Project acronym ANALYTICAL SOCIOLOGY
Project Analytical Sociology: Theoretical Developments and Empirical Research
Researcher (PI) Mats Peter Hedstroem
Host Institution (HI) LINKOPINGS UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), SH2, ERC-2012-ADG_20120411
Summary This proposal outlines a highly ambitious and path-breaking research program. Through a tightly integrated package of basic theoretical work, strategic empirical research projects, international workshops, and a large number of publications in leading journals, the research program seeks to move sociology in a more analytical direction.
One part of the research program focuses on the epistemological and methodological foundations of analytical sociology, an approach to sociological theory and research that currently receives considerable attention in the international scholarly community. This work will be organized around two core themes: (1) the principles of mechanism-based explanations and (2) the micro-macro link.
The empirical research analyzes in great detail the ethnic, gender, and socio-economic segregation of key interaction domains in Sweden using the approach of analytical sociology. The interaction domains focused upon are schools, workplaces and neighborhoods; domains where people spend a considerable part of their time, where much of the social interaction between people takes place, where identities are formed, and where important resources are distributed.
Large-scale longitudinal micro data on the entire Swedish population, unique longitudinal data on social networks within school classes, and various agent-based simulation techniques, are used to better understand the processes through which schools, workplaces and neighborhoods become segregated along various dimensions, how the domains interact with one another, and how the structure and extent of segregation affects diverse social and economic outcomes.
Summary
This proposal outlines a highly ambitious and path-breaking research program. Through a tightly integrated package of basic theoretical work, strategic empirical research projects, international workshops, and a large number of publications in leading journals, the research program seeks to move sociology in a more analytical direction.
One part of the research program focuses on the epistemological and methodological foundations of analytical sociology, an approach to sociological theory and research that currently receives considerable attention in the international scholarly community. This work will be organized around two core themes: (1) the principles of mechanism-based explanations and (2) the micro-macro link.
The empirical research analyzes in great detail the ethnic, gender, and socio-economic segregation of key interaction domains in Sweden using the approach of analytical sociology. The interaction domains focused upon are schools, workplaces and neighborhoods; domains where people spend a considerable part of their time, where much of the social interaction between people takes place, where identities are formed, and where important resources are distributed.
Large-scale longitudinal micro data on the entire Swedish population, unique longitudinal data on social networks within school classes, and various agent-based simulation techniques, are used to better understand the processes through which schools, workplaces and neighborhoods become segregated along various dimensions, how the domains interact with one another, and how the structure and extent of segregation affects diverse social and economic outcomes.
Max ERC Funding
1 745 098 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym APPROXNP
Project Approximation of NP-hard optimization problems
Researcher (PI) Johan Haastad
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Country Sweden
Call Details Advanced Grant (AdG), PE6, ERC-2008-AdG
Summary The proposed project aims to create a center of excellence that aims at understanding the approximability of NP-hard optimization problems. In particular, for central problems like vertex cover, coloring of graphs, and various constraint satisfaction problems we want to study upper and lower bounds on how well they can be approximated in polynomial time. Many existing strong results are based on what is known as the Unique Games Conjecture (UGC) and a significant part of the project will be devoted to studying this conjecture. We expect that a major step needed to be taken in this process is to further develop the understanding of Boolean functions on the Boolean hypercube. We anticipate that the tools needed for this will come in the form of harmonic analysis which in its turn will rely on the corresponding results in the analysis of functions over the domain of real numbers.
Summary
The proposed project aims to create a center of excellence that aims at understanding the approximability of NP-hard optimization problems. In particular, for central problems like vertex cover, coloring of graphs, and various constraint satisfaction problems we want to study upper and lower bounds on how well they can be approximated in polynomial time. Many existing strong results are based on what is known as the Unique Games Conjecture (UGC) and a significant part of the project will be devoted to studying this conjecture. We expect that a major step needed to be taken in this process is to further develop the understanding of Boolean functions on the Boolean hypercube. We anticipate that the tools needed for this will come in the form of harmonic analysis which in its turn will rely on the corresponding results in the analysis of functions over the domain of real numbers.
Max ERC Funding
2 376 000 €
Duration
Start date: 2009-01-01, End date: 2014-12-31
Project acronym ASD
Project Atomistic Spin-Dynamics; Methodology and Applications
Researcher (PI) Olof Ragnar Eriksson
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary Our aim is to provide a theoretical framework for studies of dynamical aspects of magnetic materials and magnetisation reversal, which has potential for applications for magnetic data storage and magnetic memory devices. The project focuses on developing and using an atomistic spin dynamics simulation method. Our goal is to identify novel materials and device geometries with improved performance. The scientific questions which will be addressed concern the understanding of the fundamental temporal limit of magnetisation switching and reversal, and the mechanisms which govern this limit. The methodological developments concern the ability to, from first principles theory, calculate the interatomic exchange parameters of materials in general, in particular for correlated electron materials, via the use of dynamical mean-field theory. The theoretical development also involves an atomistic spin dynamics simulation method, which once it has been established, will be released as a public software package. The proposed theoretical research will be intimately connected to world-leading experimental efforts, especially in Europe where a leading activity in experimental studies of magnetisation dynamics has been established. The ambition with this project is to become world-leading in the theory of simulating spin-dynamics phenomena, and to promote education and training of young researchers. To achieve our goals we will build up an open and lively environment, where the advances in the theoretical knowledge of spin-dynamics phenomena will be used to address important questions in information technology. In this environment the next generation research leaders will be fostered and trained, thus ensuring that the society of tomorrow is equipped with the scientific competence to tackle the challenges of our future.
Summary
Our aim is to provide a theoretical framework for studies of dynamical aspects of magnetic materials and magnetisation reversal, which has potential for applications for magnetic data storage and magnetic memory devices. The project focuses on developing and using an atomistic spin dynamics simulation method. Our goal is to identify novel materials and device geometries with improved performance. The scientific questions which will be addressed concern the understanding of the fundamental temporal limit of magnetisation switching and reversal, and the mechanisms which govern this limit. The methodological developments concern the ability to, from first principles theory, calculate the interatomic exchange parameters of materials in general, in particular for correlated electron materials, via the use of dynamical mean-field theory. The theoretical development also involves an atomistic spin dynamics simulation method, which once it has been established, will be released as a public software package. The proposed theoretical research will be intimately connected to world-leading experimental efforts, especially in Europe where a leading activity in experimental studies of magnetisation dynamics has been established. The ambition with this project is to become world-leading in the theory of simulating spin-dynamics phenomena, and to promote education and training of young researchers. To achieve our goals we will build up an open and lively environment, where the advances in the theoretical knowledge of spin-dynamics phenomena will be used to address important questions in information technology. In this environment the next generation research leaders will be fostered and trained, thus ensuring that the society of tomorrow is equipped with the scientific competence to tackle the challenges of our future.
Max ERC Funding
2 130 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym ASTRODYN
Project Astrophysical Dynamos
Researcher (PI) Axel Brandenburg
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Country Sweden
Call Details Advanced Grant (AdG), PE9, ERC-2008-AdG
Summary Magnetic fields in stars, planets, accretion discs, and galaxies are believed to be the result of a dynamo process converting kinetic energy into magnetic energy. This work focuses on the solar dynamo, but dynamos in other astrophysical systems will also be addressed. In particular, direct high-resolution three-dimensional simulations are used to understand particular aspects of the solar dynamo and ultimately to simulate the solar dynamo as a whole. Phenomenological approaches will be avoided in favor of obtaining rigorous results. A major problem is catastrophic quenching, i.e. the decline of dynamo effects in inverse proportion to the magnetic Reynolds number, which is huge. Tremendous advances have been made in the last few years since the cause of catastrophic quenching in dynamos has been understood in terms of magnetic helicity evolution. The numerical tools are now in place to allow for magnetic helicity fluxes via coronal mass ejections, thus alleviating catastrophic quenching. This work employs simulations in spherical shells, augmented by Cartesian simulations in special cases. The roles of the near-surface shear layer, the tachocline, as well as pumping in the bulk of the convection zone are to be clarified. The Pencil Code will be used for most applications. The code is third order in time and sixth order in space and is used for solving the hydromagnetic equations. It is a public domain code developed by roughly 20 scientists world wide and maintained under an a central versioning system at Nordita. Automatic nightly tests of currently 30 applications ensure the integrity of the code. It is used for a wide range of applications and may include the effects of radiation, self-gravity, dust, chemistry, variable ionization, cosmic rays, in addition to those of magnetohydrodynamics. The code with its infrastructure offers a good opportunity for individuals within a broad group of people to develop new tools that may automatically be useful to others.
Summary
Magnetic fields in stars, planets, accretion discs, and galaxies are believed to be the result of a dynamo process converting kinetic energy into magnetic energy. This work focuses on the solar dynamo, but dynamos in other astrophysical systems will also be addressed. In particular, direct high-resolution three-dimensional simulations are used to understand particular aspects of the solar dynamo and ultimately to simulate the solar dynamo as a whole. Phenomenological approaches will be avoided in favor of obtaining rigorous results. A major problem is catastrophic quenching, i.e. the decline of dynamo effects in inverse proportion to the magnetic Reynolds number, which is huge. Tremendous advances have been made in the last few years since the cause of catastrophic quenching in dynamos has been understood in terms of magnetic helicity evolution. The numerical tools are now in place to allow for magnetic helicity fluxes via coronal mass ejections, thus alleviating catastrophic quenching. This work employs simulations in spherical shells, augmented by Cartesian simulations in special cases. The roles of the near-surface shear layer, the tachocline, as well as pumping in the bulk of the convection zone are to be clarified. The Pencil Code will be used for most applications. The code is third order in time and sixth order in space and is used for solving the hydromagnetic equations. It is a public domain code developed by roughly 20 scientists world wide and maintained under an a central versioning system at Nordita. Automatic nightly tests of currently 30 applications ensure the integrity of the code. It is used for a wide range of applications and may include the effects of radiation, self-gravity, dust, chemistry, variable ionization, cosmic rays, in addition to those of magnetohydrodynamics. The code with its infrastructure offers a good opportunity for individuals within a broad group of people to develop new tools that may automatically be useful to others.
Max ERC Funding
2 220 000 €
Duration
Start date: 2009-02-01, End date: 2014-01-31
Project acronym BATESON
Project Dissecting genotype-phenotype relationships using high-throughput genomics and carefully selected study populations
Researcher (PI) Leif Andersson
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), LS2, ERC-2011-ADG_20110310
Summary A major aim in genome research is to reveal how genetic variation affects phenotypic variation. Here I propose to use high-throughput genomics (whole genome sequencing, transcriptome and epigenome analysis) to screen carefully selected study populations where the chances are particularly favourable to obtain novel insight into genotype-phenotype relationships. The ambition is to take discoveries all the way from phenotypic characterization to the identification of the genes and the actual genetic variant causing a phenotypic effect and to understanding the underlying functional mechanisms. The program will involve a fish (the Atlantic herring), a bird (the domestic chicken) and a mammal (the European rabbit). The Atlantic herring will be studied because it provides unique opportunities to study the genetics of adaptation in a natural population and because of the possibilities to revolutionize the fishery management of this economically important marine fish. We will generate a draft assembly of the herring genome and then perform whole genome resequencing of different populations to reveal the population structure and the loci underlying genetic adaptation. The European rabbit is an excellent model for studying the genetics of speciation due to the presence of two distinct subspecies on the Iberian Peninsula. The domestication of the rabbit is also particularly interesting because it is a recent event (about 1500 years ago) and it is well established that domestication happened from the wild rabbit population in southern France. Finally, the domestic chicken provides excellent opportunities for in depth functional studies since it is both a domestic animal harbouring a rich genetic diversity and an experimental organism.
(BATESON is the acronym for this proposal because Bateson (1902) pioneered the study of genotype-phenotype relationships in animals and used the chicken for this work.)
Summary
A major aim in genome research is to reveal how genetic variation affects phenotypic variation. Here I propose to use high-throughput genomics (whole genome sequencing, transcriptome and epigenome analysis) to screen carefully selected study populations where the chances are particularly favourable to obtain novel insight into genotype-phenotype relationships. The ambition is to take discoveries all the way from phenotypic characterization to the identification of the genes and the actual genetic variant causing a phenotypic effect and to understanding the underlying functional mechanisms. The program will involve a fish (the Atlantic herring), a bird (the domestic chicken) and a mammal (the European rabbit). The Atlantic herring will be studied because it provides unique opportunities to study the genetics of adaptation in a natural population and because of the possibilities to revolutionize the fishery management of this economically important marine fish. We will generate a draft assembly of the herring genome and then perform whole genome resequencing of different populations to reveal the population structure and the loci underlying genetic adaptation. The European rabbit is an excellent model for studying the genetics of speciation due to the presence of two distinct subspecies on the Iberian Peninsula. The domestication of the rabbit is also particularly interesting because it is a recent event (about 1500 years ago) and it is well established that domestication happened from the wild rabbit population in southern France. Finally, the domestic chicken provides excellent opportunities for in depth functional studies since it is both a domestic animal harbouring a rich genetic diversity and an experimental organism.
(BATESON is the acronym for this proposal because Bateson (1902) pioneered the study of genotype-phenotype relationships in animals and used the chicken for this work.)
Max ERC Funding
2 300 000 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym BIGGER
Project Biophysics in gene regulation - A genome wide approach
Researcher (PI) Johan Elf
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), LS2, ERC-2019-ADG
Summary In this project, we will develop and use technology that combines synthetic genomics and live-cell imaging. These methods make it possible to study the intracellular biophysics at single-molecule detail in thousands of genetically different bacterial strains in parallel. Our approach is based on in situ genotyping of a barcoded strain library after phenotyping has been performed by live-cell imaging. Within the scope of the proposed project, the new technology will be used to solve mechanistic and structural questions of the bacterial cell cycle.
To this end, we will explore two parallel but complementary applications. In the first application, we will determine the dynamic 3D structure of the E. coli chromosome at 1kb resolution throughout the cell cycle. The structure determination can be seen as a live-cell version of chromatin conformation capture, where we will follow the 3D distances of 10 000 pairs of chromosomal loci over the cell cycle at high resolution. In the second application, we will make a complete CRISPRi knockdown strain library where we can follow the replication forks of the E. coli chromosome and septum formation over the cell cycle in individual cells. Using this strategy, we will resolve how individual gene products contribute to the cell-to-cell accuracy in replication initiation and cell division. In particular, this approach allows us to address the challenging question of size sensing at replication initiation. How the cell can decide that it is large enough to initiate replication is still an open question despite decades of investigations.
The general principles for high-end imaging of pool-synthesized cell libraries have nearly unlimited applications throughout cell biology. The specific applications explored in this project will take the understanding of the bacterial cell cycle to a new level and answer general questions about the chromosomal organization and cell size sensing.
Summary
In this project, we will develop and use technology that combines synthetic genomics and live-cell imaging. These methods make it possible to study the intracellular biophysics at single-molecule detail in thousands of genetically different bacterial strains in parallel. Our approach is based on in situ genotyping of a barcoded strain library after phenotyping has been performed by live-cell imaging. Within the scope of the proposed project, the new technology will be used to solve mechanistic and structural questions of the bacterial cell cycle.
To this end, we will explore two parallel but complementary applications. In the first application, we will determine the dynamic 3D structure of the E. coli chromosome at 1kb resolution throughout the cell cycle. The structure determination can be seen as a live-cell version of chromatin conformation capture, where we will follow the 3D distances of 10 000 pairs of chromosomal loci over the cell cycle at high resolution. In the second application, we will make a complete CRISPRi knockdown strain library where we can follow the replication forks of the E. coli chromosome and septum formation over the cell cycle in individual cells. Using this strategy, we will resolve how individual gene products contribute to the cell-to-cell accuracy in replication initiation and cell division. In particular, this approach allows us to address the challenging question of size sensing at replication initiation. How the cell can decide that it is large enough to initiate replication is still an open question despite decades of investigations.
The general principles for high-end imaging of pool-synthesized cell libraries have nearly unlimited applications throughout cell biology. The specific applications explored in this project will take the understanding of the bacterial cell cycle to a new level and answer general questions about the chromosomal organization and cell size sensing.
Max ERC Funding
2 411 410 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym BONE SCAN
Project Traces in the bones: reconstructing the lost soft anatomy of the earliest vertebrates through ultra-high resolution synchrotron scanning
Researcher (PI) Per Erik Ahlberg
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), LS8, ERC-2008-AdG
Summary Early vertebrate evolution involved a series of drastic structural reorganisations as new features were added and elaborated. The fossil record illuminates this evolutionary history more directly than inferences from the diversity of living forms, but the fossils usually consist only of bones whereas many of the most important and interesting changes occurred in the soft anatomy. Traditional approaches to reconstructing the musculature and other soft tissues of fossil vertebrates rely on subjective tools, like the visual identification of rough bone textures thought to indicate muscle attachments, and generally leave a lot to be desired. Here I propose a wholly novel and radically more objective approach to the identification of soft-tissue contacts, using holotomographic synchrotron CT at sub-micron resolutions to identify these contacts by the three-dimensional micro-architecture of the bone. A pilot study has already shown that such scans (performed at the ESRF synchrotron facility in Grenoble) are capable of imaging key features such as arrested growth surfaces and probable Sharpey s fibres in 380 million year old fossils. We will undertake a systematic review of the three-dimensional bone micro-architectures associated with different soft-tissue contacts in living vertebrates, and the use this as a key to reconstruct the soft-tissue contacts on fossil bones with unprecedented accuracy. This will permit us to produce far more reliable reconstructions of the soft anatomy than has hitherto been possible. Our findings will inform other areas of palaentology, particularly functional morphology, and will also be of great importance to evolutionary developmental biology.
Summary
Early vertebrate evolution involved a series of drastic structural reorganisations as new features were added and elaborated. The fossil record illuminates this evolutionary history more directly than inferences from the diversity of living forms, but the fossils usually consist only of bones whereas many of the most important and interesting changes occurred in the soft anatomy. Traditional approaches to reconstructing the musculature and other soft tissues of fossil vertebrates rely on subjective tools, like the visual identification of rough bone textures thought to indicate muscle attachments, and generally leave a lot to be desired. Here I propose a wholly novel and radically more objective approach to the identification of soft-tissue contacts, using holotomographic synchrotron CT at sub-micron resolutions to identify these contacts by the three-dimensional micro-architecture of the bone. A pilot study has already shown that such scans (performed at the ESRF synchrotron facility in Grenoble) are capable of imaging key features such as arrested growth surfaces and probable Sharpey s fibres in 380 million year old fossils. We will undertake a systematic review of the three-dimensional bone micro-architectures associated with different soft-tissue contacts in living vertebrates, and the use this as a key to reconstruct the soft-tissue contacts on fossil bones with unprecedented accuracy. This will permit us to produce far more reliable reconstructions of the soft anatomy than has hitherto been possible. Our findings will inform other areas of palaentology, particularly functional morphology, and will also be of great importance to evolutionary developmental biology.
Max ERC Funding
1 046 782 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym COLLMOT
Project Complex structure and dynamics of collective motion
Researcher (PI) Tamas Vicsek
Host Institution (HI) EOTVOS LORAND TUDOMANYEGYETEM
Country Hungary
Call Details Advanced Grant (AdG), PE3, ERC-2008-AdG
Summary Collective behaviour is a widespread phenomenon in nature and technology making it a very important subject to study in various contexts. The main goal we intend to achieve in our multidisciplinary research is the identification and documentation of new unifying principles describing the essential aspects of collective motion, being one of the most relevant and spectacular manifestations of collective behaviour. We shall carry out novel type of experiments, design models that are both simple and realistic enough to reproduce the observations and develop concepts for a better interpretation of the complexity of systems consisting of many organisms and such non-living objects as interacting robots. We plan to study systems ranging from cultures of migrating tissue cells through flocks of birds to collectively moving devices. The interrelation of these systems will be considered in order to deepen the understanding of the main patterns of group motion in both living and non-living systems by learning about the similar phenomena in the two domains of nature. Thus, we plan to understand the essential ingredients of flocking of birds by building collectively moving unmanned aerial vehicles while, in turn, high resolution spatiotemporal GPS data of pigeon flocks will be used to make helpful conclusions for the best designs for swarms of robots. In particular, we shall construct and build a set of vehicles that will be capable, for the first time, to exhibit flocking behaviour in the three-dimensional space. The methods we shall adopt will range from approaches used in statistical physics and network theory to various new techniques in cell biology and collective robotics. All this will be based on numerous prior results (both ours and others) published in leading interdisciplinary journals. The planned research will have the potential of leading to ground breaking results with significant implications in various fields of science and technology.
Summary
Collective behaviour is a widespread phenomenon in nature and technology making it a very important subject to study in various contexts. The main goal we intend to achieve in our multidisciplinary research is the identification and documentation of new unifying principles describing the essential aspects of collective motion, being one of the most relevant and spectacular manifestations of collective behaviour. We shall carry out novel type of experiments, design models that are both simple and realistic enough to reproduce the observations and develop concepts for a better interpretation of the complexity of systems consisting of many organisms and such non-living objects as interacting robots. We plan to study systems ranging from cultures of migrating tissue cells through flocks of birds to collectively moving devices. The interrelation of these systems will be considered in order to deepen the understanding of the main patterns of group motion in both living and non-living systems by learning about the similar phenomena in the two domains of nature. Thus, we plan to understand the essential ingredients of flocking of birds by building collectively moving unmanned aerial vehicles while, in turn, high resolution spatiotemporal GPS data of pigeon flocks will be used to make helpful conclusions for the best designs for swarms of robots. In particular, we shall construct and build a set of vehicles that will be capable, for the first time, to exhibit flocking behaviour in the three-dimensional space. The methods we shall adopt will range from approaches used in statistical physics and network theory to various new techniques in cell biology and collective robotics. All this will be based on numerous prior results (both ours and others) published in leading interdisciplinary journals. The planned research will have the potential of leading to ground breaking results with significant implications in various fields of science and technology.
Max ERC Funding
1 248 000 €
Duration
Start date: 2009-03-01, End date: 2015-02-28
Project acronym COMPASS
Project Colloids with complex interactions: from model atoms to colloidal recognition and bio-inspired self assembly
Researcher (PI) Peter Schurtenberger
Host Institution (HI) MAX IV Laboratory, Lund University
Country Sweden
Call Details Advanced Grant (AdG), PE3, ERC-2013-ADG
Summary Self-assembly is the key construction principle that nature uses so successfully to fabricate its molecular machinery and highly elaborate structures. In this project we will follow nature’s strategies and make a concerted experimental and theoretical effort to study, understand and control self-assembly for a new generation of colloidal building blocks. Starting point will be recent advances in colloid synthesis strategies that have led to a spectacular array of colloids of different shapes, compositions, patterns and functionalities. These allow us to investigate the influence of anisotropy in shape and interactions on aggregation and self-assembly in colloidal suspensions and mixtures. Using responsive particles we will implement colloidal lock-and-key mechanisms and then assemble a library of “colloidal molecules” with well-defined and externally tunable binding sites using microfluidics-based and externally controlled fabrication and sorting principles. We will use them to explore the equilibrium phase behavior of particle systems interacting through a finite number of binding sites. In parallel, we will exploit them and investigate colloid self-assembly into well-defined nanostructures. Here we aim at achieving much more refined control than currently possible by implementing a protein-inspired approach to controlled self-assembly. We combine molecule-like colloidal building blocks that possess directional interactions and externally triggerable specific recognition sites with directed self-assembly where external fields not only facilitate assembly, but also allow fabricating novel structures. We will use the tunable combination of different contributions to the interaction potential between the colloidal building blocks and the ability to create chirality in the assembly to establish the requirements for the controlled formation of tubular shells and thus create a colloid-based minimal model of synthetic virus capsid proteins.
Summary
Self-assembly is the key construction principle that nature uses so successfully to fabricate its molecular machinery and highly elaborate structures. In this project we will follow nature’s strategies and make a concerted experimental and theoretical effort to study, understand and control self-assembly for a new generation of colloidal building blocks. Starting point will be recent advances in colloid synthesis strategies that have led to a spectacular array of colloids of different shapes, compositions, patterns and functionalities. These allow us to investigate the influence of anisotropy in shape and interactions on aggregation and self-assembly in colloidal suspensions and mixtures. Using responsive particles we will implement colloidal lock-and-key mechanisms and then assemble a library of “colloidal molecules” with well-defined and externally tunable binding sites using microfluidics-based and externally controlled fabrication and sorting principles. We will use them to explore the equilibrium phase behavior of particle systems interacting through a finite number of binding sites. In parallel, we will exploit them and investigate colloid self-assembly into well-defined nanostructures. Here we aim at achieving much more refined control than currently possible by implementing a protein-inspired approach to controlled self-assembly. We combine molecule-like colloidal building blocks that possess directional interactions and externally triggerable specific recognition sites with directed self-assembly where external fields not only facilitate assembly, but also allow fabricating novel structures. We will use the tunable combination of different contributions to the interaction potential between the colloidal building blocks and the ability to create chirality in the assembly to establish the requirements for the controlled formation of tubular shells and thus create a colloid-based minimal model of synthetic virus capsid proteins.
Max ERC Funding
2 498 040 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CUSTOMER
Project Customizable Embedded Real-Time Systems: Challenges and Key Techniques
Researcher (PI) Yi WANG
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), PE6, ERC-2018-ADG
Summary Today, many industrial products are defined by software and therefore customizable: their functionalities implemented by software can be modified and extended by dynamic software updates on demand. This trend towards customizable products is rapidly expanding into all domains of IT, including Embedded Real-Time Systems (ERTS) deployed in Cyber-Physical Systems such as cars, medical devices etc. However, the current state-of-practice in safety-critical systems allows hardly any modifications once they are put in operation. The lack of techniques to preserve crucial safety conditions for customizable systems severely restricts the benefits of advances in software-defined systems engineering.
CUSTOMER is to provide the missing paradigm and technology for building and updating ERTS after deployment – subject to stringent timing constraints, dynamic workloads, and limited resources on complex platforms. CUSTOMER explores research areas crossing two fields: Real-Time Computing and Formal Verification to develop the key techniques enabling (1) dynamic updates of ERTS in the field, (2) incremental updates over the products life time and (3) safe updates by verification to avoid updates that may compromise system safety.
CUSTOMER will develop a unified model-based framework supported with tools for the design, modelling, verification, deployment and update of ERTS, aiming at advancing the research fields by establishing the missing scientific foundation for multiprocessor real-time computing and providing the next generation of design tools with significantly enhanced capability and scalability increased by orders of magnitude compared with state-of-the-art tools e.g. UPPAAL.
Summary
Today, many industrial products are defined by software and therefore customizable: their functionalities implemented by software can be modified and extended by dynamic software updates on demand. This trend towards customizable products is rapidly expanding into all domains of IT, including Embedded Real-Time Systems (ERTS) deployed in Cyber-Physical Systems such as cars, medical devices etc. However, the current state-of-practice in safety-critical systems allows hardly any modifications once they are put in operation. The lack of techniques to preserve crucial safety conditions for customizable systems severely restricts the benefits of advances in software-defined systems engineering.
CUSTOMER is to provide the missing paradigm and technology for building and updating ERTS after deployment – subject to stringent timing constraints, dynamic workloads, and limited resources on complex platforms. CUSTOMER explores research areas crossing two fields: Real-Time Computing and Formal Verification to develop the key techniques enabling (1) dynamic updates of ERTS in the field, (2) incremental updates over the products life time and (3) safe updates by verification to avoid updates that may compromise system safety.
CUSTOMER will develop a unified model-based framework supported with tools for the design, modelling, verification, deployment and update of ERTS, aiming at advancing the research fields by establishing the missing scientific foundation for multiprocessor real-time computing and providing the next generation of design tools with significantly enhanced capability and scalability increased by orders of magnitude compared with state-of-the-art tools e.g. UPPAAL.
Max ERC Funding
2 499 894 €
Duration
Start date: 2019-10-01, End date: 2024-09-30