Project acronym 3D-JOINT
Project 3D Bioprinting of JOINT Replacements
Researcher (PI) Johannes Jos Malda
Host Institution (HI) UNIVERSITAIR MEDISCH CENTRUM UTRECHT
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary The world has a significant medical challenge in repairing injured or diseased joints. Joint degeneration and its related pain is a major socio-economic burden that will increase over the next decade and is currently addressed by implanting a metal prosthesis. For the long term, the ideal solution to joint injury is to successfully regenerate rather than replace the damaged cartilage with synthetic implants. Recent advances in key technologies are now bringing this “holy grail” within reach; regenerative approaches, based on cell therapy, are already clinically available albeit only for smaller focal cartilage defects.
One of these key technologies is three-dimensional (3D) bio-printing, which provides a greatly controlled placement and organization of living constructs through the layer-by-layer deposition of materials and cells. These tissue constructs can be applied as tissue models for research and screening. However, the lack of biomechanical properties of these tissue constructs has hampered their application to the regeneration of damaged, degenerated or diseased tissue.
Having established a cartilage-focussed research laboratory in the University Medical Center Utrecht, I have addressed this biomechanical limitation of hydrogels through the use of hydrogel composites. Specifically, I have pioneered a 3D bio-printing technology that combines accurately printed small diameter thermoplast filaments with cell invasive hydrogels to form strong fibre-reinforced constructs. This, in combination with bioreactor technology, is the key to the generation of larger, complex tissue constructs with cartilage-like biomechanical resilience. With 3D-JOINT I will use my in-depth bio-printing and bioreactor knowledge and experience to develop a multi-phasic 3D-printed biological replacement of the joint.
Summary
The world has a significant medical challenge in repairing injured or diseased joints. Joint degeneration and its related pain is a major socio-economic burden that will increase over the next decade and is currently addressed by implanting a metal prosthesis. For the long term, the ideal solution to joint injury is to successfully regenerate rather than replace the damaged cartilage with synthetic implants. Recent advances in key technologies are now bringing this “holy grail” within reach; regenerative approaches, based on cell therapy, are already clinically available albeit only for smaller focal cartilage defects.
One of these key technologies is three-dimensional (3D) bio-printing, which provides a greatly controlled placement and organization of living constructs through the layer-by-layer deposition of materials and cells. These tissue constructs can be applied as tissue models for research and screening. However, the lack of biomechanical properties of these tissue constructs has hampered their application to the regeneration of damaged, degenerated or diseased tissue.
Having established a cartilage-focussed research laboratory in the University Medical Center Utrecht, I have addressed this biomechanical limitation of hydrogels through the use of hydrogel composites. Specifically, I have pioneered a 3D bio-printing technology that combines accurately printed small diameter thermoplast filaments with cell invasive hydrogels to form strong fibre-reinforced constructs. This, in combination with bioreactor technology, is the key to the generation of larger, complex tissue constructs with cartilage-like biomechanical resilience. With 3D-JOINT I will use my in-depth bio-printing and bioreactor knowledge and experience to develop a multi-phasic 3D-printed biological replacement of the joint.
Max ERC Funding
1 998 871 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym AdLibYeast
Project Synthetic platforms for ad libitum remodelling of yeast central metabolism
Researcher (PI) Pascale Andrée Simone Lapujade Daran
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Consolidator Grant (CoG), LS9, ERC-2014-CoG
Summary Replacement of petrochemistry by bio-based processes is key to sustainable development and requires microbes equipped with novel-to-nature capabilities. The efficiency of such engineered microbes strongly depends on their native metabolic networks. However, aeons of evolution have optimized these networks for fitness in nature rather than for industrial performance. As a result, central metabolic networks are complex and encoded by mosaic microbial genomes in which genes, irrespective of their function, are scattered over the genome and chromosomes. This absence of a modular organization tremendously restricts genetic accessibility and presents a major hurdle for fundamental understanding and rational engineering of central metabolism. To conquer this limitation, I introduce the concept of ‘pathway swapping’, which will enable experimenters to remodel the core machinery of microbes at will.
Using the yeast Saccharomyces cerevisiae, an industrial biotechnology work horse and model eukaryotic cell, I propose to design and construct a microbial chassis in which all genes encoding enzymes in central carbon metabolism are relocated to a specialized synthetic chromosome, from which they can be easily swapped by any – homologous or heterologous – synthetic pathway. This challenging and innovative project paves the way for a modular approach to engineering of central metabolism.
Beyond providing a ground-breaking enabling technology, the ultimate goal of the pathway swapping technology is to address hitherto unanswered fundamental questions. Access to a sheer endless variety of configurations of central metabolism offers unique, new possibilities to study the fundamental design of metabolic pathways, the constraints that have shaped them and unifying principles for their structure and regulation. Moreover, this technology enables fast, combinatorial optimization studies on central metabolism to optimize its performance in biotechnological purposes.
Summary
Replacement of petrochemistry by bio-based processes is key to sustainable development and requires microbes equipped with novel-to-nature capabilities. The efficiency of such engineered microbes strongly depends on their native metabolic networks. However, aeons of evolution have optimized these networks for fitness in nature rather than for industrial performance. As a result, central metabolic networks are complex and encoded by mosaic microbial genomes in which genes, irrespective of their function, are scattered over the genome and chromosomes. This absence of a modular organization tremendously restricts genetic accessibility and presents a major hurdle for fundamental understanding and rational engineering of central metabolism. To conquer this limitation, I introduce the concept of ‘pathway swapping’, which will enable experimenters to remodel the core machinery of microbes at will.
Using the yeast Saccharomyces cerevisiae, an industrial biotechnology work horse and model eukaryotic cell, I propose to design and construct a microbial chassis in which all genes encoding enzymes in central carbon metabolism are relocated to a specialized synthetic chromosome, from which they can be easily swapped by any – homologous or heterologous – synthetic pathway. This challenging and innovative project paves the way for a modular approach to engineering of central metabolism.
Beyond providing a ground-breaking enabling technology, the ultimate goal of the pathway swapping technology is to address hitherto unanswered fundamental questions. Access to a sheer endless variety of configurations of central metabolism offers unique, new possibilities to study the fundamental design of metabolic pathways, the constraints that have shaped them and unifying principles for their structure and regulation. Moreover, this technology enables fast, combinatorial optimization studies on central metabolism to optimize its performance in biotechnological purposes.
Max ERC Funding
2 149 718 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym BioAqua
Project Water as cosubstrate for biocatalytic redox reactions
Researcher (PI) Frank Hollmann
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Consolidator Grant (CoG), LS9, ERC-2014-CoG
Summary The research proposed in BioAqua aims at breaking new ground in the area of catalysis by enabling water-driven biocatalytic redox reactions.
Oxidoreductases are a class of enzymes with a very high potential for preparative organic synthesis, which is why they are increasingly used also on industrial scale. The current state-of-the-art, however, utilises valuable high-energy cosubstrates (such as glucose and alcohols) to promote oxidoreductases. Thereby valuable (and edible) building blocks are wasted as sacrificial electron donors which will have significant ethical (food for chemistry), economic and environmental consequences once redox biocatalysis is applied at scale.
I envision utilizing water as sacrificial electron donor. Hence, a simple and abundant cosubstrate will be used instead of the valuable cosubstrates mentioned above. This will be a completely new approach in (bio)catalysis.
However, activating water for this purpose water is extremely difficult due to its kinetic and thermodynamic inertness. To solve this problem, I propose using visible light as external energy source and advanced chemical catalysts to facilitate water oxidation. The electrons liberated in this process will be made available (for the first time) to promote oxidoreductases-catalysed transformations.
BioAqua represents an entirely new paradigm in catalysis as I will bridge the gap between photocatalysis and biocatalysis enabling cleaner and more efficient reaction schemes.
Summary
The research proposed in BioAqua aims at breaking new ground in the area of catalysis by enabling water-driven biocatalytic redox reactions.
Oxidoreductases are a class of enzymes with a very high potential for preparative organic synthesis, which is why they are increasingly used also on industrial scale. The current state-of-the-art, however, utilises valuable high-energy cosubstrates (such as glucose and alcohols) to promote oxidoreductases. Thereby valuable (and edible) building blocks are wasted as sacrificial electron donors which will have significant ethical (food for chemistry), economic and environmental consequences once redox biocatalysis is applied at scale.
I envision utilizing water as sacrificial electron donor. Hence, a simple and abundant cosubstrate will be used instead of the valuable cosubstrates mentioned above. This will be a completely new approach in (bio)catalysis.
However, activating water for this purpose water is extremely difficult due to its kinetic and thermodynamic inertness. To solve this problem, I propose using visible light as external energy source and advanced chemical catalysts to facilitate water oxidation. The electrons liberated in this process will be made available (for the first time) to promote oxidoreductases-catalysed transformations.
BioAqua represents an entirely new paradigm in catalysis as I will bridge the gap between photocatalysis and biocatalysis enabling cleaner and more efficient reaction schemes.
Max ERC Funding
1 998 020 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym Cancer-Recurrence
Project Tumor cell death supports recurrence of cancer
Researcher (PI) Jacobus Emiel van Rheenen
Host Institution (HI) STICHTING HET NEDERLANDS KANKER INSTITUUT-ANTONI VAN LEEUWENHOEK ZIEKENHUIS
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Introduction: Current anti-cancer treatments are often inefficient, while many patients initially benefit from anti-cancer drugs eventually experience relapse of resistant tumors throughout the body. Current clinical strategies mainly aim at inducing tumor cell death, but this induction may have unintentional and unwanted side effects on surviving tumor cells.
Preliminary data: We show that after chemotherapy-induced initial regression, PyMT mammary tumors reappear. During regression, we observe an increased number of cells that have undergone epithelial-mesenchymal transition (EMT) and become migratory. We show that migration can be induced upon uptake of extracellular vesicles (e.g. apoptotic bodies). Our findings suggest that EMT is induced upon chemotherapy, through e.g. EV uptake, potentially leading to migration and growth of surviving cells.
Hypothesis and main aim: Based on preliminary data, we hypothesize that tumor cell death induces migration and growth of the surviving tumor cells. We aim to identify the key cell types and mechanisms that mediate this effect, and establish whether interference with these cells and mechanisms can reduce recurrence of tumors after chemotherapy.
Approach: We have developed unique intravital imaging tools and genetically engineered fluorescent mice to visualize and characterize if and how dying tumor cells can affect surrounding surviving tumor and stromal cells. We will test whether dying tumor cells can influence the growth, migration, dissemination and metastasis of surviving tumor cells directly or indirectly through stromal cells. We will identify potential targets to block the influence of the dying tumor cells, and test whether this blockade inhibits the unintended side-effects of tumor cell death.
Conclusion: With the studies proposed in this grant, we will gain fundamental insights on how induction of tumor cell death, the universal aim of therapy, could play a role in growth and spread of surviving tumor cells.
Summary
Introduction: Current anti-cancer treatments are often inefficient, while many patients initially benefit from anti-cancer drugs eventually experience relapse of resistant tumors throughout the body. Current clinical strategies mainly aim at inducing tumor cell death, but this induction may have unintentional and unwanted side effects on surviving tumor cells.
Preliminary data: We show that after chemotherapy-induced initial regression, PyMT mammary tumors reappear. During regression, we observe an increased number of cells that have undergone epithelial-mesenchymal transition (EMT) and become migratory. We show that migration can be induced upon uptake of extracellular vesicles (e.g. apoptotic bodies). Our findings suggest that EMT is induced upon chemotherapy, through e.g. EV uptake, potentially leading to migration and growth of surviving cells.
Hypothesis and main aim: Based on preliminary data, we hypothesize that tumor cell death induces migration and growth of the surviving tumor cells. We aim to identify the key cell types and mechanisms that mediate this effect, and establish whether interference with these cells and mechanisms can reduce recurrence of tumors after chemotherapy.
Approach: We have developed unique intravital imaging tools and genetically engineered fluorescent mice to visualize and characterize if and how dying tumor cells can affect surrounding surviving tumor and stromal cells. We will test whether dying tumor cells can influence the growth, migration, dissemination and metastasis of surviving tumor cells directly or indirectly through stromal cells. We will identify potential targets to block the influence of the dying tumor cells, and test whether this blockade inhibits the unintended side-effects of tumor cell death.
Conclusion: With the studies proposed in this grant, we will gain fundamental insights on how induction of tumor cell death, the universal aim of therapy, could play a role in growth and spread of surviving tumor cells.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym CHROMATINREPAIRCODE
Project CHROMATIN-REPAIR-CODE: Hacking the chromatin code for DNA repair
Researcher (PI) Haico Van Attikum
Host Institution (HI) ACADEMISCH ZIEKENHUIS LEIDEN
Call Details Consolidator Grant (CoG), LS2, ERC-2013-CoG
Summary "Our cells receive tens of thousands of different DNA lesions per day. Failure to repair these lesions will lead to cell death, mutations and genome instability, which contribute to human diseases such as neurodegenerative disorders and cancer. Efficient recognition and repair of DNA damage, however, is complicated by the fact that genomic DNA is packaged, through histone and non-histone proteins, into a condensed structure called chromatin. The DNA repair machinery has to circumvent this barrier to gain access to the damaged DNA and repair the lesions. Our recent work suggests that chromatin-modifying enzymes (CME) help to overcome this barrier at sites of DNA damage. However, the identity of these CME, their mode of action and interconnections with DNA repair pathways remain largely enigmatic. The aim of this project is to systematically identify and characterize the CME that operate during DNA repair processes in both yeast and human cells. To reach this goal we will use a cross-disciplinary approach that combines novel and cutting-edge genomics approaches with bioinformatics, genetics, biochemistry and high-resolution microscopy. Epigenetics-IDentifier (Epi-ID) will be used as a tool to unveil novel CME, whereas RNAi-interference and genetic interaction mapping studies will pinpoint the CME that may potentially regulate repair of DNA damage. A series of functional assays will eventually characterize their role in distinct DNA repair pathways, focusing on those that counteract DNA strand breaks and replication stress. Together these studies will provide insight into how CME assist cells to repair DNA damage in chromatin and inform on the relevance of CME to maintain genome stability and counteract human diseases."
Summary
"Our cells receive tens of thousands of different DNA lesions per day. Failure to repair these lesions will lead to cell death, mutations and genome instability, which contribute to human diseases such as neurodegenerative disorders and cancer. Efficient recognition and repair of DNA damage, however, is complicated by the fact that genomic DNA is packaged, through histone and non-histone proteins, into a condensed structure called chromatin. The DNA repair machinery has to circumvent this barrier to gain access to the damaged DNA and repair the lesions. Our recent work suggests that chromatin-modifying enzymes (CME) help to overcome this barrier at sites of DNA damage. However, the identity of these CME, their mode of action and interconnections with DNA repair pathways remain largely enigmatic. The aim of this project is to systematically identify and characterize the CME that operate during DNA repair processes in both yeast and human cells. To reach this goal we will use a cross-disciplinary approach that combines novel and cutting-edge genomics approaches with bioinformatics, genetics, biochemistry and high-resolution microscopy. Epigenetics-IDentifier (Epi-ID) will be used as a tool to unveil novel CME, whereas RNAi-interference and genetic interaction mapping studies will pinpoint the CME that may potentially regulate repair of DNA damage. A series of functional assays will eventually characterize their role in distinct DNA repair pathways, focusing on those that counteract DNA strand breaks and replication stress. Together these studies will provide insight into how CME assist cells to repair DNA damage in chromatin and inform on the relevance of CME to maintain genome stability and counteract human diseases."
Max ERC Funding
1 999 575 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym DEEPINSIGHT
Project Preclinical micro-endoscopy in tumors: targeting metastatic intravasation and resistance
Researcher (PI) Peter Friedl
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary Poor prognosis of cancer results from two central progression events, (i) the intravasation of cancer cells into blood vessels which leads to metastasis to distant organs and ultimately lethal tumor overload and (ii) cancer cell survival and adaptation to metabolic stress which causes resistance to anti-cancer therapy and limits life expectancy. Using a novel multiphoton microendoscope device recently developed by myself and collaborators, I here aim to overcome tissue penetration limits and identify important progression events deeply inside tumors. The hard- and software of the microendoscope will be optimized for automated position control and panoramic rotation to sample large tissue volumes and validated for stability and safety. We then will address the locations and mechanisms inside tumors that: (1) enable tumor-cell migration and penetration into blood vessels for distant metastasis and (2) mediate enhanced tumor-cell survival and resistance to experimental radiation- and chemotherapy. This basic inventory will serve to address (3) whether and how the niches for both intravasation and resistance overlap and connected with microenvironmental triggers, including defective blood vessels, signalling pathways of malnutrition and hypoxia, and tissue damage. The strategies include 3D microscopy of live fluorescent multi-color tumors and molecular reporters to record cancer cell migration, proliferation and death in the context with embedding tissue structures and metabolic signals. Once identified and characterized, (4) the niches and signals inducing intravasation and resistance (i.e. integrin adhesion receptors, cytoskeletal regulators, metabolic signalling) will be exploited as targets to enhance experimental radiation and chemotherapy. Preclinical microendoscopy will deliver new insight into cancer progression further contribute impulses to microendoscopy for disease monitoring in patients (“optical biopsy”).
Summary
Poor prognosis of cancer results from two central progression events, (i) the intravasation of cancer cells into blood vessels which leads to metastasis to distant organs and ultimately lethal tumor overload and (ii) cancer cell survival and adaptation to metabolic stress which causes resistance to anti-cancer therapy and limits life expectancy. Using a novel multiphoton microendoscope device recently developed by myself and collaborators, I here aim to overcome tissue penetration limits and identify important progression events deeply inside tumors. The hard- and software of the microendoscope will be optimized for automated position control and panoramic rotation to sample large tissue volumes and validated for stability and safety. We then will address the locations and mechanisms inside tumors that: (1) enable tumor-cell migration and penetration into blood vessels for distant metastasis and (2) mediate enhanced tumor-cell survival and resistance to experimental radiation- and chemotherapy. This basic inventory will serve to address (3) whether and how the niches for both intravasation and resistance overlap and connected with microenvironmental triggers, including defective blood vessels, signalling pathways of malnutrition and hypoxia, and tissue damage. The strategies include 3D microscopy of live fluorescent multi-color tumors and molecular reporters to record cancer cell migration, proliferation and death in the context with embedding tissue structures and metabolic signals. Once identified and characterized, (4) the niches and signals inducing intravasation and resistance (i.e. integrin adhesion receptors, cytoskeletal regulators, metabolic signalling) will be exploited as targets to enhance experimental radiation and chemotherapy. Preclinical microendoscopy will deliver new insight into cancer progression further contribute impulses to microendoscopy for disease monitoring in patients (“optical biopsy”).
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-12-01, End date: 2019-11-30
Project acronym DEPRIVEDHOODS
Project Socio-spatial inequality, deprived neighbourhoods, and neighbourhood effects
Researcher (PI) Maarten Van Ham
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Consolidator Grant (CoG), SH3, ERC-2013-CoG
Summary The objective of DEPRIVEDHOODS is to come to a better understanding of the relationship between socio-economic inequality, poverty and neighbourhoods. The spatial concentration of poverty within cities is of great concern to national governments, partly based on a belief in neighbourhood effects: the idea that living in deprived neighbourhoods has an additional negative effect on residents’ life chances over and above the effect of their own characteristics. This belief has contributed to the development of area-based policies designed to introduce a more ‘favourable’ socio-economic mix in deprived neighbourhoods. Despite the persistent belief in neighbourhood effects, there is surprisingly little evidence that living in deprived neighbourhoods really affects individual lives. There is little consensus on the importance of neighbourhood effects, the underlying causal mechanisms, the conditions under which they are important and the most effective policy responses. It is likely that most studies claiming to have found that poor neighbourhoods make people poor(er) only show that poor people live in poor neighbourhoods because they cannot afford to live elsewhere. DEPRIVEDHOODS will break new ground by simultaneously studying neighbourhood sorting over the life course, neighbourhood change, and neighbourhood effects, within one theoretical and analytical framework. This project will be methodologically challenging and will be the first integrated, multi-country research project on neighbourhood effects to use unique geo-referenced longitudinal data from Sweden, United Kingdom, Estonia, and The Netherlands. Special attention will be paid to the operationalization of neighbourhoods and how it affects modelling outcomes. Through its integrated and international approach, DEPRIVEDHOODS will fundamentally advance understandings of the ways in which individual outcomes interact with the neighbourhood, which will ultimately lead to more targeted and effective policy measures.
Summary
The objective of DEPRIVEDHOODS is to come to a better understanding of the relationship between socio-economic inequality, poverty and neighbourhoods. The spatial concentration of poverty within cities is of great concern to national governments, partly based on a belief in neighbourhood effects: the idea that living in deprived neighbourhoods has an additional negative effect on residents’ life chances over and above the effect of their own characteristics. This belief has contributed to the development of area-based policies designed to introduce a more ‘favourable’ socio-economic mix in deprived neighbourhoods. Despite the persistent belief in neighbourhood effects, there is surprisingly little evidence that living in deprived neighbourhoods really affects individual lives. There is little consensus on the importance of neighbourhood effects, the underlying causal mechanisms, the conditions under which they are important and the most effective policy responses. It is likely that most studies claiming to have found that poor neighbourhoods make people poor(er) only show that poor people live in poor neighbourhoods because they cannot afford to live elsewhere. DEPRIVEDHOODS will break new ground by simultaneously studying neighbourhood sorting over the life course, neighbourhood change, and neighbourhood effects, within one theoretical and analytical framework. This project will be methodologically challenging and will be the first integrated, multi-country research project on neighbourhood effects to use unique geo-referenced longitudinal data from Sweden, United Kingdom, Estonia, and The Netherlands. Special attention will be paid to the operationalization of neighbourhoods and how it affects modelling outcomes. Through its integrated and international approach, DEPRIVEDHOODS will fundamentally advance understandings of the ways in which individual outcomes interact with the neighbourhood, which will ultimately lead to more targeted and effective policy measures.
Max ERC Funding
1 996 506 €
Duration
Start date: 2014-08-01, End date: 2019-07-31
Project acronym DIRECT
Project Disabling Radiotherapy resistance in Cancer Treatment
Researcher (PI) Marc Antoine Gijsbert Gilles Vooijs
Host Institution (HI) UNIVERSITEIT MAASTRICHT
Call Details Consolidator Grant (CoG), LS7, ERC-2013-CoG
Summary "Cancer is a devastating disease affecting 1 in 3 people in their lifetime. The incidence is rising because of our aging population and causes a huge economic impact on our society because of hospitalization and lost productivity. Radiotherapy alone or in combination with surgery and/or chemotherapy is used in ~50% of all patients and uses ionizing radiation to induce DNA breaks that are lethal to cells. While significant progress has been made, radiotherapy is often limited because of side-effects in normal tissues and tumor control often fails because of resistance and metastases. Novel treatment paradigms are urgently needed. Among the key classical biological factors that determine radiation response in normal and tumor cells are the 4R; Reoxygenation, Repopulation, Redistribution and Repair. They are determined by intrinsic (genetic) as well as extrinsic factors from the tumor microenvironment and underlie tumor heterogeneity a hallmark of cancers and a decisive factor in clinical response. Yet, standard cancer treatments are largely based on the flawed assumption that tumors are homogenous within and between patients. We hypothesized that NOTCH signaling and tumor hypoxia cause tumor heterogeneity and are tumor selective therapeutic targets. First we will study key biological mechanisms that determine intra tumor heterogeneity, second we will establish their role in therapy response and third we will exploit this knowledge to enhance radiotherapy and provide proof of concept of a highly innovative approach to selectively activate cancer therapeutics targeting the NOTCH stem cell pathway in therapy resistant tumor cells without adverse effects in normal tissues.
DIRECT interrogates the molecular details of key cancer therapy response parameters providing opportunities for the next generation of tumor cell specific treatments that improve disease outcome."
Summary
"Cancer is a devastating disease affecting 1 in 3 people in their lifetime. The incidence is rising because of our aging population and causes a huge economic impact on our society because of hospitalization and lost productivity. Radiotherapy alone or in combination with surgery and/or chemotherapy is used in ~50% of all patients and uses ionizing radiation to induce DNA breaks that are lethal to cells. While significant progress has been made, radiotherapy is often limited because of side-effects in normal tissues and tumor control often fails because of resistance and metastases. Novel treatment paradigms are urgently needed. Among the key classical biological factors that determine radiation response in normal and tumor cells are the 4R; Reoxygenation, Repopulation, Redistribution and Repair. They are determined by intrinsic (genetic) as well as extrinsic factors from the tumor microenvironment and underlie tumor heterogeneity a hallmark of cancers and a decisive factor in clinical response. Yet, standard cancer treatments are largely based on the flawed assumption that tumors are homogenous within and between patients. We hypothesized that NOTCH signaling and tumor hypoxia cause tumor heterogeneity and are tumor selective therapeutic targets. First we will study key biological mechanisms that determine intra tumor heterogeneity, second we will establish their role in therapy response and third we will exploit this knowledge to enhance radiotherapy and provide proof of concept of a highly innovative approach to selectively activate cancer therapeutics targeting the NOTCH stem cell pathway in therapy resistant tumor cells without adverse effects in normal tissues.
DIRECT interrogates the molecular details of key cancer therapy response parameters providing opportunities for the next generation of tumor cell specific treatments that improve disease outcome."
Max ERC Funding
1 830 510 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym EMBRYOandLATERHEALTH
Project Embryonic origins of cardiovascular health in later life: disentangling early causal pathways in a lifecourse perspective
Researcher (PI) Vincent Wilfred Vishal-Kapoor Jaddoe
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary Children born preterm or with a small size at birth have increased risks of cardiovascular disease and type 2 diabetes in adulthood. These intriguing associations strongly suggest that common diseases have at least part of their origins in early fetal life. From both an etiological and preventive perspective, it is important to disentangle the early fetal critical periods and causal pathways. An accumulating body of evidence suggests that early pregnancy, or even the preconception period, may influence the risk of cardiovascular and metabolic disease throughout the lifecourse. The main hypothesis for this project is that adverse exposures before or very early in pregnancy induce embryonic and placental developmental adaptations, which permanently affect cardiovascular and metabolic development and predispose individuals to both adverse outcomes at birth and cardiovascular and metabolic dysfunction and diseases in later life. I will use an integrated epidemiological, molecular and clinical full lifecourse approach from preconception to adulthood embedded in three population-based cohort studies. Innovative element are: 1) focus on developmental adaptations during the embryonic phase and early placentation assessed by advanced imaging studies at 6, 8, 10 and 12 weeks of gestation; (2) detailed cardiovascular and metabolic studies in infancy and late childhood, including 3T MRI of the heart, aorta, liver and abdomen, metabolomics analyses; and (3) genome-wide DNA-methylation studies to identify specific DNA-methylation changes related to preconception or early pregnancy exposures, which persist in late childhood and adulthood and are associated with cardiovascular and metabolic outcomes in later life. With these approaches, this project will provide unique and important new perspectives into the earliest origins of cardiovascular disease and type 2 diabetes and will ultimately contribute to development of preventive strategies focused on future parents and children.
Summary
Children born preterm or with a small size at birth have increased risks of cardiovascular disease and type 2 diabetes in adulthood. These intriguing associations strongly suggest that common diseases have at least part of their origins in early fetal life. From both an etiological and preventive perspective, it is important to disentangle the early fetal critical periods and causal pathways. An accumulating body of evidence suggests that early pregnancy, or even the preconception period, may influence the risk of cardiovascular and metabolic disease throughout the lifecourse. The main hypothesis for this project is that adverse exposures before or very early in pregnancy induce embryonic and placental developmental adaptations, which permanently affect cardiovascular and metabolic development and predispose individuals to both adverse outcomes at birth and cardiovascular and metabolic dysfunction and diseases in later life. I will use an integrated epidemiological, molecular and clinical full lifecourse approach from preconception to adulthood embedded in three population-based cohort studies. Innovative element are: 1) focus on developmental adaptations during the embryonic phase and early placentation assessed by advanced imaging studies at 6, 8, 10 and 12 weeks of gestation; (2) detailed cardiovascular and metabolic studies in infancy and late childhood, including 3T MRI of the heart, aorta, liver and abdomen, metabolomics analyses; and (3) genome-wide DNA-methylation studies to identify specific DNA-methylation changes related to preconception or early pregnancy exposures, which persist in late childhood and adulthood and are associated with cardiovascular and metabolic outcomes in later life. With these approaches, this project will provide unique and important new perspectives into the earliest origins of cardiovascular disease and type 2 diabetes and will ultimately contribute to development of preventive strategies focused on future parents and children.
Max ERC Funding
1 969 586 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym InflaMet
Project Mechanistic insights into the impact of tumor-associated neutrophils on metastatic breast cancer
Researcher (PI) Karina Elizabeth De Visser
Host Institution (HI) STICHTING HET NEDERLANDS KANKER INSTITUUT-ANTONI VAN LEEUWENHOEK ZIEKENHUIS
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary Metastatic disease is still largely unexplored, poorly understood and incurable. Accumulating evidence indicates that cells and mediators of the immune system can facilitate metastasis. Neutrophil accumulation in cancer patients has been associated with metastasis formation. In mouse tumor models, neutrophils have been reported to be pro- or anti- metastatic, but the underlying mechanisms involved in either function remain largely elusive. This proposal outlines a research program aimed at resolving the pro-metastatic role of neutrophils in breast cancer, as our preliminary data indicate that neutrophils proactively mediate breast cancer metastasis. Using a state-of-the art spontaneous breast cancer metastasis mouse model, we will mechanistically study how neutrophils facilitate metastasis formation and how mammary tumors provoke the metastasis-facilitating function of neutrophils. Building upon my previous studies and our current data, we will focus on the unexplored crosstalk between the adaptive immune system and neutrophils in facilitating spontaneous metastatic disease. These crucial questions will be addressed by undertaking a multidisciplinary approach, involving sophisticated mouse models for metastatic breast cancer, RNA sequencing on tumor-associated neutrophil populations, state-of-the-art mouse engineering, intravital imaging and in vivo neutrophil manipulations. Moreover, we will validate our findings from the mouse metastasis model in human breast cancer samples. We will determine the metastasis predicting power of the identified murine pro-metastatic neutrophil-specific pathways by immunohistochemistry and multi-parameter immunofluorescence on breast cancer samples and blood of untreated patients of which clinical follow-up is available. Thus, we will identify novel molecular pathways that can be targeted to selectively inhibit the pro-metastatic activity of the immune system.
Summary
Metastatic disease is still largely unexplored, poorly understood and incurable. Accumulating evidence indicates that cells and mediators of the immune system can facilitate metastasis. Neutrophil accumulation in cancer patients has been associated with metastasis formation. In mouse tumor models, neutrophils have been reported to be pro- or anti- metastatic, but the underlying mechanisms involved in either function remain largely elusive. This proposal outlines a research program aimed at resolving the pro-metastatic role of neutrophils in breast cancer, as our preliminary data indicate that neutrophils proactively mediate breast cancer metastasis. Using a state-of-the art spontaneous breast cancer metastasis mouse model, we will mechanistically study how neutrophils facilitate metastasis formation and how mammary tumors provoke the metastasis-facilitating function of neutrophils. Building upon my previous studies and our current data, we will focus on the unexplored crosstalk between the adaptive immune system and neutrophils in facilitating spontaneous metastatic disease. These crucial questions will be addressed by undertaking a multidisciplinary approach, involving sophisticated mouse models for metastatic breast cancer, RNA sequencing on tumor-associated neutrophil populations, state-of-the-art mouse engineering, intravital imaging and in vivo neutrophil manipulations. Moreover, we will validate our findings from the mouse metastasis model in human breast cancer samples. We will determine the metastasis predicting power of the identified murine pro-metastatic neutrophil-specific pathways by immunohistochemistry and multi-parameter immunofluorescence on breast cancer samples and blood of untreated patients of which clinical follow-up is available. Thus, we will identify novel molecular pathways that can be targeted to selectively inhibit the pro-metastatic activity of the immune system.
Max ERC Funding
1 999 360 €
Duration
Start date: 2014-03-01, End date: 2019-02-28