Project acronym BIOCOM
Project Biotic community attributes and ecosystem functioning: implications for predicting and mitigating global change impacts
Researcher (PI) Fernando Tomás Maestre Gil
Host Institution (HI) UNIVERSIDAD REY JUAN CARLOS
Call Details Starting Grant (StG), LS8, ERC-2009-StG
Summary Increases in nutrient availability and temperature, and changes in precipitation patterns and biodiversity are important components of global environmental change. Thus, it is imperative to understand their impacts on the functioning of natural ecosystems. Substantial research efforts are being currently devoted to predict how biodiversity will respond to global change. However, little is known on the relative importance of biodiversity against other attributes of biotic communities, such as species cover and spatial pattern, as a driver of ecosystem processes. Furthermore, the effects of global change on the relationships between these attributes and ecosystem functioning are virtually unknown. This project aims to evaluate the relationships between community attributes (species richness, composition, evenness, cover, and spatial pattern) and key processes related to ecosystem functioning under different global change scenarios. Its specific objectives are to: i) evaluate the relative importance of community attributes as drivers of ecosystem functioning, ii) assess how multiple global change drivers will affect key ecosystem processes, iii) test whether global change drivers modify observed community attributes-ecosystem functioning relationships, iv) develop models to forecast global change effects on ecosystem functioning, and v) set up protocols for the establishment of mitigation actions based on the results obtained. They will be achieved by integrating experimental and modeling approaches conducted with multiple biotic communities at different spatial scales. Such integrated framework has not been tackled before, and constitutes a ground breaking advance over current research efforts on global change. This proposal will also open the door to new research lines exploring the functional role of community attributes and their importance as modulators of ecosystem responses to global change.
Summary
Increases in nutrient availability and temperature, and changes in precipitation patterns and biodiversity are important components of global environmental change. Thus, it is imperative to understand their impacts on the functioning of natural ecosystems. Substantial research efforts are being currently devoted to predict how biodiversity will respond to global change. However, little is known on the relative importance of biodiversity against other attributes of biotic communities, such as species cover and spatial pattern, as a driver of ecosystem processes. Furthermore, the effects of global change on the relationships between these attributes and ecosystem functioning are virtually unknown. This project aims to evaluate the relationships between community attributes (species richness, composition, evenness, cover, and spatial pattern) and key processes related to ecosystem functioning under different global change scenarios. Its specific objectives are to: i) evaluate the relative importance of community attributes as drivers of ecosystem functioning, ii) assess how multiple global change drivers will affect key ecosystem processes, iii) test whether global change drivers modify observed community attributes-ecosystem functioning relationships, iv) develop models to forecast global change effects on ecosystem functioning, and v) set up protocols for the establishment of mitigation actions based on the results obtained. They will be achieved by integrating experimental and modeling approaches conducted with multiple biotic communities at different spatial scales. Such integrated framework has not been tackled before, and constitutes a ground breaking advance over current research efforts on global change. This proposal will also open the door to new research lines exploring the functional role of community attributes and their importance as modulators of ecosystem responses to global change.
Max ERC Funding
1 463 374 €
Duration
Start date: 2010-01-01, End date: 2015-09-30
Project acronym BIODESERT
Project Biological feedbacks and ecosystem resilience under global change: a new perspective on dryland desertification
Researcher (PI) Fernando Tomás Maestre Gil
Host Institution (HI) UNIVERSIDAD DE ALICANTE
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary Changes in climate and land use (e.g., increased grazing pressure), are two main global change components that also act as major desertification drivers. Understanding how drylands will respond to these drivers is crucial because they occupy 41% of the terrestrial surface and are home to over 38% of the world’s human population. Land degradation already affects ~250 million people in the developing world, which rely upon the provision of many ecosystem processes (multifunctionality). This proposal aims to develop a better understanding of the functioning and resilience of drylands (i.e. their ability to respond to and recover from disturbances) to major desertification drivers. Its objectives are to: 1) test how changes in climate and grazing pressure determine spatiotemporal patterns in multifunctionality in global drylands, 2) assess how biotic attributes (e.g., biodiversity, cover) modulate ecosystem resilience to climate change and grazing pressure at various spatial scales, 3) test and develop early warning indicators of desertification, and 4) forecast the onset of desertification and its ecological consequences under different climate and grazing scenarios. I will use various biotic communities/attributes, ecosystem services and spatial scales (from local to global), and will combine approaches from several disciplines. Such comprehensive and highly integrated research endeavor is novel and constitutes a ground breaking advance over current research efforts on desertification. This project will provide a mechanistic understanding on the processes driving multifunctionality under different global change scenarios, as well as key insights to forecast future scenarios for the provisioning of ecosystem services in drylands, and to test and develop early warning indicators of desertification. This is of major importance to attain global sustainability and key Millennium Development Goals, such as the eradication of poverty.
Summary
Changes in climate and land use (e.g., increased grazing pressure), are two main global change components that also act as major desertification drivers. Understanding how drylands will respond to these drivers is crucial because they occupy 41% of the terrestrial surface and are home to over 38% of the world’s human population. Land degradation already affects ~250 million people in the developing world, which rely upon the provision of many ecosystem processes (multifunctionality). This proposal aims to develop a better understanding of the functioning and resilience of drylands (i.e. their ability to respond to and recover from disturbances) to major desertification drivers. Its objectives are to: 1) test how changes in climate and grazing pressure determine spatiotemporal patterns in multifunctionality in global drylands, 2) assess how biotic attributes (e.g., biodiversity, cover) modulate ecosystem resilience to climate change and grazing pressure at various spatial scales, 3) test and develop early warning indicators of desertification, and 4) forecast the onset of desertification and its ecological consequences under different climate and grazing scenarios. I will use various biotic communities/attributes, ecosystem services and spatial scales (from local to global), and will combine approaches from several disciplines. Such comprehensive and highly integrated research endeavor is novel and constitutes a ground breaking advance over current research efforts on desertification. This project will provide a mechanistic understanding on the processes driving multifunctionality under different global change scenarios, as well as key insights to forecast future scenarios for the provisioning of ecosystem services in drylands, and to test and develop early warning indicators of desertification. This is of major importance to attain global sustainability and key Millennium Development Goals, such as the eradication of poverty.
Max ERC Funding
1 894 450 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym COMPLEX-FISH
Project Complex eco-evolutionary dynamics of aquatic ecosystems faced with human-induced and environmental stress
Researcher (PI) Anna KUPARINEN
Host Institution (HI) JYVASKYLAN YLIOPISTO
Call Details Consolidator Grant (CoG), LS8, ERC-2017-COG
Summary Resilience and recovery ability are key determinants of species persistence and viability in a changing world. Populations exposed to rapid environmental changes and human-induced alterations are often affected by both ecological and evolutionary processes and their interactions, that is, eco-evolutionary dynamics. The integrated perspective offered by eco-evolutionary dynamics is vital for understanding drivers of resilience and recovery of natural populations undergoing rapid changes and exposed to multiple stressors. However, the feedback mechanisms, and the ways in which evolution and phenotypic changes scale up to interacting species, communities, and ecosystems, remains poorly understood. The objective of my proposal is to bridge and close this gap by merging the fields of ecology and evolution into two interfaces of complex biological dynamics. I will do this in the context of conservation and sustainable harvesting of aquatic ecosystems. I will develop a novel mechanistic theory of eco-evolutionary ecosystem dynamics, by coupling the theory of allometric trophic networks with the theory of life-history evolution. I will analyse the eco-evolutionary dynamics of aquatic ecosystems to identify mechanisms responsible for species and ecosystem resilience and recovery ability. This will be done through systematic simulation studies and detailed analyses of three aquatic ecosystems. The project delves into the mechanisms through which anthropogenic and environmental drivers alter the eco-evolutionary dynamics of aquatic ecosystems. Mechanistic understanding of these dynamics, and their consequences to species and ecosystems, has great potential to resolve fundamental yet puzzling patterns observed in natural populations and to identify species and ecosystem properties regulating resilience and recovery ability. This will drastically change our ability to assess the risks related to current and future anthropogenic and environmental influences on aquatic ecosystems.
Summary
Resilience and recovery ability are key determinants of species persistence and viability in a changing world. Populations exposed to rapid environmental changes and human-induced alterations are often affected by both ecological and evolutionary processes and their interactions, that is, eco-evolutionary dynamics. The integrated perspective offered by eco-evolutionary dynamics is vital for understanding drivers of resilience and recovery of natural populations undergoing rapid changes and exposed to multiple stressors. However, the feedback mechanisms, and the ways in which evolution and phenotypic changes scale up to interacting species, communities, and ecosystems, remains poorly understood. The objective of my proposal is to bridge and close this gap by merging the fields of ecology and evolution into two interfaces of complex biological dynamics. I will do this in the context of conservation and sustainable harvesting of aquatic ecosystems. I will develop a novel mechanistic theory of eco-evolutionary ecosystem dynamics, by coupling the theory of allometric trophic networks with the theory of life-history evolution. I will analyse the eco-evolutionary dynamics of aquatic ecosystems to identify mechanisms responsible for species and ecosystem resilience and recovery ability. This will be done through systematic simulation studies and detailed analyses of three aquatic ecosystems. The project delves into the mechanisms through which anthropogenic and environmental drivers alter the eco-evolutionary dynamics of aquatic ecosystems. Mechanistic understanding of these dynamics, and their consequences to species and ecosystems, has great potential to resolve fundamental yet puzzling patterns observed in natural populations and to identify species and ecosystem properties regulating resilience and recovery ability. This will drastically change our ability to assess the risks related to current and future anthropogenic and environmental influences on aquatic ecosystems.
Max ERC Funding
1 999 391 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym DROSADAPTATION
Project New approaches to long-standing questions: adaptation in Drosophila
Researcher (PI) Josefa Gonzalez Perez
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary Understanding how organisms adapt to their environments is a long-standing problem in Biology with far-reaching implications: adaptation affects the ability of species to survive in changing environments, host-pathogen interactions, and resistance to pesticides and drugs. Despite recent progress, adaptation is to date a poorly understood process largely due to limitations of current approaches that focus (i) on a priori candidate genes, (ii) on signals of selection at the DNA level without functional validation of the identified candidates, and (iii) on small sets of adaptive mutations that do not represent the variability present in natural populations. As a result, major questions such as what is the relative importance of different types of mutations in adaptation?, and what is the importance of epigenetic changes in adaptive evolution?, remain largely unanswered.
To gain a deep understanding of adaptation, we need to systematically identify adaptive mutations across space and time, pinpoint their molecular mechanisms and discover their fitness effects. To this end, Drosophila melanogaster has proven to be an ideal organism. Besides the battery of genetic tools and resources available, D. melanogaster has recently adapted to live in out of Africa environments. We and others have already shown that transposable elements (TEs) have substantially contributed to the adaptation of D. melanogaster to different environmental challenges. Here, we propose to use state-of-the-art techniques, such as Illumina TruSeq sequencing and CRISPR/Cas9 genome editing, to systematically identify and characterize in detail adaptive TE insertions in D. melanogaster natural populations. Only by moving from gathering anecdotic evidence to applying global approaches, we will be able to start constructing a quantitative and predictive theory of adaptation that will be relevant for other species as well.
Summary
Understanding how organisms adapt to their environments is a long-standing problem in Biology with far-reaching implications: adaptation affects the ability of species to survive in changing environments, host-pathogen interactions, and resistance to pesticides and drugs. Despite recent progress, adaptation is to date a poorly understood process largely due to limitations of current approaches that focus (i) on a priori candidate genes, (ii) on signals of selection at the DNA level without functional validation of the identified candidates, and (iii) on small sets of adaptive mutations that do not represent the variability present in natural populations. As a result, major questions such as what is the relative importance of different types of mutations in adaptation?, and what is the importance of epigenetic changes in adaptive evolution?, remain largely unanswered.
To gain a deep understanding of adaptation, we need to systematically identify adaptive mutations across space and time, pinpoint their molecular mechanisms and discover their fitness effects. To this end, Drosophila melanogaster has proven to be an ideal organism. Besides the battery of genetic tools and resources available, D. melanogaster has recently adapted to live in out of Africa environments. We and others have already shown that transposable elements (TEs) have substantially contributed to the adaptation of D. melanogaster to different environmental challenges. Here, we propose to use state-of-the-art techniques, such as Illumina TruSeq sequencing and CRISPR/Cas9 genome editing, to systematically identify and characterize in detail adaptive TE insertions in D. melanogaster natural populations. Only by moving from gathering anecdotic evidence to applying global approaches, we will be able to start constructing a quantitative and predictive theory of adaptation that will be relevant for other species as well.
Max ERC Funding
2 392 521 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym Elephant Project
Project How elephants grow old
Researcher (PI) Virpi Annikki Lummaa
Host Institution (HI) TURUN YLIOPISTO
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary The ageing population structure of most European countries has major health, economic and social consequences that lead to a need to better understand both the evolutionary limitations of deferring ageing, as well as the mechanisms involved in growing old. Ageing involves reduced fertility, mobility and ability to combat disease, but some individuals cope with growing old better than others. Improving the quality of life at old age and predicting future changes in longevity patterns of societies might depend on our ability to develop indicators of how old we really are and how many healthy years we have ahead, and how those indicators depend on our health history across several decades. Yet, most model species used in biology are short-lived and provide a poor comparison to long-lived mammals such as humans. Further, they do not often inform on the mechanisms of ageing alongside its fitness consequences in natural populations of long-lived mammals. This project integrates different ageing mechanisms with unique data on lifelong disease and reproductive history in the most long-lived non-human mammal studied so far, the Asian elephant. I will examine how different mechanisms of ageing (telomere dynamics, oxidative stress and telomerase activity) interact with lifelong disease and reproductive history, and current endocrinological measures of stress and reproductive status. This will help us to better understand both the mechanisms of ageing and their consequences on senescence rates. To do so, I will combine the most comprehensive demographic data (N~10.000) on Asian elephants in the world with bi-monthly health assessments and disease records across life (N~2500) and with longitudinal markers of ageing and hormonal correlates of stress and reproductive potential (N~240). Understanding changes in health across life and its links to ageing rates, stress levels and life-history in a species as long-lived as humans will be relevant to a large range of end-users.
Summary
The ageing population structure of most European countries has major health, economic and social consequences that lead to a need to better understand both the evolutionary limitations of deferring ageing, as well as the mechanisms involved in growing old. Ageing involves reduced fertility, mobility and ability to combat disease, but some individuals cope with growing old better than others. Improving the quality of life at old age and predicting future changes in longevity patterns of societies might depend on our ability to develop indicators of how old we really are and how many healthy years we have ahead, and how those indicators depend on our health history across several decades. Yet, most model species used in biology are short-lived and provide a poor comparison to long-lived mammals such as humans. Further, they do not often inform on the mechanisms of ageing alongside its fitness consequences in natural populations of long-lived mammals. This project integrates different ageing mechanisms with unique data on lifelong disease and reproductive history in the most long-lived non-human mammal studied so far, the Asian elephant. I will examine how different mechanisms of ageing (telomere dynamics, oxidative stress and telomerase activity) interact with lifelong disease and reproductive history, and current endocrinological measures of stress and reproductive status. This will help us to better understand both the mechanisms of ageing and their consequences on senescence rates. To do so, I will combine the most comprehensive demographic data (N~10.000) on Asian elephants in the world with bi-monthly health assessments and disease records across life (N~2500) and with longitudinal markers of ageing and hormonal correlates of stress and reproductive potential (N~240). Understanding changes in health across life and its links to ageing rates, stress levels and life-history in a species as long-lived as humans will be relevant to a large range of end-users.
Max ERC Funding
1 949 316 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym Evoland
Project Evolution of regulatory landscapes at multiple timescales
Researcher (PI) Jose Luis GOMEZ-SKARMETA
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), LS8, ERC-2016-ADG
Summary Evolution of animal morphology relies on changes in developmental programs that control body plans and organ shape. Such changes are thought to arise form alteration of the expression of functionally conserved developmental genes and their vast downstream networks. Although this hypothesis has a profound impact on the way we view animal evolution, final proof is still lacking. The hypothesis calls for evolution to take place mainly through modifications of cis-regulatory elements (CREs) controlling gene expression. However, these genomic regions are precisely those that we understand the least and, until recently, basic knowledge on how regulatory information is organized in the 3D genome or how to spatio-temporally assign CREs to their target genes was unknown.
The advent of next generation sequencing-based tools has made possible to identify genome-wide CREs and reveal how they are organized in the 3D genome. But this new knowledge has been largely ignored by most hypotheses on the evolution of gene expression, development and animal morphology. These new high-throughput methods have been mainly restricted to selected model organisms, and due to the lack of sequence conservation of CREs across lineages, we still have very limited information about the impact of CREs on animal morphology evolution.
By integrating in a systematic and phylogenetically driven manner the contribution of CREs and their 3D organization to animal morphology at different evolutionary scales, we will for the first time link evolution, regulatory information, genome 3D architecture and morphology. We will apply this strategy to study animal morphology along the evolution of deuterostome body plans, the generation of fin morphological diversity in vertebrates, and the recent phenotypic changes in fish adapted to cave environments.
Our proposal will make ground-breaking advances in our understanding of the global principles underlying the evolution of cis-regulatory DNA and animal form.
Summary
Evolution of animal morphology relies on changes in developmental programs that control body plans and organ shape. Such changes are thought to arise form alteration of the expression of functionally conserved developmental genes and their vast downstream networks. Although this hypothesis has a profound impact on the way we view animal evolution, final proof is still lacking. The hypothesis calls for evolution to take place mainly through modifications of cis-regulatory elements (CREs) controlling gene expression. However, these genomic regions are precisely those that we understand the least and, until recently, basic knowledge on how regulatory information is organized in the 3D genome or how to spatio-temporally assign CREs to their target genes was unknown.
The advent of next generation sequencing-based tools has made possible to identify genome-wide CREs and reveal how they are organized in the 3D genome. But this new knowledge has been largely ignored by most hypotheses on the evolution of gene expression, development and animal morphology. These new high-throughput methods have been mainly restricted to selected model organisms, and due to the lack of sequence conservation of CREs across lineages, we still have very limited information about the impact of CREs on animal morphology evolution.
By integrating in a systematic and phylogenetically driven manner the contribution of CREs and their 3D organization to animal morphology at different evolutionary scales, we will for the first time link evolution, regulatory information, genome 3D architecture and morphology. We will apply this strategy to study animal morphology along the evolution of deuterostome body plans, the generation of fin morphological diversity in vertebrates, and the recent phenotypic changes in fish adapted to cave environments.
Our proposal will make ground-breaking advances in our understanding of the global principles underlying the evolution of cis-regulatory DNA and animal form.
Max ERC Funding
2 499 514 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym GEDA
Project Global Environmental Decision Analysis
Researcher (PI) Atte Jaakko Moilanen
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Habitat degradation and climate change are generally considered the greatest threats to biodiversity globally. Together, these processes pose an urgent challenge to conservation science, requiring ever increasing efficiency in ecologically-based decision making, to slow down, and hopefully eventually reverse, the ongoing global loss of biodiversity. In responding to this challenge, I am proposing a project in which the over-arching goal is to provide improved conservation-oriented analytical methods and tools to underpin knowledge-based land-use planning and associated political decision making. The proposed work builds on a broad established history of research in the field of spatial ecology and conservation prioritization.
Specific components of the proposal include: (i) developing the general conceptual, ecological, methodological and statistical basis of environmental and conservation resource allocation: (ii) combining species and community-level prioritization approaches for data-poor areas of the world; (iii) developing methods for alleviating the negative ecological consequences of climate change, based on connectivity both in geographic and environmental space; (iv) developing an uncertainty-analytic method for the planning of habitat restoration and calculation of compensation ratios for habitat that will be impacted due to economic activity, (v) developing methods for allocating alternative conservation actions (protection, maintenance, restoration) in combination with habitat-specific loss rates in spatial conservation prioritization, and (vi) implementing the proposed methods as publicly available, efficient and well-documented software packages. Particular emphasis will be placed on solving the algorithmic challenges involved in analyzing the large data sets that are becoming increasingly available as the distributions of environmental conditions and biodiversity features are derived from large-scale high-resolution remote-sensing data.
Summary
Habitat degradation and climate change are generally considered the greatest threats to biodiversity globally. Together, these processes pose an urgent challenge to conservation science, requiring ever increasing efficiency in ecologically-based decision making, to slow down, and hopefully eventually reverse, the ongoing global loss of biodiversity. In responding to this challenge, I am proposing a project in which the over-arching goal is to provide improved conservation-oriented analytical methods and tools to underpin knowledge-based land-use planning and associated political decision making. The proposed work builds on a broad established history of research in the field of spatial ecology and conservation prioritization.
Specific components of the proposal include: (i) developing the general conceptual, ecological, methodological and statistical basis of environmental and conservation resource allocation: (ii) combining species and community-level prioritization approaches for data-poor areas of the world; (iii) developing methods for alleviating the negative ecological consequences of climate change, based on connectivity both in geographic and environmental space; (iv) developing an uncertainty-analytic method for the planning of habitat restoration and calculation of compensation ratios for habitat that will be impacted due to economic activity, (v) developing methods for allocating alternative conservation actions (protection, maintenance, restoration) in combination with habitat-specific loss rates in spatial conservation prioritization, and (vi) implementing the proposed methods as publicly available, efficient and well-documented software packages. Particular emphasis will be placed on solving the algorithmic challenges involved in analyzing the large data sets that are becoming increasingly available as the distributions of environmental conditions and biodiversity features are derived from large-scale high-resolution remote-sensing data.
Max ERC Funding
1 495 213 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym INVFEST
Project Evolutionary and functional analysis of polymorphic inversions in the human genome
Researcher (PI) Mario Cáceres
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Starting Grant (StG), LS8, ERC-2009-StG
Summary The last years have seen an extraordinary explosion of studies characterizing genome variation at different levels, and have opened new opportunities in deciphering the genetic basis of phenotypic characteristics and the evolutionary forces involved. One of the major breakthroughs has been the discovery of an unprecedented degree of structural variation in the human genome, including deletions, duplications and inversions. However, the main challenge is to understand the biological significance of these genomic changes. In particular, for many years inversions have been the paradigm of evolutionary biology. Thus, the identification of the whole set of human inversions gives us a unique opportunity to investigate the functional and evolutionary consequences of this type of changes at a large scale. The specific objectives of the project are: (1) Catalogue the precise location of all common polymorphic inversions in the human genome; (2) Determine the population distribution and the evolutionary history of these inversions; (3) Investigate the functional consequences and the effects on gene expression of human inversions; and (4) Assess the effect of inversions on nucleotide variation patterns and the role of natural selection in their maintenance. This project will follow a multidisciplinary approach that combines experimental and bioinformatic analyses and will benefit from the great amount of information on the human genome already available and that will be generated in the next months. The proposed research therefore represents a very appropriate and timely contribution to the study of human structural variation and its role in phenotypic variation and evolution. Furthermore, it will provide additional insights on genome function, gene-expression regulation mechanisms, and the association of genetic changes and particular traits, and promises to stir novel hypothesis for future studies.
Summary
The last years have seen an extraordinary explosion of studies characterizing genome variation at different levels, and have opened new opportunities in deciphering the genetic basis of phenotypic characteristics and the evolutionary forces involved. One of the major breakthroughs has been the discovery of an unprecedented degree of structural variation in the human genome, including deletions, duplications and inversions. However, the main challenge is to understand the biological significance of these genomic changes. In particular, for many years inversions have been the paradigm of evolutionary biology. Thus, the identification of the whole set of human inversions gives us a unique opportunity to investigate the functional and evolutionary consequences of this type of changes at a large scale. The specific objectives of the project are: (1) Catalogue the precise location of all common polymorphic inversions in the human genome; (2) Determine the population distribution and the evolutionary history of these inversions; (3) Investigate the functional consequences and the effects on gene expression of human inversions; and (4) Assess the effect of inversions on nucleotide variation patterns and the role of natural selection in their maintenance. This project will follow a multidisciplinary approach that combines experimental and bioinformatic analyses and will benefit from the great amount of information on the human genome already available and that will be generated in the next months. The proposed research therefore represents a very appropriate and timely contribution to the study of human structural variation and its role in phenotypic variation and evolution. Furthermore, it will provide additional insights on genome function, gene-expression regulation mechanisms, and the association of genetic changes and particular traits, and promises to stir novel hypothesis for future studies.
Max ERC Funding
1 475 377 €
Duration
Start date: 2010-02-01, End date: 2015-10-31
Project acronym IPBSL
Project Science and technology development for in situ detection and cjharacterization of subsurface life on the Iberian Pyritic Belt
Researcher (PI) Ricardo Amils Pibernat
Host Institution (HI) INSTITUTO NACIONAL DE TECNICA AEROESPACIAL ESTEBAN TERRADAS
Call Details Advanced Grant (AdG), LS8, ERC-2009-AdG
Summary Terrestrial subsurface geomicrobiology is a matter of growing interest on many level. From a fundamental point of view, it seeks to determine wheter life can be sustained in the absence of radiation. From an astrobiological point of view, it is an interesting model for early life on Earth, as well as a representation of life as it could occur in other planetary bodies. Río Tinto is an unusual extreme acidic environment, it rises in the core of the Iberian Pyritic Belt (IPB), one of the biggest sulfidic ore deposits in the world. Today it is clear that the extreme characteristics of Ró Tinto are not due to mining activity, but to the chemolithotrophic microorganisms thriving in the high concentration of metal sulfides of the IPB. To explore the hypothesis that a continuous underground reactor of chemolithotrophic microorganisms thriving in the rich sulfidic minerals of the IPB is responsible for the extreme conditions found in the river, we propose a drilling project to detect the subsurface microbial activity, the potential resources to support these microbial communities, and to follow the in situ geomicrobiological evolution in real time. In this project, we propose to explore the Río Tinto at deep-basement regions (200-1000 m) by means of new approaches comprising: i) detection of life and estimation of the microbial diversity at the drilling sites providing an instant picture of the subsurface habitat, and ii) real time monitoring, inside the borehole, of physico-chemical parameters and biological activity generating essential information to recognize matter and energy fluxes. All these procesess are associated to long-term changes in the underground habitats and are not fully understood based on seasonal discontinuous subsurface analysis. To achieve these goals we will analize cores and fluids in the field site using new and poweful tools.
Summary
Terrestrial subsurface geomicrobiology is a matter of growing interest on many level. From a fundamental point of view, it seeks to determine wheter life can be sustained in the absence of radiation. From an astrobiological point of view, it is an interesting model for early life on Earth, as well as a representation of life as it could occur in other planetary bodies. Río Tinto is an unusual extreme acidic environment, it rises in the core of the Iberian Pyritic Belt (IPB), one of the biggest sulfidic ore deposits in the world. Today it is clear that the extreme characteristics of Ró Tinto are not due to mining activity, but to the chemolithotrophic microorganisms thriving in the high concentration of metal sulfides of the IPB. To explore the hypothesis that a continuous underground reactor of chemolithotrophic microorganisms thriving in the rich sulfidic minerals of the IPB is responsible for the extreme conditions found in the river, we propose a drilling project to detect the subsurface microbial activity, the potential resources to support these microbial communities, and to follow the in situ geomicrobiological evolution in real time. In this project, we propose to explore the Río Tinto at deep-basement regions (200-1000 m) by means of new approaches comprising: i) detection of life and estimation of the microbial diversity at the drilling sites providing an instant picture of the subsurface habitat, and ii) real time monitoring, inside the borehole, of physico-chemical parameters and biological activity generating essential information to recognize matter and energy fluxes. All these procesess are associated to long-term changes in the underground habitats and are not fully understood based on seasonal discontinuous subsurface analysis. To achieve these goals we will analize cores and fluids in the field site using new and poweful tools.
Max ERC Funding
3 246 000 €
Duration
Start date: 2010-06-01, End date: 2015-05-31
Project acronym MATURATION
Project Age at maturity in Atlantic salmon: molecular and ecological dissection of an adaptive trait
Researcher (PI) Craig PRIMMER
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), LS8, ERC-2016-ADG
Summary Life history is the nexus of biology, because various biological questions ultimately revolve around the causes and consequences of variation in reproduction and survival, i.e. fitness. Traditionally, a major tool in life-history research has been quantitative genetics because it provides an important statistical link between phenotype and genotype. However, the mechanisms by which evolution occurs may remain unclear unless such traditional approaches are combined with molecular investigations. Another complicating factor is that the fitness of male vs female life histories do not always align, and hence life history traits may be shaped by sexual conflict. This is why life-history approaches focusing on both quantifying the conflict and understanding its resolution at the genetic level are needed.
As in many species, age at maturity in Atlantic salmon is tightly linked with size at maturity and thus represents a classic evolutionary trade-off: later maturing individuals spend more time at sea before returning to freshwater to spawn and have higher reproductive success due to their larger size but also have a higher risk of dying prior to first reproduction. Our recent cover paper in Nature reported a large-effect gene explaining 40% of the variation in this key life history trait. Remarkably, the locus exhibits sex-dependent dominance and this resolves a potential intra-locus sexual conflict in the species. The relatively simple genetic architecture of this trait combined with the features of Atlantic salmon as a model system offer an ideal opportunity to better understand the molecular mechanisms and ecological drivers underlying a locally adapted life history trait.
In MATURATION I will i) characterize age at maturity candidate gene functions and allelic effects on phenotypes ii) elucidate fitness effects of these phenotypes and GxE interactions iii) develop a mechanistic model for the sex-dependent dominance and validate intra-locus sexual conflict resolution
Summary
Life history is the nexus of biology, because various biological questions ultimately revolve around the causes and consequences of variation in reproduction and survival, i.e. fitness. Traditionally, a major tool in life-history research has been quantitative genetics because it provides an important statistical link between phenotype and genotype. However, the mechanisms by which evolution occurs may remain unclear unless such traditional approaches are combined with molecular investigations. Another complicating factor is that the fitness of male vs female life histories do not always align, and hence life history traits may be shaped by sexual conflict. This is why life-history approaches focusing on both quantifying the conflict and understanding its resolution at the genetic level are needed.
As in many species, age at maturity in Atlantic salmon is tightly linked with size at maturity and thus represents a classic evolutionary trade-off: later maturing individuals spend more time at sea before returning to freshwater to spawn and have higher reproductive success due to their larger size but also have a higher risk of dying prior to first reproduction. Our recent cover paper in Nature reported a large-effect gene explaining 40% of the variation in this key life history trait. Remarkably, the locus exhibits sex-dependent dominance and this resolves a potential intra-locus sexual conflict in the species. The relatively simple genetic architecture of this trait combined with the features of Atlantic salmon as a model system offer an ideal opportunity to better understand the molecular mechanisms and ecological drivers underlying a locally adapted life history trait.
In MATURATION I will i) characterize age at maturity candidate gene functions and allelic effects on phenotypes ii) elucidate fitness effects of these phenotypes and GxE interactions iii) develop a mechanistic model for the sex-dependent dominance and validate intra-locus sexual conflict resolution
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31