Project acronym AARTFAAC
Project Amsterdam-ASTRON Radio Transient Facility And Analysis Centre: Probing the Extremes of Astrophysics
Researcher (PI) Ralph Antoine Marie Joseph Wijers
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Country Netherlands
Call Details Advanced Grant (AdG), PE9, ERC-2009-AdG
Summary Some of the most extreme tests of physical law come from its manifestations in the behaviour of black holes and neutron stars, and as such these objects should be used as fundamental physics labs. Due to advances in both theoretical work and observational techniques, I have a major opportunity now to significantly push this agenda forward and get better answers to questions like: How are black holes born? How can energy be extracted from black holes? What is the origin of magnetic fields and cosmic rays in jets and shocks? Is their primary energy stream hadronic or magnetic? I propose to do this by exploiting the advent of wide-field radio astronomy: extreme objects are very rare and usually transient, so not only must one survey large areas of sky, but also must one do this often. I propose to form and shape a group that will use the LOFAR wide-field radio telescope to hunt for these extreme transients and systematically collect enough well-documented examples of the behaviour of each type of transient. Furthermore, I propose to expand LOFAR with a true 24/7 all-sky monitor to catch and study even the rarest of events. Next, I will use my experience in gamma-ray burst followup to conduct a vigorous multi-wavelength programme of study of these objects, to constrain their physics from as many angles as possible. This will eventually include results from multi-messenger astrophysics, in which we use neutrinos, gravity waves, and other non-electromagnetic messengers as extra diagnostics of the physics of these sources. Finally, I will build on my experience in modelling accretion phenomena and relativistic explosions to develop a theoretical framework for these phenomena and constrain the resulting models with the rich data sets we obtain.
Summary
Some of the most extreme tests of physical law come from its manifestations in the behaviour of black holes and neutron stars, and as such these objects should be used as fundamental physics labs. Due to advances in both theoretical work and observational techniques, I have a major opportunity now to significantly push this agenda forward and get better answers to questions like: How are black holes born? How can energy be extracted from black holes? What is the origin of magnetic fields and cosmic rays in jets and shocks? Is their primary energy stream hadronic or magnetic? I propose to do this by exploiting the advent of wide-field radio astronomy: extreme objects are very rare and usually transient, so not only must one survey large areas of sky, but also must one do this often. I propose to form and shape a group that will use the LOFAR wide-field radio telescope to hunt for these extreme transients and systematically collect enough well-documented examples of the behaviour of each type of transient. Furthermore, I propose to expand LOFAR with a true 24/7 all-sky monitor to catch and study even the rarest of events. Next, I will use my experience in gamma-ray burst followup to conduct a vigorous multi-wavelength programme of study of these objects, to constrain their physics from as many angles as possible. This will eventually include results from multi-messenger astrophysics, in which we use neutrinos, gravity waves, and other non-electromagnetic messengers as extra diagnostics of the physics of these sources. Finally, I will build on my experience in modelling accretion phenomena and relativistic explosions to develop a theoretical framework for these phenomena and constrain the resulting models with the rich data sets we obtain.
Max ERC Funding
3 499 128 €
Duration
Start date: 2010-10-01, End date: 2016-09-30
Project acronym ABCvolume
Project The ABC of Cell Volume Regulation
Researcher (PI) Berend Poolman
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Country Netherlands
Call Details Advanced Grant (AdG), LS1, ERC-2014-ADG
Summary Cell volume regulation is crucial for any living cell because changes in volume determine the metabolic activity through e.g. changes in ionic strength, pH, macromolecular crowding and membrane tension. These physical chemical parameters influence interaction rates and affinities of biomolecules, folding rates, and fold stabilities in vivo. Understanding of the underlying volume regulatory mechanisms has immediate application in biotechnology and health, yet these factors are generally ignored in systems analyses of cellular functions.
My team has uncovered a number of mechanisms and insights of cell volume regulation. The next step forward is to elucidate how the components of a cell volume regulatory circuit work together and control the physicochemical conditions of the cell.
I propose construction of a synthetic cell in which an osmoregulatory transporter and mechanosensitive channel form a minimal volume regulatory network. My group has developed the technology to reconstitute membrane proteins into lipid vesicles (synthetic cells). One of the challenges is to incorporate into the vesicles an efficient pathway for ATP production and maintain energy homeostasis while the load on the system varies. We aim to control the transmembrane flux of osmolytes, which requires elucidation of the molecular mechanism of gating of the osmoregulatory transporter. We will focus on the glycine betaine ABC importer, which is one of the most complex transporters known to date with ten distinct protein domains, transiently interacting with each other.
The proposed synthetic metabolic circuit constitutes a fascinating out-of-equilibrium system, allowing us to understand cell volume regulatory mechanisms in a context and at a level of complexity minimally needed for life. Analysis of this circuit will address many outstanding questions and eventually allow us to design more sophisticated vesicular systems with applications, for example as compartmentalized reaction networks.
Summary
Cell volume regulation is crucial for any living cell because changes in volume determine the metabolic activity through e.g. changes in ionic strength, pH, macromolecular crowding and membrane tension. These physical chemical parameters influence interaction rates and affinities of biomolecules, folding rates, and fold stabilities in vivo. Understanding of the underlying volume regulatory mechanisms has immediate application in biotechnology and health, yet these factors are generally ignored in systems analyses of cellular functions.
My team has uncovered a number of mechanisms and insights of cell volume regulation. The next step forward is to elucidate how the components of a cell volume regulatory circuit work together and control the physicochemical conditions of the cell.
I propose construction of a synthetic cell in which an osmoregulatory transporter and mechanosensitive channel form a minimal volume regulatory network. My group has developed the technology to reconstitute membrane proteins into lipid vesicles (synthetic cells). One of the challenges is to incorporate into the vesicles an efficient pathway for ATP production and maintain energy homeostasis while the load on the system varies. We aim to control the transmembrane flux of osmolytes, which requires elucidation of the molecular mechanism of gating of the osmoregulatory transporter. We will focus on the glycine betaine ABC importer, which is one of the most complex transporters known to date with ten distinct protein domains, transiently interacting with each other.
The proposed synthetic metabolic circuit constitutes a fascinating out-of-equilibrium system, allowing us to understand cell volume regulatory mechanisms in a context and at a level of complexity minimally needed for life. Analysis of this circuit will address many outstanding questions and eventually allow us to design more sophisticated vesicular systems with applications, for example as compartmentalized reaction networks.
Max ERC Funding
2 247 231 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym AdaptiveResponse
Project The evolution of adaptive response mechanisms
Researcher (PI) Franz WEISSING
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Country Netherlands
Call Details Advanced Grant (AdG), LS8, ERC-2017-ADG
Summary In an era of rapid climate change there is a pressing need to understand whether and how organisms are able to adapt to novel environments. Such understanding is hampered by a major divide in the life sciences. Disciplines like systems biology or neurobiology make rapid progress in unravelling the mechanisms underlying the responses of organisms to their environment, but this knowledge is insufficiently integrated in eco-evolutionary theory. Current eco-evolutionary models focus on the response patterns themselves, largely neglecting the structures and mechanisms producing these patterns. Here I propose a new, mechanism-oriented framework that views the architecture of adaptation, rather than the resulting responses, as the primary target of natural selection. I am convinced that this change in perspective will yield fundamentally new insights, necessitating the re-evaluation of many seemingly well-established eco-evolutionary principles.
My aim is to develop a comprehensive theory of the eco-evolutionary causes and consequences of the architecture underlying adaptive responses. In three parallel lines of investigation, I will study how architecture is shaped by selection, how evolved response strategies reflect the underlying architecture, and how these responses affect the eco-evolutionary dynamics and the capacity to adapt to novel conditions. All three lines have the potential of making ground-breaking contributions to eco-evolutionary theory, including: the specification of evolutionary tipping points; resolving the puzzle that real organisms evolve much faster than predicted by current theory; a new and general explanation for the evolutionary emergence of individual variation; and a framework for studying the evolution of learning and other general-purpose mechanisms. By making use of concepts from information theory and artificial intelligence, the project will also introduce various methodological innovations.
Summary
In an era of rapid climate change there is a pressing need to understand whether and how organisms are able to adapt to novel environments. Such understanding is hampered by a major divide in the life sciences. Disciplines like systems biology or neurobiology make rapid progress in unravelling the mechanisms underlying the responses of organisms to their environment, but this knowledge is insufficiently integrated in eco-evolutionary theory. Current eco-evolutionary models focus on the response patterns themselves, largely neglecting the structures and mechanisms producing these patterns. Here I propose a new, mechanism-oriented framework that views the architecture of adaptation, rather than the resulting responses, as the primary target of natural selection. I am convinced that this change in perspective will yield fundamentally new insights, necessitating the re-evaluation of many seemingly well-established eco-evolutionary principles.
My aim is to develop a comprehensive theory of the eco-evolutionary causes and consequences of the architecture underlying adaptive responses. In three parallel lines of investigation, I will study how architecture is shaped by selection, how evolved response strategies reflect the underlying architecture, and how these responses affect the eco-evolutionary dynamics and the capacity to adapt to novel conditions. All three lines have the potential of making ground-breaking contributions to eco-evolutionary theory, including: the specification of evolutionary tipping points; resolving the puzzle that real organisms evolve much faster than predicted by current theory; a new and general explanation for the evolutionary emergence of individual variation; and a framework for studying the evolution of learning and other general-purpose mechanisms. By making use of concepts from information theory and artificial intelligence, the project will also introduce various methodological innovations.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym ALGSTRONGCRYPTO
Project Algebraic Methods for Stronger Crypto
Researcher (PI) Ronald John Fitzgerald CRAMER
Host Institution (HI) STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTEN
Country Netherlands
Call Details Advanced Grant (AdG), PE6, ERC-2016-ADG
Summary Our field is cryptology. Our overarching objective is to advance significantly the frontiers in
design and analysis of high-security cryptography for the future generation.
Particularly, we wish to enhance the efficiency, functionality, and, last-but-not-least, fundamental understanding of cryptographic security against very powerful adversaries.
Our approach here is to develop completely novel methods by
deepening, strengthening and broadening the
algebraic foundations of the field.
Concretely, our lens builds on
the arithmetic codex. This is a general, abstract cryptographic primitive whose basic theory we recently developed and whose asymptotic part, which relies on algebraic geometry, enjoys crucial applications in surprising foundational results on constant communication-rate two-party cryptography. A codex is a linear (error correcting) code that, when endowing its ambient vector space just with coordinate-wise multiplication, can be viewed as simulating, up to some degree, richer arithmetical structures such as finite fields (or products thereof), or generally, finite-dimensional algebras over finite fields. Besides this degree, coordinate-localities for which simulation holds and for which it does not at all are also captured.
Our method is based on novel perspectives on codices which significantly
widen their scope and strengthen their utility. Particularly, we bring
symmetries, computational- and complexity theoretic aspects, and connections with algebraic number theory, -geometry, and -combinatorics into play in novel ways. Our applications range from public-key cryptography to secure multi-party computation.
Our proposal is subdivided into 3 interconnected modules:
(1) Algebraic- and Number Theoretical Cryptanalysis
(2) Construction of Algebraic Crypto Primitives
(3) Advanced Theory of Arithmetic Codices
Summary
Our field is cryptology. Our overarching objective is to advance significantly the frontiers in
design and analysis of high-security cryptography for the future generation.
Particularly, we wish to enhance the efficiency, functionality, and, last-but-not-least, fundamental understanding of cryptographic security against very powerful adversaries.
Our approach here is to develop completely novel methods by
deepening, strengthening and broadening the
algebraic foundations of the field.
Concretely, our lens builds on
the arithmetic codex. This is a general, abstract cryptographic primitive whose basic theory we recently developed and whose asymptotic part, which relies on algebraic geometry, enjoys crucial applications in surprising foundational results on constant communication-rate two-party cryptography. A codex is a linear (error correcting) code that, when endowing its ambient vector space just with coordinate-wise multiplication, can be viewed as simulating, up to some degree, richer arithmetical structures such as finite fields (or products thereof), or generally, finite-dimensional algebras over finite fields. Besides this degree, coordinate-localities for which simulation holds and for which it does not at all are also captured.
Our method is based on novel perspectives on codices which significantly
widen their scope and strengthen their utility. Particularly, we bring
symmetries, computational- and complexity theoretic aspects, and connections with algebraic number theory, -geometry, and -combinatorics into play in novel ways. Our applications range from public-key cryptography to secure multi-party computation.
Our proposal is subdivided into 3 interconnected modules:
(1) Algebraic- and Number Theoretical Cryptanalysis
(2) Construction of Algebraic Crypto Primitives
(3) Advanced Theory of Arithmetic Codices
Max ERC Funding
2 447 439 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym ALLEGRO
Project unrAvelLing sLow modE travelinG and tRaffic: with innOvative data to a new transportation and traffic theory for pedestrians and bicycles
Researcher (PI) Serge Hoogendoorn
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Country Netherlands
Call Details Advanced Grant (AdG), SH3, ERC-2014-ADG
Summary A major challenge in contemporary traffic and transportation theory is having a comprehensive understanding of pedestrians and cyclists behaviour. This is notoriously hard to observe, since sensors providing abundant and detailed information about key variables characterising this behaviour have not been available until very recently. The behaviour is also far more complex than that of the much better understood fast mode. This is due to the many degrees of freedom in decision-making, the interactions among slow traffic participants that are more involved and far less guided by traffic rules and regulations than those between car-drivers, and the many fascinating but complex phenomena in slow traffic flows (self-organised patterns, turbulence, spontaneous phase transitions, herding, etc.) that are very hard to predict accurately.
With slow traffic modes gaining ground in terms of mode share in many cities, lack of empirical insights, behavioural theories, predictively valid analytical and simulation models, and tools to support planning, design, management and control is posing a major societal problem as well: examples of major accidents due to bad planning, organisation and management of events are manifold, as are locations where safety of slow modes is a serious issue due to interactions with fast modes.
This programme is geared towards establishing a comprehensive theory of slow mode traffic behaviour, considering the different behavioural levels relevant for understanding, reproducing and predicting slow mode traffic flows in cities. The levels deal with walking and cycling operations, activity scheduling and travel behaviour, and knowledge representation and learning. Major scientific breakthroughs are expected at each of these levels, in terms of theory and modelling, by using innovative (big) data collection and experimentation, analysis and fusion techniques, including social media data analytics, using augmented reality, and remote and crowd sensing.
Summary
A major challenge in contemporary traffic and transportation theory is having a comprehensive understanding of pedestrians and cyclists behaviour. This is notoriously hard to observe, since sensors providing abundant and detailed information about key variables characterising this behaviour have not been available until very recently. The behaviour is also far more complex than that of the much better understood fast mode. This is due to the many degrees of freedom in decision-making, the interactions among slow traffic participants that are more involved and far less guided by traffic rules and regulations than those between car-drivers, and the many fascinating but complex phenomena in slow traffic flows (self-organised patterns, turbulence, spontaneous phase transitions, herding, etc.) that are very hard to predict accurately.
With slow traffic modes gaining ground in terms of mode share in many cities, lack of empirical insights, behavioural theories, predictively valid analytical and simulation models, and tools to support planning, design, management and control is posing a major societal problem as well: examples of major accidents due to bad planning, organisation and management of events are manifold, as are locations where safety of slow modes is a serious issue due to interactions with fast modes.
This programme is geared towards establishing a comprehensive theory of slow mode traffic behaviour, considering the different behavioural levels relevant for understanding, reproducing and predicting slow mode traffic flows in cities. The levels deal with walking and cycling operations, activity scheduling and travel behaviour, and knowledge representation and learning. Major scientific breakthroughs are expected at each of these levels, in terms of theory and modelling, by using innovative (big) data collection and experimentation, analysis and fusion techniques, including social media data analytics, using augmented reality, and remote and crowd sensing.
Max ERC Funding
2 458 700 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym ALPROS
Project Artificial Life-like Processive Systems
Researcher (PI) Roeland Johannes Maria Nolte
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Country Netherlands
Call Details Advanced Grant (AdG), PE5, ERC-2011-ADG_20110209
Summary Toroidal processive enzymes (e.g. enzymes/proteins that are able to thread onto biopolymers and to perform stepwise reactions along the polymer chain) are among the most fascinating tools involved in the clockwork machinery of life. Processive catalysis is ubiquitous in Nature, viz. DNA polymerases, endo- and exo-nucleases and; it plays a crucial role in numerous events of the cell’s life, including most of the replication, transmission, and expression and repair processes of the genetic information. In the case of DNA polymerases the protein catalyst encircles the DNA and whilst moving along it, make copies of high fidelity. Although numerous works have been reported in relation with the synthesis of natural enzymes' analogues, very few efforts have been paid in comparison to mimic these processive properties. It is the goal of this proposal to rectify this oversight and unravel the essential components of Nature’s polymer catalysts. The individual projects are designed to specifically target the essential aspects of processive catalysis, i.e. rate of motion, rate of catalysis, and transfer of information. One project is aimed at extending the research into a processive catalytic system that is more suitable for industrial application. Two projects involve more farsighted studies and are designed to push the research way beyond the current boundaries into the area of Turing machines and bio-rotaxane catalysts which can modify DNA in a non-natural process. The vision of this proposal is to open up the field of ‘processive catalysis’ and invigorate the next generation of chemists to develop information transfer and toroidal processive catalysts. The construction of synthetic analogues of processive enzymes could open a gate toward a large range of applications, ranging from intelligent tailoring of polymers to information storage and processing.
Summary
Toroidal processive enzymes (e.g. enzymes/proteins that are able to thread onto biopolymers and to perform stepwise reactions along the polymer chain) are among the most fascinating tools involved in the clockwork machinery of life. Processive catalysis is ubiquitous in Nature, viz. DNA polymerases, endo- and exo-nucleases and; it plays a crucial role in numerous events of the cell’s life, including most of the replication, transmission, and expression and repair processes of the genetic information. In the case of DNA polymerases the protein catalyst encircles the DNA and whilst moving along it, make copies of high fidelity. Although numerous works have been reported in relation with the synthesis of natural enzymes' analogues, very few efforts have been paid in comparison to mimic these processive properties. It is the goal of this proposal to rectify this oversight and unravel the essential components of Nature’s polymer catalysts. The individual projects are designed to specifically target the essential aspects of processive catalysis, i.e. rate of motion, rate of catalysis, and transfer of information. One project is aimed at extending the research into a processive catalytic system that is more suitable for industrial application. Two projects involve more farsighted studies and are designed to push the research way beyond the current boundaries into the area of Turing machines and bio-rotaxane catalysts which can modify DNA in a non-natural process. The vision of this proposal is to open up the field of ‘processive catalysis’ and invigorate the next generation of chemists to develop information transfer and toroidal processive catalysts. The construction of synthetic analogues of processive enzymes could open a gate toward a large range of applications, ranging from intelligent tailoring of polymers to information storage and processing.
Max ERC Funding
1 603 699 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ANAMMOX
Project Anaerobic ammonium oxidizing bacteria: unique prokayotes with exceptional properties
Researcher (PI) Michael Silvester Maria Jetten
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Country Netherlands
Call Details Advanced Grant (AdG), LS8, ERC-2008-AdG
Summary For over a century it was believed that ammonium could only be oxidized by microbes in the presence of oxygen. The possibility of anaerobic ammonium oxidation (anammox) was considered impossible. However, about 10 years ago the microbes responsible for the anammox reaction were discovered in a wastewater plant. This was followed by the identification of the responsible bacteria. Recently, the widespread environmental occurrence of the anammox bacteria was demonstrated leading to the realization that anammox bacteria may play a major role in biological nitrogen cycling. The anammox bacteria are unique microbes with many unusual properties. These include the biological turn-over of hydrazine, a well known rocket fuel, the biological synthesis of ladderane lipids, and the presence of a prokaryotic organelle in the cytoplasma of anammox bacteria. The aim of this project is to obtain a fundamental understanding of the metabolism and ecological importance of the anammox bacteria. Such understanding contributes directly to our environment and economy because the anammox bacteria form a new opportunity for nitrogen removal from wastewater, cheaper, with lower carbon dioxide emissions than existing technology. Scientifically the results will contribute to the understanding how hydrazine and dinitrogen gas are made by the anammox bacteria. The research will show which gene products are responsible for the anammox reaction, and how their expression is regulated. Furthermore, the experiments proposed will show if the prokaryotic organelle in anammox bacteria is involved in energy generation. Together the environmental and metabolic data will help to understand why anammox bacteria are so successful in the biogeochemical nitrogen cycle and thus shape our planets atmosphere. The different research lines will employ state of the art microbial and molecular methods to unravel the exceptional properties of these highly unusual and important anammox bacteria.
Summary
For over a century it was believed that ammonium could only be oxidized by microbes in the presence of oxygen. The possibility of anaerobic ammonium oxidation (anammox) was considered impossible. However, about 10 years ago the microbes responsible for the anammox reaction were discovered in a wastewater plant. This was followed by the identification of the responsible bacteria. Recently, the widespread environmental occurrence of the anammox bacteria was demonstrated leading to the realization that anammox bacteria may play a major role in biological nitrogen cycling. The anammox bacteria are unique microbes with many unusual properties. These include the biological turn-over of hydrazine, a well known rocket fuel, the biological synthesis of ladderane lipids, and the presence of a prokaryotic organelle in the cytoplasma of anammox bacteria. The aim of this project is to obtain a fundamental understanding of the metabolism and ecological importance of the anammox bacteria. Such understanding contributes directly to our environment and economy because the anammox bacteria form a new opportunity for nitrogen removal from wastewater, cheaper, with lower carbon dioxide emissions than existing technology. Scientifically the results will contribute to the understanding how hydrazine and dinitrogen gas are made by the anammox bacteria. The research will show which gene products are responsible for the anammox reaction, and how their expression is regulated. Furthermore, the experiments proposed will show if the prokaryotic organelle in anammox bacteria is involved in energy generation. Together the environmental and metabolic data will help to understand why anammox bacteria are so successful in the biogeochemical nitrogen cycle and thus shape our planets atmosphere. The different research lines will employ state of the art microbial and molecular methods to unravel the exceptional properties of these highly unusual and important anammox bacteria.
Max ERC Funding
2 500 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym ARGO
Project The Quest of the Argonautes - from Myth to Reality
Researcher (PI) JOHN VAN DER OOST
Host Institution (HI) WAGENINGEN UNIVERSITY
Country Netherlands
Call Details Advanced Grant (AdG), LS1, ERC-2018-ADG
Summary Argonaute nucleases are key players of the eukaryotic RNA interference (RNAi) system. Using small RNA guides, these Argonaute (Ago) proteins specifically target complementary RNA molecules, resulting in regulation of a wide range of crucial processes, including chromosome organization, gene expression and anti-virus defence. Since 2010, my research team has studied closely-related prokaryotic Argonaute (pAgo) variants. This has revealed spectacular mechanistic variations: several thermophilic pAgos catalyse DNA-guided cleavage of double stranded DNA, but only at elevated temperatures. Interestingly, a recently discovered mesophilic Argonaute (CbAgo) can generate double strand DNA breaks at moderate temperatures, providing an excellent basis for this ARGO project. In addition, genome analysis has revealed many distantly-related Argonaute variants, often with unique domain architectures. Hence, the currently known Argonaute homologs are just the tip of the iceberg, and the stage is set for making a big leap in the exploration of the Argonaute family. Initially we will dissect the molecular basis of functional and mechanistic features of uncharacterized natural Argonaute variants, both in eukaryotes (the presence of an Ago-like subunit in the Mediator complex, strongly suggests a regulatory role of an elusive non-coding RNA ligand) and in prokaryotes (selected Ago variants possess distinct domains indicating novel functionalities). After their thorough biochemical characterization, I aim at engineering the functionality of the aforementioned CbAgo through an integrated rational & random approach, i.e. by tinkering of domains, and by an unprecedented in vitro laboratory evolution approach. Eventually, natural & synthetic Argonautes will be selected for their exploitation, and used for developing original genome editing applications (from silencing to base editing). Embarking on this ambitious ARGO expedition will lead us to many exciting discoveries.
Summary
Argonaute nucleases are key players of the eukaryotic RNA interference (RNAi) system. Using small RNA guides, these Argonaute (Ago) proteins specifically target complementary RNA molecules, resulting in regulation of a wide range of crucial processes, including chromosome organization, gene expression and anti-virus defence. Since 2010, my research team has studied closely-related prokaryotic Argonaute (pAgo) variants. This has revealed spectacular mechanistic variations: several thermophilic pAgos catalyse DNA-guided cleavage of double stranded DNA, but only at elevated temperatures. Interestingly, a recently discovered mesophilic Argonaute (CbAgo) can generate double strand DNA breaks at moderate temperatures, providing an excellent basis for this ARGO project. In addition, genome analysis has revealed many distantly-related Argonaute variants, often with unique domain architectures. Hence, the currently known Argonaute homologs are just the tip of the iceberg, and the stage is set for making a big leap in the exploration of the Argonaute family. Initially we will dissect the molecular basis of functional and mechanistic features of uncharacterized natural Argonaute variants, both in eukaryotes (the presence of an Ago-like subunit in the Mediator complex, strongly suggests a regulatory role of an elusive non-coding RNA ligand) and in prokaryotes (selected Ago variants possess distinct domains indicating novel functionalities). After their thorough biochemical characterization, I aim at engineering the functionality of the aforementioned CbAgo through an integrated rational & random approach, i.e. by tinkering of domains, and by an unprecedented in vitro laboratory evolution approach. Eventually, natural & synthetic Argonautes will be selected for their exploitation, and used for developing original genome editing applications (from silencing to base editing). Embarking on this ambitious ARGO expedition will lead us to many exciting discoveries.
Max ERC Funding
2 177 158 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym ARTISYM
Project Artificial endosymbiosis
Researcher (PI) Jan Van hest
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Country Netherlands
Call Details Advanced Grant (AdG), PE5, ERC-2015-AdG
Summary Living organisms have acquired new functionalities by uptake and integration of species to create symbiotic life-forms. This process of endosymbiosis has intrigued scientists over the years, albeit mostly from an evolution biology perspective. With the advance of chemical and synthetic biology, our ability to create molecular-life-like systems has increased tremendously, which enables us to build cell and organelle-like structures. However, these advances have not been taken to a level to study comprehensively if endosymbiosis can be applied to non-living systems or to integrate living with non-living matter. The aim of the research described in the ARTISYM proposal is to establish the field of artificial endosymbiosis. Two lines of research will be followed. First, we will incorporate artificial organelles in living cells to design hybrid cells with acquired functionality. This investigation is scientifically of great interest, as it will show us how to introduce novel compartmentalized pathways into living organisms. It also serves an important societal goal, as with these compartments dysfunctional cellular processes can be corrected. We will follow both a transient and a permanent approach. With the transient route biodegradable nanoreactors are introduced to supply living cells temporarily with novel function. Functionality is permanently introduced using genetic engineering to express protein-based nanoreactors in living cells, or via organelle transplantation of healthy mitochondria in diseased living cells. Secondly I aim to create artificial cells with the ability to perform endosymbiosis; the uptake and presence of artificial organelles in synthetic vesicles allows them to dynamically respond to their environment. Responses that are envisaged are shape changes, motility, and growth and division. Furthermore, the incorporation of natural organelles in liposomes provides biocatalytic cascades with the necessary cofactors to function in an artificial cell
Summary
Living organisms have acquired new functionalities by uptake and integration of species to create symbiotic life-forms. This process of endosymbiosis has intrigued scientists over the years, albeit mostly from an evolution biology perspective. With the advance of chemical and synthetic biology, our ability to create molecular-life-like systems has increased tremendously, which enables us to build cell and organelle-like structures. However, these advances have not been taken to a level to study comprehensively if endosymbiosis can be applied to non-living systems or to integrate living with non-living matter. The aim of the research described in the ARTISYM proposal is to establish the field of artificial endosymbiosis. Two lines of research will be followed. First, we will incorporate artificial organelles in living cells to design hybrid cells with acquired functionality. This investigation is scientifically of great interest, as it will show us how to introduce novel compartmentalized pathways into living organisms. It also serves an important societal goal, as with these compartments dysfunctional cellular processes can be corrected. We will follow both a transient and a permanent approach. With the transient route biodegradable nanoreactors are introduced to supply living cells temporarily with novel function. Functionality is permanently introduced using genetic engineering to express protein-based nanoreactors in living cells, or via organelle transplantation of healthy mitochondria in diseased living cells. Secondly I aim to create artificial cells with the ability to perform endosymbiosis; the uptake and presence of artificial organelles in synthetic vesicles allows them to dynamically respond to their environment. Responses that are envisaged are shape changes, motility, and growth and division. Furthermore, the incorporation of natural organelles in liposomes provides biocatalytic cascades with the necessary cofactors to function in an artificial cell
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym ATTACK
Project Pressured to Attack: How Carrying-Capacity Stress Creates and Shapes Intergroup Conflict
Researcher (PI) Carsten DE DREU
Host Institution (HI) UNIVERSITEIT LEIDEN
Country Netherlands
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary Throughout history, what has been causing tremendous suffering is groups of people fighting each other. While behavioral science research has advanced our understanding of such intergroup conflict, it has exclusively focused on micro-level processes within and between groups at conflict. Disciplines that employ a more historical perspective like climate studies or political geography report that macro-level pressures due to changes in climate or economic scarcity can go along with social unrest and wars. How do these macro-level pressures relate to micro-level processes? Do they both occur independently, or do macro-level pressures trigger micro-level processes that cause intergroup conflict? And if so, which micro-level processes are triggered, and how?
With unavoidable signs of climate change and increasing resource scarcities, answers to these questions are urgently needed. Here I propose carrying-capacity stress (CCS) as the missing link between macro-level pressures and micro-level processes. A group experiences CCS when its resources do not suffice to maintain its functionality. CCS is a function of macro-level pressures and creates intergroup conflict because it impacts micro-level motivation to contribute to one’s group’s fighting capacity and shapes the coordination of individual contributions to out-group aggression through emergent norms, communication and leadership.
To test these propositions I develop a parametric model of CCS that is amenable to measurement and experimentation, and use techniques used in my work on conflict and cooperation: Meta-analyses and time-series analysis of macro-level historical data; experiments on intergroup conflict; and measurement of neuro-hormonal correlates of cooperation and conflict. In combination, this project provides novel multi-level conflict theory that integrates macro-level discoveries in climate research and political geography with micro-level processes uncovered in the biobehavioral sciences
Summary
Throughout history, what has been causing tremendous suffering is groups of people fighting each other. While behavioral science research has advanced our understanding of such intergroup conflict, it has exclusively focused on micro-level processes within and between groups at conflict. Disciplines that employ a more historical perspective like climate studies or political geography report that macro-level pressures due to changes in climate or economic scarcity can go along with social unrest and wars. How do these macro-level pressures relate to micro-level processes? Do they both occur independently, or do macro-level pressures trigger micro-level processes that cause intergroup conflict? And if so, which micro-level processes are triggered, and how?
With unavoidable signs of climate change and increasing resource scarcities, answers to these questions are urgently needed. Here I propose carrying-capacity stress (CCS) as the missing link between macro-level pressures and micro-level processes. A group experiences CCS when its resources do not suffice to maintain its functionality. CCS is a function of macro-level pressures and creates intergroup conflict because it impacts micro-level motivation to contribute to one’s group’s fighting capacity and shapes the coordination of individual contributions to out-group aggression through emergent norms, communication and leadership.
To test these propositions I develop a parametric model of CCS that is amenable to measurement and experimentation, and use techniques used in my work on conflict and cooperation: Meta-analyses and time-series analysis of macro-level historical data; experiments on intergroup conflict; and measurement of neuro-hormonal correlates of cooperation and conflict. In combination, this project provides novel multi-level conflict theory that integrates macro-level discoveries in climate research and political geography with micro-level processes uncovered in the biobehavioral sciences
Max ERC Funding
2 490 383 €
Duration
Start date: 2018-08-01, End date: 2023-07-31