Project acronym 2D-PnictoChem
Project Chemistry and Interface Control of Novel 2D-Pnictogen Nanomaterials
Researcher (PI) Gonzalo ABELLAN SAEZ
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary 2D-PnictoChem aims at exploring the Chemistry of a novel class of graphene-like 2D layered
elemental materials of group 15, the pnictogens: P, As, Sb, and Bi. In the last few years, these materials
have taken the field of Materials Science by storm since they can outperform and/or complement graphene
properties. Their strongly layer-dependent unique properties range from semiconducting to metallic,
including high carrier mobilities, tunable bandgaps, strong spin-orbit coupling or transparency. However,
the Chemistry of pnictogens is still in its infancy, remaining largely unexplored. This is the niche that
2D-PnictoChem aims to fill. By mastering the interface chemistry, we will develop the assembly of 2Dpnictogens
in complex hybrid heterostructures for the first time. Success will rely on a cross-disciplinary
approach combining both Inorganic- and Organic Chemistry with Solid-state Physics, including: 1)
Synthetizing and exfoliating high quality ultra-thin layer pnictogens, providing reliable access down to
the monolayer limit. 2) Achieving their chemical functionalization via both non-covalent and covalent
approaches in order to tailor at will their properties, decipher reactivity patterns and enable controlled
doping avenues. 3) Developing hybrid architectures through a precise chemical control of the interface,
in order to promote unprecedented access to novel heterostructures. 4) Exploring novel applications
concepts achieving outstanding performances. These are all priorities in the European Union agenda
aimed at securing an affordable, clean energy future by developing more efficient hybrid systems for
batteries, electronic devices or applications in catalysis. The opportunity is unique to reduce Europe’s
dependence on external technology and the PI’s background is ideally suited to tackle these objectives,
counting as well on a multidisciplinary team of international collaborators.
Summary
2D-PnictoChem aims at exploring the Chemistry of a novel class of graphene-like 2D layered
elemental materials of group 15, the pnictogens: P, As, Sb, and Bi. In the last few years, these materials
have taken the field of Materials Science by storm since they can outperform and/or complement graphene
properties. Their strongly layer-dependent unique properties range from semiconducting to metallic,
including high carrier mobilities, tunable bandgaps, strong spin-orbit coupling or transparency. However,
the Chemistry of pnictogens is still in its infancy, remaining largely unexplored. This is the niche that
2D-PnictoChem aims to fill. By mastering the interface chemistry, we will develop the assembly of 2Dpnictogens
in complex hybrid heterostructures for the first time. Success will rely on a cross-disciplinary
approach combining both Inorganic- and Organic Chemistry with Solid-state Physics, including: 1)
Synthetizing and exfoliating high quality ultra-thin layer pnictogens, providing reliable access down to
the monolayer limit. 2) Achieving their chemical functionalization via both non-covalent and covalent
approaches in order to tailor at will their properties, decipher reactivity patterns and enable controlled
doping avenues. 3) Developing hybrid architectures through a precise chemical control of the interface,
in order to promote unprecedented access to novel heterostructures. 4) Exploring novel applications
concepts achieving outstanding performances. These are all priorities in the European Union agenda
aimed at securing an affordable, clean energy future by developing more efficient hybrid systems for
batteries, electronic devices or applications in catalysis. The opportunity is unique to reduce Europe’s
dependence on external technology and the PI’s background is ideally suited to tackle these objectives,
counting as well on a multidisciplinary team of international collaborators.
Max ERC Funding
1 499 419 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym 3D-FNPWriting
Project Unprecedented spatial control of porosity and functionality in nanoporous membranes through 3D printing and microscopy for polymer writing
Researcher (PI) Annette ANDRIEU-BRUNSEN
Host Institution (HI) TECHNISCHE UNIVERSITAT DARMSTADT
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary Membranes are key materials in our life. Nature offers high performance membranes relying on a parallel local regulation of nanopore structure, functional placement, membrane composition and architecture. Existing technological membranes are key materials in separation, recycling, sensing, energy conversion, being essential components for a sustainable future. But their performance is far away from their natural counterparts. One reason for this performance gap is the lack of 3D nanolocal control in membrane design. This applies to each individual nanopore but as well to the membrane architecture. This proposal aims to implement 3D printing (additive manufacturing, top down) and complex near-field and total internal reflection (TIR) high resolution microscopy induced polymer writing (bottom up) to nanolocally control in hierarchical nanoporous membranes spatially and independent of each other: porosity, pore functionalization, membrane architecture, composition. This disruptive technology platform will make accessible to date unachieved, highly accurate asymmetric nanopores and multifunctional, hierarchical membrane architecture/ composition and thus highly selective, directed, transport with tuneable rates. 3D-FNPWriting will demonstrate this for the increasing class of metal nanoparticle/ salt pollutants aiming for tuneable, selective, directed transport based monitoring and recycling instead of size-based filtration, accumulation into sewerage and distribution into nature. Specifically, the potential of this disruptive technology with respect to transport design will be demonstrated for a) a 3D-printed in-situ functionalized nanoporous fiber architecture and b) a printed, nanolocally near-field and TIR-microscopy polymer functionalized membrane representing a thin separation layer. This will open systematic understanding of nanolocal functional control on transport and new perspectives in water/ energy management for future smart industry/ homes.
Summary
Membranes are key materials in our life. Nature offers high performance membranes relying on a parallel local regulation of nanopore structure, functional placement, membrane composition and architecture. Existing technological membranes are key materials in separation, recycling, sensing, energy conversion, being essential components for a sustainable future. But their performance is far away from their natural counterparts. One reason for this performance gap is the lack of 3D nanolocal control in membrane design. This applies to each individual nanopore but as well to the membrane architecture. This proposal aims to implement 3D printing (additive manufacturing, top down) and complex near-field and total internal reflection (TIR) high resolution microscopy induced polymer writing (bottom up) to nanolocally control in hierarchical nanoporous membranes spatially and independent of each other: porosity, pore functionalization, membrane architecture, composition. This disruptive technology platform will make accessible to date unachieved, highly accurate asymmetric nanopores and multifunctional, hierarchical membrane architecture/ composition and thus highly selective, directed, transport with tuneable rates. 3D-FNPWriting will demonstrate this for the increasing class of metal nanoparticle/ salt pollutants aiming for tuneable, selective, directed transport based monitoring and recycling instead of size-based filtration, accumulation into sewerage and distribution into nature. Specifically, the potential of this disruptive technology with respect to transport design will be demonstrated for a) a 3D-printed in-situ functionalized nanoporous fiber architecture and b) a printed, nanolocally near-field and TIR-microscopy polymer functionalized membrane representing a thin separation layer. This will open systematic understanding of nanolocal functional control on transport and new perspectives in water/ energy management for future smart industry/ homes.
Max ERC Funding
1 499 844 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym 3D-nanoMorph
Project Label-free 3D morphological nanoscopy for studying sub-cellular dynamics in live cancer cells with high spatio-temporal resolution
Researcher (PI) Krishna AGARWAL
Host Institution (HI) UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Summary
Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Max ERC Funding
1 499 999 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym 3DBIOLUNG
Project Bioengineering lung tissue using extracellular matrix based 3D bioprinting
Researcher (PI) Darcy WAGNER
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2018-STG
Summary Chronic lung diseases are increasing in prevalence with over 65 million patients worldwide. Lung transplantation remains the only potential option at end-stage disease. Around 4000 patients receive lung transplants annually with more awaiting transplantation, including 1000 patients in Europe. New options to increase available tissue for lung transplantation are desperately needed.
An exciting new research area focuses on generating lung tissue ex vivo using bioengineering approaches. Scaffolds can be generated from synthetic or biologically-derived (acellular) materials, seeded with cells and grown in a bioreactor prior to transplantation. Ideally, scaffolds would be seeded with cells derived from the transplant recipient, thus obviating the need for long-term immunosuppression. However, functional regeneration has yet to be achieved. New advances in 3D printing and 3D bioprinting (when cells are printed) indicate that this once thought of science-fiction concept might finally be mature enough for complex tissues, including lung. 3D bioprinting addresses a number of concerns identified in previous approaches, such as a) patient heterogeneity in acellular human scaffolds, b) anatomical differences in xenogeneic sources, c) lack of biological cues on synthetic materials and d) difficulty in manufacturing the complex lung architecture. 3D bioprinting could be a reproducible, scalable, and controllable approach for generating functional lung tissue.
The aim of this proposal is to use custom 3D bioprinters to generate constructs mimicking lung tissue using an innovative approach combining primary cells, the engineering reproducibility of synthetic materials, and the biologically conductive properties of acellular lung (hybrid). We will 3D bioprint hybrid murine and human lung tissue models and test gas exchange, angiogenesis and in vivo immune responses. This proposal will be a critical first step in demonstrating feasibility of 3D bioprinting lung tissue.
Summary
Chronic lung diseases are increasing in prevalence with over 65 million patients worldwide. Lung transplantation remains the only potential option at end-stage disease. Around 4000 patients receive lung transplants annually with more awaiting transplantation, including 1000 patients in Europe. New options to increase available tissue for lung transplantation are desperately needed.
An exciting new research area focuses on generating lung tissue ex vivo using bioengineering approaches. Scaffolds can be generated from synthetic or biologically-derived (acellular) materials, seeded with cells and grown in a bioreactor prior to transplantation. Ideally, scaffolds would be seeded with cells derived from the transplant recipient, thus obviating the need for long-term immunosuppression. However, functional regeneration has yet to be achieved. New advances in 3D printing and 3D bioprinting (when cells are printed) indicate that this once thought of science-fiction concept might finally be mature enough for complex tissues, including lung. 3D bioprinting addresses a number of concerns identified in previous approaches, such as a) patient heterogeneity in acellular human scaffolds, b) anatomical differences in xenogeneic sources, c) lack of biological cues on synthetic materials and d) difficulty in manufacturing the complex lung architecture. 3D bioprinting could be a reproducible, scalable, and controllable approach for generating functional lung tissue.
The aim of this proposal is to use custom 3D bioprinters to generate constructs mimicking lung tissue using an innovative approach combining primary cells, the engineering reproducibility of synthetic materials, and the biologically conductive properties of acellular lung (hybrid). We will 3D bioprint hybrid murine and human lung tissue models and test gas exchange, angiogenesis and in vivo immune responses. This proposal will be a critical first step in demonstrating feasibility of 3D bioprinting lung tissue.
Max ERC Funding
1 499 975 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym 3DBrainStrom
Project Brain metastases: Deciphering tumor-stroma interactions in three dimensions for the rational design of nanomedicines
Researcher (PI) Ronit Satchi Fainaro
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary Brain metastases represent a major therapeutic challenge. Despite significant breakthroughs in targeted therapies, survival rates of patients with brain metastases remain poor. Nowadays, discovery, development and evaluation of new therapies are performed on human cancer cells grown in 2D on rigid plastic plates followed by in vivo testing in immunodeficient mice. These experimental settings are lacking and constitute a fundamental hurdle for the translation of preclinical discoveries into clinical practice. We propose to establish 3D-printed models of brain metastases (Aim 1), which include brain extracellular matrix, stroma and serum containing immune cells flowing in functional tumor vessels. Our unique models better capture the clinical physio-mechanical tissue properties, signaling pathways, hemodynamics and drug responsiveness. Using our 3D-printed models, we aim to develop two new fronts for identifying novel clinically-relevant molecular drivers (Aim 2) followed by the development of precision nanomedicines (Aim 3). We will exploit our vast experience in anticancer nanomedicines to design three therapeutic approaches that target various cellular compartments involved in brain metastases: 1) Prevention of brain metastatic colonization using targeted nano-vaccines, which elicit antitumor immune response; 2) Intervention of tumor-brain stroma cells crosstalk when brain micrometastases establish; 3) Regression of macrometastatic disease by selectively targeting tumor cells. These approaches will materialize using our libraries of polymeric nanocarriers that selectively accumulate in tumors.
This project will result in a paradigm shift by generating new preclinical cancer models that will bridge the translational gap in cancer therapeutics. The insights and tumor-stroma-targeted nanomedicines developed here will pave the way for prediction of patient outcome, revolutionizing our perception of tumor modelling and consequently the way we prevent and treat cancer.
Summary
Brain metastases represent a major therapeutic challenge. Despite significant breakthroughs in targeted therapies, survival rates of patients with brain metastases remain poor. Nowadays, discovery, development and evaluation of new therapies are performed on human cancer cells grown in 2D on rigid plastic plates followed by in vivo testing in immunodeficient mice. These experimental settings are lacking and constitute a fundamental hurdle for the translation of preclinical discoveries into clinical practice. We propose to establish 3D-printed models of brain metastases (Aim 1), which include brain extracellular matrix, stroma and serum containing immune cells flowing in functional tumor vessels. Our unique models better capture the clinical physio-mechanical tissue properties, signaling pathways, hemodynamics and drug responsiveness. Using our 3D-printed models, we aim to develop two new fronts for identifying novel clinically-relevant molecular drivers (Aim 2) followed by the development of precision nanomedicines (Aim 3). We will exploit our vast experience in anticancer nanomedicines to design three therapeutic approaches that target various cellular compartments involved in brain metastases: 1) Prevention of brain metastatic colonization using targeted nano-vaccines, which elicit antitumor immune response; 2) Intervention of tumor-brain stroma cells crosstalk when brain micrometastases establish; 3) Regression of macrometastatic disease by selectively targeting tumor cells. These approaches will materialize using our libraries of polymeric nanocarriers that selectively accumulate in tumors.
This project will result in a paradigm shift by generating new preclinical cancer models that will bridge the translational gap in cancer therapeutics. The insights and tumor-stroma-targeted nanomedicines developed here will pave the way for prediction of patient outcome, revolutionizing our perception of tumor modelling and consequently the way we prevent and treat cancer.
Max ERC Funding
2 353 125 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym 5D-NanoTrack
Project Five-Dimensional Localization Microscopy for Sub-Cellular Dynamics
Researcher (PI) Yoav SHECHTMAN
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Summary
The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Max ERC Funding
1 802 500 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym A-FRO
Project Actively Frozen - contextual modulation of freezing and its neuronal basis
Researcher (PI) Marta de Aragão Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Consolidator Grant (CoG), LS5, ERC-2018-COG
Summary When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Summary
When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Max ERC Funding
1 969 750 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ActionContraThreat
Project Action selection under threat: the complex control of human defense
Researcher (PI) Dominik BACH
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), SH4, ERC-2018-COG
Summary Run away, sidestep, duck-and-cover, watch: when under threat, humans immediately choreograph a large repertoire of defensive actions. Understanding action-selection under threat is important for anybody wanting to explain why anxiety disorders imply some of these behaviours in harmless situations. Current concepts of human defensive behaviour are largely derived from rodent research and focus on a small number of broad, cross-species, action tendencies. This is likely to underestimate the complexity of the underlying action-selection mechanisms. This research programme will take decisive steps to understand these psychological mechanisms and elucidate their neural implementation.
To elicit threat-related action in the laboratory, I will use virtual reality computer games with full body motion, and track actions with motion-capture technology. Based on a cognitive-computational framework, I will systematically characterise the space of actions under threat, investigate the psychological mechanisms by which actions are selected in different scenarios, and describe them with computational algorithms that allow quantitative predictions. To independently verify their neural implementation, I will use wearable magnetoencephalography (MEG) in freely moving subjects.
This proposal fills a lacuna between defence system concepts based on rodent research, emotion psychology, and clinical accounts of anxiety disorders. By combining a stringent experimental approach with the formalism of cognitive-computational psychology, it furnishes a unique opportunity to understand the mechanisms of action-selection under threat, and how these are distinct from more general-purpose action-selection systems. Beyond its immediate scope, the proposal has a potential to lead to a better understanding of anxiety disorders, and to pave the way towards improved diagnostics and therapies.
Summary
Run away, sidestep, duck-and-cover, watch: when under threat, humans immediately choreograph a large repertoire of defensive actions. Understanding action-selection under threat is important for anybody wanting to explain why anxiety disorders imply some of these behaviours in harmless situations. Current concepts of human defensive behaviour are largely derived from rodent research and focus on a small number of broad, cross-species, action tendencies. This is likely to underestimate the complexity of the underlying action-selection mechanisms. This research programme will take decisive steps to understand these psychological mechanisms and elucidate their neural implementation.
To elicit threat-related action in the laboratory, I will use virtual reality computer games with full body motion, and track actions with motion-capture technology. Based on a cognitive-computational framework, I will systematically characterise the space of actions under threat, investigate the psychological mechanisms by which actions are selected in different scenarios, and describe them with computational algorithms that allow quantitative predictions. To independently verify their neural implementation, I will use wearable magnetoencephalography (MEG) in freely moving subjects.
This proposal fills a lacuna between defence system concepts based on rodent research, emotion psychology, and clinical accounts of anxiety disorders. By combining a stringent experimental approach with the formalism of cognitive-computational psychology, it furnishes a unique opportunity to understand the mechanisms of action-selection under threat, and how these are distinct from more general-purpose action-selection systems. Beyond its immediate scope, the proposal has a potential to lead to a better understanding of anxiety disorders, and to pave the way towards improved diagnostics and therapies.
Max ERC Funding
1 998 750 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym ADIMMUNE
Project Decoding interactions between adipose tissue immune cells, metabolic function, and the intestinal microbiome in obesity
Researcher (PI) Eran Elinav
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS6, ERC-2018-COG
Summary Obesity and its metabolic co-morbidities have given rise to a rapidly expanding ‘metabolic syndrome’ pandemic affecting
hundreds of millions of individuals worldwide. The integrative genetic and environmental causes of the obesity pandemic
remain elusive. White adipose tissue (WAT)-resident immune cells have recently been highlighted as important factors
contributing to metabolic complications. However, a comprehensive understanding of the regulatory circuits governing their
function and the cell type-specific mechanisms by which they contribute to the development of metabolic syndrome is
lacking. Likewise, the gut microbiome has been suggested as a critical regulator of obesity, but the bacterial species and
metabolites that influence WAT inflammation are entirely unknown.
We propose to use our recently developed high-throughput genomic and gnotobiotic tools, integrated with CRISPR-mediated interrogation of gene function, microbial culturomics, and in-vivo metabolic analysis in newly generated mouse models, in order to achieve a new level of molecular understanding of how WAT immune cells integrate environmental cues into their crosstalk with organismal metabolism, and to explore the microbial contributions to the molecular etiology of WAT inflammation in the pathogenesis of diet-induced obesity. Specifically, we aim to (a) decipher the global regulatory landscape and interaction networks of WAT hematopoietic cells at the single-cell level, (b) identify new mediators of WAT immune cell contributions to metabolic homeostasis, and (c) decode how host-microbiome communication shapes the development of WAT inflammation and obesity.
Unraveling the principles of WAT immune cell regulation and their amenability to change by host-microbiota interactions
may lead to a conceptual leap forward in our understanding of metabolic physiology and disease. Concomitantly, it may
generate a platform for microbiome-based personalized therapy against obesity and its complications.
Summary
Obesity and its metabolic co-morbidities have given rise to a rapidly expanding ‘metabolic syndrome’ pandemic affecting
hundreds of millions of individuals worldwide. The integrative genetic and environmental causes of the obesity pandemic
remain elusive. White adipose tissue (WAT)-resident immune cells have recently been highlighted as important factors
contributing to metabolic complications. However, a comprehensive understanding of the regulatory circuits governing their
function and the cell type-specific mechanisms by which they contribute to the development of metabolic syndrome is
lacking. Likewise, the gut microbiome has been suggested as a critical regulator of obesity, but the bacterial species and
metabolites that influence WAT inflammation are entirely unknown.
We propose to use our recently developed high-throughput genomic and gnotobiotic tools, integrated with CRISPR-mediated interrogation of gene function, microbial culturomics, and in-vivo metabolic analysis in newly generated mouse models, in order to achieve a new level of molecular understanding of how WAT immune cells integrate environmental cues into their crosstalk with organismal metabolism, and to explore the microbial contributions to the molecular etiology of WAT inflammation in the pathogenesis of diet-induced obesity. Specifically, we aim to (a) decipher the global regulatory landscape and interaction networks of WAT hematopoietic cells at the single-cell level, (b) identify new mediators of WAT immune cell contributions to metabolic homeostasis, and (c) decode how host-microbiome communication shapes the development of WAT inflammation and obesity.
Unraveling the principles of WAT immune cell regulation and their amenability to change by host-microbiota interactions
may lead to a conceptual leap forward in our understanding of metabolic physiology and disease. Concomitantly, it may
generate a platform for microbiome-based personalized therapy against obesity and its complications.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym Agglomerates
Project Infinite Protein Self-Assembly in Health and Disease
Researcher (PI) Emmanuel Doram LEVY
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS2, ERC-2018-COG
Summary Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Summary
Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Max ERC Funding
2 574 819 €
Duration
Start date: 2019-04-01, End date: 2024-03-31