applied investigations of best practice in teaching reading in first and subsequent languages, and devising intervention methods for reading disabilities.
Summary
Learning to read is probably one of the most exciting discoveries in our life. Using a longitudinal approach, the research proposed examines how the human brain responds to two major challenges: (a) the instantiation a complex cognitive function for which there is no genetic blueprint (learning to read in a first language, L1), and (b) the accommodation to new statistical regularities when learning to read in a second language (L2). The aim of the present research project is to identify the neural substrates of the reading process and its constituent cognitive components, with specific attention to individual differences and reading disabilities; as well as to investigate the relationship between specific cognitive functions and the changes in neural activity that take place in the course of learning to read in L1 and in L2. The project will employ a longitudinal design. We will recruit children before they learn to read in L1 and in L2 and track reading development with both cognitive and neuroimaging measures over 24 months. The findings from this project will provide a deeper understanding of (a) how general neurocognitive factors and language specific factors underlie individual differences – and reading disabilities– in reading acquisition in L1 and in L2; (b) how the neuro-cognitive circuitry changes and brain mechanisms synchronize while instantiating reading in L1 and in L2; (c) what the limitations and the extent of brain plasticity are in young readers. An interdisciplinary and multi-methodological approach is one of the keys to success of the present project, along with strong theory-driven investigation. By combining both we will generate breakthroughs to advance our understanding of how literacy in L1 and in L2 is acquired and mastered. The research proposed will also lay the foundations for more applied investigations of best practice in teaching reading in first and subsequent languages, and devising intervention methods for reading disabilities.
Max ERC Funding
2 487 000 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym BRAINEVODEVO
Project A Neuron Type Atlas of the Annelid Brain: Development and Evolution of Chemosensory-Motor Circuits
Researcher (PI) Detlev Arendt
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Call Details Advanced Grant (AdG), LS3, ERC-2011-ADG_20110310
Summary Neural circuits, composed of interconnected neurons, represent the basic unit of the nervous system. One way to understand the highly complex arrangement of cross-talking, serial and parallel circuits is to resolve its developmental and evolutionary emergence. The rationale of the research proposal presented here is to elucidate the complex circuitry of the vertebrate and insect forebrain by comparison to the much simpler and evolutionary ancient “connectome” of the marine annelid Platynereis dumerilii. We will build a unique resource, the Platynereis Neuron Type Atlas, combining, for the first time, neuronal morphologies, axonal projections, cellular expression profiling and developmental lineage for an entire bilaterian brain. We will focus on five days old larvae when most adult neuron types are already present in small number and large part of the axonal scaffold in place.
Building on the Neuron Type Atlas, the second part of the proposal envisages the functional dissection of the Platynereis chemosensory-motor forebrain circuits. A newly developed microfluidics behavioural assay system, together with a cell-based GPCR screening will identify partaking neurons. Zinc finger nuclease-mediated knockout of circuit-specific transcription factors as identified from the Atlas will reveal circuit-specific gene regulatory networks, downstream effector genes and functional characteristics. Laser ablation of GFP-labeled single neurons and axonal connections will yield further insight into the function of circuit components and subcircuits. Given the ancient nature of the Platynereis brain, this research is expected to reveal a simple, developmental and evolutionary “blueprint” for the olfactory circuits in mice and flies and to shed new light on the evolution of information processing in glomeruli and higher-level integration in sensory-associative brain centres.
Summary
Neural circuits, composed of interconnected neurons, represent the basic unit of the nervous system. One way to understand the highly complex arrangement of cross-talking, serial and parallel circuits is to resolve its developmental and evolutionary emergence. The rationale of the research proposal presented here is to elucidate the complex circuitry of the vertebrate and insect forebrain by comparison to the much simpler and evolutionary ancient “connectome” of the marine annelid Platynereis dumerilii. We will build a unique resource, the Platynereis Neuron Type Atlas, combining, for the first time, neuronal morphologies, axonal projections, cellular expression profiling and developmental lineage for an entire bilaterian brain. We will focus on five days old larvae when most adult neuron types are already present in small number and large part of the axonal scaffold in place.
Building on the Neuron Type Atlas, the second part of the proposal envisages the functional dissection of the Platynereis chemosensory-motor forebrain circuits. A newly developed microfluidics behavioural assay system, together with a cell-based GPCR screening will identify partaking neurons. Zinc finger nuclease-mediated knockout of circuit-specific transcription factors as identified from the Atlas will reveal circuit-specific gene regulatory networks, downstream effector genes and functional characteristics. Laser ablation of GFP-labeled single neurons and axonal connections will yield further insight into the function of circuit components and subcircuits. Given the ancient nature of the Platynereis brain, this research is expected to reveal a simple, developmental and evolutionary “blueprint” for the olfactory circuits in mice and flies and to shed new light on the evolution of information processing in glomeruli and higher-level integration in sensory-associative brain centres.
Max ERC Funding
2 489 048 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym DYSTRUCTURE
Project The Dynamical and Structural Basis of Human Mind Complexity: Segregation and Integration of Information and Processing in the Brain
Researcher (PI) Gustavo Deco
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary "Perceptions, memories, emotions, and everything that makes us human, demand the flexible integration of information represented and computed in a distributed manner. The human brain is structured into a large number of areas in which information and computation are highly segregated. Normal brain functions require the integration of functionally specialized but widely distributed brain areas. Furthermore, human behavior entails a flexible task- dependent interplay between different subsets of these brain areas in order to integrate them according to the corresponding goal-directed requirements. We contend that the functional and encoding roles of diverse neuronal populations across areas are subject to intra- and inter-cortical dynamics. More concretely, we hypothesize that coherent oscillations within frequency-specific large-scale networks and coherent structuring of the underlying fluctuations are crucial mechanisms for the flexible integration of distributed processing and interaction of representations.
The project aims to elucidate precisely the interplay and mutual entrainment between local brain area dynamics and global network dynamics and their breakdown in brain diseases. We wish to better understand how segregated distributed information and processing are integrated in a flexible and context-dependent way as required for goal-directed behavior. It will allow us to comprehend the mechanisms underlying brain functions by complementing structural and activation based analyses with dynamics. We expect to gain a full explanation of the mechanisms that mediate the interactions between global and local spatio-temporal patterns of activity revealed at many levels of observations (fMRI, EEG, MEG) in humans under task and resting conditions, complemented and further constrained by using more detailed characterization of brain dynamics via Local Field Potentials and neuronal recording in animals under task and resting conditions."
Summary
"Perceptions, memories, emotions, and everything that makes us human, demand the flexible integration of information represented and computed in a distributed manner. The human brain is structured into a large number of areas in which information and computation are highly segregated. Normal brain functions require the integration of functionally specialized but widely distributed brain areas. Furthermore, human behavior entails a flexible task- dependent interplay between different subsets of these brain areas in order to integrate them according to the corresponding goal-directed requirements. We contend that the functional and encoding roles of diverse neuronal populations across areas are subject to intra- and inter-cortical dynamics. More concretely, we hypothesize that coherent oscillations within frequency-specific large-scale networks and coherent structuring of the underlying fluctuations are crucial mechanisms for the flexible integration of distributed processing and interaction of representations.
The project aims to elucidate precisely the interplay and mutual entrainment between local brain area dynamics and global network dynamics and their breakdown in brain diseases. We wish to better understand how segregated distributed information and processing are integrated in a flexible and context-dependent way as required for goal-directed behavior. It will allow us to comprehend the mechanisms underlying brain functions by complementing structural and activation based analyses with dynamics. We expect to gain a full explanation of the mechanisms that mediate the interactions between global and local spatio-temporal patterns of activity revealed at many levels of observations (fMRI, EEG, MEG) in humans under task and resting conditions, complemented and further constrained by using more detailed characterization of brain dynamics via Local Field Potentials and neuronal recording in animals under task and resting conditions."
Max ERC Funding
2 467 530 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym FliesCan
Project Modelling Cancer Traits in Drosophila
Researcher (PI) Cayetano Gonzalez Hernandez
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Call Details Advanced Grant (AdG), LS3, ERC-2011-ADG_20110310
Summary Despite significant advance, cancer treatment remains suboptimal. Anatomical and physiological differences between humans and simple model organisms like Drosophila are many and major, and preclude the modelling of key aspects of the disease as it proceeds in vertebrates. However, malignant tumors in vertebrates and flies are made of cells that have derailed from their normal course of development, grow out of control, become immortal, invasive, and kill the host. Moreover, like most solid human tumors, Drosophila malignant tumors display chromosomal instability and copy number variation. In addition, some of them are characterized by the upregulation of germline genes, a distinct feature of certain human cancers. Drosophila tumor models offer an unprecedented opportunity to study these basic malignant traits, which characterize human tumors, in a genetically tractable organism, applying sophisticated genome-wide and comprehensive functional assays at a rate and with a level of detail that are not possible in vertebrates. The goal of this project is twofold: (1) to identify new paths of intervention to inhibit tumor growth, and (2) to determine the origin and function of aneuploidy and changes in gene copy number in malignant growth. We are expectant that the results obtained during the course of this project might eventually have a real impact in human health.
Summary
Despite significant advance, cancer treatment remains suboptimal. Anatomical and physiological differences between humans and simple model organisms like Drosophila are many and major, and preclude the modelling of key aspects of the disease as it proceeds in vertebrates. However, malignant tumors in vertebrates and flies are made of cells that have derailed from their normal course of development, grow out of control, become immortal, invasive, and kill the host. Moreover, like most solid human tumors, Drosophila malignant tumors display chromosomal instability and copy number variation. In addition, some of them are characterized by the upregulation of germline genes, a distinct feature of certain human cancers. Drosophila tumor models offer an unprecedented opportunity to study these basic malignant traits, which characterize human tumors, in a genetically tractable organism, applying sophisticated genome-wide and comprehensive functional assays at a rate and with a level of detail that are not possible in vertebrates. The goal of this project is twofold: (1) to identify new paths of intervention to inhibit tumor growth, and (2) to determine the origin and function of aneuploidy and changes in gene copy number in malignant growth. We are expectant that the results obtained during the course of this project might eventually have a real impact in human health.
Max ERC Funding
2 406 000 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym HotMol
Project Hot Molecules in Exoplanets and Inner Disks
Researcher (PI) Svetlana Berdyugina
Host Institution (HI) LEIBNIZ-INSTITUT FÜR SONNENPHYSIK (KIS)
Call Details Advanced Grant (AdG), PE9, ERC-2011-ADG_20110209
Summary Understanding the nature and distribution of habitable environments in the Universe is one of the fundamental goals of modern astrophysics. For the life we know, liquid water on the planetary surface is a prerequisite. However, a direct detection of liquid water on exoplanets, and especially on a potentially habitable Earth-size planet, is not yet possible. The existence of water almost certainly implies the presence of atmospheric water vapour which must evaporate under stellar irradiation from a cloud deck or from the surface, together with other related molecules. Therefore, devising sensitive methods to detect hot molecules on exoplanets is of high importance. This proposal develops several exploratory theoretical and observational aspects of precision spectropolarimetry for detecting water vapour and other volatiles on exoplanets and in the inner part of protoplanetary disks. These are new tools for making progress in our understanding which fraction of planets acquires water and how planet formation influences their habitability. As a “double differential” technique, spectropolarimetry has enormous advantages for dynamic range problems, like detection of weak line signals against a large stellar background and exploration at scales beyond the angular resolution of telescopes, which are crucial for both exoplanets and inner disks. Direct detection of polarized spectral lines enables recovering precise orbits of exoplanets (including non-transiting systems) and evaluating their masses as well as potentially their magnetic fields. First applied to hot Jupiters the developed tools will create a firm foundation for future exploration of Earth-like planets with larger telescopes. The same technique applied to planetesimals in the inner disks of young stars yields their orbits, temperature, and chemical composition. These will provide constraints on the formation of a planetary atmosphere in the vicinity of the star and its habitable zone.
Summary
Understanding the nature and distribution of habitable environments in the Universe is one of the fundamental goals of modern astrophysics. For the life we know, liquid water on the planetary surface is a prerequisite. However, a direct detection of liquid water on exoplanets, and especially on a potentially habitable Earth-size planet, is not yet possible. The existence of water almost certainly implies the presence of atmospheric water vapour which must evaporate under stellar irradiation from a cloud deck or from the surface, together with other related molecules. Therefore, devising sensitive methods to detect hot molecules on exoplanets is of high importance. This proposal develops several exploratory theoretical and observational aspects of precision spectropolarimetry for detecting water vapour and other volatiles on exoplanets and in the inner part of protoplanetary disks. These are new tools for making progress in our understanding which fraction of planets acquires water and how planet formation influences their habitability. As a “double differential” technique, spectropolarimetry has enormous advantages for dynamic range problems, like detection of weak line signals against a large stellar background and exploration at scales beyond the angular resolution of telescopes, which are crucial for both exoplanets and inner disks. Direct detection of polarized spectral lines enables recovering precise orbits of exoplanets (including non-transiting systems) and evaluating their masses as well as potentially their magnetic fields. First applied to hot Jupiters the developed tools will create a firm foundation for future exploration of Earth-like planets with larger telescopes. The same technique applied to planetesimals in the inner disks of young stars yields their orbits, temperature, and chemical composition. These will provide constraints on the formation of a planetary atmosphere in the vicinity of the star and its habitable zone.
Max ERC Funding
2 436 000 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym lec&lip2invade
Project The interactions of the Pseudomonas aeruginosa lectins LecA and LecB with glycosphingolipids result in membrane invagination, signaling and cellular uptake of the bacterium
Researcher (PI) Winfried Römer
Host Institution (HI) ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Call Details Starting Grant (StG), LS3, ERC-2011-StG_20101109
Summary Pseudomonas aeruginosa has emerged as a major opportunistic pathogen during the past century. The invasion of host cells plays a fundamental role in the pathogenesis of this bacterium. As clinically important antibiotic resistance of P. aeruginosa continues to increase, the identification of host as well as microbial factors essential for P. aeruginosa uptake may lead to new drug targets.
Our highly ambitious and interdisciplinary research project at the interface of biology, chemistry and physics aims at describing the molecular mechanism of the internalization of P. aeruginosa in non-phagocytic cells. Based on novel concepts that we have established for some bacterial toxins and animal viruses, we hypothesize that specific interactions of the P. aeruginosa lectins LecA and LecB with distinct glycosphingolipids exposed at the host cell surface lead to formation of plasma membrane invaginations, activation and recruitment of signaling molecules, cytoskeleton remodeling and cellular uptake of the bacterium. In order to acquire highly complementary results and to ensure the maximal outcome, we will perform our studies on diverse animal cells and various membrane model systems in combination with super resolution imaging techniques, biochemical and screening approaches. For the in vitro reconstitution of bacterial invasion, we will develop a unique platform for membrane nanoscopy based on planar pore-suspending membrane systems of different complexity (e.g. pore-suspending plasma membrane sheets and synthetic lipid bilayers). We expect to be able to identify key factors of bacterial uptake and small molecule inhibitors towards them in order to develop new therapies against the pathogenesis of P. aeruginosa infections.
Summary
Pseudomonas aeruginosa has emerged as a major opportunistic pathogen during the past century. The invasion of host cells plays a fundamental role in the pathogenesis of this bacterium. As clinically important antibiotic resistance of P. aeruginosa continues to increase, the identification of host as well as microbial factors essential for P. aeruginosa uptake may lead to new drug targets.
Our highly ambitious and interdisciplinary research project at the interface of biology, chemistry and physics aims at describing the molecular mechanism of the internalization of P. aeruginosa in non-phagocytic cells. Based on novel concepts that we have established for some bacterial toxins and animal viruses, we hypothesize that specific interactions of the P. aeruginosa lectins LecA and LecB with distinct glycosphingolipids exposed at the host cell surface lead to formation of plasma membrane invaginations, activation and recruitment of signaling molecules, cytoskeleton remodeling and cellular uptake of the bacterium. In order to acquire highly complementary results and to ensure the maximal outcome, we will perform our studies on diverse animal cells and various membrane model systems in combination with super resolution imaging techniques, biochemical and screening approaches. For the in vitro reconstitution of bacterial invasion, we will develop a unique platform for membrane nanoscopy based on planar pore-suspending membrane systems of different complexity (e.g. pore-suspending plasma membrane sheets and synthetic lipid bilayers). We expect to be able to identify key factors of bacterial uptake and small molecule inhibitors towards them in order to develop new therapies against the pathogenesis of P. aeruginosa infections.
Max ERC Funding
1 436 400 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym ManISteC
Project Manipulating and Imaging Stem Cells at Work
Researcher (PI) Joachim Wittbrodt
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Advanced Grant (AdG), LS3, ERC-2011-ADG_20110310
Summary Stem cells are promise and threat at the same time. To understand how stem cells act it is crucial to study their behavior in their natural context. Following and manipulating an individual stem cell and its descendants on their path to differentiation has so far not been possible. We have recently developed new microscopy and image analysis tools that allow long term in vivo observations. Novel genetic tools allow to stochastically label individual cells and thus to follow all descendants derived from the cell initially marked. We have modified and adapted this technology for the fish system and will extend its potential to allow functional clonal analysis in vivo. The transparent fish medaka (Oryzias latipes) and zebrafish (Danio rerio) are ideally suited to combine advanced imaging and the genetic lineage manipulation of stem cells. This way the influence of genetic pathways implicated in cell proliferation and differentiation is directly addressed in vivo. Clones originating from single wild type or manipulated cells are followed in their in vivo context and the physiological consequences of this manipulation is directly measured. Individually labelled clones will be followed by DSLM 4D microscopy over periods of up to 7 days in juvenile and adult fish. We will interfere with signaling pathways and key transcription factors in these cells combining the brainbow approach with lineage specific gain- and loss-of-function. That way a specific color will indicate a specific experimental condition. We will focus on the path of decisions taken by retinal stem cells and their descendants on the one hand and on cells composing induced tumors on the other. This will be highly relevant for our understanding of stem cell and tumor cell proliferation and differentiation.
Summary
Stem cells are promise and threat at the same time. To understand how stem cells act it is crucial to study their behavior in their natural context. Following and manipulating an individual stem cell and its descendants on their path to differentiation has so far not been possible. We have recently developed new microscopy and image analysis tools that allow long term in vivo observations. Novel genetic tools allow to stochastically label individual cells and thus to follow all descendants derived from the cell initially marked. We have modified and adapted this technology for the fish system and will extend its potential to allow functional clonal analysis in vivo. The transparent fish medaka (Oryzias latipes) and zebrafish (Danio rerio) are ideally suited to combine advanced imaging and the genetic lineage manipulation of stem cells. This way the influence of genetic pathways implicated in cell proliferation and differentiation is directly addressed in vivo. Clones originating from single wild type or manipulated cells are followed in their in vivo context and the physiological consequences of this manipulation is directly measured. Individually labelled clones will be followed by DSLM 4D microscopy over periods of up to 7 days in juvenile and adult fish. We will interfere with signaling pathways and key transcription factors in these cells combining the brainbow approach with lineage specific gain- and loss-of-function. That way a specific color will indicate a specific experimental condition. We will focus on the path of decisions taken by retinal stem cells and their descendants on the one hand and on cells composing induced tumors on the other. This will be highly relevant for our understanding of stem cell and tumor cell proliferation and differentiation.
Max ERC Funding
2 562 000 €
Duration
Start date: 2012-04-01, End date: 2017-03-31