Project acronym 3D-OA-HISTO
Project Development of 3D Histopathological Grading of Osteoarthritis
Researcher (PI) Simo Jaakko Saarakkala
Host Institution (HI) OULUN YLIOPISTO
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary "Background: Osteoarthritis (OA) is a common musculoskeletal disease occurring worldwide. Despite extensive research, etiology of OA is still poorly understood. Histopathological grading (HPG) of 2D tissue sections is the gold standard reference method for determination of OA stage. However, traditional 2D-HPG is destructive and based only on subjective visual evaluation. These limitations induce bias to clinical in vitro OA diagnostics and basic research that both rely strongly on HPG.
Objectives: 1) To establish and validate the very first 3D-HPG of OA based on cutting-edge nano/micro-CT (Computed Tomography) technologies in vitro; 2) To use the established method to clarify the beginning phases of OA; and 3) To validate 3D-HPG of OA for in vivo use.
Methods: Several hundreds of human osteochondral samples from patients undergoing total knee arthroplasty will be collected. The samples will be imaged in vitro with nano/micro-CT and clinical high-end extremity CT devices using specific contrast-agents to quantify tissue constituents and structure in 3D in large volume. From this information, a novel 3D-HPG is developed with statistical classification algorithms. Finally, the developed novel 3D-HPG of OA will be applied clinically in vivo.
Significance: This is the very first study to establish 3D-HPG of OA pathology in vitro and in vivo. Furthermore, the developed technique hugely improves the understanding of the beginning phases of OA. Ultimately, the study will contribute for improving OA patients’ quality of life by slowing the disease progression, and for providing powerful tools to develop new OA therapies."
Summary
"Background: Osteoarthritis (OA) is a common musculoskeletal disease occurring worldwide. Despite extensive research, etiology of OA is still poorly understood. Histopathological grading (HPG) of 2D tissue sections is the gold standard reference method for determination of OA stage. However, traditional 2D-HPG is destructive and based only on subjective visual evaluation. These limitations induce bias to clinical in vitro OA diagnostics and basic research that both rely strongly on HPG.
Objectives: 1) To establish and validate the very first 3D-HPG of OA based on cutting-edge nano/micro-CT (Computed Tomography) technologies in vitro; 2) To use the established method to clarify the beginning phases of OA; and 3) To validate 3D-HPG of OA for in vivo use.
Methods: Several hundreds of human osteochondral samples from patients undergoing total knee arthroplasty will be collected. The samples will be imaged in vitro with nano/micro-CT and clinical high-end extremity CT devices using specific contrast-agents to quantify tissue constituents and structure in 3D in large volume. From this information, a novel 3D-HPG is developed with statistical classification algorithms. Finally, the developed novel 3D-HPG of OA will be applied clinically in vivo.
Significance: This is the very first study to establish 3D-HPG of OA pathology in vitro and in vivo. Furthermore, the developed technique hugely improves the understanding of the beginning phases of OA. Ultimately, the study will contribute for improving OA patients’ quality of life by slowing the disease progression, and for providing powerful tools to develop new OA therapies."
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AGENSI
Project A Genetic View into Past Sea Ice Variability in the Arctic
Researcher (PI) Stijn DE SCHEPPER
Host Institution (HI) NORCE NORWEGIAN RESEARCH CENTRE AS
Call Details Consolidator Grant (CoG), PE10, ERC-2018-COG
Summary Arctic sea ice decline is the exponent of the rapidly transforming Arctic climate. The ensuing local and global implications can be understood by studying past climate transitions, yet few methods are available to examine past Arctic sea ice cover, severely restricting our understanding of sea ice in the climate system. The decline in Arctic sea ice cover is a ‘canary in the coalmine’ for the state of our climate, and if greenhouse gas emissions remain unchecked, summer sea ice loss may pass a critical threshold that could drastically transform the Arctic. Because historical observations are limited, it is crucial to have reliable proxies for assessing natural sea ice variability, its stability and sensitivity to climate forcing on different time scales. Current proxies address aspects of sea ice variability, but are limited due to a selective fossil record, preservation effects, regional applicability, or being semi-quantitative. With such restraints on our knowledge about natural variations and drivers, major uncertainties about the future remain.
I propose to develop and apply a novel sea ice proxy that exploits genetic information stored in marine sediments, sedimentary ancient DNA (sedaDNA). This innovation uses the genetic signature of phytoplankton communities from surface waters and sea ice as it gets stored in sediments. This wealth of information has not been explored before for reconstructing sea ice conditions. Preliminary results from my cross-disciplinary team indicate that our unconventional approach can provide a detailed, qualitative account of past sea ice ecosystems and quantitative estimates of sea ice parameters. I will address fundamental questions about past Arctic sea ice variability on different timescales, information essential to provide a framework upon which to assess the ecological and socio-economic consequences of a changing Arctic. This new proxy is not limited to sea ice research and can transform the field of paleoceanography.
Summary
Arctic sea ice decline is the exponent of the rapidly transforming Arctic climate. The ensuing local and global implications can be understood by studying past climate transitions, yet few methods are available to examine past Arctic sea ice cover, severely restricting our understanding of sea ice in the climate system. The decline in Arctic sea ice cover is a ‘canary in the coalmine’ for the state of our climate, and if greenhouse gas emissions remain unchecked, summer sea ice loss may pass a critical threshold that could drastically transform the Arctic. Because historical observations are limited, it is crucial to have reliable proxies for assessing natural sea ice variability, its stability and sensitivity to climate forcing on different time scales. Current proxies address aspects of sea ice variability, but are limited due to a selective fossil record, preservation effects, regional applicability, or being semi-quantitative. With such restraints on our knowledge about natural variations and drivers, major uncertainties about the future remain.
I propose to develop and apply a novel sea ice proxy that exploits genetic information stored in marine sediments, sedimentary ancient DNA (sedaDNA). This innovation uses the genetic signature of phytoplankton communities from surface waters and sea ice as it gets stored in sediments. This wealth of information has not been explored before for reconstructing sea ice conditions. Preliminary results from my cross-disciplinary team indicate that our unconventional approach can provide a detailed, qualitative account of past sea ice ecosystems and quantitative estimates of sea ice parameters. I will address fundamental questions about past Arctic sea ice variability on different timescales, information essential to provide a framework upon which to assess the ecological and socio-economic consequences of a changing Arctic. This new proxy is not limited to sea ice research and can transform the field of paleoceanography.
Max ERC Funding
2 615 858 €
Duration
Start date: 2019-08-01, End date: 2024-07-31
Project acronym AGNES
Project ACTIVE AGEING – RESILIENCE AND EXTERNAL SUPPORT AS MODIFIERS OF THE DISABLEMENT OUTCOME
Researcher (PI) Taina Tuulikki RANTANEN
Host Institution (HI) JYVASKYLAN YLIOPISTO
Call Details Advanced Grant (AdG), SH3, ERC-2015-AdG
Summary The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Summary
The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Max ERC Funding
2 044 364 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ATM-GTP
Project Atmospheric Gas-to-Particle conversion
Researcher (PI) Markku KULMALA
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), PE10, ERC-2016-ADG
Summary Atmospheric Gas-to-Particle conversion (ATM-GTP) is a 5-year project focusing on one of the most critical atmospheric processes relevant to global climate and air quality: the first steps of atmospheric aerosol particle formation and growth. The project will concentrate on the currently lacking environmentally-specific knowledge about the interacting, non-linear, physical and chemical atmospheric processes associated with nano-scale gas-to-particle conversion (GTP). The main scientific objective of ATM-GTP is to create a deep understanding on atmospheric GTP taking place at the sub-5 nm size range, particularly in heavily-polluted Chinese mega cities like Beijing and in pristine environments like Siberia and Nordic high-latitude regions. We also aim to find out how nano-GTM is associated with air quality-climate interactions and feedbacks. We are interested in quantifying the effect of nano-GTP on the COBACC (Continental Biosphere-Aerosol-Cloud-Climate) feedback loop that is important in Arctic and boreal regions. Our approach enables to point out the effective reduction mechanisms of the secondary air pollution by a factor of 5-10 and to make reliable estimates of the global and regional aerosol loads, including anthropogenic and biogenic contributions to these loads. We can estimate the future role of Northern Hemispheric biosphere in reducing the global radiative forcing via the quantified feedbacks. The project is carried out by the world-leading scientist in atmospheric aerosol science, being also one of the founders of terrestrial ecosystem meteorology, together with his research team. The project uses novel infrastructures including SMEAR (Stations Measuring Ecosystem Atmospheric Relations) stations, related modelling platforms and regional data from Russia and China. The work will be carried out in synergy with several national, Nordic and EU research-innovation projects: Finnish Center of Excellence-ATM, Nordic CoE-CRAICC and EU-FP7-BACCHUS.
Summary
Atmospheric Gas-to-Particle conversion (ATM-GTP) is a 5-year project focusing on one of the most critical atmospheric processes relevant to global climate and air quality: the first steps of atmospheric aerosol particle formation and growth. The project will concentrate on the currently lacking environmentally-specific knowledge about the interacting, non-linear, physical and chemical atmospheric processes associated with nano-scale gas-to-particle conversion (GTP). The main scientific objective of ATM-GTP is to create a deep understanding on atmospheric GTP taking place at the sub-5 nm size range, particularly in heavily-polluted Chinese mega cities like Beijing and in pristine environments like Siberia and Nordic high-latitude regions. We also aim to find out how nano-GTM is associated with air quality-climate interactions and feedbacks. We are interested in quantifying the effect of nano-GTP on the COBACC (Continental Biosphere-Aerosol-Cloud-Climate) feedback loop that is important in Arctic and boreal regions. Our approach enables to point out the effective reduction mechanisms of the secondary air pollution by a factor of 5-10 and to make reliable estimates of the global and regional aerosol loads, including anthropogenic and biogenic contributions to these loads. We can estimate the future role of Northern Hemispheric biosphere in reducing the global radiative forcing via the quantified feedbacks. The project is carried out by the world-leading scientist in atmospheric aerosol science, being also one of the founders of terrestrial ecosystem meteorology, together with his research team. The project uses novel infrastructures including SMEAR (Stations Measuring Ecosystem Atmospheric Relations) stations, related modelling platforms and regional data from Russia and China. The work will be carried out in synergy with several national, Nordic and EU research-innovation projects: Finnish Center of Excellence-ATM, Nordic CoE-CRAICC and EU-FP7-BACCHUS.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym ATMNUCLE
Project Atmospheric nucleation: from molecular to global scale
Researcher (PI) Markku Tapio Kulmala
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), PE10, ERC-2008-AdG
Summary Atmospheric aerosol particles and trace gases affect the quality of our life in many ways (e.g. health effects, changes in climate and hydrological cycle). Trace gases and atmospheric aerosols are tightly connected via physical, chemical, meteorological and biological processes occurring in the atmosphere and at the atmosphere-biosphere interface. One important phenomenon is atmospheric aerosol formation, which involves the production of nanometer-size particles by nucleation and their growth to detectable sizes. The main scientific objectives of this project are 1) to quantify the mechanisms responsible for atmospheric new particle formation and 2) to find out how important this process is for the behaviour of the global aerosol system and, ultimately, for the whole climate system. Our scientific plan is designed as a research chain that aims to advance our understanding of climate and air quality through a series of connected activities. We start from molecular simulations and laboratory measurements to understand nucleation and aerosol thermodynamic processes. We measure nanoparticles and atmospheric clusters at 15-20 sites all around the world using state of the art instrumentation and study feedbacks and interactions between climate and biosphere. With these atmospheric boundary layer studies we form a link to regional-scale processes and further to global-scale phenomena. In order to be able to simulate global climate and air quality, the most recent progress on this chain of processes must be compiled, integrated and implemented in Climate Change and Air Quality numerical models via novel parameterizations.
Summary
Atmospheric aerosol particles and trace gases affect the quality of our life in many ways (e.g. health effects, changes in climate and hydrological cycle). Trace gases and atmospheric aerosols are tightly connected via physical, chemical, meteorological and biological processes occurring in the atmosphere and at the atmosphere-biosphere interface. One important phenomenon is atmospheric aerosol formation, which involves the production of nanometer-size particles by nucleation and their growth to detectable sizes. The main scientific objectives of this project are 1) to quantify the mechanisms responsible for atmospheric new particle formation and 2) to find out how important this process is for the behaviour of the global aerosol system and, ultimately, for the whole climate system. Our scientific plan is designed as a research chain that aims to advance our understanding of climate and air quality through a series of connected activities. We start from molecular simulations and laboratory measurements to understand nucleation and aerosol thermodynamic processes. We measure nanoparticles and atmospheric clusters at 15-20 sites all around the world using state of the art instrumentation and study feedbacks and interactions between climate and biosphere. With these atmospheric boundary layer studies we form a link to regional-scale processes and further to global-scale phenomena. In order to be able to simulate global climate and air quality, the most recent progress on this chain of processes must be compiled, integrated and implemented in Climate Change and Air Quality numerical models via novel parameterizations.
Max ERC Funding
2 000 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym BPT
Project BEYOND PLATE TECTONICS
Researcher (PI) Trond Helge Torsvik
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Advanced Grant (AdG), PE10, ERC-2010-AdG_20100224
Summary Plate tectonics characterises the complex and dynamic evolution of the outer shell of the Earth in terms of rigid plates. These tectonic plates overlie and interact with the Earth's mantle, which is slowly convecting owing to energy released by the decay of radioactive nuclides in the Earth's interior. Even though links between mantle convection and plate tectonics are becoming more evident, notably through subsurface tomographic images, advances in mineral physics and improved absolute plate motion reference frames, there is still no generally accepted mechanism that consistently explains plate tectonics and mantle convection in one framework. We will integrate plate tectonics into mantle dynamics and develop a theory that explains plate motions quantitatively and dynamically. This requires consistent and detailed reconstructions of plate motions through time (Objective 1).
A new model of plate kinematics will be linked to the mantle with the aid of a new global reference frame based on moving hotspots and on palaeomagnetic data. The global reference frame will be corrected for true polar wander in order to develop a global plate motion reference frame with respect to the mantle back to Pangea (ca. 320 million years) and possibly Gondwana assembly (ca. 550 million years). The resulting plate reconstructions will constitute the input to subduction models that are meant to test the consistency between the reference frame and subduction histories. The final outcome will be a novel global subduction reference frame, to be used to unravel links between the surface and deep Earth (Objective 2).
Summary
Plate tectonics characterises the complex and dynamic evolution of the outer shell of the Earth in terms of rigid plates. These tectonic plates overlie and interact with the Earth's mantle, which is slowly convecting owing to energy released by the decay of radioactive nuclides in the Earth's interior. Even though links between mantle convection and plate tectonics are becoming more evident, notably through subsurface tomographic images, advances in mineral physics and improved absolute plate motion reference frames, there is still no generally accepted mechanism that consistently explains plate tectonics and mantle convection in one framework. We will integrate plate tectonics into mantle dynamics and develop a theory that explains plate motions quantitatively and dynamically. This requires consistent and detailed reconstructions of plate motions through time (Objective 1).
A new model of plate kinematics will be linked to the mantle with the aid of a new global reference frame based on moving hotspots and on palaeomagnetic data. The global reference frame will be corrected for true polar wander in order to develop a global plate motion reference frame with respect to the mantle back to Pangea (ca. 320 million years) and possibly Gondwana assembly (ca. 550 million years). The resulting plate reconstructions will constitute the input to subduction models that are meant to test the consistency between the reference frame and subduction histories. The final outcome will be a novel global subduction reference frame, to be used to unravel links between the surface and deep Earth (Objective 2).
Max ERC Funding
2 499 010 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym Brain Health Toolbox
Project The Brain Health Toolbox: Facilitating personalized decision-making for effective dementia prevention
Researcher (PI) Alina Gabriela SOLOMON
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Call Details Starting Grant (StG), LS7, ERC-2018-STG
Summary Preventing dementia and Alzheimer disease (AD) is a global priority. Previous single-intervention failures stress the critical need for a new multimodal preventive approach in these complex multifactorial conditions. The Brain Health Toolbox is designed to create a seamless continuum from accurate dementia prediction to effective prevention by i) developing the missing disease models and prediction tools for multimodal prevention; ii) testing them in actual multimodal prevention trials; and iii) bridging the gap between non-pharmacological and pharmacological approaches by designing a combined multimodal prevention trial based on a new European adaptive trial platform. Disease models and prediction tools will be multi-dimensional, i.e. a broad range of risk factors and biomarker types, including novel markers. An innovative machine learning method will be used for pattern identification and risk profiling to highlight most important contributors to an individual’s overall risk level. This is crucial for early identification of individuals with high dementia risk and/or high likelihood of specific brain pathologies, quantifying an individual’s prevention potential, and longitudinal risk and disease monitoring, also beyond trial duration. Three Toolbox test scenarios are considered: use for selecting target populations, assessing heterogeneity of intervention effects, and use as trial outcome. The project is based on a unique set-up aligning several new multimodal lifestyle trials aiming to adapt and test non-pharmacological interventions to different geographic, economic and cultural settings, with two reference libraries (observational - large datasets; and interventional - four recently completed pioneering multimodal lifestyle prevention trials). The Brain Health Toolbox covers the entire continuum from general populations to patients with preclinical/prodromal disease stages, and will provide tools for personalized decision-making for dementia prevention.
Summary
Preventing dementia and Alzheimer disease (AD) is a global priority. Previous single-intervention failures stress the critical need for a new multimodal preventive approach in these complex multifactorial conditions. The Brain Health Toolbox is designed to create a seamless continuum from accurate dementia prediction to effective prevention by i) developing the missing disease models and prediction tools for multimodal prevention; ii) testing them in actual multimodal prevention trials; and iii) bridging the gap between non-pharmacological and pharmacological approaches by designing a combined multimodal prevention trial based on a new European adaptive trial platform. Disease models and prediction tools will be multi-dimensional, i.e. a broad range of risk factors and biomarker types, including novel markers. An innovative machine learning method will be used for pattern identification and risk profiling to highlight most important contributors to an individual’s overall risk level. This is crucial for early identification of individuals with high dementia risk and/or high likelihood of specific brain pathologies, quantifying an individual’s prevention potential, and longitudinal risk and disease monitoring, also beyond trial duration. Three Toolbox test scenarios are considered: use for selecting target populations, assessing heterogeneity of intervention effects, and use as trial outcome. The project is based on a unique set-up aligning several new multimodal lifestyle trials aiming to adapt and test non-pharmacological interventions to different geographic, economic and cultural settings, with two reference libraries (observational - large datasets; and interventional - four recently completed pioneering multimodal lifestyle prevention trials). The Brain Health Toolbox covers the entire continuum from general populations to patients with preclinical/prodromal disease stages, and will provide tools for personalized decision-making for dementia prevention.
Max ERC Funding
1 498 268 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym BrainDrain
Project Translational implications of the discovery of brain-draining lymphatics
Researcher (PI) Kari ALITALO
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary In 2010, 800 billion Euros was spent on brain diseases in Europe and the cost is expected to increase due to the aging population. – Here I propose to exploit our new discovery for research to alleviate this disease burden. In work selected by Nature Medicine among the top 10 ”Notable Advances” and by Science as one of the 10 ”Breakthroughs of the year” 2015, we discovered a meningeal lymphatic vascular system that serves brain homeostasis. We want to reassess current concepts about cerebrovascular dynamics, fluid drainage and cellular trafficking in physiological conditions, in Alzheimer’s disease mouse models and in human postmortem tissues. First, we will study the development and properties of meningeal lymphatics and how they are sustained during aging. We then want to analyse the clearance of macromolecules and protein aggregates in Alzheimer’s disease in mice that lack the newly discovered meningeal lymphatic drainage system. We will study if growth factor-mediated expansion of lymphatic vessels alleviates the parenchymal accumulation of neurotoxic amyloid beta and pathogenesis of Alzheimer’s disease and brain damage after traumatic brain injury. We will further analyse the role of lymphangiogenic growth factors and lymphatic vessels in brain solute clearance, immune cell trafficking and in a mouse model of multiple sclerosis. The meningeal lymphatics could be involved in a number of neurodegenerative and neuroinflammatory diseases of considerable human and socioeconomic burden. Several of our previous concepts have already been translated to clinical development and we aim to develop proof-of-principle therapeutic concepts in this project. I feel that we are just now in a unique position to advance frontline European translational biomedical research in this suddenly emerging field, which has received great attention worldwide.
Summary
In 2010, 800 billion Euros was spent on brain diseases in Europe and the cost is expected to increase due to the aging population. – Here I propose to exploit our new discovery for research to alleviate this disease burden. In work selected by Nature Medicine among the top 10 ”Notable Advances” and by Science as one of the 10 ”Breakthroughs of the year” 2015, we discovered a meningeal lymphatic vascular system that serves brain homeostasis. We want to reassess current concepts about cerebrovascular dynamics, fluid drainage and cellular trafficking in physiological conditions, in Alzheimer’s disease mouse models and in human postmortem tissues. First, we will study the development and properties of meningeal lymphatics and how they are sustained during aging. We then want to analyse the clearance of macromolecules and protein aggregates in Alzheimer’s disease in mice that lack the newly discovered meningeal lymphatic drainage system. We will study if growth factor-mediated expansion of lymphatic vessels alleviates the parenchymal accumulation of neurotoxic amyloid beta and pathogenesis of Alzheimer’s disease and brain damage after traumatic brain injury. We will further analyse the role of lymphangiogenic growth factors and lymphatic vessels in brain solute clearance, immune cell trafficking and in a mouse model of multiple sclerosis. The meningeal lymphatics could be involved in a number of neurodegenerative and neuroinflammatory diseases of considerable human and socioeconomic burden. Several of our previous concepts have already been translated to clinical development and we aim to develop proof-of-principle therapeutic concepts in this project. I feel that we are just now in a unique position to advance frontline European translational biomedical research in this suddenly emerging field, which has received great attention worldwide.
Max ERC Funding
2 420 429 €
Duration
Start date: 2017-08-01, End date: 2022-07-31
Project acronym BROKEX
Project Brokering China’s Extraversion: An Ethnographic Analysis of Transnational Arbitration
Researcher (PI) Heidi Østbø HAUGEN
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), SH2, ERC-2018-STG
Summary Chinese global engagements are deepening across sectors and geographic regions. The objective of BROKEX is to fill specific gaps in knowledge about how China’s extraversion advances. The project takes an original approach by examining brokers who mediate in transnational fields. It opens the “black box” of China’s global integration by moving beyond descriptions of input and output characteristics to elucidate underlying dynamics. The objective will be achieved in two phases. First, the PI and two postdoctoral researchers will carry out ethnographic case studies in the Pearl River Delta, South China, that yield complementary information on the common challenge of brokering across geographic scales: * Connecting low-cost Chinese manufacturing with African markets; * Integrating Chinese academic research with global scientific communities; * Transnational architecture production. The diverse cases offer insights into the mechanisms of brokerage across distinctive sectors. In the second step, we build on the empirical findings and literature to develop brokerage theory. Social scientific research on brokerage commonly uses the morphology of social networks as its starting point, and focuses on how actors positioned at the intersection between groups operate. BROKEX adopts an innovative approach by examining how actors strategically seek to shape network morphologies in order to bridge gaps between groups. By directing theoretical attention towards relationship formation that precedes acts of brokerage, this line of inquiry advances understandings of how and why brokered connections emerge. Ethnographic case studies combined with critical theorization will generate new knowledge about the processes beneath the “rise of China” ─ one of the most consequential socioeconomic developments of our times.
Summary
Chinese global engagements are deepening across sectors and geographic regions. The objective of BROKEX is to fill specific gaps in knowledge about how China’s extraversion advances. The project takes an original approach by examining brokers who mediate in transnational fields. It opens the “black box” of China’s global integration by moving beyond descriptions of input and output characteristics to elucidate underlying dynamics. The objective will be achieved in two phases. First, the PI and two postdoctoral researchers will carry out ethnographic case studies in the Pearl River Delta, South China, that yield complementary information on the common challenge of brokering across geographic scales: * Connecting low-cost Chinese manufacturing with African markets; * Integrating Chinese academic research with global scientific communities; * Transnational architecture production. The diverse cases offer insights into the mechanisms of brokerage across distinctive sectors. In the second step, we build on the empirical findings and literature to develop brokerage theory. Social scientific research on brokerage commonly uses the morphology of social networks as its starting point, and focuses on how actors positioned at the intersection between groups operate. BROKEX adopts an innovative approach by examining how actors strategically seek to shape network morphologies in order to bridge gaps between groups. By directing theoretical attention towards relationship formation that precedes acts of brokerage, this line of inquiry advances understandings of how and why brokered connections emerge. Ethnographic case studies combined with critical theorization will generate new knowledge about the processes beneath the “rise of China” ─ one of the most consequential socioeconomic developments of our times.
Max ERC Funding
1 490 773 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym BRuSH
Project Oral bacteria as determinants for respiratory health
Researcher (PI) Randi BERTELSEN
Host Institution (HI) UNIVERSITETET I BERGEN
Call Details Starting Grant (StG), LS7, ERC-2018-STG
Summary The oral cavity is the gateway to the lower respiratory tract, and oral bacteria are likely to play a role in lung health. This may be the case for pathogens as well as commensal bacteria and the balance between species. The oral bacterial community of patients with periodontitis is dominated by gram-negative bacteria and a higher lipopolysaccharide (LPS) activity than in healthy microbiota. Furthermore, bacteria with especially potent pro-inflammatory LPS have been shown to be more common in the lungs of asthmatic than in healthy individuals. The working hypothesis of BRuSH is that microbiome communities dominated by LPS-producing bacteria which induce a particularly strong pro-inflammatory immune response in the host, will have a negative effect on respiratory health. I will test this hypothesis in two longitudinally designed population-based lung health studies. I aim to identify whether specific bacterial composition and types of LPS producing bacteria in oral and dust samples predict lung function and respiratory health over time; and if the different types of LPS-producing bacteria affect LPS in saliva saliva and dust. BRuSH will apply functional genome annotation that can assign biological significance to raw bacterial DNA sequences. With this bioinformatics tool I will cluster microbiome data into various LPS-producers: bacteria with LPS with strong inflammatory effects and others with weak- or antagonistic effects. The epidemiological studies will be supported by mice-models of asthma and cell assays of human bronchial epithelial cells, by exposing mice and bronchial cells to chemically synthesized Lipid A (the component that drive the LPS-induced immune responses) of various potency. The goal of BRuSH is to prove a causal relationship between oral microbiome and lung health, and gain knowledge that will enable us to make oral health a feasible target for intervention programs aimed at optimizing lung health and preventing respiratory disease.
Summary
The oral cavity is the gateway to the lower respiratory tract, and oral bacteria are likely to play a role in lung health. This may be the case for pathogens as well as commensal bacteria and the balance between species. The oral bacterial community of patients with periodontitis is dominated by gram-negative bacteria and a higher lipopolysaccharide (LPS) activity than in healthy microbiota. Furthermore, bacteria with especially potent pro-inflammatory LPS have been shown to be more common in the lungs of asthmatic than in healthy individuals. The working hypothesis of BRuSH is that microbiome communities dominated by LPS-producing bacteria which induce a particularly strong pro-inflammatory immune response in the host, will have a negative effect on respiratory health. I will test this hypothesis in two longitudinally designed population-based lung health studies. I aim to identify whether specific bacterial composition and types of LPS producing bacteria in oral and dust samples predict lung function and respiratory health over time; and if the different types of LPS-producing bacteria affect LPS in saliva saliva and dust. BRuSH will apply functional genome annotation that can assign biological significance to raw bacterial DNA sequences. With this bioinformatics tool I will cluster microbiome data into various LPS-producers: bacteria with LPS with strong inflammatory effects and others with weak- or antagonistic effects. The epidemiological studies will be supported by mice-models of asthma and cell assays of human bronchial epithelial cells, by exposing mice and bronchial cells to chemically synthesized Lipid A (the component that drive the LPS-induced immune responses) of various potency. The goal of BRuSH is to prove a causal relationship between oral microbiome and lung health, and gain knowledge that will enable us to make oral health a feasible target for intervention programs aimed at optimizing lung health and preventing respiratory disease.
Max ERC Funding
1 499 938 €
Duration
Start date: 2019-01-01, End date: 2023-12-31