Project acronym 2G-CSAFE
Project Combustion of Sustainable Alternative Fuels for Engines used in aeronautics and automotives
Researcher (PI) Philippe Dagaut
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE8, ERC-2011-ADG_20110209
Summary This project aims at promoting sustainable combustion technologies for transport via validation of advanced combustion kinetic models obtained using sophisticated new laboratory experiments, engines, and theoretical computations, breaking through the current frontier of knowledge. It will focus on the unexplored kinetics of ignition and combustion of 2nd generation (2G) biofuels and blends with conventional fuels, which should provide energy safety and sustainability to Europe. The motivation is that no accurate kinetic models are available for the ignition, oxidation and combustion of 2G-biofuels, and improved ignition control is needed for new compression ignition engines. Crucial information is missing: data from well characterised experiments on combustion-generated pollutants and data on key-intermediates for fuels ignition in new engines.
To provide that knowledge new well-instrumented complementary experiments and kinetic modelling will be used. Measurements of key-intermediates, stables species, and pollutants will be performed. New ignition control strategies will be designed, opening new technological horizons. Kinetic modelling will be used for rationalising the results. Due to the complexity of 2G-biofuels and their unusual composition, innovative surrogates will be designed. Kinetic models for surrogate fuels will be generalised for extension to other compounds. The experimental results, together with ab-initio and detailed modelling, will serve to characterise the kinetics of ignition, combustion, and pollutants formation of fuels including 2G biofuels, and provide relevant data and models.
This research is risky because this is (i) the 1st effort to measure radicals by reactor/CRDS coupling, (ii) the 1st effort to use a μ-channel reactor to build ignition databases for conventional and bio-fuels, (iii) the 1st effort to design and use controlled generation and injection of reactive species to control ignition/combustion in compression ignition engines
Summary
This project aims at promoting sustainable combustion technologies for transport via validation of advanced combustion kinetic models obtained using sophisticated new laboratory experiments, engines, and theoretical computations, breaking through the current frontier of knowledge. It will focus on the unexplored kinetics of ignition and combustion of 2nd generation (2G) biofuels and blends with conventional fuels, which should provide energy safety and sustainability to Europe. The motivation is that no accurate kinetic models are available for the ignition, oxidation and combustion of 2G-biofuels, and improved ignition control is needed for new compression ignition engines. Crucial information is missing: data from well characterised experiments on combustion-generated pollutants and data on key-intermediates for fuels ignition in new engines.
To provide that knowledge new well-instrumented complementary experiments and kinetic modelling will be used. Measurements of key-intermediates, stables species, and pollutants will be performed. New ignition control strategies will be designed, opening new technological horizons. Kinetic modelling will be used for rationalising the results. Due to the complexity of 2G-biofuels and their unusual composition, innovative surrogates will be designed. Kinetic models for surrogate fuels will be generalised for extension to other compounds. The experimental results, together with ab-initio and detailed modelling, will serve to characterise the kinetics of ignition, combustion, and pollutants formation of fuels including 2G biofuels, and provide relevant data and models.
This research is risky because this is (i) the 1st effort to measure radicals by reactor/CRDS coupling, (ii) the 1st effort to use a μ-channel reactor to build ignition databases for conventional and bio-fuels, (iii) the 1st effort to design and use controlled generation and injection of reactive species to control ignition/combustion in compression ignition engines
Max ERC Funding
2 498 450 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym 5HT-OPTOGENETICS
Project Optogenetic Analysis of Serotonin Function in the Mammalian Brain
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Summary
Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Max ERC Funding
2 318 636 €
Duration
Start date: 2010-07-01, End date: 2015-12-31
Project acronym 5HTCircuits
Project Modulation of cortical circuits and predictive neural coding by serotonin
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2014-ADG
Summary Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Summary
Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Max ERC Funding
2 486 074 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym A2C2
Project Atmospheric flow Analogues and Climate Change
Researcher (PI) Pascal Yiou
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary "The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Summary
"The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Max ERC Funding
1 491 457 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym AAMOT
Project Arithmetic of automorphic motives
Researcher (PI) Michael Harris
Host Institution (HI) INSTITUT DES HAUTES ETUDES SCIENTIFIQUES
Call Details Advanced Grant (AdG), PE1, ERC-2011-ADG_20110209
Summary The primary purpose of this project is to build on recent spectacular progress in the Langlands program to study the arithmetic properties of automorphic motives constructed in the cohomology of Shimura varieties. Because automorphic methods are available to study the L-functions of these motives, which include elliptic curves and certain families of Calabi-Yau varieties over totally real fields (possibly after base change), they represent the most accessible class of varieties for which one can hope to verify fundamental conjectures on special values of L-functions, including Deligne's conjecture and the Main Conjecture of Iwasawa theory. Immediate goals include the proof of irreducibility of automorphic Galois representations; the establishment of period relations for automorphic and potentially automorphic realizations of motives in the cohomology of distinct Shimura varieties; the construction of p-adic L-functions for these and related motives, notably adjoint and tensor product L-functions in p-adic families; and the geometrization of the p-adic and mod p Langlands program. All four goals, as well as the others mentioned in the body of the proposal, are interconnected; the final goal provides a bridge to related work in geometric representation theory, algebraic geometry, and mathematical physics.
Summary
The primary purpose of this project is to build on recent spectacular progress in the Langlands program to study the arithmetic properties of automorphic motives constructed in the cohomology of Shimura varieties. Because automorphic methods are available to study the L-functions of these motives, which include elliptic curves and certain families of Calabi-Yau varieties over totally real fields (possibly after base change), they represent the most accessible class of varieties for which one can hope to verify fundamental conjectures on special values of L-functions, including Deligne's conjecture and the Main Conjecture of Iwasawa theory. Immediate goals include the proof of irreducibility of automorphic Galois representations; the establishment of period relations for automorphic and potentially automorphic realizations of motives in the cohomology of distinct Shimura varieties; the construction of p-adic L-functions for these and related motives, notably adjoint and tensor product L-functions in p-adic families; and the geometrization of the p-adic and mod p Langlands program. All four goals, as well as the others mentioned in the body of the proposal, are interconnected; the final goal provides a bridge to related work in geometric representation theory, algebraic geometry, and mathematical physics.
Max ERC Funding
1 491 348 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym ACCELERATES
Project Acceleration in Extreme Shocks: from the microphysics to laboratory and astrophysics scenarios
Researcher (PI) Luis Miguel De Oliveira E Silva
Host Institution (HI) INSTITUTO SUPERIOR TECNICO
Call Details Advanced Grant (AdG), PE2, ERC-2010-AdG_20100224
Summary What is the origin of cosmic rays, what are the dominant acceleration mechanisms in relativistic shocks, how do cosmic rays self-consistently influence the shock dynamics, how are relativistic collisionless shocks formed are longstanding scientific questions, closely tied to extreme plasma physics processes, and where a close interplay between the micro-instabilities and the global dynamics is critical.
Relativistic shocks are closely connected with the propagation of intense streams of particles pervasive in many astrophysical scenarios. The possibility of exciting shocks in the laboratory will also be available very soon with multi-PW lasers or intense relativistic particle beams.
Computational modeling is now established as a prominent research tool, by enabling the fully kinetic modeling of these systems for the first time. With the fast paced developments in high performance computing, the time is ripe for a focused research programme on simulation-based studies of relativistic shocks. This proposal therefore focuses on using self-consistent ab initio massively parallel simulations to study the physics of relativistic shocks, bridging the gap between the multidimensional microphysics of shock onset, formation, and propagation and the global system dynamics. Particular focus will be given to the shock acceleration mechanisms and the radiation signatures of the various physical processes, with the goal of solving some of the central questions in plasma/relativistic phenomena in astrophysics and in the laboratory, and opening new avenues between theoretical/massive computational studies, laboratory experiments and astrophysical observations.
Summary
What is the origin of cosmic rays, what are the dominant acceleration mechanisms in relativistic shocks, how do cosmic rays self-consistently influence the shock dynamics, how are relativistic collisionless shocks formed are longstanding scientific questions, closely tied to extreme plasma physics processes, and where a close interplay between the micro-instabilities and the global dynamics is critical.
Relativistic shocks are closely connected with the propagation of intense streams of particles pervasive in many astrophysical scenarios. The possibility of exciting shocks in the laboratory will also be available very soon with multi-PW lasers or intense relativistic particle beams.
Computational modeling is now established as a prominent research tool, by enabling the fully kinetic modeling of these systems for the first time. With the fast paced developments in high performance computing, the time is ripe for a focused research programme on simulation-based studies of relativistic shocks. This proposal therefore focuses on using self-consistent ab initio massively parallel simulations to study the physics of relativistic shocks, bridging the gap between the multidimensional microphysics of shock onset, formation, and propagation and the global system dynamics. Particular focus will be given to the shock acceleration mechanisms and the radiation signatures of the various physical processes, with the goal of solving some of the central questions in plasma/relativistic phenomena in astrophysics and in the laboratory, and opening new avenues between theoretical/massive computational studies, laboratory experiments and astrophysical observations.
Max ERC Funding
1 588 800 €
Duration
Start date: 2011-06-01, End date: 2016-07-31
Project acronym ACCLIMATE
Project Elucidating the Causes and Effects of Atlantic Circulation Changes through Model-Data Integration
Researcher (PI) Claire Waelbroeck
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary Rapid changes in ocean circulation and climate have been observed in marine sediment and ice cores, notably over the last 60 thousand years (ky), highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing.
To date, these rapid changes in climate and ocean circulation are still not fully explained. Two main obstacles prevent going beyond the current state of knowledge:
- Paleoclimatic proxy data are by essence only indirect indicators of the climatic variables, and thus can not be directly compared with model outputs;
- A 4-D (latitude, longitude, water depth, time) reconstruction of Atlantic water masses over the past 40 ky is lacking: previous studies have generated isolated records with disparate timescales which do not allow the causes of circulation changes to be identified.
Overcoming these two major limitations will lead to major breakthroughs in climate research. Concretely, I will create the first database of Atlantic deep-sea records over the last 40 ky, and extract full climatic information from these records through an innovative model-data integration scheme using an isotopic proxy forward modeling approach. The novelty and exceptional potential of this scheme is twofold: (i) it avoids hypotheses on proxy interpretation and hence suppresses or strongly reduces the errors of interpretation of paleoclimatic records; (ii) it produces states of the climate system that best explain the observations over the last 40 ky, while being consistent with the model physics.
Expected results include:
• The elucidation of the mechanisms explaining rapid changes in ocean circulation and climate over the last 40 ky,
• Improved climate model physics and parameterizations,
• The first projections of future climate changes obtained with a model able to reproduce the highly non linear behavior of the climate system observed over the last 40 ky.
Summary
Rapid changes in ocean circulation and climate have been observed in marine sediment and ice cores, notably over the last 60 thousand years (ky), highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing.
To date, these rapid changes in climate and ocean circulation are still not fully explained. Two main obstacles prevent going beyond the current state of knowledge:
- Paleoclimatic proxy data are by essence only indirect indicators of the climatic variables, and thus can not be directly compared with model outputs;
- A 4-D (latitude, longitude, water depth, time) reconstruction of Atlantic water masses over the past 40 ky is lacking: previous studies have generated isolated records with disparate timescales which do not allow the causes of circulation changes to be identified.
Overcoming these two major limitations will lead to major breakthroughs in climate research. Concretely, I will create the first database of Atlantic deep-sea records over the last 40 ky, and extract full climatic information from these records through an innovative model-data integration scheme using an isotopic proxy forward modeling approach. The novelty and exceptional potential of this scheme is twofold: (i) it avoids hypotheses on proxy interpretation and hence suppresses or strongly reduces the errors of interpretation of paleoclimatic records; (ii) it produces states of the climate system that best explain the observations over the last 40 ky, while being consistent with the model physics.
Expected results include:
• The elucidation of the mechanisms explaining rapid changes in ocean circulation and climate over the last 40 ky,
• Improved climate model physics and parameterizations,
• The first projections of future climate changes obtained with a model able to reproduce the highly non linear behavior of the climate system observed over the last 40 ky.
Max ERC Funding
3 000 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym Actanthrope
Project Computational Foundations of Anthropomorphic Action
Researcher (PI) Jean Paul Laumond
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE7, ERC-2013-ADG
Summary Actanthrope intends to promote a neuro-robotics perspective to explore original models of anthropomorphic action. The project targets contributions to humanoid robot autonomy (for rescue and service robotics), to advanced human body simulation (for applications in ergonomics), and to a new theory of embodied intelligence (by promoting a motion-based semiotics of the human action).
Actions take place in the physical space while they originate in the –robot or human– sensory-motor space. Geometry is the core abstraction that makes the link between these spaces. Considering that the structure of actions inherits from that of the body, the underlying intuition is that actions can be segmented within discrete sub-spaces lying in the entire continuous posture space. Such sub-spaces are viewed as symbols bridging deliberative reasoning and reactive control. Actanthrope argues that geometric approaches to motion segmentation and generation as promising and innovative routes to explore embodied intelligence:
- Motion segmentation: what are the sub-manifolds that define the structure of a given action?
- Motion generation: among all the solution paths within a given sub-manifold, what is the underlying law that makes the selection?
In Robotics these questions are related to the competition between abstract symbol manipulation and physical signal processing. In Computational Neuroscience the questions refer to the quest of motion invariants. The ambition of the project is to promote a dual perspective: exploring the computational foundations of human action to make better robots, while simultaneously doing better robotics to better understand human action.
A unique “Anthropomorphic Action Factory” supports the methodology. It aims at attracting to a single lab, researchers with complementary know-how and solid mathematical background. All of them will benefit from unique equipments, while being stimulated by four challenges dealing with locomotion and manipulation actions.
Summary
Actanthrope intends to promote a neuro-robotics perspective to explore original models of anthropomorphic action. The project targets contributions to humanoid robot autonomy (for rescue and service robotics), to advanced human body simulation (for applications in ergonomics), and to a new theory of embodied intelligence (by promoting a motion-based semiotics of the human action).
Actions take place in the physical space while they originate in the –robot or human– sensory-motor space. Geometry is the core abstraction that makes the link between these spaces. Considering that the structure of actions inherits from that of the body, the underlying intuition is that actions can be segmented within discrete sub-spaces lying in the entire continuous posture space. Such sub-spaces are viewed as symbols bridging deliberative reasoning and reactive control. Actanthrope argues that geometric approaches to motion segmentation and generation as promising and innovative routes to explore embodied intelligence:
- Motion segmentation: what are the sub-manifolds that define the structure of a given action?
- Motion generation: among all the solution paths within a given sub-manifold, what is the underlying law that makes the selection?
In Robotics these questions are related to the competition between abstract symbol manipulation and physical signal processing. In Computational Neuroscience the questions refer to the quest of motion invariants. The ambition of the project is to promote a dual perspective: exploring the computational foundations of human action to make better robots, while simultaneously doing better robotics to better understand human action.
A unique “Anthropomorphic Action Factory” supports the methodology. It aims at attracting to a single lab, researchers with complementary know-how and solid mathematical background. All of them will benefit from unique equipments, while being stimulated by four challenges dealing with locomotion and manipulation actions.
Max ERC Funding
2 500 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym ADDECCO
Project Adaptive Schemes for Deterministic and Stochastic Flow Problems
Researcher (PI) Remi Abgrall
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary The numerical simulation of complex compressible flow problem is still a challenge nowaday even for simple models. In our opinion, the most important hard points that need currently to be tackled and solved is how to obtain stable, scalable, very accurate, easy to code and to maintain schemes on complex geometries. The method should easily handle mesh refinement, even near the boundary where the most interesting engineering quantities have to be evaluated. Unsteady uncertainties in the model, for example in the geometry or the boundary conditions should represented efficiently.This proposal goal is to design, develop and evaluate solutions to each of the above problems. Our work program will lead to significant breakthroughs for flow simulations. More specifically, we propose to work on 3 connected problems: 1-A class of very high order numerical schemes able to easily deal with the geometry of boundaries and still can solve steep problems. The geometry is generally defined by CAD tools. The output is used to generate a mesh which is then used by the scheme. Hence, any mesh refinement process is disconnected from the CAD, a situation that prevents the spread of mesh adaptation techniques in industry! 2-A class of very high order numerical schemes which can utilize possibly solution dependant basis functions in order to lower the number of degrees of freedom, for example to compute accurately boundary layers with low resolutions. 3-A general non intrusive technique for handling uncertainties in order to deal with irregular probability density functions (pdf) and also to handle pdf that may evolve in time, for example thanks to an optimisation loop. The curse of dimensionality will be dealt thanks Harten's multiresolution method combined with sparse grid methods. Currently, and up to our knowledge, no scheme has each of these properties. This research program will have an impact on numerical schemes and industrial applications.
Summary
The numerical simulation of complex compressible flow problem is still a challenge nowaday even for simple models. In our opinion, the most important hard points that need currently to be tackled and solved is how to obtain stable, scalable, very accurate, easy to code and to maintain schemes on complex geometries. The method should easily handle mesh refinement, even near the boundary where the most interesting engineering quantities have to be evaluated. Unsteady uncertainties in the model, for example in the geometry or the boundary conditions should represented efficiently.This proposal goal is to design, develop and evaluate solutions to each of the above problems. Our work program will lead to significant breakthroughs for flow simulations. More specifically, we propose to work on 3 connected problems: 1-A class of very high order numerical schemes able to easily deal with the geometry of boundaries and still can solve steep problems. The geometry is generally defined by CAD tools. The output is used to generate a mesh which is then used by the scheme. Hence, any mesh refinement process is disconnected from the CAD, a situation that prevents the spread of mesh adaptation techniques in industry! 2-A class of very high order numerical schemes which can utilize possibly solution dependant basis functions in order to lower the number of degrees of freedom, for example to compute accurately boundary layers with low resolutions. 3-A general non intrusive technique for handling uncertainties in order to deal with irregular probability density functions (pdf) and also to handle pdf that may evolve in time, for example thanks to an optimisation loop. The curse of dimensionality will be dealt thanks Harten's multiresolution method combined with sparse grid methods. Currently, and up to our knowledge, no scheme has each of these properties. This research program will have an impact on numerical schemes and industrial applications.
Max ERC Funding
1 432 769 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym ADEQUATE
Project Advanced optoelectronic Devices with Enhanced QUAntum efficiency at THz frEquencies
Researcher (PI) Carlo Sirtori
Host Institution (HI) UNIVERSITE PARIS DIDEROT - PARIS 7
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Summary
The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Max ERC Funding
1 761 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30