Project acronym ACB
Project The Analytic Conformal Bootstrap
Researcher (PI) Luis Fernando ALDAY
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Summary
The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Max ERC Funding
2 171 483 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym ATMNUCLE
Project Atmospheric nucleation: from molecular to global scale
Researcher (PI) Markku Tapio Kulmala
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), PE10, ERC-2008-AdG
Summary Atmospheric aerosol particles and trace gases affect the quality of our life in many ways (e.g. health effects, changes in climate and hydrological cycle). Trace gases and atmospheric aerosols are tightly connected via physical, chemical, meteorological and biological processes occurring in the atmosphere and at the atmosphere-biosphere interface. One important phenomenon is atmospheric aerosol formation, which involves the production of nanometer-size particles by nucleation and their growth to detectable sizes. The main scientific objectives of this project are 1) to quantify the mechanisms responsible for atmospheric new particle formation and 2) to find out how important this process is for the behaviour of the global aerosol system and, ultimately, for the whole climate system. Our scientific plan is designed as a research chain that aims to advance our understanding of climate and air quality through a series of connected activities. We start from molecular simulations and laboratory measurements to understand nucleation and aerosol thermodynamic processes. We measure nanoparticles and atmospheric clusters at 15-20 sites all around the world using state of the art instrumentation and study feedbacks and interactions between climate and biosphere. With these atmospheric boundary layer studies we form a link to regional-scale processes and further to global-scale phenomena. In order to be able to simulate global climate and air quality, the most recent progress on this chain of processes must be compiled, integrated and implemented in Climate Change and Air Quality numerical models via novel parameterizations.
Summary
Atmospheric aerosol particles and trace gases affect the quality of our life in many ways (e.g. health effects, changes in climate and hydrological cycle). Trace gases and atmospheric aerosols are tightly connected via physical, chemical, meteorological and biological processes occurring in the atmosphere and at the atmosphere-biosphere interface. One important phenomenon is atmospheric aerosol formation, which involves the production of nanometer-size particles by nucleation and their growth to detectable sizes. The main scientific objectives of this project are 1) to quantify the mechanisms responsible for atmospheric new particle formation and 2) to find out how important this process is for the behaviour of the global aerosol system and, ultimately, for the whole climate system. Our scientific plan is designed as a research chain that aims to advance our understanding of climate and air quality through a series of connected activities. We start from molecular simulations and laboratory measurements to understand nucleation and aerosol thermodynamic processes. We measure nanoparticles and atmospheric clusters at 15-20 sites all around the world using state of the art instrumentation and study feedbacks and interactions between climate and biosphere. With these atmospheric boundary layer studies we form a link to regional-scale processes and further to global-scale phenomena. In order to be able to simulate global climate and air quality, the most recent progress on this chain of processes must be compiled, integrated and implemented in Climate Change and Air Quality numerical models via novel parameterizations.
Max ERC Funding
2 000 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym CHAOS-PIQUANT
Project Universality and chaos in PT-symmetric quantum systems
Researcher (PI) Eva-Maria GRAEFE
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE2, ERC-2017-STG
Summary The world of our daily experiences, described by classical physics, is built out of fundamental particles, governed by the laws of quantum mechanics. The striking difference between quantum and classical behaviour becomes most apparent in the realm of chaos, an extreme sensitivity to initial conditions, which is common in classical systems but impossible under quantum laws. The investigation of characteristic features of quantum systems whose classical counterparts are chaotic has illuminated foundational problems and led to a variety of technological applications. Traditional quantum theory focuses on the description of closed systems without losses. Every realistic system, however, contains unwanted losses and dissipation, but the idea to engineer them to generate desirable effects has recently come into the focus of scientific attention. The surprising properties of quantum systems with balanced gain and loss (PT-symmetric systems) have sparked much interest. The first experiments on PT-symmetry in optics have been identified as one of the top ten physics discoveries of the past decade in Nature Physics. New experimental areas are rapidly emerging. Our understanding of PT-symmetric quantum systems, however, is still limited. One major shortcoming is that the emergence of chaos and universality in these systems is hitherto nearly unexplored. I propose to investigate PT-symmetric quantum chaos to establish this new research area and overturn some common perceptions in the existing fields of PT-symmetry and quantum chaos. Ultimately this will lead to new experimental applications and quantum technologies. Building on recent conceptual breakthroughs I have made, I will a) identify spectral and dynamical features of chaos in PT-symmetric quantum systems, b) establish new universality classes, c) provide powerful semiclassical tools for the simulation of generic quantum systems, and d) facilitate experimental applications in microwave cavities and cold atoms.
Summary
The world of our daily experiences, described by classical physics, is built out of fundamental particles, governed by the laws of quantum mechanics. The striking difference between quantum and classical behaviour becomes most apparent in the realm of chaos, an extreme sensitivity to initial conditions, which is common in classical systems but impossible under quantum laws. The investigation of characteristic features of quantum systems whose classical counterparts are chaotic has illuminated foundational problems and led to a variety of technological applications. Traditional quantum theory focuses on the description of closed systems without losses. Every realistic system, however, contains unwanted losses and dissipation, but the idea to engineer them to generate desirable effects has recently come into the focus of scientific attention. The surprising properties of quantum systems with balanced gain and loss (PT-symmetric systems) have sparked much interest. The first experiments on PT-symmetry in optics have been identified as one of the top ten physics discoveries of the past decade in Nature Physics. New experimental areas are rapidly emerging. Our understanding of PT-symmetric quantum systems, however, is still limited. One major shortcoming is that the emergence of chaos and universality in these systems is hitherto nearly unexplored. I propose to investigate PT-symmetric quantum chaos to establish this new research area and overturn some common perceptions in the existing fields of PT-symmetry and quantum chaos. Ultimately this will lead to new experimental applications and quantum technologies. Building on recent conceptual breakthroughs I have made, I will a) identify spectral and dynamical features of chaos in PT-symmetric quantum systems, b) establish new universality classes, c) provide powerful semiclassical tools for the simulation of generic quantum systems, and d) facilitate experimental applications in microwave cavities and cold atoms.
Max ERC Funding
1 293 023 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym CounterLIGHT
Project Interaction and Symmetry Breaking of Counterpropagating Light
Researcher (PI) Pascal Del Haye
Host Institution (HI) NPL MANAGEMENT LIMITED
Call Details Starting Grant (StG), PE2, ERC-2017-STG
Summary Light is generally expected to travel through media independent of its direction. Exceptions can be achieved eg. through polarization changes induced by magnetic fields (known as the Faraday effect) together with polarization-sensitive birefringent materials. However, light can also be influenced by the presence of a counterpropagating light wave. We have recently shown that this leads to the surprising consequence that light sent into tiny glass rings (microresonators) can only propagate in one direction, clockwise or counterclockwise, but not in both directions simultaneously. When sending exactly the same state of light (same power and polarization) into a microresonator, nonlinear interaction induces a spontaneous symmetry breaking in the propagation of light. In this proposal we plan to investigate the fundamental physics and a variety of ground-breaking applications of this effect. In one proposed application, this effect will be used for optical nonreciprocity and the realization of optical diodes in integrated photonic circuits that do not rely on magnetic fields (an important key element in integrated photonics). In another proposed experiment we plan to use the spontaneous symmetry breaking to demonstrate microresonator-based optical gyroscopes that have the potential to beat state-of-the-art sensors in both size and sensitivity. Additional research projects include experiments with all-optical logic gates, photonic memories, and near field sensors based on counterpropagating light states. Finally, we plan to demonstrate a microresonator-based system for the generation of dual-optical frequency combs that can be used for real-time precision spectroscopy in future lab-on-a-chip applications. On the fundamental physics side, our experiments investigate the interaction of counterpropagating light in a system with periodic boundary conditions. The fundamental nature of this system has the potential to impact other fields of science far beyond optical physics.
Summary
Light is generally expected to travel through media independent of its direction. Exceptions can be achieved eg. through polarization changes induced by magnetic fields (known as the Faraday effect) together with polarization-sensitive birefringent materials. However, light can also be influenced by the presence of a counterpropagating light wave. We have recently shown that this leads to the surprising consequence that light sent into tiny glass rings (microresonators) can only propagate in one direction, clockwise or counterclockwise, but not in both directions simultaneously. When sending exactly the same state of light (same power and polarization) into a microresonator, nonlinear interaction induces a spontaneous symmetry breaking in the propagation of light. In this proposal we plan to investigate the fundamental physics and a variety of ground-breaking applications of this effect. In one proposed application, this effect will be used for optical nonreciprocity and the realization of optical diodes in integrated photonic circuits that do not rely on magnetic fields (an important key element in integrated photonics). In another proposed experiment we plan to use the spontaneous symmetry breaking to demonstrate microresonator-based optical gyroscopes that have the potential to beat state-of-the-art sensors in both size and sensitivity. Additional research projects include experiments with all-optical logic gates, photonic memories, and near field sensors based on counterpropagating light states. Finally, we plan to demonstrate a microresonator-based system for the generation of dual-optical frequency combs that can be used for real-time precision spectroscopy in future lab-on-a-chip applications. On the fundamental physics side, our experiments investigate the interaction of counterpropagating light in a system with periodic boundary conditions. The fundamental nature of this system has the potential to impact other fields of science far beyond optical physics.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym Couplet
Project Transient climate change in the coupled atmosphere--ocean system
Researcher (PI) Jonathan GREGORY
Host Institution (HI) THE UNIVERSITY OF READING
Call Details Advanced Grant (AdG), PE10, ERC-2017-ADG
Summary The magnitude and impacts of many aspects of projected climate change due to anthropogenic emissions of greenhouse gases are expected to be greater for larger global mean surface temperature change. Although climate models have hugely improved, knowledge has grown and confidence increased, the climate feedback parameter, which determines the amount of global warming that results at equilibrium for a given radiative forcing (the heating due to greenhouse gases and other agents) is still very uncertain; for example, the range of equilibrium warming for a CO2 concentration of twice the pre-industrial level is 1.5-4.5 K, the same as estimated 25 years ago. It is widely assumed that we can evaluate the climate feedback parameter from the observed past or from an idealised model experiment with increased CO2, then use it to estimate global warming for future scenarios. However, research has revealed that, as well as being uncertain, the climate feedback parameter is not constant; it depends on the nature and magnitude of the forcing agent, it changes over time under constant forcing, it does not apply equally to spontaneous unforced climate variability, and it is not the same in the historical record and projections. The hypothesis of this project is that these reflect inadequacies of the global energy balance framework, which relates radiative forcing, climate feedback and ocean heat uptake to transient climate change. The objectives are therefore to develop a new framework for describing the variations of the coupled atmosphere--ocean climate system, by taking into account the relationships between the geographical patterns of change and its time-development in analyses of simulated and observed climate change, and to apply this framework to the analysis of historical climate change, in order to set refined constraints on the processes, pattern and magnitude of future CO2-forced climate change.
Summary
The magnitude and impacts of many aspects of projected climate change due to anthropogenic emissions of greenhouse gases are expected to be greater for larger global mean surface temperature change. Although climate models have hugely improved, knowledge has grown and confidence increased, the climate feedback parameter, which determines the amount of global warming that results at equilibrium for a given radiative forcing (the heating due to greenhouse gases and other agents) is still very uncertain; for example, the range of equilibrium warming for a CO2 concentration of twice the pre-industrial level is 1.5-4.5 K, the same as estimated 25 years ago. It is widely assumed that we can evaluate the climate feedback parameter from the observed past or from an idealised model experiment with increased CO2, then use it to estimate global warming for future scenarios. However, research has revealed that, as well as being uncertain, the climate feedback parameter is not constant; it depends on the nature and magnitude of the forcing agent, it changes over time under constant forcing, it does not apply equally to spontaneous unforced climate variability, and it is not the same in the historical record and projections. The hypothesis of this project is that these reflect inadequacies of the global energy balance framework, which relates radiative forcing, climate feedback and ocean heat uptake to transient climate change. The objectives are therefore to develop a new framework for describing the variations of the coupled atmosphere--ocean climate system, by taking into account the relationships between the geographical patterns of change and its time-development in analyses of simulated and observed climate change, and to apply this framework to the analysis of historical climate change, in order to set refined constraints on the processes, pattern and magnitude of future CO2-forced climate change.
Max ERC Funding
2 127 711 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym DECAF
Project Deforestation – Climate –Atmospheric composition – Fire interactions and feedbacks
Researcher (PI) Dominick SPRACKLEN
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Consolidator Grant (CoG), PE10, ERC-2017-COG
Summary Extensive and ongoing tropical deforestation and degradation have important environmental impacts. Smoke aerosol from deforestation fires degrades air quality, but the effects are poorly quantified. Deforestation alters rainfall through changes in the land surface and through changes to atmospheric aerosol. The magnitude and the sign of the rainfall response is not clear, because of poor process-level understanding and because previous attempts have studied land surface and aerosol responses separately. The impacts of deforestation on atmospheric composition and climate cause a complex set of biosphere interactions resulting in potential Earth system feedbacks. These feedbacks have not yet been quantified and so their importance is not known. The full impact of deforestation on air quality, climate and the Earth System may have been underestimated because there have been no integrated studies of the combined interactions and feedbacks between deforestation and the Earth system. DECAF is the first integrated study of the combined interactions and feedbacks between tropical deforestation, fire, atmospheric composition and climate. To address this important challenge, DECAF will exploit new information from in-situ and satellite observations in combination with state-of-the-art numerical models. DECAF will deliver improved process-level knowledge of the impacts of deforestation on atmospheric composition and climate and a step change in our understanding of the interactions and feedbacks between deforestation, atmospheric composition and climate. New understanding will inform the development of climate and Earth System Models and will facilitate new climate and Earth system assessments.
Summary
Extensive and ongoing tropical deforestation and degradation have important environmental impacts. Smoke aerosol from deforestation fires degrades air quality, but the effects are poorly quantified. Deforestation alters rainfall through changes in the land surface and through changes to atmospheric aerosol. The magnitude and the sign of the rainfall response is not clear, because of poor process-level understanding and because previous attempts have studied land surface and aerosol responses separately. The impacts of deforestation on atmospheric composition and climate cause a complex set of biosphere interactions resulting in potential Earth system feedbacks. These feedbacks have not yet been quantified and so their importance is not known. The full impact of deforestation on air quality, climate and the Earth System may have been underestimated because there have been no integrated studies of the combined interactions and feedbacks between deforestation and the Earth system. DECAF is the first integrated study of the combined interactions and feedbacks between tropical deforestation, fire, atmospheric composition and climate. To address this important challenge, DECAF will exploit new information from in-situ and satellite observations in combination with state-of-the-art numerical models. DECAF will deliver improved process-level knowledge of the impacts of deforestation on atmospheric composition and climate and a step change in our understanding of the interactions and feedbacks between deforestation, atmospheric composition and climate. New understanding will inform the development of climate and Earth System Models and will facilitate new climate and Earth system assessments.
Max ERC Funding
1 965 623 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym FLEET
Project Flying Electromagnetic Toroids
Researcher (PI) Nikolay ZHELUDEV
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary In this project I will study the generation, detection, and interaction with matter of Flying Toroids, a new type of light pulses never experimentally studied before. This represents an exciting opportunity to advance optics and electromagnetism in a radically new direction since Hertz, Marconi, Popov and Tesla developed technology for generating, detecting, and communicating with transverse electromagnetic waves.
Conventional transverse electromagnetic waves propagate in free-space with the electric and magnetic field vectors perpendicular to the wave propagation direction, forming the famous triad. Theoretical analysis of recent years has shown that another, very different type of waves exists, which propagate at the speed of light, but only occur as short bursts of electromagnetic energy in the form of Flying Toroids. Flying Toroids are inseparable solutions of Maxwell equations with a unique, doughnut-like configuration of the electric and magnetic fields. Flying Toroids interact with matter in unique ways, drastically different from that of conventional electromagnetic pulses.
In a broader context, the electrodynamics of Flying Toroids is an exciting emerging field of optical science linked to intriguing recent developments in physics such as toroidal dipoles and anapoles, and, due to their topology, to Majorana fermions and skyrmions.
Building on my recent proof-of-principle demonstration of Flying Toroid generation through conversion of few-cycle conventional transverse light pulses in artificial photonic nanostructures, my goal for this project is to experimentally study and understand the fundamental properties of Flying Toroids and their interaction with matter at optical frequencies, and to assess their potential for developing new technologies. In my vision this project can lead to spectacular new opportunities for spectroscopic and light-enabled applications, and will impact on other branches of science, from astronomy to solid-state physics.
Summary
In this project I will study the generation, detection, and interaction with matter of Flying Toroids, a new type of light pulses never experimentally studied before. This represents an exciting opportunity to advance optics and electromagnetism in a radically new direction since Hertz, Marconi, Popov and Tesla developed technology for generating, detecting, and communicating with transverse electromagnetic waves.
Conventional transverse electromagnetic waves propagate in free-space with the electric and magnetic field vectors perpendicular to the wave propagation direction, forming the famous triad. Theoretical analysis of recent years has shown that another, very different type of waves exists, which propagate at the speed of light, but only occur as short bursts of electromagnetic energy in the form of Flying Toroids. Flying Toroids are inseparable solutions of Maxwell equations with a unique, doughnut-like configuration of the electric and magnetic fields. Flying Toroids interact with matter in unique ways, drastically different from that of conventional electromagnetic pulses.
In a broader context, the electrodynamics of Flying Toroids is an exciting emerging field of optical science linked to intriguing recent developments in physics such as toroidal dipoles and anapoles, and, due to their topology, to Majorana fermions and skyrmions.
Building on my recent proof-of-principle demonstration of Flying Toroid generation through conversion of few-cycle conventional transverse light pulses in artificial photonic nanostructures, my goal for this project is to experimentally study and understand the fundamental properties of Flying Toroids and their interaction with matter at optical frequencies, and to assess their potential for developing new technologies. In my vision this project can lead to spectacular new opportunities for spectroscopic and light-enabled applications, and will impact on other branches of science, from astronomy to solid-state physics.
Max ERC Funding
2 570 198 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym FODEX
Project Tropical Forest Degradation Experiment
Researcher (PI) Edward MITCHARD
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary We know how to map tropical forest biomass using an array of satellite and aircraft sensors with reasonable accuracy (±15-40 %). However, we do not know how to map biomass change. Simply differencing existing biomass maps produces noisy and biased results, with confidence intervals unknowable using existing static field plots. Thus the potential for using plentiful free satellite data for biomass change mapping is being wasted.
To solve this I propose setting up the first experimental arrays of biomass change plots. In total 52 large plots will be located in logging concessions in Gabon and Peru, where biomass will be assessed before and after logging, and during recovery. In addition to traditional field inventory, terrestrial laser scanning (TLS) data will give the precise 3D shape of thousands of trees before and after disturbance, allowing biomass change to be estimated without bias. The project’s unmanned aerial vehicle (UAV) will collect LiDAR data 4 times over each concession over 4 years, scaling up the field data to give thousands of hectares of biomass change data. In tandem, data from all potentially useful satellites (17+) flying over the field sites over the study period will be ordered and processed.
These data will enable the development of new methods for mapping carbon stock changes, with known uncertainty, which I will scale up across the Amazon basin and west/central Africa. For the first time we will have the methods to assess the balance of regrowth and anthropogenic disturbance across tropical forests, informing us about the status and resilience of the land surface carbon sink. As well as of scientific interest, these results are urgently needed for forest conservation: the Paris Agreement relies on paying countries to reduce losses and enhance gains in forest carbon stocks, but we do not currently have the tools to map forest carbon stock changes. Without accurate monitoring it is not possible to target resources nor assess success.
Summary
We know how to map tropical forest biomass using an array of satellite and aircraft sensors with reasonable accuracy (±15-40 %). However, we do not know how to map biomass change. Simply differencing existing biomass maps produces noisy and biased results, with confidence intervals unknowable using existing static field plots. Thus the potential for using plentiful free satellite data for biomass change mapping is being wasted.
To solve this I propose setting up the first experimental arrays of biomass change plots. In total 52 large plots will be located in logging concessions in Gabon and Peru, where biomass will be assessed before and after logging, and during recovery. In addition to traditional field inventory, terrestrial laser scanning (TLS) data will give the precise 3D shape of thousands of trees before and after disturbance, allowing biomass change to be estimated without bias. The project’s unmanned aerial vehicle (UAV) will collect LiDAR data 4 times over each concession over 4 years, scaling up the field data to give thousands of hectares of biomass change data. In tandem, data from all potentially useful satellites (17+) flying over the field sites over the study period will be ordered and processed.
These data will enable the development of new methods for mapping carbon stock changes, with known uncertainty, which I will scale up across the Amazon basin and west/central Africa. For the first time we will have the methods to assess the balance of regrowth and anthropogenic disturbance across tropical forests, informing us about the status and resilience of the land surface carbon sink. As well as of scientific interest, these results are urgently needed for forest conservation: the Paris Agreement relies on paying countries to reduce losses and enhance gains in forest carbon stocks, but we do not currently have the tools to map forest carbon stock changes. Without accurate monitoring it is not possible to target resources nor assess success.
Max ERC Funding
1 942 471 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym ISLAS
Project Isotopic links to atmopheric water's sources
Researcher (PI) Harald SODEMANN
Host Institution (HI) UNIVERSITETET I BERGEN
Call Details Consolidator Grant (CoG), PE10, ERC-2017-COG
Summary The hydrological cycle, with its feedbacks related to water vapour and clouds, is the largest source of uncertainty in weather prediction and climate models. Particularly processes that occur on scales smaller than the model grid lead to errors, which can compensate one another, making them difficult to detect and correct for. Undetectable compensating errors critically limit the understanding of hydrological extremes, the response of the water cycle to a changing climate, and the interpretation of paleoclimate records. Stable water isotopes have a unique potential to serve as the needed constraints, as they provide measures of moisture origin and of the phase change history. We have recently spearheaded a revised view of the atmospheric water cycle, which highlights the importance of connections on a regional scale. This implies that in some areas, all relevant processes can be studied on a regional scale. The Nordic Seas are an ideal case of such a natural laboratory, with distinct evaporation events, shallow transport processes, and swift precipitation formation. Together with recent technological advances in isotope measurements and in-situ sample collection, this will allow us to acquire a new kind of observational data set that will follow the history of water vapour from source to sink. The high-resolution, high-precision isotope data will provide a combined view of established and novel natural isotopic source tracers and set new benchmarks for climate models. A unique palette of sophisticated model tools will allow us to decipher, synthesize and exploit these observations, and to identify compensating errors between water cycle processes in models. In ISLAS, my team and I will thus make unprecedented use of stable isotopes to provide the sought-after constraints for an improved understanding of the hydrological cycle in nature and in climate models, leading towards improved predictions of future climate.
Summary
The hydrological cycle, with its feedbacks related to water vapour and clouds, is the largest source of uncertainty in weather prediction and climate models. Particularly processes that occur on scales smaller than the model grid lead to errors, which can compensate one another, making them difficult to detect and correct for. Undetectable compensating errors critically limit the understanding of hydrological extremes, the response of the water cycle to a changing climate, and the interpretation of paleoclimate records. Stable water isotopes have a unique potential to serve as the needed constraints, as they provide measures of moisture origin and of the phase change history. We have recently spearheaded a revised view of the atmospheric water cycle, which highlights the importance of connections on a regional scale. This implies that in some areas, all relevant processes can be studied on a regional scale. The Nordic Seas are an ideal case of such a natural laboratory, with distinct evaporation events, shallow transport processes, and swift precipitation formation. Together with recent technological advances in isotope measurements and in-situ sample collection, this will allow us to acquire a new kind of observational data set that will follow the history of water vapour from source to sink. The high-resolution, high-precision isotope data will provide a combined view of established and novel natural isotopic source tracers and set new benchmarks for climate models. A unique palette of sophisticated model tools will allow us to decipher, synthesize and exploit these observations, and to identify compensating errors between water cycle processes in models. In ISLAS, my team and I will thus make unprecedented use of stable isotopes to provide the sought-after constraints for an improved understanding of the hydrological cycle in nature and in climate models, leading towards improved predictions of future climate.
Max ERC Funding
1 999 054 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym ISOBOREAL
Project Towards Understanding the Impact of Climate Change on Eurasian Boreal Forests: a Novel Stable Isotope Approach
Researcher (PI) Katja Teresa RINNE-GARMSTON
Host Institution (HI) LUONNONVARAKESKUS
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary The vast boreal forests play a critical role in the carbon cycle. As a consequence of increasing temperature and atmospheric CO2, forest growth and subsequently carbon sequestration may be strongly affected. It is thus crucial to understand and predict the consequences of climate change on these ecosystems. Stable isotope analysis of tree rings represents a versatile archive where the effects of environmental changes are recorded. The main goal of the project is to obtain a better understanding of δ13C and δ18O in tree rings that can be used to infer the response of forests to climate change. The goal is achieved by a detailed analysis of the incorporation and fractionation of isotopes in trees using four novel methods: (1) We will measure compound-specific δ13C and δ18O of leaf sugars and (2) combine these with intra-annual δ13C and δ18O analysis of tree rings. The approaches are enabled by methodological developments made by me and ISOBOREAL collaborators (Rinne et al. 2012, Lehmann et al. 2016, Loader et al. in prep.). Our aim is to determine δ13C and δ18O dynamics of individual sugars in response to climatic and physiological factors, and to define how these signals are altered before being stored in tree rings. The improved mechanistic understanding will be applied on tree ring isotope chronologies to infer the response of the studied forests to climate change. (3) The fact that δ18O in tree rings is a mixture of source and leaf water signals is a major problem for its application on climate studies. To solve this we aim to separate the two signals using position-specific δ18O analysis on tree ring cellulose for the first time, which we will achieve by developing novel methods. (4) We will for the first time link the climate signal both in leaf sugars and annual rings with measured ecosystem exchange of greenhouse gases CO2 and H2O using eddy-covariance techniques.
Summary
The vast boreal forests play a critical role in the carbon cycle. As a consequence of increasing temperature and atmospheric CO2, forest growth and subsequently carbon sequestration may be strongly affected. It is thus crucial to understand and predict the consequences of climate change on these ecosystems. Stable isotope analysis of tree rings represents a versatile archive where the effects of environmental changes are recorded. The main goal of the project is to obtain a better understanding of δ13C and δ18O in tree rings that can be used to infer the response of forests to climate change. The goal is achieved by a detailed analysis of the incorporation and fractionation of isotopes in trees using four novel methods: (1) We will measure compound-specific δ13C and δ18O of leaf sugars and (2) combine these with intra-annual δ13C and δ18O analysis of tree rings. The approaches are enabled by methodological developments made by me and ISOBOREAL collaborators (Rinne et al. 2012, Lehmann et al. 2016, Loader et al. in prep.). Our aim is to determine δ13C and δ18O dynamics of individual sugars in response to climatic and physiological factors, and to define how these signals are altered before being stored in tree rings. The improved mechanistic understanding will be applied on tree ring isotope chronologies to infer the response of the studied forests to climate change. (3) The fact that δ18O in tree rings is a mixture of source and leaf water signals is a major problem for its application on climate studies. To solve this we aim to separate the two signals using position-specific δ18O analysis on tree ring cellulose for the first time, which we will achieve by developing novel methods. (4) We will for the first time link the climate signal both in leaf sugars and annual rings with measured ecosystem exchange of greenhouse gases CO2 and H2O using eddy-covariance techniques.
Max ERC Funding
1 814 610 €
Duration
Start date: 2018-01-01, End date: 2022-12-31