Project acronym 3D-FABRIC
Project 3D Flow Analysis in Bijels Reconfigured for Interfacial Catalysis
Researcher (PI) Martin F. HAASE
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary The objective of this proposal is to determine the unknown criteria for convective cross-flow in bicontinuous interfacially jammed emulsion gels (bijels). Based on this, we will answer the question: Can continuously operated interfacial catalysis be realized in bijel cross-flow reactors? Demonstrating this potential will introduce a broadly applicable chemical technology, replacing wasteful chemical processes that require organic solvents. We will achieve our objective in three steps:
(a) Control over bijel structure and properties. Bijels will be formed with a selection of functional inorganic colloidal particles. Nanoparticle surface modifications will be developed and extensively characterized. General principles for the parameters determining bijel structures and properties will be established based on confocal and electron microscopy characterization. These principles will enable unprecedented control over bijel formation and will allow for designing desired properties.
(b) Convective flow in bijels. The mechanical strength of bijels will be tailored and measured. With mechanically robust bijels, the influence of size and organization of oil/water channels on convective mass transfer in bijels will be investigated. To this end, a bijel mass transfer apparatus fabricated by 3d-printing of bijel fibers and soft photolithography will be introduced. In conjunction with the following objective, the analysis of convective flows in bijels will facilitate a thorough description of their structure/function relationships.
(c) Biphasic chemical reactions in STrIPS bijel cross-flow reactors. First, continuous extraction in bijels will be realized. Next, conditions to carry out continuously-operated, phase transfer catalysis of well-known model reactions in bijels will be determined. Both processes will be characterized in-situ and in 3-dimensions by confocal microscopy of fluorescent phase transfer reactions in transparent bijels.
Summary
The objective of this proposal is to determine the unknown criteria for convective cross-flow in bicontinuous interfacially jammed emulsion gels (bijels). Based on this, we will answer the question: Can continuously operated interfacial catalysis be realized in bijel cross-flow reactors? Demonstrating this potential will introduce a broadly applicable chemical technology, replacing wasteful chemical processes that require organic solvents. We will achieve our objective in three steps:
(a) Control over bijel structure and properties. Bijels will be formed with a selection of functional inorganic colloidal particles. Nanoparticle surface modifications will be developed and extensively characterized. General principles for the parameters determining bijel structures and properties will be established based on confocal and electron microscopy characterization. These principles will enable unprecedented control over bijel formation and will allow for designing desired properties.
(b) Convective flow in bijels. The mechanical strength of bijels will be tailored and measured. With mechanically robust bijels, the influence of size and organization of oil/water channels on convective mass transfer in bijels will be investigated. To this end, a bijel mass transfer apparatus fabricated by 3d-printing of bijel fibers and soft photolithography will be introduced. In conjunction with the following objective, the analysis of convective flows in bijels will facilitate a thorough description of their structure/function relationships.
(c) Biphasic chemical reactions in STrIPS bijel cross-flow reactors. First, continuous extraction in bijels will be realized. Next, conditions to carry out continuously-operated, phase transfer catalysis of well-known model reactions in bijels will be determined. Both processes will be characterized in-situ and in 3-dimensions by confocal microscopy of fluorescent phase transfer reactions in transparent bijels.
Max ERC Funding
1 905 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym Bio-Plan
Project Bio-Inspired Microfluidics Platform for Biomechanical Analysis
Researcher (PI) Jacob Marinus Jan DEN TOONDER
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Advanced Grant (AdG), PE8, ERC-2018-ADG
Summary Biomechanical interactions between cells and their environment are essential in almost any biological process, from embryonic development to organ function to diseases. Hence, biomechanical interactions are crucial for health and disease. Examples are hydrodynamic interactions through fluid flow, and forces acting directly on cells. Existing methods to analyze and understand these interactions are limited however, since they do not offer the required combination of precisely controlled flow and accurate applying and sensing of forces. Also, they often lack a physiological environment. A breakthrough in biomechanical analysis is therefore highly needed. We will realize a novel microfluidic platform for biomechanical analysis with unprecedented possibilities of controlling fluid flow and applying and sensing time-dependent forces at subcellular scales in controlled environments. The platform will be uniquely based on bio-inspired magnetic artificial cilia, rather than on conventional microfluidic valves and pumps. Cilia are microscopic hairs ubiquitously present in nature, acting both as actuators and sensors, essential for swimming of microorganisms, transport of dirt out of our airways, and sensing of sound, i.e. they exactly fulfill functions needed in biomechanical analysis. We will develop novel materials and fabrication methods to realize microscopic polymeric artificial cilia, and integrate these in microfluidic devices. Magnetic actuation and optical readout systems complete the platform. We will apply the novel platform to address three fundamental and unresolved biomechanical questions: 1. How do hydrodynamic interactions with actuated cilia steer cellular and particle transport? 2. How do local and dynamic mechanical forces on cells fundamentally influence their motility and differentiation? 3. How do hydrodynamic interactions between cilia steer embryonic development? This unique platform will enable to address many other future biomechanical questions.
Summary
Biomechanical interactions between cells and their environment are essential in almost any biological process, from embryonic development to organ function to diseases. Hence, biomechanical interactions are crucial for health and disease. Examples are hydrodynamic interactions through fluid flow, and forces acting directly on cells. Existing methods to analyze and understand these interactions are limited however, since they do not offer the required combination of precisely controlled flow and accurate applying and sensing of forces. Also, they often lack a physiological environment. A breakthrough in biomechanical analysis is therefore highly needed. We will realize a novel microfluidic platform for biomechanical analysis with unprecedented possibilities of controlling fluid flow and applying and sensing time-dependent forces at subcellular scales in controlled environments. The platform will be uniquely based on bio-inspired magnetic artificial cilia, rather than on conventional microfluidic valves and pumps. Cilia are microscopic hairs ubiquitously present in nature, acting both as actuators and sensors, essential for swimming of microorganisms, transport of dirt out of our airways, and sensing of sound, i.e. they exactly fulfill functions needed in biomechanical analysis. We will develop novel materials and fabrication methods to realize microscopic polymeric artificial cilia, and integrate these in microfluidic devices. Magnetic actuation and optical readout systems complete the platform. We will apply the novel platform to address three fundamental and unresolved biomechanical questions: 1. How do hydrodynamic interactions with actuated cilia steer cellular and particle transport? 2. How do local and dynamic mechanical forces on cells fundamentally influence their motility and differentiation? 3. How do hydrodynamic interactions between cilia steer embryonic development? This unique platform will enable to address many other future biomechanical questions.
Max ERC Funding
3 083 625 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym BIOMORPHIC
Project Brain-Inspired Organic Modular Lab-on-a-Chip for Cell Classification
Researcher (PI) Yoeri Bertin VAN DE BURGT
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary Brain-inspired (neuromorphic) computing has recently demonstrated advancements in pattern and image recognition as well as classification of unstructured (big) data. However, the volatility and energy required for neuromorphic devices presented to date significantly complicate the path to achieve the interconnectivity and efficiency of the brain. In previous work, recently published in Nature Materials, the PI has demonstrated a low-cost solution to these drawbacks: an organic artificial synapse as a building-block for organic neuromorphics. The conductance of this single synapse can be accurately tuned by controlled ion injection in the conductive polymer, which could trigger unprecedented low-energy analogue computing.
Hence, the major challenge in the largely unexplored field of organic neuromorphics, is to create an interconnected network of these synapses to obtain a true neuromorphic array which will not only be exceptionally pioneering in materials research for neuromorphics and machine-learning, but can also be adopted in a multitude of vital medical research devices. BIOMORPHIC will develop a unique brain-inspired organic lab-on-a-chip in which microfluidics integrated with sensors, collecting characteristics of biological cells, will serve as input to the neuromorphic array. BIOMORPHIC will combine modular microfluidics and machine-learning to develop a novel platform for low-cost lab-on-a-chip devices capable of on-chip cell classification.
In particular, BIOMORPHIC will focus on the detection of circulating tumour cells (CTC). Current methods for the detection of cancer are generally invasive, whereas analysing CTCs in blood offers a highly desired alternative. However, accurately detecting and isolating these cells remains a challenge due to their low prevalence and large variability. The strength of neuromorphics precisely lies in finding patterns in such variable data, which will result in a ground-breaking CTC classification lab-on-a-chip.
Summary
Brain-inspired (neuromorphic) computing has recently demonstrated advancements in pattern and image recognition as well as classification of unstructured (big) data. However, the volatility and energy required for neuromorphic devices presented to date significantly complicate the path to achieve the interconnectivity and efficiency of the brain. In previous work, recently published in Nature Materials, the PI has demonstrated a low-cost solution to these drawbacks: an organic artificial synapse as a building-block for organic neuromorphics. The conductance of this single synapse can be accurately tuned by controlled ion injection in the conductive polymer, which could trigger unprecedented low-energy analogue computing.
Hence, the major challenge in the largely unexplored field of organic neuromorphics, is to create an interconnected network of these synapses to obtain a true neuromorphic array which will not only be exceptionally pioneering in materials research for neuromorphics and machine-learning, but can also be adopted in a multitude of vital medical research devices. BIOMORPHIC will develop a unique brain-inspired organic lab-on-a-chip in which microfluidics integrated with sensors, collecting characteristics of biological cells, will serve as input to the neuromorphic array. BIOMORPHIC will combine modular microfluidics and machine-learning to develop a novel platform for low-cost lab-on-a-chip devices capable of on-chip cell classification.
In particular, BIOMORPHIC will focus on the detection of circulating tumour cells (CTC). Current methods for the detection of cancer are generally invasive, whereas analysing CTCs in blood offers a highly desired alternative. However, accurately detecting and isolating these cells remains a challenge due to their low prevalence and large variability. The strength of neuromorphics precisely lies in finding patterns in such variable data, which will result in a ground-breaking CTC classification lab-on-a-chip.
Max ERC Funding
1 498 726 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CanISeeQG
Project Can I see Quantum Gravity?
Researcher (PI) Jan DE BOER
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary The interplay between two of the most important building blocks of nature, quantum mechanics and gravity, has been a great source of inspiration for theoretical physics, leading to discoveries such as the Hawking radiation of black holes and the development of string theory. In turn, the following picture emerged: physics at the most fundamental level is governed by the rules of quantum mechanics while gravity is some effective coarse-grained description of the underlying microscopic theory. Given that the microscopic degrees of freedom are non-local, standard techniques such as the renormalization group and effective field theory a priori do not apply. Nevertheless, we use effective field theories that incorporate general relativity to describe our observations.
With the discovery of gravitational waves and the various ongoing and upcoming experiments that will put general relativity to the test, it has become urgent to assess the validity of the standard framework of effective field theory for describing observable quantum gravity effects. Recent developments in resolving the information loss paradox and the quantum nature of black holes concluded that effective field theory must be modified in a way that uniquely incorporates quantum gravity. The main purpose of this proposal is to describe this modification in a precise and quantitative way, ultimately connecting it to potential experimental discoveries.
In order to achieve this goal, I will approach the problem using a combination of thermodynamics, hydrodynamics and quantum information theory, mostly in the context of the AdS/CFT correspondence, where a precise description of quantum gravity is available. As a by-product of identifying observational features of quantum gravity, I will also make substantial progress in several foundational problems. My broad track record and expertise, and the fact that I have already obtained promising preliminary results, makes me uniquely qualified to lead this endeavor.
Summary
The interplay between two of the most important building blocks of nature, quantum mechanics and gravity, has been a great source of inspiration for theoretical physics, leading to discoveries such as the Hawking radiation of black holes and the development of string theory. In turn, the following picture emerged: physics at the most fundamental level is governed by the rules of quantum mechanics while gravity is some effective coarse-grained description of the underlying microscopic theory. Given that the microscopic degrees of freedom are non-local, standard techniques such as the renormalization group and effective field theory a priori do not apply. Nevertheless, we use effective field theories that incorporate general relativity to describe our observations.
With the discovery of gravitational waves and the various ongoing and upcoming experiments that will put general relativity to the test, it has become urgent to assess the validity of the standard framework of effective field theory for describing observable quantum gravity effects. Recent developments in resolving the information loss paradox and the quantum nature of black holes concluded that effective field theory must be modified in a way that uniquely incorporates quantum gravity. The main purpose of this proposal is to describe this modification in a precise and quantitative way, ultimately connecting it to potential experimental discoveries.
In order to achieve this goal, I will approach the problem using a combination of thermodynamics, hydrodynamics and quantum information theory, mostly in the context of the AdS/CFT correspondence, where a precise description of quantum gravity is available. As a by-product of identifying observational features of quantum gravity, I will also make substantial progress in several foundational problems. My broad track record and expertise, and the fact that I have already obtained promising preliminary results, makes me uniquely qualified to lead this endeavor.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CATCH-22
Project High temperature superconductivity and the Catch-22 conundrum
Researcher (PI) Nigel Hussey
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Advanced Grant (AdG), PE3, ERC-2018-ADG
Summary CATCH-22 sets out to resolve the mystery of the cuprate high temperature superconductors. Hailed as one of the major discoveries of the 20th Century, its central mysteries – the pairing mechanism, the origin of the ‘pseudogap’ and the nature of the ‘strange metal’ phase, have remained elusive for over 30 years. Typically, what scatters electrons also binds them into pairs, and in the cuprates, the strong pairing interaction manifests itself in the strange metal phase as intense scattering, so strong in fact that it drives the electronic states required for pairing incoherent. In other words, what first promotes high temperature superconductivity ultimately destroys it! This logical paradox is the Catch-22 conundrum.
CATCH-22, the program, comprises three parts. Part 1 will explore the fate of electronic states within the strange metal phase by studying how the metallic response diminishes across universal bounds, both as a function of temperature and interaction strength, through momentum-averaged electrical conductivity and thermal diffusivity studies and momentum-resolved photoemission spectroscopy. Part 2 will seek to access the ground state of optimally doped cuprates for the first time, by applying intense current and laser pulses to ultra-thin samples in a high magnetic field. The latter, if successful, will open up a new frontier in which intense THz light and intense magnetic fields combine to access the terra incognita of hidden phases. Finally, Part 3 will explore the origins of the strange metal at the edge of the superconducting dome and search for manifestations of incoherence in other strange metals in an attempt to unify the governing principles. Given that the central mysteries are intertwined – the strange metal is a precursor to the pseudogap which in turn leads to superconductivity - CATCH-22 will aim to bring significant new insight into all three and pave the way, finally, for a coherent phenomenological model for cuprate superconductivity.
Summary
CATCH-22 sets out to resolve the mystery of the cuprate high temperature superconductors. Hailed as one of the major discoveries of the 20th Century, its central mysteries – the pairing mechanism, the origin of the ‘pseudogap’ and the nature of the ‘strange metal’ phase, have remained elusive for over 30 years. Typically, what scatters electrons also binds them into pairs, and in the cuprates, the strong pairing interaction manifests itself in the strange metal phase as intense scattering, so strong in fact that it drives the electronic states required for pairing incoherent. In other words, what first promotes high temperature superconductivity ultimately destroys it! This logical paradox is the Catch-22 conundrum.
CATCH-22, the program, comprises three parts. Part 1 will explore the fate of electronic states within the strange metal phase by studying how the metallic response diminishes across universal bounds, both as a function of temperature and interaction strength, through momentum-averaged electrical conductivity and thermal diffusivity studies and momentum-resolved photoemission spectroscopy. Part 2 will seek to access the ground state of optimally doped cuprates for the first time, by applying intense current and laser pulses to ultra-thin samples in a high magnetic field. The latter, if successful, will open up a new frontier in which intense THz light and intense magnetic fields combine to access the terra incognita of hidden phases. Finally, Part 3 will explore the origins of the strange metal at the edge of the superconducting dome and search for manifestations of incoherence in other strange metals in an attempt to unify the governing principles. Given that the central mysteries are intertwined – the strange metal is a precursor to the pseudogap which in turn leads to superconductivity - CATCH-22 will aim to bring significant new insight into all three and pave the way, finally, for a coherent phenomenological model for cuprate superconductivity.
Max ERC Funding
2 495 629 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CHINAWHITE
Project The Reconfiguration of Whiteness in China: Privileges, Precariousness, and Racialized Performances
Researcher (PI) Shanshan LAN
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Consolidator Grant (CoG), SH3, ERC-2018-COG
Summary This research examines the multiple and contradictory constructions of whiteness in China as a result of the rapid diversification of white migrants in the country and the shifting power balances between China and the West. Existing literature on white westerners in Asia mainly focuses on transnational elites. The rising number of middle- and lower-stratum of white migrants in China deserves special attention due to substantial tensions and discrepancies in their experiences of racial privilege, economic insecurity, and legal vulnerability. Multi-sited and multi-scalar ethnographic research will be conducted on daily life encounters between various groups of white migrants and Chinese in five domains: (1) state policy regarding international migrants in China; (2) the ESL industry (teaching English as a second language); (3) the media, fashion, and entertainment industries; (4) transnational business and entrepreneurship; and (5) interracial romance. Three major research questions frame this project. 1. What are the symbolic and material advantages and disadvantages of being white in China’s thriving market economy and consumer culture? 2. How is whiteness racialized in relation to blackness and other immigrant minority identities in multiple social domains and at different geographical scales? 3. How are multiple versions of whiteness produced, interpreted, negotiated, and performed through daily life interactions between white migrants and Chinese in various social and personal settings? This project contributes to a new line of research on white racial formation in East Asia by creatively integrating theories in whiteness studies and migration studies. It also expands the geographical scope of research on white expatriates from global cities in coastal areas to second-tier cities in inland China.
Summary
This research examines the multiple and contradictory constructions of whiteness in China as a result of the rapid diversification of white migrants in the country and the shifting power balances between China and the West. Existing literature on white westerners in Asia mainly focuses on transnational elites. The rising number of middle- and lower-stratum of white migrants in China deserves special attention due to substantial tensions and discrepancies in their experiences of racial privilege, economic insecurity, and legal vulnerability. Multi-sited and multi-scalar ethnographic research will be conducted on daily life encounters between various groups of white migrants and Chinese in five domains: (1) state policy regarding international migrants in China; (2) the ESL industry (teaching English as a second language); (3) the media, fashion, and entertainment industries; (4) transnational business and entrepreneurship; and (5) interracial romance. Three major research questions frame this project. 1. What are the symbolic and material advantages and disadvantages of being white in China’s thriving market economy and consumer culture? 2. How is whiteness racialized in relation to blackness and other immigrant minority identities in multiple social domains and at different geographical scales? 3. How are multiple versions of whiteness produced, interpreted, negotiated, and performed through daily life interactions between white migrants and Chinese in various social and personal settings? This project contributes to a new line of research on white racial formation in East Asia by creatively integrating theories in whiteness studies and migration studies. It also expands the geographical scope of research on white expatriates from global cities in coastal areas to second-tier cities in inland China.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym ClusterWeb
Project Unravelling the physics of particle acceleration and feedback in galaxy clusters and the cosmic web
Researcher (PI) Reinout Johannes VAN WEEREN
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary We will unravel the origin of cosmic magnetic fields, the physics of particle acceleration in dilute plasmas, and the nature of AGN feedback with state-of-the-art radio telescopes. With the enormous gains in sensitivity, survey speed, and resolution of these telescopes – combined with recent breakthroughs that correct for phased-arrays and the Earth’s distorting ionosphere – we can now take the next big step in this field.
Cosmic web filaments and galaxy clusters are the Universe’s largest structures. Clusters grow by a sequence of mergers, generating shock waves and turbulence which heat the cluster plasma. In merging clusters, cosmic rays are accelerated to extreme energies, producing Mpc-size diffuse synchrotron emitting sources. However, these acceleration processes are still poorly understood. Clusters are also heated by AGN feedback from radio galaxies, but the total energy input by feedback and its evolution over cosmic time are unknown. We will construct the largest low-frequency sample of galaxy clusters to (1) establish how particles are accelerated in cluster plasmas, (2) quantify how the cosmic ray content scales with cluster mass, (3) determine the importance of AGN fossil plasma in the acceleration processes, (4) characterize current and past episodes of AGN feedback, and (5) determine the evolution of feedback up to the epoch of cluster formation (z=1-2). These results will be essential to understand cluster formation and its associated energy budget.
As in clusters, cosmic web accretion shocks should also accelerate particles producing radio emission. Based on the deepest low-frequency images ever produced, we will (5) carry out the first studies of these giant accelerators, opening up a new window on the elusive warm-hot intergalactic medium, where many of the cosmic baryons reside. Even more important, (6) we aim to obtain measurements of the intergalactic magnetic field, providing key constraints on the origin of our Universe’s magnetic fields.
Summary
We will unravel the origin of cosmic magnetic fields, the physics of particle acceleration in dilute plasmas, and the nature of AGN feedback with state-of-the-art radio telescopes. With the enormous gains in sensitivity, survey speed, and resolution of these telescopes – combined with recent breakthroughs that correct for phased-arrays and the Earth’s distorting ionosphere – we can now take the next big step in this field.
Cosmic web filaments and galaxy clusters are the Universe’s largest structures. Clusters grow by a sequence of mergers, generating shock waves and turbulence which heat the cluster plasma. In merging clusters, cosmic rays are accelerated to extreme energies, producing Mpc-size diffuse synchrotron emitting sources. However, these acceleration processes are still poorly understood. Clusters are also heated by AGN feedback from radio galaxies, but the total energy input by feedback and its evolution over cosmic time are unknown. We will construct the largest low-frequency sample of galaxy clusters to (1) establish how particles are accelerated in cluster plasmas, (2) quantify how the cosmic ray content scales with cluster mass, (3) determine the importance of AGN fossil plasma in the acceleration processes, (4) characterize current and past episodes of AGN feedback, and (5) determine the evolution of feedback up to the epoch of cluster formation (z=1-2). These results will be essential to understand cluster formation and its associated energy budget.
As in clusters, cosmic web accretion shocks should also accelerate particles producing radio emission. Based on the deepest low-frequency images ever produced, we will (5) carry out the first studies of these giant accelerators, opening up a new window on the elusive warm-hot intergalactic medium, where many of the cosmic baryons reside. Even more important, (6) we aim to obtain measurements of the intergalactic magnetic field, providing key constraints on the origin of our Universe’s magnetic fields.
Max ERC Funding
1 487 755 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym COSMOS
Project Game theoretic Control for Complex Systems of Systems
Researcher (PI) Sergio GRAMMATICO
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Modern society is based on large-scale, interconnected, complex infrastructures, e.g. power, transportation and communication systems, with network structure and interacting subsystems controlled by autonomous components and human users, generically called “agents”. These systems possess the features of “complex” systems of systems (C-SoS), such as rationality and autonomy of the agents, and require effective multi-agent coordination and control actions for their safe and efficient operation. Multi-agent optimization has attracted an extraordinary amount of research attention as a methodology to let agents cooperatively coordinate their actions, but it is inappropriate and ineffective for systems with noncooperative (selfish) agents, virtually all modern C-SoS.
A paradigm shift is necessary to ensure safe and efficient operation of complex systems with possibly noncooperative agents. With this aim, COSMOS shall embrace dynamic game theory and pursue a twofold scientific and technical objective: 1) to conceive a unifying framework for the analysis and control of complex, multi-agent, mixed cooperative and noncooperative, systems; 2) to provide automated computational methods for solving coordination, decision and control problems in C-SoS. To achieve these goals, COSMOS will adopt a novel operator-theoretic approach, and integrate methods within and across dynamic game theory, networked multi-agent systems and control, statistical learning, stochastic and mixed-integer optimization.
Summary
Modern society is based on large-scale, interconnected, complex infrastructures, e.g. power, transportation and communication systems, with network structure and interacting subsystems controlled by autonomous components and human users, generically called “agents”. These systems possess the features of “complex” systems of systems (C-SoS), such as rationality and autonomy of the agents, and require effective multi-agent coordination and control actions for their safe and efficient operation. Multi-agent optimization has attracted an extraordinary amount of research attention as a methodology to let agents cooperatively coordinate their actions, but it is inappropriate and ineffective for systems with noncooperative (selfish) agents, virtually all modern C-SoS.
A paradigm shift is necessary to ensure safe and efficient operation of complex systems with possibly noncooperative agents. With this aim, COSMOS shall embrace dynamic game theory and pursue a twofold scientific and technical objective: 1) to conceive a unifying framework for the analysis and control of complex, multi-agent, mixed cooperative and noncooperative, systems; 2) to provide automated computational methods for solving coordination, decision and control problems in C-SoS. To achieve these goals, COSMOS will adopt a novel operator-theoretic approach, and integrate methods within and across dynamic game theory, networked multi-agent systems and control, statistical learning, stochastic and mixed-integer optimization.
Max ERC Funding
1 499 415 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym CRISP
Project Cognitive Aging: From Educational Opportunities to Individual Risk Profiles
Researcher (PI) Anja LEIST
Host Institution (HI) UNIVERSITE DU LUXEMBOURG
Call Details Starting Grant (StG), SH3, ERC-2018-STG
Summary Cognitive impairment and dementia have dramatic individual and social consequences, and create high economic costs for societies. In order to delay cognitive aging of future generations as long as possible, we need evidence about which contextual factors are most supportive for individuals to reach highest cognitive levels relative to their potential. At the same time, for current older generations, we need scalable methods to exactly identify individuals at risk of cognitive impairment. The project intends to apply recent methodological and statistical advancements to reach two objectives. Firstly, contextual influences on cognitive aging will be comparatively assessed, with a focus on inequalities related to educational opportunities and gender inequalities. This will be done using longitudinal, population-representative, harmonized cross-national aging surveys, merged with contextual information. Secondly, the project will quantify the ability of singular and clustered individual characteristics, such as indicators of cognitive reserve and behaviour change, to predict cognitive aging and diagnosis of dementia. Project methodology will rely partly on parametric ‘traditional’ multilevel- or fixed-effects modelling, partly on non-parametric statistical learning approaches, to address objectives both hypothesis- and data-driven. Applying statistical learning techniques in the field of cognitive reserve will open new research avenues for efficient handling of large amounts of data, among which most prominently the accurate prediction of health and disease outcomes. Quantifying the role of contextual inequalities related to education and gender will guide policymaking in and beyond the project. Assessing risk profiles of individuals in relation to cognitive aging will support efficient and scalable risk screening of individuals. Identifying the value of behaviour change to delay cognitive impairment will guide treatment plans for individuals affected by dementia.
Summary
Cognitive impairment and dementia have dramatic individual and social consequences, and create high economic costs for societies. In order to delay cognitive aging of future generations as long as possible, we need evidence about which contextual factors are most supportive for individuals to reach highest cognitive levels relative to their potential. At the same time, for current older generations, we need scalable methods to exactly identify individuals at risk of cognitive impairment. The project intends to apply recent methodological and statistical advancements to reach two objectives. Firstly, contextual influences on cognitive aging will be comparatively assessed, with a focus on inequalities related to educational opportunities and gender inequalities. This will be done using longitudinal, population-representative, harmonized cross-national aging surveys, merged with contextual information. Secondly, the project will quantify the ability of singular and clustered individual characteristics, such as indicators of cognitive reserve and behaviour change, to predict cognitive aging and diagnosis of dementia. Project methodology will rely partly on parametric ‘traditional’ multilevel- or fixed-effects modelling, partly on non-parametric statistical learning approaches, to address objectives both hypothesis- and data-driven. Applying statistical learning techniques in the field of cognitive reserve will open new research avenues for efficient handling of large amounts of data, among which most prominently the accurate prediction of health and disease outcomes. Quantifying the role of contextual inequalities related to education and gender will guide policymaking in and beyond the project. Assessing risk profiles of individuals in relation to cognitive aging will support efficient and scalable risk screening of individuals. Identifying the value of behaviour change to delay cognitive impairment will guide treatment plans for individuals affected by dementia.
Max ERC Funding
1 148 290 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CRYSTAL CLEAR
Project CRYSTAL CLEAR: determining the impact of charge on crystal nucleation
Researcher (PI) Mariette WOLTHERS
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Consolidator Grant (CoG), PE10, ERC-2018-COG
Summary All of the crystals that form in water on Earth are formed through reaction between oppositely charged ions. In these crystals, the ions are present in an ideal, charge-balanced ionic ratio. In contrast, the natural solutions in which they form, contain widely diverging ionic ratios. When crystals nucleate from natural solutions, they will be charged, and charge has a massive impact on the behaviour of small new crystals.
Most nucleation experiments have been conducted in solutions with charge-balanced ionic ratios. This leads to uncharged crystal formation, which can be described with nucleation theories based on uncharged gas condensation into droplets. My pilot data show that this does not apply when ionic ratios diverge. New crystals then form and grow much slower than expected. Similarly, in natural solutions, crystals are often expected to form, but they do not, and vice versa. Clearly, we still have no idea how, why and how fast crystals nucleate in Earth surface environments.
In this project, I will test the hypothesis that ionic ratio has a dramatic impact on nucleation: crystals will be charged, and this charge will determine their size, how and how fast they grow, aggregate, and transform.
I will conduct state-of-the-art experiments and analyses that will provide in situ knowledge of the impact of ionic ratio on the charge, size, growth, aggregation and transformation of nuclei. Experiments will be complemented with advanced modelling to derive charged-nuclei stability and surrounding water properties. The results will be assimilated in a new crystal nucleation theory.
CRYSTAL CLEAR will focus on barite, calcite and pyrite as examples of highly relevant Earth Materials. The outcome will be improved geoengineering options such as drinking water production and CO2 sequestration. My project will bring a new vision on crystal formation in nature, with radically improved predictions of rates and mechanisms, and a paradigm shift in nucleation theory.
Summary
All of the crystals that form in water on Earth are formed through reaction between oppositely charged ions. In these crystals, the ions are present in an ideal, charge-balanced ionic ratio. In contrast, the natural solutions in which they form, contain widely diverging ionic ratios. When crystals nucleate from natural solutions, they will be charged, and charge has a massive impact on the behaviour of small new crystals.
Most nucleation experiments have been conducted in solutions with charge-balanced ionic ratios. This leads to uncharged crystal formation, which can be described with nucleation theories based on uncharged gas condensation into droplets. My pilot data show that this does not apply when ionic ratios diverge. New crystals then form and grow much slower than expected. Similarly, in natural solutions, crystals are often expected to form, but they do not, and vice versa. Clearly, we still have no idea how, why and how fast crystals nucleate in Earth surface environments.
In this project, I will test the hypothesis that ionic ratio has a dramatic impact on nucleation: crystals will be charged, and this charge will determine their size, how and how fast they grow, aggregate, and transform.
I will conduct state-of-the-art experiments and analyses that will provide in situ knowledge of the impact of ionic ratio on the charge, size, growth, aggregation and transformation of nuclei. Experiments will be complemented with advanced modelling to derive charged-nuclei stability and surrounding water properties. The results will be assimilated in a new crystal nucleation theory.
CRYSTAL CLEAR will focus on barite, calcite and pyrite as examples of highly relevant Earth Materials. The outcome will be improved geoengineering options such as drinking water production and CO2 sequestration. My project will bring a new vision on crystal formation in nature, with radically improved predictions of rates and mechanisms, and a paradigm shift in nucleation theory.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31