Project acronym APMPAL-HET
Project Asset Prices and Macro Policy when Agents Learn and are Heterogeneous
Researcher (PI) Albert MARCET TORRENS
Host Institution (HI) FUNDACIÓ MARKETS, ORGANIZATIONS AND VOTES IN ECONOMICS
Call Details Advanced Grant (AdG), SH1, ERC-2017-ADG
Summary Based on the APMPAL (ERC) project we continue to develop the frameworks of internal rationality (IR) and optimal signal extraction (OSE). Under IR investors/consumers behave rationally given their subjective beliefs about prices, these beliefs are compatible with data. Under OSE the government has partial information, it knows how policy influences observed variables and signal extraction.
We develop further the foundations of IR and OSE with an emphasis on heterogeneous agents. We study sovereign bond crisis and heterogeneity of beliefs in asset pricing models under IR, using survey data on expectations. Under IR the assets’ stochastic discount factor depends on the agents’ decision function and beliefs; this modifies some key asset pricing results. We extend OSE to models with state variables, forward-looking constraints and heterogeneity.
Under IR agents’ prior beliefs determine the effects of a policy reform. If the government does not observe prior beliefs it has partial information, thus OSE should be used to analyse policy reforms under IR.
If IR heterogeneous workers forecast their productivity either from their own wage or their neighbours’ in a network, low current wages discourage search and human capital accumulation, leading to low productivity. This can explain low development of a country or social exclusion of a group. Worker subsidies redistribute wealth and can increase productivity if they “teach” agents to exit a low-wage state.
We build DSGE models under IR for prediction and policy analysis. We develop time-series tools for predicting macro and asset market variables, using information available to the analyst, and we introduce non-linearities and survey expectations using insights from models under IR.
We study how IR and OSE change the view on macro policy issues such as tax smoothing, debt management, Taylor rule, level of inflation, fiscal/monetary policy coordination, factor taxation or redistribution.
Summary
Based on the APMPAL (ERC) project we continue to develop the frameworks of internal rationality (IR) and optimal signal extraction (OSE). Under IR investors/consumers behave rationally given their subjective beliefs about prices, these beliefs are compatible with data. Under OSE the government has partial information, it knows how policy influences observed variables and signal extraction.
We develop further the foundations of IR and OSE with an emphasis on heterogeneous agents. We study sovereign bond crisis and heterogeneity of beliefs in asset pricing models under IR, using survey data on expectations. Under IR the assets’ stochastic discount factor depends on the agents’ decision function and beliefs; this modifies some key asset pricing results. We extend OSE to models with state variables, forward-looking constraints and heterogeneity.
Under IR agents’ prior beliefs determine the effects of a policy reform. If the government does not observe prior beliefs it has partial information, thus OSE should be used to analyse policy reforms under IR.
If IR heterogeneous workers forecast their productivity either from their own wage or their neighbours’ in a network, low current wages discourage search and human capital accumulation, leading to low productivity. This can explain low development of a country or social exclusion of a group. Worker subsidies redistribute wealth and can increase productivity if they “teach” agents to exit a low-wage state.
We build DSGE models under IR for prediction and policy analysis. We develop time-series tools for predicting macro and asset market variables, using information available to the analyst, and we introduce non-linearities and survey expectations using insights from models under IR.
We study how IR and OSE change the view on macro policy issues such as tax smoothing, debt management, Taylor rule, level of inflation, fiscal/monetary policy coordination, factor taxation or redistribution.
Max ERC Funding
1 524 144 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym BIGSEA
Project Biogeochemical and ecosystem interactions with socio-economic activity in the global ocean
Researcher (PI) Eric Douglas Galbraith
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary The global marine ecosystem is being deeply altered by human activity. On the one hand, rising concentrations of atmospheric greenhouse gases are changing the physical and chemical state of the ocean, exerting pressure from the bottom up. Meanwhile, the global fishery has provided large economic benefits, but in so doing has restructured ecosystems by removing most of the large animal biomass, a major top-down change. Although there has been a tremendous amount of research into isolated aspects of these impacts, the development of a holistic understanding of the full interactions between physics, chemistry, ecology and economic activity might appear impossible, given the myriad complexities. This proposal lays out a strategy to assemble a team of trans-disciplinary expertise, that will develop a unified, data-constrained, grid-based modeling framework to represent the most important interactions of the global human-ocean system. Building this framework requires solving a series of fundamental problems that currently hinder the development of the full model. If these problems can be solved, the resulting model will reveal novel emergent properties and open the doors to a range of previously unexplored questions of high impact across a range of disciplines. Key questions include the ways in which animals interact with oxygen minimum zones with implications for fisheries, the impacts fish harvesting may have on nutrient recycling, spatio-temporal interactions between managed and unmanaged fisheries, and fundamental questions about the relationships between fish price, fishing cost, and multiple markets in a changing world. Just as the first coupled ocean-atmosphere models revealed a wealth of new behaviours, the coupled human-ocean model proposed here has the potential to launch multiple new fields of enquiry. It is hoped that the novel approach will contribute to a paradigm shift that treats human activity as one component within the framework of the Earth System.
Summary
The global marine ecosystem is being deeply altered by human activity. On the one hand, rising concentrations of atmospheric greenhouse gases are changing the physical and chemical state of the ocean, exerting pressure from the bottom up. Meanwhile, the global fishery has provided large economic benefits, but in so doing has restructured ecosystems by removing most of the large animal biomass, a major top-down change. Although there has been a tremendous amount of research into isolated aspects of these impacts, the development of a holistic understanding of the full interactions between physics, chemistry, ecology and economic activity might appear impossible, given the myriad complexities. This proposal lays out a strategy to assemble a team of trans-disciplinary expertise, that will develop a unified, data-constrained, grid-based modeling framework to represent the most important interactions of the global human-ocean system. Building this framework requires solving a series of fundamental problems that currently hinder the development of the full model. If these problems can be solved, the resulting model will reveal novel emergent properties and open the doors to a range of previously unexplored questions of high impact across a range of disciplines. Key questions include the ways in which animals interact with oxygen minimum zones with implications for fisheries, the impacts fish harvesting may have on nutrient recycling, spatio-temporal interactions between managed and unmanaged fisheries, and fundamental questions about the relationships between fish price, fishing cost, and multiple markets in a changing world. Just as the first coupled ocean-atmosphere models revealed a wealth of new behaviours, the coupled human-ocean model proposed here has the potential to launch multiple new fields of enquiry. It is hoped that the novel approach will contribute to a paradigm shift that treats human activity as one component within the framework of the Earth System.
Max ERC Funding
1 600 000 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym BSD
Project Euler systems and the conjectures of Birch and Swinnerton-Dyer, Bloch and Kato
Researcher (PI) Victor Rotger cerdà
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary In order to celebrate mathematics in the new millennium, the Clay Mathematics Institute established seven $1.000.000 Prize Problems. One of these is the conjecture of Birch and Swinnerton-Dyer (BSD), widely open since the 1960's. The main object of this proposal is developing innovative and unconventional strategies for proving groundbreaking results towards the resolution of this problem and their generalizations by Bloch and Kato (BK).
Breakthroughs on BSD were achieved by Coates-Wiles, Gross, Zagier and Kolyvagin, and Kato. Since then, there have been nearly no new ideas on how to tackle BSD. Only very recently, three independent revolutionary approaches have seen the light: the works of (1) the Fields medalist Bhargava, (2) Skinner and Urban, and (3) myself and my collaborators. In spite of that, our knowledge of BSD is rather poor. In my proposal I suggest innovating strategies for approaching new horizons in BSD and BK that I aim to develop with the team of PhD and postdoctoral researchers that the CoG may allow me to consolidate. The results I plan to prove represent a departure from the achievements obtained with my coauthors during the past years:
I. BSD over totally real number fields. I plan to prove new ground-breaking instances of BSD in rank 0 for elliptic curves over totally real number fields, generalizing the theorem of Kato (by providing a new proof) and covering many new scenarios that have never been considered before.
II. BSD in rank r=2. Most of the literature on BSD applies when r=0 or 1. I expect to prove p-adic versions of the theorems of Gross-Zagier and Kolyvagin in rank 2.
III. Darmon's 2000 conjecture on Stark-Heegner points. I plan to prove Darmon’s striking conjecture announced at the ICM2000 by recasting it in terms of special values of p-adic L-functions.
Summary
In order to celebrate mathematics in the new millennium, the Clay Mathematics Institute established seven $1.000.000 Prize Problems. One of these is the conjecture of Birch and Swinnerton-Dyer (BSD), widely open since the 1960's. The main object of this proposal is developing innovative and unconventional strategies for proving groundbreaking results towards the resolution of this problem and their generalizations by Bloch and Kato (BK).
Breakthroughs on BSD were achieved by Coates-Wiles, Gross, Zagier and Kolyvagin, and Kato. Since then, there have been nearly no new ideas on how to tackle BSD. Only very recently, three independent revolutionary approaches have seen the light: the works of (1) the Fields medalist Bhargava, (2) Skinner and Urban, and (3) myself and my collaborators. In spite of that, our knowledge of BSD is rather poor. In my proposal I suggest innovating strategies for approaching new horizons in BSD and BK that I aim to develop with the team of PhD and postdoctoral researchers that the CoG may allow me to consolidate. The results I plan to prove represent a departure from the achievements obtained with my coauthors during the past years:
I. BSD over totally real number fields. I plan to prove new ground-breaking instances of BSD in rank 0 for elliptic curves over totally real number fields, generalizing the theorem of Kato (by providing a new proof) and covering many new scenarios that have never been considered before.
II. BSD in rank r=2. Most of the literature on BSD applies when r=0 or 1. I expect to prove p-adic versions of the theorems of Gross-Zagier and Kolyvagin in rank 2.
III. Darmon's 2000 conjecture on Stark-Heegner points. I plan to prove Darmon’s striking conjecture announced at the ICM2000 by recasting it in terms of special values of p-adic L-functions.
Max ERC Funding
1 428 588 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym DYCON
Project Dynamic Control and Numerics of Partial Differential Equations
Researcher (PI) Enrique Zuazua
Host Institution (HI) FUNDACION DEUSTO
Call Details Advanced Grant (AdG), PE1, ERC-2015-AdG
Summary This project aims at making a breakthrough contribution in the broad area of Control of Partial Differential Equations (PDE) and their numerical approximation methods by addressing key unsolved issues appearing systematically in real-life applications.
To this end, we pursue three objectives: 1) to contribute with new key theoretical methods and results, 2) to develop the corresponding numerical tools, and 3) to build up new computational software, the DYCON-COMP computational platform, thereby bridging the gap to applications.
The field of PDEs, together with numerical approximation and simulation methods and control theory, have evolved significantly in the last decades in a cross-fertilization process, to address the challenging demands of industrial and cross-disciplinary applications such as, for instance, the management of natural resources, meteorology, aeronautics, oil industry, biomedicine, human and animal collective behaviour, etc. Despite these efforts, some of the key issues still remain unsolved, either because of a lack of analytical understanding, of the absence of efficient numerical solvers, or of a combination of both.
This project identifies and focuses on six key topics that play a central role in most of the processes arising in applications, but which are still poorly understood: control of parameter dependent problems; long time horizon control; control under constraints; inverse design of time-irreversible models; memory models and hybrid PDE/ODE models, and finite versus infinite-dimensional dynamical systems.
These topics cannot be handled by superposing the state of the art in the various disciplines, due to the unexpected interactive phenomena that may emerge, for instance, in the fine numerical approximation of control problems. The coordinated and focused effort that we aim at developing is timely and much needed in order to solve these issues and bridge the gap from modelling to control, computer simulations and applications.
Summary
This project aims at making a breakthrough contribution in the broad area of Control of Partial Differential Equations (PDE) and their numerical approximation methods by addressing key unsolved issues appearing systematically in real-life applications.
To this end, we pursue three objectives: 1) to contribute with new key theoretical methods and results, 2) to develop the corresponding numerical tools, and 3) to build up new computational software, the DYCON-COMP computational platform, thereby bridging the gap to applications.
The field of PDEs, together with numerical approximation and simulation methods and control theory, have evolved significantly in the last decades in a cross-fertilization process, to address the challenging demands of industrial and cross-disciplinary applications such as, for instance, the management of natural resources, meteorology, aeronautics, oil industry, biomedicine, human and animal collective behaviour, etc. Despite these efforts, some of the key issues still remain unsolved, either because of a lack of analytical understanding, of the absence of efficient numerical solvers, or of a combination of both.
This project identifies and focuses on six key topics that play a central role in most of the processes arising in applications, but which are still poorly understood: control of parameter dependent problems; long time horizon control; control under constraints; inverse design of time-irreversible models; memory models and hybrid PDE/ODE models, and finite versus infinite-dimensional dynamical systems.
These topics cannot be handled by superposing the state of the art in the various disciplines, due to the unexpected interactive phenomena that may emerge, for instance, in the fine numerical approximation of control problems. The coordinated and focused effort that we aim at developing is timely and much needed in order to solve these issues and bridge the gap from modelling to control, computer simulations and applications.
Max ERC Funding
2 065 125 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym DYNURBAN
Project Urban dynamics: learning from integrated models and big data
Researcher (PI) Diego PUGA
Host Institution (HI) FUNDACION CENTRO DE ESTUDIOS MONETARIOS Y FINANCIEROS
Call Details Advanced Grant (AdG), SH1, ERC-2015-AdG
Summary City growth is driven by a combination of systematic determinants and shocks. Random growth models predict realistic city size distributions but ignore, for instance, the strong empirical association between human capital and city growth. Models with systematic determinants predict degenerate size distributions. We will develop an integrated model that combines systematic and random determinants to explain the link between human capital, entrepreneurship and growth, while generating relevant city size distributions. We will calibrate the model to quantify the contribution of cities to aggregate growth.
Urban growth also has a poorly understood spatial component. Combining gridded data of land use, population, businesses and roads for 3 decennial periods we will track the evolution of land use in the US with an unprecedented level of spatial detail. We will pay particular attention to the magnitude and causes of “slash-and-burn” development: instances when built-up land stops meeting needs in terms of use and intensity and, instead of being redeveloped, it is abandoned while previously open space is built up.
Job-to-job flows across cities matter for efficiency and during the recent crisis they have plummeted. We will study them with individual social security data. Even if there have only been small changes in mismatch between unemployed workers and vacancies during the crisis, if workers shy away from moving to take a job in another city, misallocation can increase substantially.
We will also study commuting flows for Spain and the UK based on anonymized cell phone location records. We will identify urban areas by iteratively aggregating municipalities if more than a given share of transit flows end in the rest of the urban area. We will also measure the extent to which people cross paths with others opening the possibility of personal interactions, and assess the extent to which this generates productivity-enhancing agglomeration economies.
Summary
City growth is driven by a combination of systematic determinants and shocks. Random growth models predict realistic city size distributions but ignore, for instance, the strong empirical association between human capital and city growth. Models with systematic determinants predict degenerate size distributions. We will develop an integrated model that combines systematic and random determinants to explain the link between human capital, entrepreneurship and growth, while generating relevant city size distributions. We will calibrate the model to quantify the contribution of cities to aggregate growth.
Urban growth also has a poorly understood spatial component. Combining gridded data of land use, population, businesses and roads for 3 decennial periods we will track the evolution of land use in the US with an unprecedented level of spatial detail. We will pay particular attention to the magnitude and causes of “slash-and-burn” development: instances when built-up land stops meeting needs in terms of use and intensity and, instead of being redeveloped, it is abandoned while previously open space is built up.
Job-to-job flows across cities matter for efficiency and during the recent crisis they have plummeted. We will study them with individual social security data. Even if there have only been small changes in mismatch between unemployed workers and vacancies during the crisis, if workers shy away from moving to take a job in another city, misallocation can increase substantially.
We will also study commuting flows for Spain and the UK based on anonymized cell phone location records. We will identify urban areas by iteratively aggregating municipalities if more than a given share of transit flows end in the rest of the urban area. We will also measure the extent to which people cross paths with others opening the possibility of personal interactions, and assess the extent to which this generates productivity-enhancing agglomeration economies.
Max ERC Funding
1 292 586 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym ELECTRIC CHALLENGES
Project Current Tools and Policy Challenges in Electricity Markets
Researcher (PI) Natalia FABRA PORTELA
Host Institution (HI) UNIVERSIDAD CARLOS III DE MADRID
Call Details Consolidator Grant (CoG), SH1, ERC-2017-COG
Summary The fight against climate change is among Europe’s top policy priorities. In this research agenda, I propose to push out the frontier in the area of Energy and Environmental Economics by carrying out policy-relevant research on a pressing issue: how to design optimal regulatory and market-based solutions to achieve a least cost transition towards a low-carbon economy.
The European experience provides unique natural experiments with which to test some of the most contentious issues that arise in the context of electricity markets, including the potential to change households’ demand patterns through dynamic pricing, the scope of renewables to mitigate market power and depress wholesale market prices, and the design and performance of the auctions for renewable support. While there is a body of policy work on these issues, it generally does not meet the required research standards.
In this research, I will rely on cutting-edge theoretical, empirical, and simulation tools to disentangle these topics, while providing key economic insights that are relevant beyond electricity markets. On the theory front, I propose to develop new models that incorporate the intermittency of renewables to characterize optimal bidding as a key, broadly omitted ingredient in previous analysis. In turn, these models will provide a rigorous structure for the empirical and simulation analysis, which will rely both on traditional econometrics for casual inference as well as on state-of-the-art machine learning methods to construct counterfactual scenarios for policy analysis.
While my focus is on energy and environmental issues, my research will also provide methodological contributions for other areas - particularly those related to policy design and policy evaluation. The conclusions of this research should prove valuable for academics, as well as to policy makers to assess the impact of environmental and energy policies and redefine them where necessary.
Summary
The fight against climate change is among Europe’s top policy priorities. In this research agenda, I propose to push out the frontier in the area of Energy and Environmental Economics by carrying out policy-relevant research on a pressing issue: how to design optimal regulatory and market-based solutions to achieve a least cost transition towards a low-carbon economy.
The European experience provides unique natural experiments with which to test some of the most contentious issues that arise in the context of electricity markets, including the potential to change households’ demand patterns through dynamic pricing, the scope of renewables to mitigate market power and depress wholesale market prices, and the design and performance of the auctions for renewable support. While there is a body of policy work on these issues, it generally does not meet the required research standards.
In this research, I will rely on cutting-edge theoretical, empirical, and simulation tools to disentangle these topics, while providing key economic insights that are relevant beyond electricity markets. On the theory front, I propose to develop new models that incorporate the intermittency of renewables to characterize optimal bidding as a key, broadly omitted ingredient in previous analysis. In turn, these models will provide a rigorous structure for the empirical and simulation analysis, which will rely both on traditional econometrics for casual inference as well as on state-of-the-art machine learning methods to construct counterfactual scenarios for policy analysis.
While my focus is on energy and environmental issues, my research will also provide methodological contributions for other areas - particularly those related to policy design and policy evaluation. The conclusions of this research should prove valuable for academics, as well as to policy makers to assess the impact of environmental and energy policies and redefine them where necessary.
Max ERC Funding
1 422 375 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym eLightning
Project Lightning propagation and high-energy emissions within coupled multi-model simulations
Researcher (PI) Alejandro Luque Estepa
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary More than 250 years after establishing the electrical nature of the lightning flash, we still do not understand how a lightning channel advances. Most of these channels progress not continuously but in a series of sudden jumps and, as they jump, they emit bursts of energetic radiation. Despite increasingly accurate observations, there is no accepted explanation for this stepped progression.
This proposal addresses this open question. First, we propose a methodological breakthrough that will allow us to tackle the main bottleneck in the theoretical understanding of lightning: the wide disparity between length-scales within a lightning flash. We plan to apply techniques that have succeeded in other fields, such as multi-model coupled simulations and moving-mesh finite elements methods. Acting as a computational microscope, these techniques will reveal the small-scale electrodynamics around a lightning channel.
We will then apply these techniques to elucidate the intertwined problems of lightning channel stepping and thunderstorm-related high-energy emissions. The main hypothesis that we will test is that stepping is due to the formation of low-conductivity spots within the filamentary-discharge region that surrounds a lightning channel. This idea is motivated by observations from high-altitude atmospheric discharges. By resolving the small-scale dynamics, with our numerical method, we will also test hypothesis for high-energy emissions from the lighting channel, which crucially depend on the microscopic distribution of electric fields.
This interdisciplinary proposal, straddling between geophysics and gas discharge physics, seeks a double breakthrough: the methodological one of building multi-scale lightning simulations and the hypothesis-driven one of finding out the reason for stepping. If it succeeds, it will achieve a leap forward in our knowledge of lightning, undoubtedly one of the greatest spectacles in our planet's repertoire.
Summary
More than 250 years after establishing the electrical nature of the lightning flash, we still do not understand how a lightning channel advances. Most of these channels progress not continuously but in a series of sudden jumps and, as they jump, they emit bursts of energetic radiation. Despite increasingly accurate observations, there is no accepted explanation for this stepped progression.
This proposal addresses this open question. First, we propose a methodological breakthrough that will allow us to tackle the main bottleneck in the theoretical understanding of lightning: the wide disparity between length-scales within a lightning flash. We plan to apply techniques that have succeeded in other fields, such as multi-model coupled simulations and moving-mesh finite elements methods. Acting as a computational microscope, these techniques will reveal the small-scale electrodynamics around a lightning channel.
We will then apply these techniques to elucidate the intertwined problems of lightning channel stepping and thunderstorm-related high-energy emissions. The main hypothesis that we will test is that stepping is due to the formation of low-conductivity spots within the filamentary-discharge region that surrounds a lightning channel. This idea is motivated by observations from high-altitude atmospheric discharges. By resolving the small-scale dynamics, with our numerical method, we will also test hypothesis for high-energy emissions from the lighting channel, which crucially depend on the microscopic distribution of electric fields.
This interdisciplinary proposal, straddling between geophysics and gas discharge physics, seeks a double breakthrough: the methodological one of building multi-scale lightning simulations and the hypothesis-driven one of finding out the reason for stepping. If it succeeds, it will achieve a leap forward in our knowledge of lightning, undoubtedly one of the greatest spectacles in our planet's repertoire.
Max ERC Funding
1 960 826 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym FRAGMENT
Project FRontiers in dust minerAloGical coMposition and its Effects upoN climaTe
Researcher (PI) Carlos Perez Garcia-Pando
Host Institution (HI) BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE SUPERCOMPUTACION
Call Details Consolidator Grant (CoG), PE10, ERC-2017-COG
Summary Soil dust aerosols are mixtures of different minerals, whose relative abundances, particle size distribution (PSD), shape, surface topography and mixing state influence their effect upon climate. However, Earth System Models typically assume that dust aerosols have a globally uniform composition, neglecting the known regional variations in the mineralogy of the sources. The goal of FRAGMENT is to understand and constrain the global mineralogical composition of dust along with its effects upon climate. The representation of the global dust mineralogy is hindered by our limited knowledge of the global soil mineral content and our incomplete understanding of the emitted dust PSD in terms of its constituent minerals that results from the fragmentation of soil aggregates during wind erosion. The emitted PSD affects the duration of particle transport and thus each mineral’s global distribution, along with its specific effect upon climate. Coincident observations of the emitted dust and soil PSD are scarce and do not characterize the mineralogy. In addition, the existing theoretical paradigms disagree fundamentally on multiple aspects. We will contribute new fundamental understanding of the size-resolved mineralogy of dust at emission and its relationship with the parent soil, based on an unprecedented ensemble of measurement campaigns that have been designed to thoroughly test our theoretical hypotheses. To improve knowledge of the global soil mineral content, we will evaluate and use available remote hyperspectral imaging, which is unprecedented in the context of dust modelling. Our new methods will anticipate the coming innovation of retrieving soil mineralogy through high-quality spaceborne hyperspectral measurements. Finally, we will generate integrated and quantitative knowledge of the role of dust mineralogy in dust-radiation, dust-chemistry and dust-cloud interactions based on modeling experiments constrained with our theoretical innovations and field measurements.
Summary
Soil dust aerosols are mixtures of different minerals, whose relative abundances, particle size distribution (PSD), shape, surface topography and mixing state influence their effect upon climate. However, Earth System Models typically assume that dust aerosols have a globally uniform composition, neglecting the known regional variations in the mineralogy of the sources. The goal of FRAGMENT is to understand and constrain the global mineralogical composition of dust along with its effects upon climate. The representation of the global dust mineralogy is hindered by our limited knowledge of the global soil mineral content and our incomplete understanding of the emitted dust PSD in terms of its constituent minerals that results from the fragmentation of soil aggregates during wind erosion. The emitted PSD affects the duration of particle transport and thus each mineral’s global distribution, along with its specific effect upon climate. Coincident observations of the emitted dust and soil PSD are scarce and do not characterize the mineralogy. In addition, the existing theoretical paradigms disagree fundamentally on multiple aspects. We will contribute new fundamental understanding of the size-resolved mineralogy of dust at emission and its relationship with the parent soil, based on an unprecedented ensemble of measurement campaigns that have been designed to thoroughly test our theoretical hypotheses. To improve knowledge of the global soil mineral content, we will evaluate and use available remote hyperspectral imaging, which is unprecedented in the context of dust modelling. Our new methods will anticipate the coming innovation of retrieving soil mineralogy through high-quality spaceborne hyperspectral measurements. Finally, we will generate integrated and quantitative knowledge of the role of dust mineralogy in dust-radiation, dust-chemistry and dust-cloud interactions based on modeling experiments constrained with our theoretical innovations and field measurements.
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym GEPPS
Project Globalization, Economic Policy and Political Structure
Researcher (PI) Jaume VENTURA FONTANET
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Call Details Advanced Grant (AdG), SH1, ERC-2015-AdG
Summary Globalization is expanding economic borders rapidly. Barriers to trade are now lower than ever and this has led to the creation of many truly global goods and asset markets. And yet globalization is changing political borders only slowly. The second wave of globalization that started after WWII found the world organized into a set of states or centralized
jurisdictions that often go beyond cultural borders but that clearly fall short of economic borders. These centralized jurisdictions still hold most of the political and decision-making power.
This growing mismatch between markets and states lowers the quality of economic policymaking. Since constituencies are located inside the state, governments tend to disregard effects of economic policies that are felt beyond the political border.
The result is a worsening in policymaking that could seriously mitigate the gains from globalization and even turn them into losses. The goal of this project is to improve our understanding of how this growing mismatch between economic and political borders affects economic policy and political structure. In particular, it focuses on the inefficiencies this mismatch creates and on how should we (“the citizens of the world”) handle them.
The project is organized around two themes. The first one is the handling of enforcement externalities. One of the key roles of governments is to enforce contracts. When these contracts involve domestic and foreign residents, governments have the temptation to enforce selectively so as to shift income to domestic residents at the expense of foreigners. The second theme is the evolution of political structure. The world is currently organized into state or centralized jurisdictions. This project studies the hypothesis that globalization leads to an alternative political structure based on a set of overlapping jurisdictions.
Summary
Globalization is expanding economic borders rapidly. Barriers to trade are now lower than ever and this has led to the creation of many truly global goods and asset markets. And yet globalization is changing political borders only slowly. The second wave of globalization that started after WWII found the world organized into a set of states or centralized
jurisdictions that often go beyond cultural borders but that clearly fall short of economic borders. These centralized jurisdictions still hold most of the political and decision-making power.
This growing mismatch between markets and states lowers the quality of economic policymaking. Since constituencies are located inside the state, governments tend to disregard effects of economic policies that are felt beyond the political border.
The result is a worsening in policymaking that could seriously mitigate the gains from globalization and even turn them into losses. The goal of this project is to improve our understanding of how this growing mismatch between economic and political borders affects economic policy and political structure. In particular, it focuses on the inefficiencies this mismatch creates and on how should we (“the citizens of the world”) handle them.
The project is organized around two themes. The first one is the handling of enforcement externalities. One of the key roles of governments is to enforce contracts. When these contracts involve domestic and foreign residents, governments have the temptation to enforce selectively so as to shift income to domestic residents at the expense of foreigners. The second theme is the evolution of political structure. The world is currently organized into state or centralized jurisdictions. This project studies the hypothesis that globalization leads to an alternative political structure based on a set of overlapping jurisdictions.
Max ERC Funding
1 080 000 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym HamInstab
Project Instabilities and homoclinic phenomena in Hamiltonian systems
Researcher (PI) Marcel GUARDIA
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Starting Grant (StG), PE1, ERC-2017-STG
Summary A fundamental problem in the study of dynamical systems is to ascertain whether the effect of a perturbation on an integrable Hamiltonian system accumulates over time and leads to a large effect (instability) or it averages out (stability). Instabilities in nearly integrable systems, usually called Arnold diffusion, take place along resonances and by means of a
framework of partially hyperbolic invariant objects and their homoclinic and heteroclinic connections.
The goal of this project is to develop new techniques, relying on the role of invariant manifolds in the global dynamics, to prove the existence of physically relevant instabilities and homoclinic phenomena in several problems in celestial mechanics and Hamiltonian Partial Differential Equations.
The N body problem models the interaction of N puntual masses under gravitational force. Astronomers have deeply analyzed the role of resonances in this model. Nevertheless, mathematical results showing instabilities along them are rather scarce. I plan to develop a new theory to analyze the transversal intersection between invariant manifolds along mean motion and secular resonances to prove the existence of Arnold diffusion. I will also apply this theory to construct oscillatory motions.
Several Partial Differential Equations such as the nonlinear Schrödinger, the Klein-Gordon and the wave equations can be seen as infinite dimensional Hamiltonian systems. Using dynamical systems techniques and understanding the role of invariant manifolds in these Hamiltonian PDEs, I will study two type of solutions: transfer of energy solutions, namely solutions that push energy to arbitrarily high modes as time evolves by drifting along resonances; and breathers, spatially
localized and periodic in time solutions, which in a proper setting can be seen as homoclinic orbits to a stationary solution.
Summary
A fundamental problem in the study of dynamical systems is to ascertain whether the effect of a perturbation on an integrable Hamiltonian system accumulates over time and leads to a large effect (instability) or it averages out (stability). Instabilities in nearly integrable systems, usually called Arnold diffusion, take place along resonances and by means of a
framework of partially hyperbolic invariant objects and their homoclinic and heteroclinic connections.
The goal of this project is to develop new techniques, relying on the role of invariant manifolds in the global dynamics, to prove the existence of physically relevant instabilities and homoclinic phenomena in several problems in celestial mechanics and Hamiltonian Partial Differential Equations.
The N body problem models the interaction of N puntual masses under gravitational force. Astronomers have deeply analyzed the role of resonances in this model. Nevertheless, mathematical results showing instabilities along them are rather scarce. I plan to develop a new theory to analyze the transversal intersection between invariant manifolds along mean motion and secular resonances to prove the existence of Arnold diffusion. I will also apply this theory to construct oscillatory motions.
Several Partial Differential Equations such as the nonlinear Schrödinger, the Klein-Gordon and the wave equations can be seen as infinite dimensional Hamiltonian systems. Using dynamical systems techniques and understanding the role of invariant manifolds in these Hamiltonian PDEs, I will study two type of solutions: transfer of energy solutions, namely solutions that push energy to arbitrarily high modes as time evolves by drifting along resonances; and breathers, spatially
localized and periodic in time solutions, which in a proper setting can be seen as homoclinic orbits to a stationary solution.
Max ERC Funding
1 100 348 €
Duration
Start date: 2018-01-01, End date: 2022-12-31