Project acronym 1st-principles-discs
Project A First Principles Approach to Accretion Discs
Researcher (PI) Martin Elias Pessah
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Summary
Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Max ERC Funding
1 793 697 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 1stProposal
Project An alternative development of analytic number theory and applications
Researcher (PI) ANDREW Granville
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), PE1, ERC-2014-ADG
Summary The traditional (Riemann) approach to analytic number theory uses the zeros of zeta functions. This requires the associated multiplicative function, say f(n), to have special enough properties that the associated Dirichlet series may be analytically continued. In this proposal we continue to develop an approach which requires less of the multiplicative function, linking the original question with the mean value of f. Such techniques have been around for a long time but have generally been regarded as “ad hoc”. In this project we aim to show that one can develop a coherent approach to the whole subject, not only reproving all of the old results, but also many new ones that appear inaccessible to traditional methods.
Our first goal is to complete a monograph yielding a reworking of all the classical theory using these new methods and then to push forward in new directions. The most important is to extend these techniques to GL(n) L-functions, which we hope will now be feasible having found the correct framework in which to proceed. Since we rarely know how to analytically continue such L-functions this could be of great benefit to the subject.
We are developing the large sieve so that it can be used for individual moduli, and will determine a strong form of that. Also a new method to give asymptotics for mean values, when they are not too small.
We wish to incorporate techniques of analytic number theory into our theory, for example recent advances on mean values of Dirichlet polynomials. Also the recent breakthroughs on the sieve suggest strong links that need further exploration.
Additive combinatorics yields important results in many areas. There are strong analogies between its results, and those for multiplicative functions, especially in large value spectrum theory, and its applications. We hope to develop these further.
Much of this is joint work with K Soundararajan of Stanford University.
Summary
The traditional (Riemann) approach to analytic number theory uses the zeros of zeta functions. This requires the associated multiplicative function, say f(n), to have special enough properties that the associated Dirichlet series may be analytically continued. In this proposal we continue to develop an approach which requires less of the multiplicative function, linking the original question with the mean value of f. Such techniques have been around for a long time but have generally been regarded as “ad hoc”. In this project we aim to show that one can develop a coherent approach to the whole subject, not only reproving all of the old results, but also many new ones that appear inaccessible to traditional methods.
Our first goal is to complete a monograph yielding a reworking of all the classical theory using these new methods and then to push forward in new directions. The most important is to extend these techniques to GL(n) L-functions, which we hope will now be feasible having found the correct framework in which to proceed. Since we rarely know how to analytically continue such L-functions this could be of great benefit to the subject.
We are developing the large sieve so that it can be used for individual moduli, and will determine a strong form of that. Also a new method to give asymptotics for mean values, when they are not too small.
We wish to incorporate techniques of analytic number theory into our theory, for example recent advances on mean values of Dirichlet polynomials. Also the recent breakthroughs on the sieve suggest strong links that need further exploration.
Additive combinatorics yields important results in many areas. There are strong analogies between its results, and those for multiplicative functions, especially in large value spectrum theory, and its applications. We hope to develop these further.
Much of this is joint work with K Soundararajan of Stanford University.
Max ERC Funding
2 011 742 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym 2-3-AUT
Project Surfaces, 3-manifolds and automorphism groups
Researcher (PI) Nathalie Wahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Summary
The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Max ERC Funding
724 992 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym 2DQP
Project Two-dimensional quantum photonics
Researcher (PI) Brian David GERARDOT
Host Institution (HI) HERIOT-WATT UNIVERSITY
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Summary
Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Max ERC Funding
1 999 135 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym 3D-E
Project 3D Engineered Environments for Regenerative Medicine
Researcher (PI) Ruth Elizabeth Cameron
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary "This proposal develops a unified, underpinning technology to create novel, complex and biomimetic 3D environments for the control of tissue growth. As director of Cambridge Centre for Medical Materials, I have recently been approached by medical colleagues to help to solve important problems in the separate therapeutic areas of breast cancer, cardiac disease and blood disorders. In each case, the solution lies in complex 3D engineered environments for cell culture. These colleagues make it clear that existing 3D scaffolds fail to provide the required complex orientational and spatial anisotropy, and are limited in their ability to impart appropriate biochemical and mechanical cues.
I have a strong track record in this area. A particular success has been the use of a freeze drying technology to make collagen based porous implants for the cartilage-bone interface in the knee, which has now been commercialised. The novelty of this proposal lies in the broadening of the established scientific base of this technology to enable biomacromolecular structures with:
(A) controlled and complex pore orientation to mimic many normal multi-oriented tissue structures
(B) compositional and positional control to match varying local biochemical environments,
(C) the attachment of novel peptides designed to control cell behaviour, and
(D) mechanical control at both a local and macroscopic level to provide mechanical cues for cells.
These will be complemented by the development of
(E) robust characterisation methodologies for the structures created.
These advances will then be employed in each of the medical areas above.
This approach is highly interdisciplinary. Existing working relationships with experts in each medical field will guarantee expertise and licensed facilities in the required biological disciplines. Funds for this proposal would therefore establish a rich hub of mutually beneficial research and opportunities for cross-disciplinary sharing of expertise."
Summary
"This proposal develops a unified, underpinning technology to create novel, complex and biomimetic 3D environments for the control of tissue growth. As director of Cambridge Centre for Medical Materials, I have recently been approached by medical colleagues to help to solve important problems in the separate therapeutic areas of breast cancer, cardiac disease and blood disorders. In each case, the solution lies in complex 3D engineered environments for cell culture. These colleagues make it clear that existing 3D scaffolds fail to provide the required complex orientational and spatial anisotropy, and are limited in their ability to impart appropriate biochemical and mechanical cues.
I have a strong track record in this area. A particular success has been the use of a freeze drying technology to make collagen based porous implants for the cartilage-bone interface in the knee, which has now been commercialised. The novelty of this proposal lies in the broadening of the established scientific base of this technology to enable biomacromolecular structures with:
(A) controlled and complex pore orientation to mimic many normal multi-oriented tissue structures
(B) compositional and positional control to match varying local biochemical environments,
(C) the attachment of novel peptides designed to control cell behaviour, and
(D) mechanical control at both a local and macroscopic level to provide mechanical cues for cells.
These will be complemented by the development of
(E) robust characterisation methodologies for the structures created.
These advances will then be employed in each of the medical areas above.
This approach is highly interdisciplinary. Existing working relationships with experts in each medical field will guarantee expertise and licensed facilities in the required biological disciplines. Funds for this proposal would therefore establish a rich hub of mutually beneficial research and opportunities for cross-disciplinary sharing of expertise."
Max ERC Funding
2 486 267 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym 3D-PXM
Project 3D Piezoresponse X-ray Microscopy
Researcher (PI) Hugh SIMONS
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk.
This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage.
For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.
Summary
Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk.
This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage.
For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.
Max ERC Funding
1 496 941 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym 3DAddChip
Project Additive manufacturing of 2D nanomaterials for on-chip technologies
Researcher (PI) Cecilia Mattevi
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), PE8, ERC-2018-COG
Summary The realization of “the internet of things” is inevitably constrained at the level of miniaturization that can be achieved in the electronic devices. A variety of technologies are now going through a process of miniaturization from micro-electromechanical systems (MEMS) to biomedical sensors, and actuators. The ultimate goal is to combine several components in an individual multifunctional platform, realizing on-chip technology. Devices have to be constrained to small footprints and exhibit high performance. Thus, the miniaturization process requires the introduction of new manufacturing processes to fabricate devices in the 3D space over small areas. 3D printing via robocasting is emerging as a new manufacturing technique, which allows shaping virtually any materials from polymers to ceramic and metals into complex architectures.
The goal of this research is to establish a 3D printing paradigm to produce miniaturized complex shape devices with diversified functions for on-chip technologies adaptable to “smart environment” such as flexible substrates, smart textiles and biomedical sensors. The elementary building blocks of the devices will be two-dimensional nanomaterials, which present unique optical, electrical, chemical and mechanical properties. The synergistic combination of the intrinsic characteristics of the 2D nanomaterials and the specific 3D architecture will enable advanced performance of the 3D printed objects. This research programme will demonstrate 3D miniaturized energy storage and energy conversion units fabricated with inks produced using a pilot plant. These units are essential components of any on-chip platform as they ensure energy autonomy via self-powering. Ultimately, this research will initiate new technologies based on miniaturized 3D devices.
Summary
The realization of “the internet of things” is inevitably constrained at the level of miniaturization that can be achieved in the electronic devices. A variety of technologies are now going through a process of miniaturization from micro-electromechanical systems (MEMS) to biomedical sensors, and actuators. The ultimate goal is to combine several components in an individual multifunctional platform, realizing on-chip technology. Devices have to be constrained to small footprints and exhibit high performance. Thus, the miniaturization process requires the introduction of new manufacturing processes to fabricate devices in the 3D space over small areas. 3D printing via robocasting is emerging as a new manufacturing technique, which allows shaping virtually any materials from polymers to ceramic and metals into complex architectures.
The goal of this research is to establish a 3D printing paradigm to produce miniaturized complex shape devices with diversified functions for on-chip technologies adaptable to “smart environment” such as flexible substrates, smart textiles and biomedical sensors. The elementary building blocks of the devices will be two-dimensional nanomaterials, which present unique optical, electrical, chemical and mechanical properties. The synergistic combination of the intrinsic characteristics of the 2D nanomaterials and the specific 3D architecture will enable advanced performance of the 3D printed objects. This research programme will demonstrate 3D miniaturized energy storage and energy conversion units fabricated with inks produced using a pilot plant. These units are essential components of any on-chip platform as they ensure energy autonomy via self-powering. Ultimately, this research will initiate new technologies based on miniaturized 3D devices.
Max ERC Funding
1 999 968 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym 3DIMAGE
Project 3D Imaging Across Lengthscales: From Atoms to Grains
Researcher (PI) Paul Anthony Midgley
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary "Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Summary
"Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Max ERC Funding
2 337 330 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym 3DMOSHBOND
Project Three-Dimensional Mapping Of a Single Hydrogen Bond
Researcher (PI) Adam Marc SWEETMAN
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Starting Grant (StG), PE3, ERC-2017-STG
Summary All properties of matter are ultimately governed by the forces between single atoms, but our knowledge of interatomic, and intermolecular, potentials is often derived indirectly.
In 3DMOSHBOND, I outline a program of work designed to create a paradigm shift in the direct measurement of complex interatomic potentials via a fundamental reimagining of how atomic resolution imaging, and force measurement, techniques are applied.
To provide a clear proof of principle demonstration of the power of this concept, I propose to map the strength, shape and extent of single hydrogen bonding (H-bonding) interactions in 3D with sub-Angstrom precision. H-bonding is a key component governing intermolecular interactions, particularly for biologically important molecules. Despite its critical importance, H-bonding is relatively poorly understood, and the IUPAC definition of the H-bond was changed as recently as 2011- highlighting the relevance of a new means to engage with these fundamental interactions.
Hitherto unprecedented resolution and accuracy will be achieved via a creation of a novel layer of vertically oriented H-bonding molecules, functionalisation of the tip of a scanning probe microscope with a single complementary H-bonding molecule, and by complete characterisation of the position of all atoms in the junction. This will place two H-bonding groups “end on” and map the extent, and magnitude, of the H-bond with sub-Angstrom precision for a variety of systems. This investigation of the H-bond will present us with an unparalleled level of information regarding its properties.
Experimental results will be compared with ab initio density functional theory (DFT) simulations, to investigate the extent to which state-of-the-art simulations are able to reproduce the behaviour of the H-bonding interaction. The project will create a new generalised probe for the study of single atomic and molecular interactions.
Summary
All properties of matter are ultimately governed by the forces between single atoms, but our knowledge of interatomic, and intermolecular, potentials is often derived indirectly.
In 3DMOSHBOND, I outline a program of work designed to create a paradigm shift in the direct measurement of complex interatomic potentials via a fundamental reimagining of how atomic resolution imaging, and force measurement, techniques are applied.
To provide a clear proof of principle demonstration of the power of this concept, I propose to map the strength, shape and extent of single hydrogen bonding (H-bonding) interactions in 3D with sub-Angstrom precision. H-bonding is a key component governing intermolecular interactions, particularly for biologically important molecules. Despite its critical importance, H-bonding is relatively poorly understood, and the IUPAC definition of the H-bond was changed as recently as 2011- highlighting the relevance of a new means to engage with these fundamental interactions.
Hitherto unprecedented resolution and accuracy will be achieved via a creation of a novel layer of vertically oriented H-bonding molecules, functionalisation of the tip of a scanning probe microscope with a single complementary H-bonding molecule, and by complete characterisation of the position of all atoms in the junction. This will place two H-bonding groups “end on” and map the extent, and magnitude, of the H-bond with sub-Angstrom precision for a variety of systems. This investigation of the H-bond will present us with an unparalleled level of information regarding its properties.
Experimental results will be compared with ab initio density functional theory (DFT) simulations, to investigate the extent to which state-of-the-art simulations are able to reproduce the behaviour of the H-bonding interaction. The project will create a new generalised probe for the study of single atomic and molecular interactions.
Max ERC Funding
1 971 468 €
Duration
Start date: 2018-01-01, End date: 2022-12-31