Project acronym AAMDDR
Project DNA damage response and genome stability: The role of ATM, ATR and the Mre11 complex
Researcher (PI) Vincenzo Costanzo
Host Institution (HI) CANCER RESEARCH UK LBG
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Summary
Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ADIPODIF
Project Adipocyte Differentiation and Metabolic Functions in Obesity and Type 2 Diabetes
Researcher (PI) Christian Wolfrum
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary Obesity associated disorders such as T2D, hypertension and CVD, commonly referred to as the “metabolic syndrome”, are prevalent diseases of industrialized societies. Deranged adipose tissue proliferation and differentiation contribute significantly to the development of these metabolic disorders. Comparatively little however is known, about how these processes influence the development of metabolic disorders. Using a multidisciplinary approach, I plan to elucidate molecular mechanisms underlying the altered adipocyte differentiation and maturation in different models of obesity associated metabolic disorders. Special emphasis will be given to the analysis of gene expression, postranslational modifications and lipid molecular species composition. To achieve this goal, I am establishing several novel methods to isolate pure primary preadipocytes including a new animal model that will allow me to monitor preadipocytes, in vivo and track their cellular fate in the context of a complete organism. These systems will allow, for the first time to study preadipocyte biology, in an in vivo setting. By monitoring preadipocyte differentiation in vivo, I will also be able to answer the key questions regarding the development of preadipocytes and examine signals that induce or inhibit their differentiation. Using transplantation techniques, I will elucidate the genetic and environmental contributions to the progression of obesity and its associated metabolic disorders. Furthermore, these studies will integrate a lipidomics approach to systematically analyze lipid molecular species composition in different models of metabolic disorders. My studies will provide new insights into the mechanisms and dynamics underlying adipocyte differentiation and maturation, and relate them to metabolic disorders. Detailed knowledge of these mechanisms will facilitate development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
Summary
Obesity associated disorders such as T2D, hypertension and CVD, commonly referred to as the “metabolic syndrome”, are prevalent diseases of industrialized societies. Deranged adipose tissue proliferation and differentiation contribute significantly to the development of these metabolic disorders. Comparatively little however is known, about how these processes influence the development of metabolic disorders. Using a multidisciplinary approach, I plan to elucidate molecular mechanisms underlying the altered adipocyte differentiation and maturation in different models of obesity associated metabolic disorders. Special emphasis will be given to the analysis of gene expression, postranslational modifications and lipid molecular species composition. To achieve this goal, I am establishing several novel methods to isolate pure primary preadipocytes including a new animal model that will allow me to monitor preadipocytes, in vivo and track their cellular fate in the context of a complete organism. These systems will allow, for the first time to study preadipocyte biology, in an in vivo setting. By monitoring preadipocyte differentiation in vivo, I will also be able to answer the key questions regarding the development of preadipocytes and examine signals that induce or inhibit their differentiation. Using transplantation techniques, I will elucidate the genetic and environmental contributions to the progression of obesity and its associated metabolic disorders. Furthermore, these studies will integrate a lipidomics approach to systematically analyze lipid molecular species composition in different models of metabolic disorders. My studies will provide new insights into the mechanisms and dynamics underlying adipocyte differentiation and maturation, and relate them to metabolic disorders. Detailed knowledge of these mechanisms will facilitate development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
Max ERC Funding
1 607 105 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym AN07AT
Project Understanding computational roles of new neurons generated in the adult hippocampus
Researcher (PI) Ayumu Tashiro
Host Institution (HI) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary New neurons are continuously generated in certain regions of adult mammalian brain. One of those regions is the dentate gyrus, a subregion of hippocampus, which is essential for memory formation. Although these new neurons in the adult dentate gyrus are thought to have an important role in learning and memory, it is largely unclear how new neurons are involved in information processing and storage underlying memory. Because new neurons constitute a minor portion of intermingled local neuronal population, simple application of conventional techniques such as multi-unit extracellular recording and pharmacological lesion are not suitable for the functional analysis of new neurons. In this proposed research program, I will combine multi-unit recording and behavioral analysis with virus mediated, cell-type-specific genetic manipulation of neuronal activity, to investigate computational roles of new neurons in learning and memory. Specifically, I will determine: 1) specific memory processes that require new neurons, 2) dynamic patterns of activity that new neurons express during memory-related behavior, 3) influence of new neurons on their downstream structure. Further, based on the information obtained by these three lines of studies, we will establish causal relationship between specific memory-related behavior and specific pattern of activity in new neurons. Solving these issues will cooperatively provide important insight into the understanding of computational roles performed by adult neurogenesis. The information on the function of new neurons in normal brain could contribute to future development of efficient therapeutic strategy for a variety of brain disorders.
Summary
New neurons are continuously generated in certain regions of adult mammalian brain. One of those regions is the dentate gyrus, a subregion of hippocampus, which is essential for memory formation. Although these new neurons in the adult dentate gyrus are thought to have an important role in learning and memory, it is largely unclear how new neurons are involved in information processing and storage underlying memory. Because new neurons constitute a minor portion of intermingled local neuronal population, simple application of conventional techniques such as multi-unit extracellular recording and pharmacological lesion are not suitable for the functional analysis of new neurons. In this proposed research program, I will combine multi-unit recording and behavioral analysis with virus mediated, cell-type-specific genetic manipulation of neuronal activity, to investigate computational roles of new neurons in learning and memory. Specifically, I will determine: 1) specific memory processes that require new neurons, 2) dynamic patterns of activity that new neurons express during memory-related behavior, 3) influence of new neurons on their downstream structure. Further, based on the information obtained by these three lines of studies, we will establish causal relationship between specific memory-related behavior and specific pattern of activity in new neurons. Solving these issues will cooperatively provide important insight into the understanding of computational roles performed by adult neurogenesis. The information on the function of new neurons in normal brain could contribute to future development of efficient therapeutic strategy for a variety of brain disorders.
Max ERC Funding
1 991 743 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym ANGIOPLACE
Project Expression and Methylation Status of Genes Regulating Placental Angiogenesis in Normal, Cloned, IVF and Monoparental Sheep Foetuses
Researcher (PI) Grazyna Ewa Ptak
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TERAMO
Call Details Starting Grant (StG), LS7, ERC-2007-StG
Summary Normal placental angiogenesis is critical for embryonic survival and development. Epigenetic modifications, such as methylation of CpG islands, regulate the expression and imprinting of genes. Epigenetic abnormalities have been observed in embryos from assisted reproductive technologies (ART), which could explain the poor placental vascularisation, embryonic/fetal death, and altered fetal growth in these pregnancies. Both cloned (somatic cell nuclear transfer, or SNCT) and monoparental (parthogenotes, only maternal genes; androgenotes, only paternal genes) embryos provide important models for studying defects in expression and methylation status/imprinting of genes regulating placental function. Our hypothesis is that placental vascular development is compromised during early pregnancy in embryos from ART, in part due to altered expression or imprinting/methylation status of specific genes regulating placental angiogenesis. We will evaluate fetal growth, placental vascular growth, and expression and epigenetic status of genes regulating placental angiogenesis during early pregnancy in 3 Specific Aims: (1) after natural mating; (2) after transfer of biparental embryos from in vitro fertilization, and SCNT; and (3) after transfer of parthenogenetic or androgenetic embryos. These studies will therefore contribute substantially to our understanding of the regulation of placental development and vascularisation during early pregnancy, and could pinpoint the mechanism contributing to embryonic loss and developmental abnormalities in foetuses from ART. Any or all of these observations will contribute to our understanding of and also our ability to successfully employ ART, which are becoming very wide spread and important in human medicine as well as in animal production.
Summary
Normal placental angiogenesis is critical for embryonic survival and development. Epigenetic modifications, such as methylation of CpG islands, regulate the expression and imprinting of genes. Epigenetic abnormalities have been observed in embryos from assisted reproductive technologies (ART), which could explain the poor placental vascularisation, embryonic/fetal death, and altered fetal growth in these pregnancies. Both cloned (somatic cell nuclear transfer, or SNCT) and monoparental (parthogenotes, only maternal genes; androgenotes, only paternal genes) embryos provide important models for studying defects in expression and methylation status/imprinting of genes regulating placental function. Our hypothesis is that placental vascular development is compromised during early pregnancy in embryos from ART, in part due to altered expression or imprinting/methylation status of specific genes regulating placental angiogenesis. We will evaluate fetal growth, placental vascular growth, and expression and epigenetic status of genes regulating placental angiogenesis during early pregnancy in 3 Specific Aims: (1) after natural mating; (2) after transfer of biparental embryos from in vitro fertilization, and SCNT; and (3) after transfer of parthenogenetic or androgenetic embryos. These studies will therefore contribute substantially to our understanding of the regulation of placental development and vascularisation during early pregnancy, and could pinpoint the mechanism contributing to embryonic loss and developmental abnormalities in foetuses from ART. Any or all of these observations will contribute to our understanding of and also our ability to successfully employ ART, which are becoming very wide spread and important in human medicine as well as in animal production.
Max ERC Funding
363 600 €
Duration
Start date: 2008-10-01, End date: 2012-06-30
Project acronym AVIANEGG
Project Evolutionary genetics in a ‘classical’ avian study system by high throughput transcriptome sequencing and SNP genotyping
Researcher (PI) Jon Slate
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Starting Grant (StG), LS5, ERC-2007-StG
Summary Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Summary
Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Max ERC Funding
1 560 770 €
Duration
Start date: 2008-10-01, End date: 2014-06-30
Project acronym BACTERIAL SPORES
Project Investigating the Nature of Bacterial Spores
Researcher (PI) Sigal Ben-Yehuda
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS3, ERC-2007-StG
Summary When triggered by nutrient limitation, the Gram-positive bacterium Bacillus subtilis and its relatives enter a pathway of cellular differentiation culminating in the formation of a dormant cell type called a spore, the most resilient cell type known. Bacterial spores can survive for long periods of time and are able to endure extremes of heat, radiation and chemical assault. Remarkably, dormant spores can rapidly convert back to actively growing cells by a process called germination. Consequently, spore forming bacteria, including dangerous pathogens, (such as C. botulinum and B. anthracis) are highly resistant to antibacterial treatments and difficult to eradicate. Despite significant advances in our understanding of the process of spore formation, little is known about the nature of the mature spore. It is unrevealed how dormancy is maintained within the spore and how it is ceased, as the organization and the dynamics of the spore macromolecules remain obscure. The unusual biochemical and biophysical characteristics of the dormant spore make it a challenging biological system to investigate using conventional methods, and thus set the need to develop innovative approaches to study spore biology. We propose to explore the nature of spores by using B. subtilis as a primary experimental system. We intend to: (1) define the architecture of the spore chromosome, (2) track the complexity and fate of mRNA and protein molecules during sporulation, dormancy and germination, (3) revisit the basic notion of the spore dormancy (is it metabolically inert?), (4) compare the characteristics of bacilli spores from diverse ecophysiological groups, (5) investigate the features of spores belonging to distant bacterial genera, (6) generate an integrative database that categorizes the molecular features of spores. Our study will provide original insights and introduce novel concepts to the field of spore biology and may help devise innovative ways to combat spore forming pathogens.
Summary
When triggered by nutrient limitation, the Gram-positive bacterium Bacillus subtilis and its relatives enter a pathway of cellular differentiation culminating in the formation of a dormant cell type called a spore, the most resilient cell type known. Bacterial spores can survive for long periods of time and are able to endure extremes of heat, radiation and chemical assault. Remarkably, dormant spores can rapidly convert back to actively growing cells by a process called germination. Consequently, spore forming bacteria, including dangerous pathogens, (such as C. botulinum and B. anthracis) are highly resistant to antibacterial treatments and difficult to eradicate. Despite significant advances in our understanding of the process of spore formation, little is known about the nature of the mature spore. It is unrevealed how dormancy is maintained within the spore and how it is ceased, as the organization and the dynamics of the spore macromolecules remain obscure. The unusual biochemical and biophysical characteristics of the dormant spore make it a challenging biological system to investigate using conventional methods, and thus set the need to develop innovative approaches to study spore biology. We propose to explore the nature of spores by using B. subtilis as a primary experimental system. We intend to: (1) define the architecture of the spore chromosome, (2) track the complexity and fate of mRNA and protein molecules during sporulation, dormancy and germination, (3) revisit the basic notion of the spore dormancy (is it metabolically inert?), (4) compare the characteristics of bacilli spores from diverse ecophysiological groups, (5) investigate the features of spores belonging to distant bacterial genera, (6) generate an integrative database that categorizes the molecular features of spores. Our study will provide original insights and introduce novel concepts to the field of spore biology and may help devise innovative ways to combat spore forming pathogens.
Max ERC Funding
1 630 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym BCLYM
Project Molecular mechanisms of mature B cell lymphomagenesis
Researcher (PI) Almudena Ramiro
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.)
Call Details Starting Grant (StG), LS3, ERC-2007-StG
Summary Most of the lymphomas diagnosed in the western world are originated from mature B cells. The hallmark of these malignancies is the presence of recurrent chromosome translocations that usually involve the immunoglobulin loci and a proto-oncogene. As a result of the translocation event the proto-oncogene becomes deregulated under the influence of immunoglobulin cis sequences thus playing an important role in the etiology of the disease. Upon antigen encounter mature B cells engage in the germinal center reaction, a complex differentiation program of critical importance to the development of the secondary immune response. The germinal center reaction entails the somatic remodelling of immunoglobulin genes by the somatic hypermutation and class switch recombination reactions, both of which are triggered by Activation Induced Deaminase (AID). We have previously shown that AID also initiates lymphoma-associated c-myc/IgH chromosome translocations. In addition, the germinal center reaction involves a fine-tuned balance between intense B cell proliferation and program cell death. This environment seems to render B cells particularly vulnerable to malignant transformation. We aim at studying the molecular events responsible for B cell susceptibility to lymphomagenesis from two perspectives. First, we will address the role of AID in the generation of lymphomagenic lesions in the context of AID specificity and transcriptional activation. Second, we will approach the regulatory function of microRNAs of AID-dependent, germinal center events. The proposal aims at the molecular understanding of a process that lies in the interface of immune regulation and oncogenic transformation and therefore the results will have profound implications both to basic and clinical understanding of lymphomagenesis.
Summary
Most of the lymphomas diagnosed in the western world are originated from mature B cells. The hallmark of these malignancies is the presence of recurrent chromosome translocations that usually involve the immunoglobulin loci and a proto-oncogene. As a result of the translocation event the proto-oncogene becomes deregulated under the influence of immunoglobulin cis sequences thus playing an important role in the etiology of the disease. Upon antigen encounter mature B cells engage in the germinal center reaction, a complex differentiation program of critical importance to the development of the secondary immune response. The germinal center reaction entails the somatic remodelling of immunoglobulin genes by the somatic hypermutation and class switch recombination reactions, both of which are triggered by Activation Induced Deaminase (AID). We have previously shown that AID also initiates lymphoma-associated c-myc/IgH chromosome translocations. In addition, the germinal center reaction involves a fine-tuned balance between intense B cell proliferation and program cell death. This environment seems to render B cells particularly vulnerable to malignant transformation. We aim at studying the molecular events responsible for B cell susceptibility to lymphomagenesis from two perspectives. First, we will address the role of AID in the generation of lymphomagenic lesions in the context of AID specificity and transcriptional activation. Second, we will approach the regulatory function of microRNAs of AID-dependent, germinal center events. The proposal aims at the molecular understanding of a process that lies in the interface of immune regulation and oncogenic transformation and therefore the results will have profound implications both to basic and clinical understanding of lymphomagenesis.
Max ERC Funding
1 596 000 €
Duration
Start date: 2008-12-01, End date: 2014-11-30
Project acronym BODY-OWNERSHIP
Project Neural mechanisms of body ownership and the projection of ownership onto artificial bodies
Researcher (PI) H. Henrik Ehrsson
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary How do we recognize that our limbs are part of our own body, and why do we feel that one’s self is located inside the body? These fundamental questions have been discussed in theology, philosophy and psychology for millennia. The aim of my ground-breaking research programme is to identify the neuronal mechanisms that produce the sense of ownership of the body, and the processes responsible for the feeling that the self is located inside the physical body. To solve these questions I will adopt an inter-disciplinary approach using state-of-the-art methods from the fields of imaging neuroscience, experimental psychology, computer science and robotics. My first hypothesis is that the mechanism for body ownership is the integration of information from different sensory modalities (vision, touch and muscle sense) in multi-sensory brain areas (ventral premotor and intraparietal cortex). My second hypothesis is that the sense of where you are located in the environment is mediated by allocentric spatial representations in medial temporal lobes. To test this, I will use perceptual illusions and virtual-reality techniques that allow me to manipulate body ownership and the perceived location of the self, in conjunction with non-invasive recordings of brain activity in healthy humans. Functional magnetic resonance imaging and electroencephalography will be used to identify the neuronal correlates of ownership and ‘in-body experiences’, while transcranial magnetic stimulation will be used to examine the causal relationship between neural activity and ownership. It is no overstatement to say that my pioneering work could define a new sub-field in cognitive neuroscience dealing with how the brain represents the self. These basic scientific discoveries will be used in new frontier applications. For example, the development of a prosthetic limb that feels just like a real limb, and a method of controlling humanoid robots by the illusion of ‘becoming the robot’.
Summary
How do we recognize that our limbs are part of our own body, and why do we feel that one’s self is located inside the body? These fundamental questions have been discussed in theology, philosophy and psychology for millennia. The aim of my ground-breaking research programme is to identify the neuronal mechanisms that produce the sense of ownership of the body, and the processes responsible for the feeling that the self is located inside the physical body. To solve these questions I will adopt an inter-disciplinary approach using state-of-the-art methods from the fields of imaging neuroscience, experimental psychology, computer science and robotics. My first hypothesis is that the mechanism for body ownership is the integration of information from different sensory modalities (vision, touch and muscle sense) in multi-sensory brain areas (ventral premotor and intraparietal cortex). My second hypothesis is that the sense of where you are located in the environment is mediated by allocentric spatial representations in medial temporal lobes. To test this, I will use perceptual illusions and virtual-reality techniques that allow me to manipulate body ownership and the perceived location of the self, in conjunction with non-invasive recordings of brain activity in healthy humans. Functional magnetic resonance imaging and electroencephalography will be used to identify the neuronal correlates of ownership and ‘in-body experiences’, while transcranial magnetic stimulation will be used to examine the causal relationship between neural activity and ownership. It is no overstatement to say that my pioneering work could define a new sub-field in cognitive neuroscience dealing with how the brain represents the self. These basic scientific discoveries will be used in new frontier applications. For example, the development of a prosthetic limb that feels just like a real limb, and a method of controlling humanoid robots by the illusion of ‘becoming the robot’.
Max ERC Funding
909 850 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym BRAINPLASTICITY
Project In vivo imaging of functional plasticity in the mammalian brain
Researcher (PI) Adi Mizrahi
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary "The dynamic nature of the brain operates at disparate time scales ranging from milliseconds to months. How do single neurons change over such long time scales? This question remains stubborn to answer in the field of brain plasticity mainly because of limited tools to study the physiology of single neurons over time in the complex environment of the brain. The research aim of this proposal is to reveal the physiological changes of single neurons in the mammalian brain over disparate time scales using time-lapse optical imaging. Specifically, we aim to establish a new team that will develop genetic and optical tools to probe the physiological activity of single neurons, in vivo. As a model system, we will study a unique neuronal population in the mammalian brain; the adult-born local neurons in the olfactory bulb. These neurons have tremendous potential to reveal how neurons develop and maintain in the intact brain because they are accessible both genetically and optically. By following the behavior of adult-born neurons in vivo we will discover how neurons mature and maintain over days and weeks. If our objectives will be met, this study has the potential to significantly ""raise the bar"" on how neuronal plasticity is studied and reveal some basic secrets of the ever changing mammalian brain."
Summary
"The dynamic nature of the brain operates at disparate time scales ranging from milliseconds to months. How do single neurons change over such long time scales? This question remains stubborn to answer in the field of brain plasticity mainly because of limited tools to study the physiology of single neurons over time in the complex environment of the brain. The research aim of this proposal is to reveal the physiological changes of single neurons in the mammalian brain over disparate time scales using time-lapse optical imaging. Specifically, we aim to establish a new team that will develop genetic and optical tools to probe the physiological activity of single neurons, in vivo. As a model system, we will study a unique neuronal population in the mammalian brain; the adult-born local neurons in the olfactory bulb. These neurons have tremendous potential to reveal how neurons develop and maintain in the intact brain because they are accessible both genetically and optically. By following the behavior of adult-born neurons in vivo we will discover how neurons mature and maintain over days and weeks. If our objectives will be met, this study has the potential to significantly ""raise the bar"" on how neuronal plasticity is studied and reveal some basic secrets of the ever changing mammalian brain."
Max ERC Funding
1 750 000 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym CAAXPROCESSINGHUMDIS
Project CAAX Protein Processing in Human DIsease: From Cancer to Progeria
Researcher (PI) Martin Olof Bergö
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary My objective is to understand the physiologic and medical importance of the posttranslational processing of CAAX proteins (e.g., K-RAS and prelamin A) and to define the suitability of the CAAX protein processing enzymes as therapeutic targets for the treatment of cancer and progeria. CAAX proteins undergo three posttranslational processing steps at a carboxyl-terminal CAAX motif. These processing steps, which are mediated by four different enzymes (FTase, GGTase-I, RCE1, and ICMT), increase the hydrophobicity of the carboxyl terminus of the protein and thereby facilitate interactions with membrane surfaces. Somatic mutations in K-RAS deregulate cell growth and are etiologically involved in the pathogenesis of many forms of cancer. A mutation in prelamin A causes Hutchinson-Gilford progeria syndrome—a pediatric progeroid syndrome associated with misshaped cell nuclei and a host of aging-like disease phenotypes. One strategy to render the mutant K-RAS and prelamin A less harmful is to interfere with their ability to bind to membrane surfaces (e.g., the plasma membrane and the nuclear envelope). This could be accomplished by inhibiting the enzymes that modify the CAAX motif. My Specific Aims are: (1) To define the suitability of the CAAX processing enzymes as therapeutic targets in the treatment of K-RAS-induced lung cancer and leukemia; and (2) To test the hypothesis that inactivation of FTase or ICMT will ameliorate disease phenotypes of progeria. I have developed genetic strategies to produce lung cancer or leukemia in mice by activating an oncogenic K-RAS and simultaneously inactivating different CAAX processing enzymes. I will also inactivate several CAAX processing enzymes in mice with progeria—both before the emergence of phenotypes and after the development of advanced disease phenotypes. These experiments should reveal whether the absence of the different CAAX processing enzymes affects the onset, progression, or regression of cancer and progeria.
Summary
My objective is to understand the physiologic and medical importance of the posttranslational processing of CAAX proteins (e.g., K-RAS and prelamin A) and to define the suitability of the CAAX protein processing enzymes as therapeutic targets for the treatment of cancer and progeria. CAAX proteins undergo three posttranslational processing steps at a carboxyl-terminal CAAX motif. These processing steps, which are mediated by four different enzymes (FTase, GGTase-I, RCE1, and ICMT), increase the hydrophobicity of the carboxyl terminus of the protein and thereby facilitate interactions with membrane surfaces. Somatic mutations in K-RAS deregulate cell growth and are etiologically involved in the pathogenesis of many forms of cancer. A mutation in prelamin A causes Hutchinson-Gilford progeria syndrome—a pediatric progeroid syndrome associated with misshaped cell nuclei and a host of aging-like disease phenotypes. One strategy to render the mutant K-RAS and prelamin A less harmful is to interfere with their ability to bind to membrane surfaces (e.g., the plasma membrane and the nuclear envelope). This could be accomplished by inhibiting the enzymes that modify the CAAX motif. My Specific Aims are: (1) To define the suitability of the CAAX processing enzymes as therapeutic targets in the treatment of K-RAS-induced lung cancer and leukemia; and (2) To test the hypothesis that inactivation of FTase or ICMT will ameliorate disease phenotypes of progeria. I have developed genetic strategies to produce lung cancer or leukemia in mice by activating an oncogenic K-RAS and simultaneously inactivating different CAAX processing enzymes. I will also inactivate several CAAX processing enzymes in mice with progeria—both before the emergence of phenotypes and after the development of advanced disease phenotypes. These experiments should reveal whether the absence of the different CAAX processing enzymes affects the onset, progression, or regression of cancer and progeria.
Max ERC Funding
1 689 600 €
Duration
Start date: 2008-06-01, End date: 2013-05-31