Project acronym BEAMING
Project Detecting massive-planet/brown-dwarf/low-mass-stellar companions with the beaming effect
Researcher (PI) Moshe Zvi Mazeh
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), PE9, ERC-2011-ADG_20110209
Summary "I propose to lead an international observational effort to characterize the population of massive planets, brown dwarf and stellar secondaries orbiting their parent stars with short periods, up to 10-30 days. The effort will utilize the superb, accurate, continuous lightcurves of more than hundred thousand stars obtained recently by two space missions – CoRoT and Kepler. I propose to use these lightcurves to detect non-transiting low-mass companions with a new algorithm, BEER, which I developed recently together with Simchon Faigler. BEER searches for the beaming effect, which causes the stellar intensity to increase if the star is moving towards the observer. The combination of the beaming effect with other modulations induced by a low-mass companion produces periodic modulation with a specific signature, which is used to detect small non-transiting companions. The accuracy of the space mission lightcurves is enough to detect massive planets with short periods. The proposed project is equivalent to a radial-velocity survey of tens of thousands of stars, instead of the presently active surveys which observe only hundreds of stars.
We will use an assortment of telescopes to perform radial velocity follow-up observations in order to confirm the existence of the detected companions, and to derive their masses and orbital eccentricities. We will discover many tens, if not hundreds, of new massive planets and brown dwarfs with short periods, and many thousands of new binaries. The findings will enable us to map the mass, period, and eccentricity distributions of planets and stellar companions, determine the upper mass of planets, understand the nature of the brown-dwarf desert, and put strong constrains on the theory of planet and binary formation and evolution."
Summary
"I propose to lead an international observational effort to characterize the population of massive planets, brown dwarf and stellar secondaries orbiting their parent stars with short periods, up to 10-30 days. The effort will utilize the superb, accurate, continuous lightcurves of more than hundred thousand stars obtained recently by two space missions – CoRoT and Kepler. I propose to use these lightcurves to detect non-transiting low-mass companions with a new algorithm, BEER, which I developed recently together with Simchon Faigler. BEER searches for the beaming effect, which causes the stellar intensity to increase if the star is moving towards the observer. The combination of the beaming effect with other modulations induced by a low-mass companion produces periodic modulation with a specific signature, which is used to detect small non-transiting companions. The accuracy of the space mission lightcurves is enough to detect massive planets with short periods. The proposed project is equivalent to a radial-velocity survey of tens of thousands of stars, instead of the presently active surveys which observe only hundreds of stars.
We will use an assortment of telescopes to perform radial velocity follow-up observations in order to confirm the existence of the detected companions, and to derive their masses and orbital eccentricities. We will discover many tens, if not hundreds, of new massive planets and brown dwarfs with short periods, and many thousands of new binaries. The findings will enable us to map the mass, period, and eccentricity distributions of planets and stellar companions, determine the upper mass of planets, understand the nature of the brown-dwarf desert, and put strong constrains on the theory of planet and binary formation and evolution."
Max ERC Funding
1 737 600 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym CRYOPRESERVATION
Project Improved Cryopreservation using Ice Binding Proteins
Researcher (PI) Ido Braslavsky
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS9, ERC-2011-StG_20101109
Summary Several organisms have evolved specialized ice binding proteins (IBPs) that prevent their body fluids from freezing (antifreeze proteins, AFPs), inhibit recrystallization of ice in frozen tissues, or initiate freezing at moderate supercooling temperatures (ice nucleating proteins, INPs). These proteins have many potential applications in agriculture, food preservation, cryobiology, and biomedical science. The ubiquitous presence of IBPs in such organisms indicates the power of these molecules to enable survival under cold conditions. Despite this key role in nature, however, IBPs have been effectively exploited in only one cryopreservation application, namely, recrystallization inhibition in ice cream. Several terrestrial organisms, including insects, have developed very active forms of AFPs. These hyperactive AFPs (hypAFPs) have not been utilized significantly thus far in cryopreservation techniques. The gap between the obvious potential of IBPs and their actual applications stems from a lack of knowledge regarding the mechanisms by which IBPs interact with ice surfaces and how these proteins can assist in cryoprotection. I propose to investigate the mechanism by which IBPs inhibit ice crystallization and the use of such proteins for cryopreserving cells, tissues, and organisms. My group has a strong record in the study of the interactions between IBPs and ice using novel methods that we have developed, including fluorescence microscopy techniques combined with cooled microfluidic devices. We will investigate the interactions of AFPs with ice and the use of hypAFPs in cryopreservation procedures. This research will contribute to an understanding of the mechanisms by which IBPs act, and apply the acquired knowledge to cryopreservation. The successful implementation of IBPs in cryopreservation would revolutionize the field of cryobiology, with enormous implications for cryopreservation applications in general and the frozen and chilled food industry in particular.
Summary
Several organisms have evolved specialized ice binding proteins (IBPs) that prevent their body fluids from freezing (antifreeze proteins, AFPs), inhibit recrystallization of ice in frozen tissues, or initiate freezing at moderate supercooling temperatures (ice nucleating proteins, INPs). These proteins have many potential applications in agriculture, food preservation, cryobiology, and biomedical science. The ubiquitous presence of IBPs in such organisms indicates the power of these molecules to enable survival under cold conditions. Despite this key role in nature, however, IBPs have been effectively exploited in only one cryopreservation application, namely, recrystallization inhibition in ice cream. Several terrestrial organisms, including insects, have developed very active forms of AFPs. These hyperactive AFPs (hypAFPs) have not been utilized significantly thus far in cryopreservation techniques. The gap between the obvious potential of IBPs and their actual applications stems from a lack of knowledge regarding the mechanisms by which IBPs interact with ice surfaces and how these proteins can assist in cryoprotection. I propose to investigate the mechanism by which IBPs inhibit ice crystallization and the use of such proteins for cryopreserving cells, tissues, and organisms. My group has a strong record in the study of the interactions between IBPs and ice using novel methods that we have developed, including fluorescence microscopy techniques combined with cooled microfluidic devices. We will investigate the interactions of AFPs with ice and the use of hypAFPs in cryopreservation procedures. This research will contribute to an understanding of the mechanisms by which IBPs act, and apply the acquired knowledge to cryopreservation. The successful implementation of IBPs in cryopreservation would revolutionize the field of cryobiology, with enormous implications for cryopreservation applications in general and the frozen and chilled food industry in particular.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym GRB-SN
Project The Gamma Ray Burst – Supernova Connection
and Shock Breakout Physics
Researcher (PI) Ehud Nakar
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary Long gamma ray bursts (long GRBs) and core-collapse supernovae (CCSNe) are two of the most spectacular explosions in the Universe. They are a focal point of research for many reasons. Nevertheless, despite considerable effort during the last several decades, there are still many fundamental open questions regarding their physics.
Long GRBs and CCSNe are related. We know that they are both an outcome of a massive star collapse, where in some cases, such collapse produces simultaneously a GRB and a SN. However, we do not know how a single stellar collapse can produce these two apparently very different explosions. The GRB-SN connection raises many questions, but it also offers new opportunities to learn on the two types of explosions.
The focus of the proposed research is on the connection between CCSNe and GRBs, and on the physics of shock breakout. As I explain in this proposal, shock breakouts play an important role in this connection and therefore, I will develop a comprehensive theory of relativistic and Newtonian shock breakout. In addition, I will study the propagation of relativistic jets inside stars, including the effects of jet propagation and GRB engine on the emerging SN. This will be done by a set of interrelated projects that carefully combine analytic calculations and numerical simulations. Together, these projects will be the first to model a GRB and a SN that are simultaneously produced in a single star. This in turn will be used to gain new insights into long GRBs and CCSNe in general.
This research will also make a direct contribution to cosmic explosions research in general. Any observable cosmic explosion must go through a shock breakout and a considerable effort is invested these days in large field of view surveys in search for these breakouts. This program will provide a new theoretical base for the interpretation of the upcoming observations.
Summary
Long gamma ray bursts (long GRBs) and core-collapse supernovae (CCSNe) are two of the most spectacular explosions in the Universe. They are a focal point of research for many reasons. Nevertheless, despite considerable effort during the last several decades, there are still many fundamental open questions regarding their physics.
Long GRBs and CCSNe are related. We know that they are both an outcome of a massive star collapse, where in some cases, such collapse produces simultaneously a GRB and a SN. However, we do not know how a single stellar collapse can produce these two apparently very different explosions. The GRB-SN connection raises many questions, but it also offers new opportunities to learn on the two types of explosions.
The focus of the proposed research is on the connection between CCSNe and GRBs, and on the physics of shock breakout. As I explain in this proposal, shock breakouts play an important role in this connection and therefore, I will develop a comprehensive theory of relativistic and Newtonian shock breakout. In addition, I will study the propagation of relativistic jets inside stars, including the effects of jet propagation and GRB engine on the emerging SN. This will be done by a set of interrelated projects that carefully combine analytic calculations and numerical simulations. Together, these projects will be the first to model a GRB and a SN that are simultaneously produced in a single star. This in turn will be used to gain new insights into long GRBs and CCSNe in general.
This research will also make a direct contribution to cosmic explosions research in general. Any observable cosmic explosion must go through a shock breakout and a considerable effort is invested these days in large field of view surveys in search for these breakouts. This program will provide a new theoretical base for the interpretation of the upcoming observations.
Max ERC Funding
1 468 180 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym HOPSEP
Project Harnessing Oxygenic Photosynthesis for Sustainable Energy Production
Researcher (PI) Nathan Nelson
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), LS9, ERC-2011-ADG_20110310
Summary Oxygenic photosynthesis, that takes place in cyanobacteria algae and plants, provides most of the food and fuel on earth. The light stage of this process is driven by two photosystems. Photosystem II (PSII) that oxidizes water to O2 and 4 H+ and photosystem I (PSI) which in the light provides the most negative redox potential in nature that can drive numerous reactions including CO2 assimilation and hydrogen (H2) production. The structure of most of the complexes involved in oxygenic photosynthesis was solved in several laboratories including our own. Utilizing our plant PSI crystals we were able to generate a light dependent electric potential of up to 100 V. We will develop this system for designing biological based photoelectric devices. Recently, we discovered a marine phage that carries an operon encoding all PSI subunits. Generation, in synechocystis, of a phage-like PSI enabled the mutated complex to accept electrons from additional sources like respiratory cytochromes. This way a novel photorespiration, where PSI can substitute for cytochrome oxidase, is created. The wild type and mutant synechocystis PSI were crystallized and solved, confirming the suggested structural consequences. Moreover, several structural alterations in the mesophilic PSI were recorded. We designed a hydrogen producing bioreactor where the novel photorespiration will enable to utilize the organic material of the cell as an electron source for H2 production. We propose that in conjunction of engineering a Cyanobacterium strain with a temperature sensitive PSII, enhancing rates in its respiratory chain an efficient and sustainable hydrogen production can be achieved.
Summary
Oxygenic photosynthesis, that takes place in cyanobacteria algae and plants, provides most of the food and fuel on earth. The light stage of this process is driven by two photosystems. Photosystem II (PSII) that oxidizes water to O2 and 4 H+ and photosystem I (PSI) which in the light provides the most negative redox potential in nature that can drive numerous reactions including CO2 assimilation and hydrogen (H2) production. The structure of most of the complexes involved in oxygenic photosynthesis was solved in several laboratories including our own. Utilizing our plant PSI crystals we were able to generate a light dependent electric potential of up to 100 V. We will develop this system for designing biological based photoelectric devices. Recently, we discovered a marine phage that carries an operon encoding all PSI subunits. Generation, in synechocystis, of a phage-like PSI enabled the mutated complex to accept electrons from additional sources like respiratory cytochromes. This way a novel photorespiration, where PSI can substitute for cytochrome oxidase, is created. The wild type and mutant synechocystis PSI were crystallized and solved, confirming the suggested structural consequences. Moreover, several structural alterations in the mesophilic PSI were recorded. We designed a hydrogen producing bioreactor where the novel photorespiration will enable to utilize the organic material of the cell as an electron source for H2 production. We propose that in conjunction of engineering a Cyanobacterium strain with a temperature sensitive PSII, enhancing rates in its respiratory chain an efficient and sustainable hydrogen production can be achieved.
Max ERC Funding
2 487 000 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym NEWDEALS
Project New Deals in the New Economy
Researcher (PI) Sean O Riain
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Call Details Starting Grant (StG), SH2, ERC-2011-StG_20101124
Summary How are European workplaces being transformed? What kinds of new social bargains are emerging across the European Union? How are they being institutionalised? How are new workplace bargains shaped by the broader politics of sectors, regions and national economies?
These questions are crucial to the future of the European ‘social model’. The objective of this research programme is to provide answers to these questions, drawing on cross-national survey research on workplace organisation from 1995 to 2010 and selected industrial case studies in the small open European economies of Denmark, Ireland and the Netherlands.
These questions also raise crucial theoretical issues. The research reformulates the core elements of the ‘Varieties of Capitalism’ framework that has dominated comparative political economy for the past decade (Hall and Soskice, 2001). It improves our understanding of the diverse organisation of capitalism in Europe, of how that diversity is rooted in politically constructed ‘pathways to the future’, and of how capitalism is constructed out of social and institutional capabilities across Europe.
Summary
How are European workplaces being transformed? What kinds of new social bargains are emerging across the European Union? How are they being institutionalised? How are new workplace bargains shaped by the broader politics of sectors, regions and national economies?
These questions are crucial to the future of the European ‘social model’. The objective of this research programme is to provide answers to these questions, drawing on cross-national survey research on workplace organisation from 1995 to 2010 and selected industrial case studies in the small open European economies of Denmark, Ireland and the Netherlands.
These questions also raise crucial theoretical issues. The research reformulates the core elements of the ‘Varieties of Capitalism’ framework that has dominated comparative political economy for the past decade (Hall and Soskice, 2001). It improves our understanding of the diverse organisation of capitalism in Europe, of how that diversity is rooted in politically constructed ‘pathways to the future’, and of how capitalism is constructed out of social and institutional capabilities across Europe.
Max ERC Funding
1 320 020 €
Duration
Start date: 2012-01-01, End date: 2017-06-30
Project acronym YIELD
Project Is there a limit to yield?
Researcher (PI) Daniel Zamir
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS9, ERC-2011-ADG_20110310
Summary Plant breeders are challenged with sustaining global crop improvements. Is there a limit to crop yield? This project will address this central question using processing tomatoes as a model for a mechanized crop. By integrating in a single web-based platform of ‘Phenom Networks’ a broad germplasm base, deep phenotypes, and multiple genome sequences of tomato species, we will identify the genes and mechanisms that dictate crop productivity and implement them in the creation of next generation F1 hybrids. Our work is founded on our years of efforts to establish the following integrated genetic pillars: 1) The tomato genome revealed SNPs for broader marker-assisted selection between cultivated parents and untapped diversity from closely-related red-fruited ancestors. We will develop new elite parental lines into which all discovered traits will be introduced. 2) We will enrich the narrow genetic base of modern processing tomato by pyramiding recessive, additive, dominant and overdominant QTL from six wild species introgression lines (ILs) and field-test them in diverse environments. 3) By producing hybrids with ‘recessive’ deleterious mutants we have identified heterosis genes that increase yield by ~50%; these will be combined with the IL QTL. 4) Finally, we will focus on newly discovered “stability QTL” that significantly improve the reproducibility of yield effects by canalizing this phenotype in spite of environmental perturbations. This multi-faceted integrated tomato breeding effort will unite classical and genomics assisted methods with statistical genetics to demonstrate that yield barriers of the leading commercial hybrids are only there to be broken. We will clone the genes responsible for yield, domestication, heterosis, epistasis and canalization and explore their molecular action. I expect that the breeding concepts and methods developed through this project will lead the way to increased productivity of crops that are important for global food security.
Summary
Plant breeders are challenged with sustaining global crop improvements. Is there a limit to crop yield? This project will address this central question using processing tomatoes as a model for a mechanized crop. By integrating in a single web-based platform of ‘Phenom Networks’ a broad germplasm base, deep phenotypes, and multiple genome sequences of tomato species, we will identify the genes and mechanisms that dictate crop productivity and implement them in the creation of next generation F1 hybrids. Our work is founded on our years of efforts to establish the following integrated genetic pillars: 1) The tomato genome revealed SNPs for broader marker-assisted selection between cultivated parents and untapped diversity from closely-related red-fruited ancestors. We will develop new elite parental lines into which all discovered traits will be introduced. 2) We will enrich the narrow genetic base of modern processing tomato by pyramiding recessive, additive, dominant and overdominant QTL from six wild species introgression lines (ILs) and field-test them in diverse environments. 3) By producing hybrids with ‘recessive’ deleterious mutants we have identified heterosis genes that increase yield by ~50%; these will be combined with the IL QTL. 4) Finally, we will focus on newly discovered “stability QTL” that significantly improve the reproducibility of yield effects by canalizing this phenotype in spite of environmental perturbations. This multi-faceted integrated tomato breeding effort will unite classical and genomics assisted methods with statistical genetics to demonstrate that yield barriers of the leading commercial hybrids are only there to be broken. We will clone the genes responsible for yield, domestication, heterosis, epistasis and canalization and explore their molecular action. I expect that the breeding concepts and methods developed through this project will lead the way to increased productivity of crops that are important for global food security.
Max ERC Funding
2 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31